Macroeconomics - Econ202A

Pierre-Olivier Gourinchas

UC Berkeley

Berkeley, Fall 2014

1/6

Interest Rate Elasticity of Saving. Summers (1981)

TABLE 1—THE INTEREST ELASTICITY
OF AGGREGATE SAVINGS

	Value of r				
	.04	.06	.08		
γ=.5					
η_r	3.71	2.26	2.44		
S/WL	.121	.274	.451		
y=0					
η_r	3.36	1.89	1.87		
\ddot{S}/WL	.068	.142	.210		
y =5					
•	3.09	1.71	1.54		
$\eta_r S/WL$.049	.096	.135		
y = -1					
η_r	2.87	1.59	1.37		
\ddot{S}/WL	.038	.073	.099		
y = -2					
η_r	2.38	1.45	.122		
\ddot{S}/WL	.028	.048	.063		
$\gamma = -5$					
η_r	.741	1.09	1.18		
Ŝ/WL	.014	.019	.025		

Note: The calculation assumes n=.015, g=.02, T'=50, T=40, and $\delta=.03$. The savings rate is measured as a fraction of labor income.

EQUATIONS RELATING CONSUMPTION TO LAGGED CONSUMPTION AND PAST LEVELS OF REAL DISPOSABLE INCOME

	Equation No. and Equation	R^2	s	D-W	F	F*
3.1	$c_{t} = -16 + 1.024 c_{t-1}010 y_{t-1} $ $(11) (.044) (.032)$.9988	14.7	1.71	.1	3.9
3.2	$c_{t} = -23 + 1.076 c_{t-1} + .049 y_{t-1}051 y_{t-2} $ $(11) (.047) (.043) (.052)$					
	$\begin{array}{ccc}023 y_{t-3} &024 y_{t-4} \\ (.051) & (.037) \end{array}$.9989	14.4	2.02	2.0	2.4
3.3	$c_t = -25 + 1.113 c_{t-1} + \sum_{i=1}^{12} \beta_i y_{t-1} \Sigma \beta_i = .077$ (11) (.054) (.040)	.9988	14.6	1.92	2.0	2.7

3/6

Campbell & Mankiw (1989)

Table 2 EVIDENCE FROM ABROAD $\Delta c_t = \mu + \lambda \Delta y_t$

	Country	First-stage	regressions	λ estimate	Test of restrictions	
_	(sample period)	Δc equation	Δy equation	(s.e.)		
1	Canada	0.047	0.090	0.616	0.007	
	(1963–1986)	(0.127)	(0.030)	(0.215)	(0.263)	
2	France	0.083	0.166	1.095	-0.055	
	(1970-1986)	(0.091)	(0.015)	(0.341)	(0.714)	
3	Germany	0.028	0.086	0.646	$-0.030^{'}$	
	(1962–1986)	(0.211)	(0.031)	(0.182)	(0.639)	
4	Italy	0.195	0.356	0.400	-0.034	
	(1973–1986)	(0.013)	(0.000)	(0.094)	(0.488)	
5	Japan	0.087	0.205	0.553	0.018	
	(1959–1986)	(0.020)	(0.000)	(0.096)	(0.178)	
6	United Kingdom	0.092	0.127	0.221	0.086	
	(1957–1986)	(0.012)	(0.002)	(0.153)	(0.010)	
7	United States	0.040	0.079	0.478	0.004	
	(1953–1986)	(0.092)	(0.014)	(0.158)	(0.269)	

Note: For all countries, the consumption data are total spending. The set of instruments is: Δy_{t-2} , ..., Δy_{t-4} , ..., Δc_{t-2} , ..., Δc_{t-4} , c_{t-2} - y_{t-2} . Also see note, Table 1.

Campbell & Mankiw (1989)

Table 5 UNITED STATES, 1953–1986 $\Delta c_t = \mu + \lambda \Delta y_t + \theta r_t$

		First-stage regressions			λ	θ	Test of
Row	Instruments	Δc	Δy	r	(s.e.)	(s.e.)	restrictions
1	None (OLS)				0.294 (0.041)	0.150 (0.070)	
2	$\Delta y_{t-2}, \ldots, \Delta y_{t-4}$ r_{t-2}, \ldots, r_{t-4}	0.045 (0.061)	0.030 (0.125)	0.471 (0.000)	0.438 (0.189)	0.080 (0.123)	-0.010 (0.441)
3	$ \Delta c_{t-2}, \ldots, \Delta c_{t-4} r_{t-2}, \ldots, r_{t-4} $	0.062 (0.026)	0.046 (0.060)	0.455 (0.000)	0.467 (0.152)	0.089 (0.110)	-0.006 (0.391)
4	$\Delta i_{t-2}, \ldots, \Delta i_{t-4}$ r_{t-2}, \ldots, r_{t-4}	0.092 (0.005)	0.034 (0.106)	0.431 (0.000)	0.657 (0.212)	0.016 (0.146)	-0.022 (0.665)

Note: See Table 1

5/6

Hsieh (2003)

TABLE 2—RESPONSE OF CONSUMPTION TO ALASKA PFD

	dlog(Nondurable consumption)			$dlog(Durable\ consumption)$		
	(1)	(2)	(3)	(4)	(5)	(6)
$\frac{PFD_t \times Family\ Size_h}{Family\ Income_h}$	0.0002 (0.0324)	-0.0167 (0.0336)	-0.0034 (0.0328)	-0.1659 (0.0878)	-0.1741 (0.0916)	-0.1488 (0.0890)
Controls for: Family size Year dummies Number of observations	No No 806	No Yes 806	Yes No 806	No No 806	No Yes 806	Yes No 806

Notes: Dependent variable is $\log(C_{IV}/C_{III})$. Standard errors are in parentheses. All regressions are ordinary least squares (OLS) and include a quadratic in age and changes in the number of children and adults in the household.