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1 Introduction

There is a large literature on estimating average treatment effects under assumptions of un-
confoundedness or ignorability following the seminal work by Rosenbaum and Rubin (1983a).
Researchers have developed estimators based on regression methods (e.g., Hahn, 1998, Heck-
man, Ichimura and Todd, 1998), matching (e.g., Rosenbaum, 1989, Abadie and Imbens, 2004),
and methods based on the propensity score (e.g., Rosenbaum and Rubin, 1983a, Hirano, Imbens
and Ridder, 2003). Related methods for missing data problems are discussed in Robins, Rot-
nitzky and Zhao (1995) and Robins and Rotznitzky (1995). See Rosenbaum (2001), Heckman,
Lalonde and Smith (2002), Wooldridge (2002), Blundell and Costa-Diaz (2002) and Imbens
(2004) for surveys of this literature. In practice an important concern in implementing all these
methods is that one needs sufficient overlap between covariate distributions in the two sub-
populations. Even if there exist areas with sufficient overlap, there may be other parts of the
covariate space with few units of one of the treatment levels. Such areas of limited overlap can
lead to estimators for average treatment effects with poor finite sample properties. In particu-
lar, such estimators can have substantial bias, large variances, as well as considerable sensitivity
to the exact specification of the regression functions or propensity score. Heckman, Ichimura
and Todd (1997, 1998), and Dehejia and Wahba (1999) point out the empirical relevance of
this overlap issue.1

One strand of the literature has focused on assessing the robustness of estimators to a
variety of potential problems including lack of overlap. See for example Rosenbaum and Rubin
(1983b), Imbens (2003), and Ichino, Mealli, and Nannicini (2005). A second strand of the
literature focuses on estimators that are more robust and precise. With this goal in mind
researchers have proposed discarding or downweighting observations with covariates in areas
with limited overlap. A number of specific methods have been proposed for implementing this.
In simplest setting with a discrete covariate Rubin (1977) suggests simply discarding all units
with covariate values with either no treated or no control units. Rubin and Cochran (1973)
suggest caliper matching where potential matches are dropped if the within-match difference in
propensity scores exceeds some threshold level. Dehejia and Wahba (1999) focus on the average
treatment effect for the treated and suggest discarding all controls with estimated propensity
scores below the smallest value of the propensity score among the treated. Heckman, Ichimura,
Smith and Todd (1998) and Heckman, Ichimura and Todd (1998) drop units from the analysis
if the estimated density of the covariate distribution conditional on treatment status is below
some threshold. Ho, Imai, King and Stuart (2004) propose preprocessing the data by matching
units and carrying out parametric inferences using the matched data. All of these methods
have some advantages as well as drawbacks. They all do tend to reduce sensitivity of the final
estimates to model specification. However, they rely on arbitrary choices regarding thresholds
for discarding observations, and there are few formal results on their properties.

1Dehejia and Wahba write: “... our methods succeed for a transparent reason: They only use the subset of the
comparison group that is comparable to the treatment group, and discard the complement.” Heckman, Ichimura
and Todd (1997) write “A major finding of this paper is that comparing the incomparable – i.e., violating the
common support condition for the matching variables – is a major sources of evaluation bias as conventionally
measured.”
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In this paper we propose a systematic approach to account for subpopulations with limited
overlap in the covariates. This approach has asymptotic optimality properties under some
conditions and is straightforward to implement. We consider two specific methods. First we
focus on average treatment effects within a selected subpopulation defined in terms of covariate
values. Conditioning on a subpopulation reduces the effective sample size, thus increasing the
variance of the estimated average treatment effect. However, if the subpopulation is chosen
appropriately, it may be possibly to estimate the average treatment within this subpopulation
more precisely than the average effect for the entire population despite the smaller sample size.
It turns out that in general this tradeoff is well defined and leads under some conditions to
choosing the subpopulation with the propensity score in an interval [a, 1− a], with the optimal
value of a solely determined by the distribution of the propensity score. We refer to this as the
Optimal Subpopulation Average Treatment Effect (OSATE).

Second, we consider weighted average treatment effects with the weights depending only on
the covariates. The first approach of choosing a subpopulation can be viewed as a special case
in this framework where the weight function is restricted to be an indicator function. Without
imposing this restriction we characterize the weight function that leads to the most precisely
estimated average treatment effect. Note that this class of estimands includes the average
treatment effect for the treated where the weight function is proportional to the propensity
score. Under the same conditions as before the optimal weight function will again be a function
of the propensity score alone, proportional to the product of the propensity score and one minus
the propensity score. We refer to this as the Optimally Weighted Average Treatment Effect
(OWATE).

The switch to average treatment effect for an optimally selected subpopulation or to a opti-
mally weighted average treatment effect has a second benefit beyond the increase in precision.
The subpopulations for treated and control group in this selected or weighted population tend
to be more balanced in the distribution of the covariates. This is a consequence of the fact that,
under homoskedasticity, the variance of the conditional average treatment effect is proportional
to (e(X) · (1 − e(X)))−1, and thus lowering the weight on high-variance observations increases
the weight on observations with propensity scores close to 1/2. The increased balance in the
selected or weighted sample reduces the sensitivity of any estimators to changes in the specifi-
cation. In the extreme case where the selected sample is completely balanced in covariates in
the two treatment arms one can simply use the average difference in outcomes between treated
and control units.

It is important to stress that these methods change the estimand. Instead of focusing on
the traditional estimands, the population average treatment effect or the average effect for the
subpopulation of the treated, we focus on average effects for a (weighted) subpopulation.2 This
change of focus is not motivated by an intrinsic interest in this subpopulation. Rather, it ac-
knowledges and addresses the difficulties in making inferences about the population of primary
interest. Instead of reporting solely the potentially imprecise estimate for the population av-
erage treatment effect we propose reporting both estimates for the population of interest and
estimates for subpopulations where we can make more precise inferences. In settings where

2This is also true for the method proposed by Heckman, Ichimura and Todd, (1998).
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we cannot ascertain with much confidence the sign of the population average treatment effect
such estimates may serve to demonstrate that there are subpopulations that benefit from or
are harmed by the program, as well as the extent of this benefit or harm. It is also important
to note that the subpopulation for which these estimands are valid are defined in terms of the
observed covariate values so that one can determine for each individual whether they are in the
relevant subpopulation or not.

This change of estimand is uncommon in econometric analyses.3 Typically in such analyses
the estimand is defined a priori, followed by a presentation of estimates that turn out to be
more or less precise depending on the actual data. In cases where even large data sets would not
permit point identification of the estimand or interest regions of the parameter space consistent
with the model may be reported in a bounds analysis of the type developed by Manski (1990,
2003). Here our approach is different and to some extent complementary. Sacrificing some
external validity by changing the sample from one that was potentially representative of the
population of interest we potentially gain some internal validity by changing it to a sample
where we can obtain more precise and credible estimates.4 Such stress on internal validity at
the expense of external validity is similar to that in randomized experiments which are often
carried out in populations unrepresentative of the population of interest.5 More generally, the
primacy of internal validity over external validity is advocated in many discussions of causality
(see, for example, Shadish, Cook, and Campbell, 2002).

In interpreting our results it is also of interest to consider estimation of the average treatment
effect under the assumption that it does not vary with the covariates. This assumption is
generally informative except in the case where the propensity score is constant. The efficient
estimator under this assumption has an interesting form. It is identical to the efficient estimator
for the weighted average treatment effect estimator where the weights are chosen to obtain the
most precisely estimated average treatment effect.

We also develop a set of three new nonparametric tests. Building on the work by Härdle
and Marron (1990) and Horowitz and Spokoiny (2001) we first test the hypothesis that there
is no variation in the conditional average treatment effect by covariates. Second, we test the
hypothesis that the conditional average treatment effect is zero for all values of the covariates.
Third, we test the hypothesis that the optimally weighted average treatment effect is equal to
zero.

We illustrate these methods using three data sets. The first is the non-experimental part of
a data set on labor market programs previously used by Lalonde (1986), Dehejia and Wahba
(1999), Smith and Todd (2005) and others. In this data set the overlap issue is a well known
problem, with the control and treatment group far apart on some of the most important co-

3One exception is the local average treatment effect introduced by Imbens and Angrist (1994) who show that
in an instrumental variables setting only the average effect of the treatment for the subpopulation of compliers
is identified.

4A separate issue is that in practice in many cases even the original sample is not representative of the
population of interest. For example, we are often interested in policies that would extend small pilot versions of
job training programs to different locations and times.

5Even in those settings this can be controversial and lead to misleading conclusions. See for example the
recent recall of Vioxx which appeared to have harmful side effects on subpopulations not part of the original
clinical trials (reference).
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variates including lagged values for the outcome of interest, yearly earnings. Here the optimal
subpopulation method suggests dropping 2363 out of 2675 observations (leaving only 312 ob-
servations) in order to minimize the variance. Calculations suggest that this lowers the variance
by a factor 1/160000, reflecting the fact that most of the controls are very different from the
treated that it is essentially impossible to estimate the population average treatment effect.
More relevant, given the fact that most of the researchers analyzing this data set have focused
on the average effect for the treated, is that the variance for the optimal subsample is only 40%
of that for the propensity score weighted sample (which estimates the effect on the treated).

The second data set, containing a sample of lottery players, was collected by Imbens, Rubin
and Sacerdote (2001), They compare labor market outcomes for lottery winners and losers.
Here the differences between the control and treatment group are much smaller, although they
are still significantly different from zero at conventional levels. Here the optimal subpopulation
approach suggests dropping 108 observations out of 496, and leads to an reduction in the
variance of 60%.

The last example uses data from the Greater Avenue for INdependence (GAIN) experiments
designed to evaluate labor market programs in California. We use data from the Los Angeles
and Riverside locations to see if controls from one location can be used as a nonexperimental
comparison group in the other location. Here the covariates are quite close. The optimal
subpopulation approach suggests dropping only 407 observations out of 4035. The calculations
suggest that even though the two subpopulations are close, this still leads to a decrease in the
variance of 20%.

In all three cases the improvement in precision from focusing on the restricted sample is
substantial. The additional improvement from moving from the optimal subpopulation to the
optimally weighted sample is considerably smaller. The increased difficulty in interpretation of
the weighted average treatment effect may not be worth this additional increase in precision.

It is important to note that our calculations are not tied to a specific estimator. The
results formally refer to differences in the efficiency bound for different subpopulations. As
a consequence, they are relevant for all efficient estimators, including the ones proposed by
Hahn (1998), Hirano, Imbens and Ridder (2003), Imbens, Newey and Ridder (2004), Robins,
Rotnitzky and Zhao (1995) and Wooldridge . Although not directly applicable to estimators
that do not reach the efficiency bound, such as the nearest neighbor matching estimators in
Abadie and Imbens (2002) and the local linear estimators in Heckman, Ichimura and Todd
(1998), the close relation between those estimators and the efficient ones suggests that with
matching the same issues are relevant.

2 A Simple Example

To set the stage for the issues to be discussed in this paper, consider an example with a scalar
covariate X taking on two values, 0 and 1. Let Nx be the sample size for the subsample with
X = x, and let N = N0 + N1 be the total sample size. Also let p = N1/N be the population
share of X = 1 units. Let the average treatment effect conditional on the covariate be equal to
τx. The population average treatment effect is then τ = p·τ1+(1−p)·τ0. Let Nxw be the number
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of observations with covariate Xi = x and treatment indicator Wi = w. Also, let ex = Nx1/Nx

be the propensity score for x = 0, 1. Finally, let ȳxw =
∑N

i=1 Yi · 1{Xi = x,Wi = w}/Nxw be
the average within each of the four subpopulations. Assume that the variance of Y (w) given
Xi = x is σ2 for all x.

The natural estimator for the treatment effects for each of the two subpopulations are

τ̂0 = ȳ01 − ȳ00, and τ̂1 = ȳ11 − ȳ10,

with variances

V (τ̂0) = σ2 ·
(

1
N00

+
1
N01

)
=

σ2

N · (1 − p)
· 1
e0 · (1 − e0)

,

and

V (τ̂1) = σ2 ·
(

1
N10

+
1
N11

)
=

σ2

N · p
· 1
e1 · (1 − e1)

.

The estimator for the population average treatment effect is

τ̂ = p · τ̂1 + (1 − p) · τ̂0.

Because the two estimates τ̂0 and τ̂1 are independent, the variance of the population average
treatment effect is

V (τ̂) = p2 · V (τ̂1) + (1 − p)2 · V (τ̂0)

=
σ2

N
·
(

p

e1 · (1 − e1)
+

1 − p

e0 · (1 − e0)

)
=
σ2

N
· E
[

1
eX · (1 − eX)

]
.

The first point of the paper concerns the comparison of V (τ̂ ), V (τ̂0), and V (τ̂1)). Define
Vmin = min(V (τ̂), V (τ̂0), V (τ̂1). Then

Vmin =





V (τ̂0) if (e1(1 − e1))/(e0(1 − e0)) ≤ (1 − p)/(2 − p),
V (τ̂) if (1 − p)/(2 − p) ≤ (e1(1 − e1))/(e0(1 − e0)) ≤ (1 + p)/p,
V (τ̂1) if (1 + p)/p ≤ (e1(1 − e1))/(e0(1 − e0)).

(2.1)

The key is the ratio of the product of the propensity score and one minus the propensity score,
e1(1 − e1)/(e0(1 − e0)). If the propensity score for units with X = 0 is close to zero or one, we
cannot estimate the average treatment effect for this subpopulation precisely. In that case the
ratio e1(1− e1)/(e0(1− e0)) will be high and we may be able to estimate the average treatment
effect for the X = x0 subpopulation more accurately than for the population as a whole, even
though we may lose a substantial number of observations by discarding units with Xi = 0.
Similarly, if the propensity score for the X = 1 subpopulation is close to zero or one, the ratio
e1(1 − e1)/(e0(1 − e0)) is close to zero, and we may be able to estimate the average treatment
effect for the X = x1 subpopulation more accurately than for the population as a whole. If
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the ratio is close to one, we can estimate the average effect for the population as a whole more
accurately than for either of the two subpopulations.

The second advantage of focusing on subpopulation average treatment effects is in this case
obvious. Within the two subpopulations we can estimate the within-subpopulation average
treatment effect without bias by simply differencing average treatment and control outcomes.
Thus our results are not sensitive to the choice of estimator, whereas in the population as a
whole there is potentially substantial bias from simply differencing average outcomes.

The second point is that one need not limit the choice to the three average treatment effects
discussed so far. More generally one may wish to focus on a weighted average treatment effect

τλ = λ · τ1 + (1 − λ) · τ0,

for fixed λ, which can be estimated as

τ̂λ = λ · τ̂1 + (1 − λ) · τ̂0,

The variance for this weighted average treatment effect is

V (τ̂λ) = λ2 · V (τ̂1) + (1 − λ)2 · V (τ̂0)

= λ2 · σ2

N · p · 1
e1 · (1 − e1)

+ (1 − λ)2 · σ2

N · (1 − p)
· 1
e0 · (1 − e0)

.

The variance is minimized at

λ∗ =
1/V (τ̂1)

1/V (τ̂1) + 1/V (τ̂0)
=

p · e1 · (1 − e1)
(1 − p) · e0 · (1 − e0) + p · e1 · (1 − e1)

. (2.2)

with the minimum value for the variance equal to

V (τλ∗) =
σ2

N
· 1
((1 − p) · e0 · (1 − e0) + p · e1 · (1 − e1))

=
σ2

N
· 1

E[eX · (1 − eX)]
.

The ratio of the variance for the population average to the variance for the optimally weighted
average treatment effect is

V (τP )/V (τλ∗) = E
[

1
eX · (1 − eX)

]/
1

E[eX · (1 − eX)]
(2.3)

= E
[

1
V (W |X)

]/
1

E[V (W |X)]
.

By Jensen’s inequality this is greater than one if V (eX) > 0, that is, if the propensity score
varies across the population.

In this paper we generalize this analysis to the case with a vector of potentially continuously
distributed covariates. We study the existence and characterization of subpopulations such that
the average treatment effect for these subpopulations is at least as accurately estimated than
that for any other subpopulation, the generalization of (2.1). Under some assumptions these
subpopulations have a very simple form, namely the set of covariates such that the propensity
score is in the closed interval [a, 1−a]. The optimal value of the boundary point a is determined
by the distribution of the propensity score and its calculation is straightforward. In addition we
characterize the optimally weighted average treatment effect and its variance, the generalization
of (2.2) and (2.3).
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3 Set Up

The basic framework is standard in this literature (e.g., Rosenbaum and Rubin, 1983; Hahn,
1998; Heckman, Ichimura and Todd, 1998; Hirano, Imbens and Ridder, 2003). We have a
random sample of size N from a large population. For each unit i in the sample, let Wi indicate
whether the treatment of interest was received, with Wi = 1 if unit i receives the treatment
of interest, and Wi = 0 if unit i receives the control treatment. Using the potential outcome
notation popularized by Rubin (1974), let Yi(0) denote the outcome for unit i under control
and Yi(1) the outcome under treatment. We observe Wi and Yi, where

Yi ≡ Yi(Wi) = Wi · Yi(1) + (1 −Wi) · Yi(0).

In addition, we observe a vector of pre-treatment variables, or covariates, denoted by Xi.
Define the two conditional means, µw(x) = E[Y (w)|X = x], the two conditional variances,
σ2

w(x) = Var(Y (w)|X = x), the conditional average treatment effect τ(x) = E[Y (1)−Y (0)|X =
x] = µ1(x) − µ0(x), and the propensity score, the probability of selection into the e(x) =
Pr(W = 1|X = x) = E[W |X = x].

Initially we focus on two average treatment effects. The first is the (super-)population
average treatment effect

τP ≡ E[Y (1) − Y (0)].

We also consider the conditional average treatment effect:

τC =
1
N

N∑

i=1

τ(Xi),

where we condition on the observed set of covariates. The reason for focusing on the second
one is twofold. First, it is analogous to the common conditioning on covariates in regression
analysis. Second, it can be estimated more precisely if there is indeed variation in the treatment
effect by covariates.

To solve the identification problem, we maintain throughout the paper the unconfoundedness
assumption (Rubin, 1978; Rosenbaum and Rubin, 1983), which asserts that conditional on
the pre-treatment variables, the treatment indicator is independent of the potential outcomes.
Formally:

Assumption 3.1 (Unconfoundedness)

W ⊥ (Y (0), Y (1))
∣∣∣∣ X. (3.4)

In addition we assume there is overlap in the covariate distributions:

Assumption 3.2 (Overlap)

For some c > 0,

c ≤ e(x) ≤ 1 − c.
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In addition for estimation we often need smoothness conditions on the two regression functions
µw(x) and the propensity score e(x).

4 Efficiency Bounds

Next, we review some results for efficient estimation of treatment effects. First we discuss
efficient estimators previously developed by Hahn (1998) and Hirano, Imbens and Ridder (2003)
for treatment effects allowing for heterogeneity in the treatment effects. Second, we present
some results for efficient estimation of treatment effects under a variety of assumptions that
restrict the heterogeneity of the treatment effects. This setting is closely related to the partial
linear model developed by Robinson (1988).

Hahn (1998) calculates the efficiency bound for τP .

Theorem 4.1 (Hahn, 1998) Suppose Assumptions 3.1 and 3.2 hold. Then the semiparametric
efficiency bounds for τ is

V eff
P = E

[
(τ(X) − τ)2 +

σ2
1(X)
e(X)

+
σ2

0(X)
1 − e(X)

]
. (4.5)

Proof: See Hahn (1998).
Robins, Rotznitzky and Zhao (1995) present a similar result in a missing data setting.
Hahn (1998) also proposes an estimator that achieves the efficiency bound.6 Hahn’s esti-

mator is asymptotically linear,

τ̂H =
1
N

N∑

i=1

ψ(Yi,Wi,Xi) + op

(
N−1/2

)
,

where

ψ(y,w, x) = w · y − µ1(x)
e(x)

− (1 − w) · y − µ0(x)
1 − e(x)

+ µ1(x) − µ0(x) − τ.

One implication of this representation is that we can view Hahn’s estimator, as well as the
other efficient estimators not only as estimators of the population average treatment effect τP
but also as estimators of the conditional average treatment effect τC . As an estimator of τC the
efficient estimator τ̂H has asymptotic variance

V eff
C = E

[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

]
. (4.6)

Next we consider a larger set of estimands. Instead of looking at the average treatment
effect within a subpopulation we consider weighted average treatment effects of the form

τP,g = E[τ(X) · g(X)]/E[g(X)],

for nonnegative functions g(·). For estimands of this type the efficiency bound is given in the
following theorem:

6Other efficient estimators have been proposed by Hirano, Imbens and Ridder (2003) and Imbens, Newey and
Ridder (2004).
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Theorem 4.2 (Hirano, Imbens and Ridder, 2003) Suppose Assumptions 3.1 and 3.2 hold,
and suppose that g(·) is known. Then the semiparametric efficiency bounds for τg is

V eff
P,g =

1
E[g(X)]2

· E
[
g(X)2 (τ(X) − τg)

2 +
g(X)2

e(X)
σ2

1(X) +
g(X)2

1 − e(X)
σ2

0(X)
]

Proof: See Hirano, Imbens and Ridder (2003).
Again there is an asymptotically linear estimator that achieves this efficiency bound. The

same argument as above therefore shows that the efficient estimator for τP,g, as an estimator
for the conditional average treatment effect version of this estimand,

τC,g =
N∑

i=1

τ(Xi) · g(Xi)
/ N∑

i=1

g(Xi),

has asymptotic variance

V eff
C,g =

1
E[g(X)]2

· E
[
g(X)2

e(X)
σ2

1(X) +
g(X)2

1 − e(X)
σ2

0(X)
]
. (4.7)

Finally, we consider the case where we know that the average treatment effect does not vary
by covariates.

Assumption 4.1 (Constant Conditional Average Treatment Effect)

For all x, µ1(x) − µ0(x) = τ .

This assumption is slightly weaker than assuming a constant treatment effect. Under this
assumption the efficiency bound is a generalization of the bound given in Robins, Mark and
Newey (1992) to the heteroskedastic case:

Theorem 4.3 (Robins, Mark and Newey, 1992) Suppose Assumptions 3.1, 3.2, and 4.1
hold. Then the semiparametric efficiency bounds for τ is

V eff
cons =

(
E

[(
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

)−1
])−1

. (4.8)

Proof: See Robins, Mark and Newey (1992).
It is interesting to compare the efficiency bound for τ under the constant average treatment

effect assumption given in (4.8) with the efficiency bound for the average conditional treatment
effect τC given in (4.6). By Jensen’s inequality the former is smaller, unless σ2

1(x)/e(x) +
σ2

0(x)/(1 − e(x)) is constant. Under homoskedasticity the ratio of the variances V eff
C and V eff

cons

reduces to

E
[

1
V (W |X)

]/
1

E[V (W |X)]
,

the same expression we obtained in the binary covariate case. This ratio is greater than one
unless the propensity score is constant. If the propensity score takes on values close to zero
or one this ratio can be large. The implication is that knowledge of the treatment effect being
constant as a function of the covariates can be very valuable.
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5 Previous Approaches to Dealing with Limited Overlap

In empirical application there is often concern about the overlap assumption (e.g., Dehejia and
Wahba, 1999; Heckman, Ichimura, and Todd, 1998). To ensure that there is sufficient overlap
researchers have sometimes trimmed their sample by excluding observations with propensity
scores close to zero or one. Cochran and Rubin (1977) suggest caliper matching where units
whose match quality is too low according to the distance in terms of the propensity score are
left unmatched.

Dehejia and Wahba (1999), who focus on the average effect for the treated, drop all con-
trol units with an estimated propensity score lower than the smallest value for the estimated
propensity score among the treated units.

Heckman, Ichimura and Todd (1998) and Heckman, Ichimura, Smith and Todd (1998) also
focus on the average effect for the treated. They propose discarding units with covariate values
at which the estimated density for the controls is below some threshold.

Ho, Imai, King and Stuart (2004) propose combining any specific parametric procedure
that the researcher may wish to employ with a nonparametric first stage in which the units
are matched to the closest unit of the opposite treatment. This typically leads to a data set
that is much more balanced in terms of covariate distributions between treated and control. It
therefore thus reduces sensitivity of the parametric model to specific modelling decisions such
as the inclusion of covariates or functional form assumptions.

All these methods tend to make the estimators more robust to specification decisions. How-
ever, few formal results are available on the properties of these procedures.

6 The Optimal Subpopulation Average Treatment Effect

First we consider trimming the sample by excluding units with covariates outside of a set A,
where A ⊂ X, with X ⊂ Rk the covariate space. For a given set A we define a corresponding
average treatment effect τC(A):

τC(A) =
∫

A
τ(x)f(x)dx.

The efficiency bound for this parameter is

V eff
C (A) = E

[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

∣∣∣∣X ∈ A
]
.

Because the relative size of the subpopulation in A is q(A) = Pr(X ∈ A), the efficiency bound
normalized by the original sample size is

V eff′
C (A) =

1
q(A)

· E
[
σ2

1(X)
e(X)

+
σ2

0(X)
1 − e(X)

∣∣∣∣X ∈ A
]
. (6.9)

We look for an optimal A, denoted by A∗, that minimizes the asymptotic variance (6.9) among
all subsets A.
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There are two competing effects. First, by excluding units with covariate values outside
the set A one reduces the effective sample size from N to N · q(A). This will increase the
asymptotic variance, normalized by the original sample size, by a factor 1/q(A). Second, by
discarding units with high values for σ2

1(X)/e(X) + σ2
0(X)/(1 − e(X)) (that is, units with

covariate values such that it is difficult to estimate the average treatment effect) one can lower
the conditional expectation E[σ2

1(X)/e(X) + σ2
0(X)/(1 − e(X))|X ∈ A]. Optimally choosing

A involves balancing these two effects. The following theorem gives the formal result for the
optimal A∗ that minimizes the asymptotic variance.

Theorem 6.1 (OSATE)

Let f ≤ f(x) ≤ f , and σ2(x) ≤ σ2 for w = 0, 1 and all x ∈ X. We consider sets A ⊂ X that are
elements of the sigma algebra of Borel subsets of Rk. Then the Optimal Subpopulation Average
Treatment Effect (OSATE) is τC(A∗), where, if

sup
x∈X

σ2
1(x) · (1 − e(x)) + σ2

0(x) · e(x)
e(x) · (1 − e(x))

≤ 2 · E
[
σ2

1(X) · (1 − e(X)) + σ2
0(X) · e(X)

e(X) · (1 − e(X))

]
,

then A∗ = X and otherwise,

A∗ =
{
x ∈ X

∣∣∣∣
σ2

1(x) · (1 − e(x)) + σ2
0(x) · e(x)

e(x) · (1 − e(x))
≤ a

}
,

where a is a positive solution to

a = 2 · E
[
σ2

1(X) · (1 − e(X)) + σ2
0(X) · e(X)

e(X) · (1 − e(X))

∣∣∣∣
σ2

1(X) · (1 − e(X)) + σ2
0(X) · e(X)

e(X) · (1 − e(X))
< a

]
.

Proof: See Appendix.
The result in this theorem simplifies under homoskedasticity.

Corollary 6.1 Optimal Overlap Under Homoskedasticity Suppose that σ2
w(x) = σ2 for

all w ∈ {0, 1} and x ∈ X. If

sup
x∈X

1
e(x) · (1 − e(x))

≤ 2 · E
[

1
e(X) · (1 − e(X))

]
,

then A∗ = X. Otherwise,

A∗ =
{
x ∈ X

∣∣∣∣
1

e(x) · (1 − e(x))
≤ a

}
,

where a is a solution to

a = 2 · E
[

1
e(X) · (1 − e(X))

∣∣∣∣
1

e(X) · (1 − e(X))
< a

]
.

We can find the smallest value of a that satisfies the first order conditions (and which
therefore must correspond to a local minimum for g(a)) by iteratively solving equation (??).
Start with a0 = 0. Calculate

γk = γ(ak) = E[(e · (1 − e))−1|ak ≤ e ≤ 1 − ak].
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Note that γk > 4 Then solve ak by solving for the solution in (0, 1/2) of

1
ak+1 · (1 − ak+1)

= 2 · γk,

leading to

ak+1 =
1
2
−
√

1
4
− 1

2 · γk
.

In an application we would typically not know the propensity score. In that case we would
carry out the calculations with the conditional expectation E[(e · (1 − e))−1|a ≤ e ≤ 1 − a]
replaced by

N∑

i=1

1
e(Xi) · (1 − e(Xi))

· 1{a ≤ e(Xi) ≤ 1 − a}
/ N∑

i=1

1{a ≤ e(Xi) ≤ 1 − a}.

7 The Optimally Weighted Average Treatment Effect

Lemma 7.1 Suppose Assumptions – hold, and that σ2
0(x) = σ2

1(x) = σ2 and that τ(x) = τ for
all x. Then the Optimally Weighted Average Treatment Effect (OWATE) is τg∗, where

g∗(x) = e(x) · (1 − e(x)).

8 Testing

In this section we discuss some nonparametric tests. We focus on three different hypotheses.
The first one is the hypothesis that τ(x) is constant as a function of x:

H0 : ∃ τ0, such that ∀ x ∈ X, τ(x) = τ0.

The second hypothesis we consider is that the conditional average treatment effect is zero for
all values of the covariates:

H′
0 : ∀ x ∈ X, τ(x) = 0.

The third test concerns the hypothesis that the optimally weighted average treatment effect
τC,g∗ is equal to zero:

H′′
0 : τC,g∗ = 0.

The latter test is very simple. The previous results lead to a root-N consistent estimator that
is asymptotically normal with zero asymptotic bias so that we can use a simple Wald test.

For the first two tests we adapt the framework of Härdle and Marron (1990). Härdle and
Marron consider a setting where one is interested in parametric restrictions on two nonpara-
metric regression function. They focus on the case with a scalar covariate that takes on values
i/N for i = 1, . . . , N . We generalize their results to the case with a k-dimensional covariate
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with an arbitrary distribution (subject to some regularity conditions), and allow for a general
weighting function where Härdle and Marron restrict the weighting function to be an indicator
function.

Let µ̂w(x) be nonparametric estimators for the two conditional mean functions. Let τ̂C,g∗

be an estimator for τC,g∗. The test statistic we use for the test of the null hypothesis H0 is

T =
N∑

i=1

(µ̂1(Xi) − µ̂0(Xi) − τ̂C,g∗)
2 · g∗(Xi).

Härdle and Marron show that after recentering the test statistic has under the null hypothesis
a normal distribution.

For testing the null hypothesis H ′
0 we use the test statistic

T ′ =
N∑

i=1

(µ̂1(Xi) − µ̂0(Xi))2 · g∗(Xi).

For the testing the third null hypothesis we use the fact that τ̂g∗ has a limiting normal
distribution.

9 Some Illustrations Based on Real Data

In this section we apply the methods developed in this paper to three data sets. The data
sets differ by the amount of balance between controls and treated, to highlight the effectiveness
and importance of ensuring balance in a range of settings. In each case we first calculate the
optimal cutoff point e∗ based on an estimate of the propensity score. We report the number
of observations discarded by the proposed sample selection. We also report the estimated
asymptotic variance for four cases. First, the efficiency bound for the average treatment effect
using the full sample. Second, the efficiency bound for the selected sample. Third, the efficiency
bound for the optimally weighted sample. Fourth, we report the efficiency bound for the average
effect for the treated.

9.1 The Lalonde Data

The first data set we use is a data set originally put together by Lalonde (1986), and subse-
quently used by Dehejia and Wahba (1999) and Smith and Todd (2004). The sample we use
here is the one used by Dehejia and Wahba. The treatment of interest is a job training program.
The trainees are drawn from an experimental evaluation of this program. The control group is
a sample drawn from the Panel Study of Income Dynamics (PSID). The control and treatment
group are very unbalanced. Table 1 presents some summary statistics. The fourth and fifth
column present the averages for each of the covariates separately for the control and treatment
group. Consider for example the average earnings in the year prior to the program, earn ’75.
For the control group from the PSID this is 19.06, in thousands of dollars. For the treatment
group it is only 1.53. Given that the standard deviation is 13.88, this is a very large difference
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Table 1: Covariate Balance for Lalonde Data

mean stand. mean Normalized Dif. in Treat. and Contr. Ave’s
dev. contr. treat. all [t-stat] a < e(x) optimal prop score

< 1 − a weights weighted

age 34.23 10.50 34.85 25.82 -0.86 [-16.0] -0.18 -0.25 -0.35
educ 11.99 3.05 12.12 10.35 -0.58 [-11.1] -0.04 -0.08 -0.12
black 0.29 0.45 0.25 0.84 1.30 [21.0] 0.20 0.27 0.37
hispanic 0.03 0.18 0.03 0.06 0.15 [1.5] 0.07 -0.01 -0.08
married 0.82 0.38 0.87 0.19 -1.76 [-22.8] -0.81 -0.79 -0.70
unempl ’74 0.13 0.34 0.09 0.71 1.85 [18.3] 0.78 0.78 1.19
uenmpl ’75 0.13 0.34 0.10 0.60 1.46 [13.7] 0.51 0.47 0.90
earn ’74 18.23 13.72 19.43 2.10 -1.26 [-38.6] -0.20 -0.23 -0.26
earn ’75 17.85 13.88 19.06 1.53 -1.26 [-48.6] -0.14 -0.18 -0.18

log odds ratio -7.87 4.91 -8.53 1.08 1.96 [53.6] 0.42 0.48 0.57

of 1.26 standard deviations, suggesting that simple covariance adjustments are unlikely to lead
to credible inferences.

For this data set we estimate the propensity score using a logistic model with all nine
covariates entering linearly. We then use the estimated propensity score to calculate the optimal
cutoff point, a in the notation of Lemma ?. The optimal cutoff point is a = 0.0660. The number
of observations that should be discarded according to this criterion is substantial. Out of the
original 2675 observations (2490 controls and 185 treated) only 312 are left (183 controls and
129 treated). In Table 2 we present the number of observations in the various categories.

The next table presents asymptotic standard errors for four estimands. First the standard
error for the population average treatment effect. Second, the asymptotic standard error for
the average treatment effect in the subpopulation with a < e(x) < 1 − a, for the optimal value
of a = 0.0660. Third, the standard error for the optimally weighted average treatment effect
τ∗g . Fourth, the asymptotic standard error for the average treatment effect for the treated.
The second row in this table presents ratios of the asymptotic standard error to the asymptotic
standard error for the population average treatment effect. There is a huge gain to moving from
the population average treatment effect to any of the three other estimands. This follows from
the huge differences between the treated and control covariate distributions. As a result of these
differences there are large areas in the covariate space where there are essentially no treated
units. Hence estimating the average treatment effects in those areas is difficult, and even under
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Table 2: Subsample Sizes for Lalonde Data: Propensity Score Threshold 0.0660

e(x) < a a ≤ e(x) ≤ 1 − a 1 − a < e(x) all

controls 2302 183 5 2490
treated 9 129 47 185
all 2311 312 52 2675

Table 3: Asymptotic Standard Errors for Lalonde Data

ATE ATT OSATE OWATE

Asymptotic Standard Error 636.58 2.58 1.62 1.29
Ratio to All 1.0000 0.0040 0.0025 0.0020

the assumptions made it can only be done with great uncertainty. For this example this is well
known in the literature. See for example Dehejia and Wahba (1999). More interesting is the
fact that there is still a large difference in asymptotic standard errors between the three other
estimands. The asymptotic standard error for the average effect for the treated is much larger
than for the optimal area (2.58 versus 1.62), with the latter still substantially larger than the
standard error for the optimally weighted average treatment effect (1.28).

9.2 The Lottery Data

9.3 The GAIN Data
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Table 4: Covariate Balance for Lottery Data

mean standard mean mean Normalized Dif. in Treat. and Contr. Ave’s
deviation controls treated all [tstat] a < e(x) optimal prop score

< 1 − a weights weighted

year won 6.23 1.18 6.38 6.06 -0.27 [-3.0] -0.19 -0.18 -0.19
# tickets bought 3.33 2.86 2.19 4.57 0.83 [9.9] 0.42 0.42 0.86
education 13.73 2.20 14.43 12.97 -0.66 -7.8] -0.47 -0.42 -0.46
work then 0.78 0.41 0.77 0.80 0.08 [0.9] -0.03 -0.01 0.02
male 0.63 0.48 0.67 0.58 -0.19 [-2.1] -0.12 -0.10 -0.13
age won 50.22 13.68 53.21 46.95 -0.46 [-5.2] -0.26 -0.22 -0.38
earn -6 0.01 0.01 0.02 0.01 -0.27 [-3.0 -0.14 -0.15 -0.19
earn -5 0.01 0.01 0.02 0.01 -0.28 [-3.2 -0.17 -0.18 -0.21
earn -4 0.01 0.01 0.02 0.01 -0.30 [-3.6 -0.21 -0.20 -0.25
earn -3 0.01 0.01 0.02 0.01 -0.26 [-2.9 -0.20 -0.19 -0.21
earn -2 0.02 0.02 0.02 0.01 -0.27 [-3.0] -0.21 -0.20 -0.20
earn -1 0.02 0.02 0.02 0.01 -0.22 [-2.5] -0.19 -0.18 -0.17
work -6 0.69 0.46 0.69 0.70 0.03 [0.3] 0.07 0.02 0.05
work -5 0.71 0.45 0.68 0.74 0.14 [1.6] 0.10 0.09 0.12
work -4 0.71 0.45 0.69 0.73 0.09 [1.1] 0.02 0.05 0.10
work -3 0.70 0.46 0.68 0.73 0.13 [1.4] 0.03 0.05 0.11
work -2 0.71 0.46 0.68 0.74 0.15 [1.6] 0.06 0.06 0.15
work -1 0.71 0.45 0.69 0.74 0.10 [1.2] 0.03 0.01 0.17

log odds ratio 0.01 1.97 -1.12 1.25 1.20 [16.4] 0.72 0.67 1.03

Table 5: Subsample Sizes for Lottery Data: Propensity Score Threshold 0.0914

e(x) < a a ≤ e(x) ≤ 1 − a 1 − a < e(x) all

controls 37 216 6 259
treated 4 172 61 237
all 41 388 67 496
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Table 6: Asymptotic Standard Errors for Lottery Data

ATE OSATE OWATE ATT

Asymptotic Standard Error 1.6199 2.7586 1.0918 1.0055
Ratio to All 1.0000 1.7029 0.6740 0.6207

Table 7: Covariate Balance for Gain Data

mean standard mean mean Normalized Dif. in Treat. and Contr. Ave’s
deviation controls treated all [tstat] a < e(x) optimal prop score

< 1 − a weights weighted

earn q-1 268 974 214 423 0.21 [ 5.1 ] 0.21 0.17 0.24
earn q-2 297 1033 219 521 0.29 [ 6.8 ] 0.28 0.26 0.39
earn q-3 307 1049 221 554 0.32 [ 7.1 ] 0.30 0.27 0.46
earn q-4 292 1010 208 533 0.32 [ 7.3 ] 0.31 0.29 0.47
earn y-2 1166 3697 750 2363 0.44 [ 9.2 ] 0.42 0.39 0.72
earn y-3 595 2037 363 1262 0.44 [ 9.1 ] 0.42 0.39 0.75
unempl q-1 0.85 0.36 0.88 0.77 -0.30 [ -7.4 ] -0.28 -0.27 -0.31
unempl q-2 0.85 0.36 0.88 0.76 -0.32 [ -8.0 ] -0.30 -0.30 -0.38
unempl q-3 0.84 0.36 0.87 0.76 -0.32 [ -8.0 ] -0.30 -0.29 -0.39
unempl q-4 0.84 0.36 0.88 0.75 -0.35 [ -8.7 ] -0.33 -0.32 -0.43
unempl y-2 0.73 0.44 0.78 0.59 -0.42 [ -10.8 ] -0.38 -0.37 -0.47
unempl y-3 0.81 0.39 0.85 0.69 -0.40 [ -9.9 ] -0.37 -0.37 -0.50
education 8.62 5.01 8.18 9.87 0.34 [ 10.8 ] 0.21 0.21 0.18
age 37.28 8.68 38.48 33.82 -0.54 [ -15.4 ] -0.39 -0.42 -0.43

log odds ratio -1.20 0.82 -1.35 -0.75 0.73 [ 20.2 ] 0.59 0.59 0.76
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Table 8: Subsample Sizes for Gain Data: Propensity Score Threshold 0.0932

e(x) < a a ≤ e(x) ≤ 1 − a 1 − a < e(x) all

controls 366 2629 0 2995
treated 39 999 2 1040
all 405 3628 2 4035

Table 9: Asymptotic Standard Errors for Gain Data

ATE ATT OSATE OWATE

Asymptotic Standard Error 0.1326 0.1286 0.1283 0.1211
Ratio to All 1.0000 0.9697 0.9676 0.9130
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