Econ 234C – Corporate Finance
Lecture 4: Internal Investment (III) -
Introduction to MH

Ulrike Malmendier
UC Berkeley

February 13, 2008
1 Recap: Asymmetric Information and Financing Frictions

- Manager / entrepreneur has investment project costing \(I \), no cash on hand \(C = 0 \), no (illiquid) assets \(A = 0 \).

- Project is of good quality or of bad quality:
 - Returns:
 \[
 \begin{align*}
 \text{good} & \implies \text{return } R \text{ w/prob. } p, & \text{else return } 0; \\
 \text{bad} & \implies \text{return } R \text{ w/pr. } q < p, & \text{else return } 0.
 \end{align*}
 \]

- Two cases:
 - only good project creditworthy: \(pR > I > qR \)
 - both projects creditworthy: \(pR > qR > I \)

- Investors’ prior on success probability: \(m \equiv \alpha p + (1 - \alpha)q \).
• **Key assumption**: project quality = private information of entrepreneur.

• Result:

 – No lending (market breakdown) if \(\alpha < \alpha^* \) where \(\alpha^* \) is defined by

 \[
 (\alpha^* p + (1 - \alpha^*) q) R = I.
 \]

 – Cross-subsidization if \(\alpha \geq \alpha^* \).

• May also explain the ‘Pecking Order of Financing’

 – Internal financing \(\succ \) risk-free debt \(\succ \) risky debt \(\succ \) equity.

 – Model interpretation: Managers prefer ‘low-information intensity’ financing to ‘high-information intensity’ financing.
2 Approach II: Moral Hazard and Financing Frictions

Managers’ interests may differ from owners’ interests because of

- Disutility / cost of effort (laziness)
- Private benefits (perks such as expensive offices)
- Utility from having a large firm = “empire building”
- Entrenchment (managers want to keep their job and choose investments that make them indispensable)
- Risk-aversion (manager chooses projects with lower NPV but lower downside if that helps to prevent them from being fired)
• Simple investment setting: Manager (entrepreneur, borrower) has investment costing I, cash on hand $C < I$.

• Manager can work hard or shirk.

 - Return consequences: \[
 \begin{align*}
 &\text{work hard} \quad \Rightarrow \quad \text{return } R \text{ w/prob. } p_H, \\
 &\text{shirk} \quad \Rightarrow \quad \text{return } R \text{ w/pr. } p_L < p_H, \\
 &\text{else return } 0.
 \end{align*}
 \]

 - Private-benefit consequences: \[
 \begin{align*}
 &\text{work hard} \quad \Rightarrow \quad \text{priv. benefit } 0; \\
 &\text{shirk} \quad \Rightarrow \quad \text{priv. ben. } B > 0.
 \end{align*}
 \]

 - Note: You can interpret ‘work hard’ either as ‘having a disutility of effort, which is saved when shirking’ or as ‘choosing the less glamorous project.’
- **Timeline:**

 - **Project Financing (Risk Neutral Manager):**

 - Manager has project costing \(I \); has cash \(C < I \); has to borrow \(I - C \)
 - **Moral Hazard.**
 - **Verifiable Outcome:**

 - 0 = Failure
 - \(R = \text{Success} \)

 - **Prob. Success | Private Benefit**

Works hard	Private Benefit
\(p_H \)	0
Shirks	\(p_L \)
	\(B \)
• Manager and (potential) investors are risk-neutral. Limited liability.
• Rate of return normalized to $r = 0$.
• Competitive external capital markets (zero profit given $r = 0$).
• Contracting assumptions:
 – Success or failure of the investment verifiable.
 – Effort not observable, not verifiable.

• Contracting problem (simple and ‘extreme’ version considered here):
 – Project has positive NPV if manager behaves: $p_H R - I > 0$.
 – Project has negative NPV if manager misbehaves, even if we include the manager’s private benefit: $p_L R - I + B < 0$.
 – Hence, investor and manager must find a way to offset shirking incentive; otherwise no contract, no financing, no project, no returns.
• Contract suggestion:

 – Pay R_m to the manager if success, 0 if failure.

 – Set R_m such that net payoff higher if working: $R_m(p_H - p_L) \geq B$.
 (Note: Weak inequality implies that manager works hard if indifferent.)

 – Minimum expected agency rent $R_m = \frac{B}{p_H - p_L}$.

• Knowing this, i.e., how much they need to pay the manager, do investors want to lend?

 – Don’t want to lend if they anticipate that manager shirks.

 – Want to lend if they can motivate manager to work and still get back
their investment:

\[p_H(R - R_m) \geq I - C \]

\[\iff p_H(R - \frac{B}{p_H - p_L}) \geq I - C \]

- \(p_H(R - \frac{B}{p_H - p_L}) \), is the (expected) pledgable income.

- The lending condition says: pledgable income has to be greater than investor outlay.

• We can solve the lending condition for the ‘minimum required cash’ the manager needs to have at hand:

\[p_H(R - \frac{B}{p_H - p_L}) \geq I - C \]

\[\iff C \geq I - p_H(R - \frac{B}{p_H - p_L}) \]
- Call **threshold level** of cash (liquid assets) \(\overline{C} \):

\[
\overline{C} = I - p_H \left(R - \frac{B}{p_H - p_L} \right)
\]
Implications

1. Two types of determinants of credit rationing:
 - Low amount of cash on hand (low C).
 - High agency cost as measured by the size of the private benefit B relative to the likelihood ratio $\Delta p/p_H$, for a given NPV $p_H R$. (The agency rent is $p_H \frac{B}{p_H - p_L} = B/(\Delta p/p_H)$.)

2. Investment-cash flow sensitivity:
 - Holding constant the quality of the investment project and the private benefit, richer firms/managers are more likely to obtain financing and implement the project.
3 Readings for next class (and class after)

- Still based on the two Jensen papers.

- I will try to follow the set up of Tirole Chapter 3.