Foundations for Bayesian Updating

Eran Shmaya * Leeat Yariv††

Current Version: September 21, 2007

Abstract. We provide a simple characterization of updating rules that can be rationalized as Bayesian. Namely, we consider a general setting in which an agent observes finite sequences of signals and reports probabilistic predictions on the underlying state of the world. We study when such predictions are consistent with Bayesian updating, i.e., when does there exist some theory about the signal generation process that would be consistent with the agent behaving as a Bayesian updater. We show that the following condition is necessary and sufficient for the agent to appear Bayesian: the probability distribution that represents the agent’s belief after observing any finite sequence of signals is a convex combination of the probability distributions that represent her beliefs conditional on observing sequences of signals that are the possible continuations of the original sequence. This condition cannot be derived from the ones the literature has identified when confounding the problem with maximization of expected utility. Additional restrictions are required if all histories of signals are to be given positive probability under the identified information generation process.

JEL classification: D01, D80, D83.

Keywords: Bayesian Updating, Axiomatic Foundations.

*Information, Science, and Technology, Caltech, Pasadena CA 91125, USA. http://www.ist.caltech.edu/~eshmaya/ e-mail: eshmaya@ist.caltech.edu
†Division of the Humanities and Social Sciences, Caltech, Pasadena, CA 91125, USA. http://www.hss.caltech.edu/~lyariv/index.htm e-mail: lyariv@hss.caltech.edu
††We are grateful to Matt Jackson and Ehud Lehrer for very useful conversations. We also thank Kim Border, Chris Chambers, Federico Echenique, Andrea Mattozzi, and Preston McAfee for helpful comments.
1. Introduction

1.1 Overview

The assumption that agents use Bayesian updating to revise beliefs in light of new evidence is ubiquitous in the social sciences. De Finetti (1937) was one of the first to attempt tying underlying statistical rules an agent may be following to their behavior (using some of Ramsey’s 1931 interpretations of probabilities as subjective). The 70 years that followed provided an abundance of inquiries focusing mostly on observables tying information to behavior and assessing jointly when these observables may be rationalized as coming from Bayesian updating and maximization of some expected utility. Consequently, the extant work confounds conditions for Bayesian behavior with some form of optimization. The goal of the current paper is to identify conditions for a prediction rule, a mapping from information into stated beliefs, to be consistent with Bayesian updating.

To fix ideas, consider a simple example in which an agent is given lists of attributes of a person called Bob and required to make a prediction on the probability Bob is an engineer. Suppose the agent is told that Bob is 6 feet tall, or 6 feet tall and wearing glasses, or 6 feet tall and not wearing glasses, etc. If we could elicit responses for all such questions, when could we find some belief tying engineers and non-engineers to attributes that make the agent’s reports look as if they were deduced using Bayes rule?\(^1\) Certainly, if the agent reports 80% probability of Bob being an engineer when Bob is said to be 6 feet tall and wearing glasses, and 70% if Bob is 6 feet tall and not wearing glasses, then the agent cannot be a Bayesian and report, say, 50% probability of Bob being an engineer when the only information she gets is that Bob is 6 feet tall. In fact, if the agent has some joint probability in mind tying attributes and professions, it better be the case that knowing only that Bob is 6 feet tall leads to a prediction that is \textit{in between} 70% and 80%.

\(^1\)While the agent knows Bob’s potential attributes (e.g., height, dress, age, etc.), here the agent realizes that the particular attributes that are revealed are not correlated with Bob’s profession (for example, the revealed attributes could be determined randomly by a computer).
More generally, consider an agent who, provided any finite sequence of signals, is asked to report a prediction – a probability distribution over some underlying state space, which represents her beliefs conditional on observing that sequence of signals. We say the agent behaves as a Bayesian whenever there exists some (probabilistic) theory tying states to signal realizations based on which a Bayesian updater would make identical predictions to our agent. In other words, the agent is indistinguishable from someone using Bayes rule with that theory. The example above then generalizes directly. Whenever the agent behaves as a Bayesian, it must be the case that for any sequence of signals, the corresponding predictions are within the convex hull of the predictions corresponding to all continuations of that signal sequence. Our main result illustrates that this condition is, in fact, also sufficient for the agent to behave as a Bayesian.

The proof of our result is simple and constructive in nature. We find a consistent sequence of marginal distributions corresponding to realizations of finite sequences of signals. When the signal sequences can persist indefinitely, we can extend the sequence of distributions (using Kolmogorov’s Extension Theorem) to a distribution tying any sequence of signals to a belief on the underlying states of the world (which is an arbitrary Borel space, finite or infinite).

While the type of experiment required to identify Bayesian behavior is gedanken in nature, it is worth noting that our results can easily be restricted to questionnaires pertaining only to finite sequences of signals. Furthermore, even if signal sequences are potentially infinite, non-Bayesian behavior will be identified in finite time using our characterization result.

Even when one has access to partial responses of the sort described above there are still consistency requirements that the available responses must satisfy in order to be indistinguishable from those of a Bayesian updater. Namely, Theorem 2 illustrates the following consistency requirement. Consider the sequence of signals s_1, s_2, \ldots We could describe the potential realizations as a tree in which the root corresponds to no information, branching out to nodes that correspond to different realizations of s_1, each branching out to nodes corresponding to the realizations of s_2, and so on. At each node we can put the prediction belief, if it is available. Take any sub-tree of the tree in which the leaves have specified predictions.
Similar to the description above, it is rather straightforward to show that a Bayesian updater must be consistent within the sub-tree. That is, any specified prediction on the root of the sub-tree must be within the convex hall of all predictions in the leaves of the sub-tree. As it turns out, this is also a sufficient condition.

One may also worry about the plausibility given the deduced theory of some of the signal sequences that our framework requires posing to agents. In particular, the deduced theory that makes an agent indistinguishable from a Bayesian updater may potentially place zero probability on some signal sequences. We identify additional restrictions assuring that this is not the case. Namely, for any sequence of signals, the corresponding predictions need to be within the relative interior of the convex hull of the predictions corresponding to all continuations of that signal sequence.

Utility considerations are (intentionally) absent in our analysis. However, we would like to stress two points. First, the question of when an agent is Bayesian is not subsumed in the analysis pertaining to expected utility by a Bayesian updater (see the literature review below for a more elaborate comparison).\footnote{One could trivially embed our setup in the standard von-Neumann - Morgenstern world to get foundations for Bayesian updating \textit{and} maximization of expected utility.} Second, elicitation of beliefs could be thought of as elicitation of actions when payoffs are specified in a particular way (see Offerman, Sonnemans, van de Kuilen, and Wakker, 2006, and references therein).

1.2 Related Literature

De Finetti’s theorem (see de Finetti, 1937, and a recent overview by Cifarelli and Regazzini, 1996) explained why exchangeable observations are conditionally independent given some (usually) unobservable quantity to which an epistemic probability distribution can be assigned. It crystallized the differences between Bayesian and frequentist methods in statistical inference. Indeed, frequentists often treat observations as independent while Bayesians treat them as exchangeable.

Savage (1954) and Anscombe and Aumann (1963) opened the door for assessing when
observed behavior may arise from some form of expected utility maximization in which the agent possesses subjective probabilities over states. In a way, our approach can be thought of as identifying a subjective signaling structure that can explain agents’ behavior as arising from Bayesian updating.

The literature that followed suit is immense in scope and we shall therefore not attempt to cover it in full. Broadly speaking, the underlying model that literature focuses on takes mappings from information into actions as the atom of observation and considers the conditions under which these mappings may be consistent with Bayesian updating together with maximization of (some) expected utility (see, e.g., Green and Park, 1996).

Gilboa and Lehrer (1991) consider the problem from a different direction. They find necessary and sufficient conditions for a real valued function on the partitions of a measure space to be the value of information function for a Bayesian decision maker. Their analysis is similar to that corresponding to expected utility elicitation in that underlying the value of information is some action space and mapping from actions and states to payoffs (or utility levels) that warrant the difference in value corresponding to different partitions.

Recently, there have also been several notable attempts to pin down non-standard behavior with regards to information (see, for instance, Billot, Gilboa, Samet, and Schmeidler, 2005 and Epstein, Noor, and Sandroni, 2006).

Experimentally, there are several investigations trying to assess whether laboratory subjects appear Bayesian, notably El-Gamal and Grether (1995), who identify several behavioral strategies subjects use when confronted with incentivized updating tasks.

1.3 Structure of the Paper

In the following section we spell out the model. Section 3 describes the main result for finite signal spaces and a complete set of predictions. The section also provides the proof as it is rather simple and instructive. Section 4 extends the result to situations where an arbitrary subset of observations is available, while Section 5 extends the result to a general setting in which signals are taken from an arbitrary set (finite or not). Section 6 considers the case in
which the identified Bayesian updating rules are restricted to place positive probability on all signal profiles. Section 7 briefly discusses the implications one can draw from our analysis to a set formulation of the problem. Section 8 concludes. Technical proofs are relegated to the Appendix.

2. The Model

Let K be a Borel space\(^3\) of \textit{states of nature} and let S be a finite set of \textit{signals}. We denote by S^* the set of all finite sequences of elements of S:

$$S^* = \bigcup_{n \geq 0} S^n.$$

For $\alpha = (s_1, \ldots, s_n) \in S^*$ and $s_{n+1} \in S$ we denote by $\alpha * s$ the element of S^* given by $(s_1, \ldots, s_n, s_{n+1})$.

An \textit{updating rule} is a function $\sigma : S^* \to \Pi(K)$. For $\alpha \in S^*$ we denote the image of α under σ by $\sigma[\alpha]$. The interpretation is that after seeing a sequence α of signals the agent’s prediction regarding the underlying state of nature is given by $\sigma[\alpha]$.

Before defining the concept of Bayesian updating rules, we recall the notion of a \textit{discrete conditional distribution}: Let P be a Borel space, $\xi : P \to X$ a measurable function over P with values in some finite set X, and let μ be a probability measure over $K \times P$. Then there exists probability measures $\mu(\cdot | x)$ over K for every $x \in X$ such that for every Borel subset B of K one has

$$\mu_K(B) = \sum_{x \in X} \mu(B|x)\mu_X(x),$$

where μ_K is the marginal distribution of μ over K:

$$\mu_K(B) = \mu(B \times P),$$

\(^3\)Throughout the paper, all Borel spaces are, by assumption or by construction, standard. Recall that the sigma-algebra of a standard Borel space is generated by some Polish topology, i.e., a topology that is separable and metrizable by a complete metric. The σ-algebra of a Borel space is assumed to be fixed. Notions like a Borel set, Borel probability measure, and Borel function always correspond to this σ-algebra.
and μ_X is the marginal of μ over X:

$$\mu_X(x) = \mu(K \times \xi^{-1}(x)).$$

Slightly abusing notation, we will omit the subscripts K and X corresponding to the marginal distributions μ_K and μ_X and denote them by μ. Thus we write the last equation in the following way

$$\mu(B) = \sum_{x \in X} \mu(B|x)\mu(x). \tag{1}$$

The probability distribution $\mu(\cdot|x)$ is called the conditional distribution over K given x and is uniquely determined whenever $\mu(x) > 0$.

In our setup, $P = S^\infty$ is the Borel space of infinite sequences of signals, $X = S^n$ is the finite set of sequences of length n, and $\xi : P \to X$ is the natural projection given by

$$\xi(s_1, s_2, \ldots) = (s_1, \ldots, s_n).$$

Definition (Bayesian Updating) An updating rule $\sigma : S^* \to \Pi(K)$ is Bayesian if there exists a probability measure μ over $K \times S^\infty$ such that, for every n and every Borel subset B of K,

$$\sigma[s_1, \ldots, s_n](B) = \mu(B|s_1, \ldots, s_n). \tag{2}$$

3. Main Result

Our main result establishes a necessary and sufficient condition for an updating rule to be Bayesian. This condition is rather simple and intuitive to phrase. For any sequence of signals (s_1, \ldots, s_n), consider all possible continuation signals $(s_1, \ldots, s_n, \tilde{s}_{n+1})$. If the updating rule is derived from Bayesian updating, it must be the case that there is a certain weight associated to each such continuation and, therefore, that the prediction corresponding to (s_1, \ldots, s_n) is a weighted average of the predictions corresponding to all continuations $(s_1, \ldots, s_n, \tilde{s}_{n+1})$. In particular, the prediction corresponding to (s_1, \ldots, s_n) is in the convex hull of those corresponding to $(s_1, \ldots, s_n, \tilde{s}_{n+1})$. The theorem’s claim is that this condition is, in fact, not only necessary
but also sufficient. Formally,

Theorem 1 Let K be a Borel set of states of nature, S a finite set of signals and $\sigma : S^* \to \Pi(K)$ an updating rule.

1. If σ is Bayesian and the probability measure μ over $K \times S^\infty$ explains σ then
 \[
 \sigma[s_1, \ldots, s_n] \in \text{Conv}\{\sigma[s_1, \ldots, s_n, s_{n+1}]|s_{n+1} \in S}\tag{3}
 \]
 for every $s_1, \ldots, s_n \in S$ such that $\mu(s_1, \ldots, s_n) > 0$, where Conv stands for the convex hull.

2. If (3) is satisfied for every $s_1, \ldots, s_n \in S$ then σ is Bayesian.

Remark (Observing Actions) An action can be thought of as a bounded Borel function $u : K \to \mathbb{R}$. Every probability measure $\pi \in \Delta(K)$ induces a preference relation \preceq_π over actions: $u \preceq_\pi v$ when $\int u \, d\pi \leq \int v \, d\pi$ for every pair u, v of actions. By the separation theorem, the condition in Theorem 1 can equivalently be stated in the following way: For every pair u, v of actions, if $u \preceq_{\sigma[s_1, \ldots, s_{n+1}]} v$ for every $s_{n+1} \in S$ then $u \preceq_{\sigma[a]} v$: If, whatever signal will arrive tomorrow, the agent will prefer action u to v then she prefers action u to v today.

We now prove Theorem 1. While necessity follows almost directly, sufficiency is slightly more challenging. The idea is to construct a consistent sequence of marginal distributions which we then extend using Kolmogorov’s Extension Theorem. Formally,

Proof. Assume first that σ is Bayesian. Let μ be a probability measure over $K \times S^\infty$ such that (2) is satisfied.
For every n and every s_1, \ldots, s_{n+1} we have, by the definition of conditional probability in (1),

$$\mu(B) = \sum_{s_1, \ldots, s_{n+1}} \mu(s_1, \ldots, s_{n+1}) \mu(B|s_1, \ldots, s_{n+1}) = \sum_{s_1, \ldots, s_n} \mu(s_1, \ldots, s_n) \sum_{s_{n+1}} \frac{\mu(s_1, \ldots, s_{n+1})}{\mu(s_1, \ldots, s_n)} \mu(B|s_1, \ldots, s_{n+1}).$$

From the uniqueness of conditional probabilities it follows that

$$\mu(B|s_1, \ldots, s_n) = \sum_{s_{n+1}} \frac{\mu(s_1, \ldots, s_{n+1})}{\mu(s_1, \ldots, s_n)} \mu(B|s_1, \ldots, s_{n+1}).$$

From the last equation and (2) it follows that

$$\sigma[s_1, \ldots, s_n] = \sum_{s_{n+1}} \frac{\mu(s_1, \ldots, s_{n+1})}{\mu(s_1, \ldots, s_n)} \sigma[s_1, \ldots, s_{n+1}],$$

for every $s_1, \ldots, s_n \in S$ such that $\mu(s_1, \ldots, s_n) > 0$. In particular,

$$\sigma[s_1, \ldots, s_n] \in \text{Conv}\{\sigma[s_1, \ldots, s_n, s_{n+1}]|s_{n+1} \in S\},$$

as desired.

Assume now that σ satisfies the condition of Theorem 1. Thus, there exist non-negative numbers $\lambda(s_{n+1}; s_1, \ldots, s_n)$ such that, for every s_1, \ldots, s_n,

$$\sum_{s_{n+1}} \lambda(s_{n+1}; s_1, \ldots, s_n) = 1,$$

and

$$\sigma[s_1, \ldots, s_n] = \sum_{s_{n+1}} \lambda(s_{n+1}; s_1, \ldots, s_n) \cdot \sigma[s_1, \ldots, s_n, s_{n+1}] \quad (4).$$
We now define, for every n, a probability measure μ_n over $K \times S^n$ as follows

$$\mu_n(B \times \{(s_1, \ldots, s_n)\}) = \lambda(s_1) \cdot \lambda(s_2; s_1) \cdot \cdots \cdot \lambda(s_n; s_1, \ldots, s_{n-1}) \cdot \sigma[s_1, \ldots, s_n](B),$$

(5)

for every Borel subset B of K and every $s_1, \ldots, s_n \in S$.

It follows that for every $s_1, \ldots, s_n \in S$ and every Borel subset B of K one has

$$\sum_{s_{n+1}} \mu_{n+1}(B \times \{(s_1, \ldots, s_{n+1})\}) = \sum_{s_{n+1}} \lambda(s_1) \cdot \lambda(s_2; s_1) \cdot \cdots \cdot \lambda(s_{n+1}; s_1, \ldots, s_n) \cdot \sigma[s_1, \ldots, s_{n+1}](B) = \lambda(s_1) \cdot \lambda(s_2; s_1) \cdot \cdots \cdot \lambda(s_n; s_1, \ldots, s_{n-1}) \cdot \sigma[s_1, \ldots, s_n](B) = \mu_n(B \times \{(s_1, \ldots, s_n)\}),$$

where the first and third equalities follow from (5) and the second equality follows from (4). Therefore, the marginal distribution of μ_{n+1} over $K \times S^n$ is μ_n. It follows from Kolmogorov’s Extension Theorem that there exists a probability μ over $K \times S^\infty$ such that the marginal of μ over $K \times S^n$ is μ_n. In particular, substituting $B = K$ in (5) we get that the marginal of μ over S^n is given by

$$\mu(s_1, \ldots, s_n) = \lambda(s_1) \cdot \lambda(s_2; s_1) \cdot \cdots \cdot \lambda(s_n; s_1, \ldots, s_{n-1}).$$

(6)

It follows that

$$\mu(B) = \sum_{s_1, \ldots, s_n} \mu(B \cap \{(s_1, \ldots, s_n)\}) = \sum_{s_1, \ldots, s_n} \mu(s_1, \ldots, s_n)\sigma[s_1, \ldots, s_n](B),$$

where the second equality follows from (5) and (6), and the fact that μ_n is the marginal of μ over $K \times S^n$. By the uniqueness of the conditional probabilities it follows that

$$\sigma[s_1, \ldots, s_n](B) = \mu(B|s_1, \ldots, s_n)$$
As desired. ■

As can be expected, the identified distribution (formally, μ) is not necessarily determined uniquely. Our result addresses the broader question regarding whether, observing agents’ predictions, we can reject the hypothesis of them updating using Bayes rule.

We will refer to an updating rule $\sigma : S^* \rightarrow \Pi(K)$ as sound if it satisfies (3) for all $s_1, \ldots, s_n \in S$. Theorem 1 implies that a sound updating rule is Bayesian.

Excess Stickiness. It is interesting to note that the theorem implies that a large class of updating rules that exhibit stickiness to prior beliefs (i.e., rules in which the reported beliefs are always tilted toward previous reports) is observationally equivalent to (or non-identifiable from) Bayesian updating. Indeed, consider an agent who holds a prior μ on $K \times S^\infty$ and provides reports $\tilde{\sigma}$ as follows:

$$
\tilde{\sigma}[s_1, s_2, \ldots, s_n](k) = \alpha_n(s_1, \ldots, s_n)\mu(k|s_1, s_2, \ldots, s_n) + (1 - \alpha_n(s_1, \ldots, s_n))\tilde{\sigma}[s_1, \ldots, s_{n-1}](k),
$$

where $\alpha_n(s_1, \ldots, s_n) \in [0, 1]$ for all n and $s_1, \ldots, s_n \in S$.

That is, the agent weighs the correct posterior with her previous prediction. It is straightforward to show that $\tilde{\sigma}$ would, in fact, be sound. In particular, it would be indistinguishable from Bayesian updating (with a prior different than μ).\(^4\)

Learning. It follows directly from the definition of Bayesian rules that $\sigma : S^\infty \rightarrow \Pi(K)$ is Bayesian if and only if there exists some probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and random variables $\kappa : \Omega \rightarrow K$ and $\zeta_1, \zeta_2, \ldots : \Omega \rightarrow S$ such that

$$
\sigma[s_1, \ldots, s_n](B) = \frac{\mathbb{P}(\kappa = k, \zeta_1 = s_1, \ldots, \zeta_n = s_n)}{\mathbb{P}(\zeta_1 = s_1, \ldots, \zeta_n = s_n)},
$$

for every s_1, \ldots, s_n such that $\mathbb{P}(\zeta_1 = s_1, \ldots, \zeta_n = s_n) > 0$. The probability measure μ appearing in our analysis above corresponds to the joint distribution of $\kappa, \zeta_1, \zeta_2, \ldots$.

\(^4\text{If signals were assumed to be conditionally independent, an equally sensible model for stickiness would be one in which current belief reports are a convex combination of last period's reports and a Bayesian posterior based on these reported beliefs and the current signal. Such a model would generate predictions indistinguishable from Bayesian updating as well.}\)
Foundations for Bayesian Updating

Note that in general we cannot assume that κ is measurable with respect to ζ_1, \ldots, ζ_n, i.e., that the agent is asked to provide her prediction about her future observation, since in this case the agent will eventually learn the state—that is, her predictions will converge to an extreme point of $\Pi(K)$. However, the soundness condition of Theorem 1 does not guarantee learning. As an example, consider the case in which $K = \{0, 1\}$, so that a prediction can be summarized by a number corresponding to the assessed probability that the state is 1. Assume that $\sigma[s_1, \ldots, s_n] = 0.5$ for every s_1, \ldots, s_n. Clearly σ is sound, but no learning occurs.

By the Martingale Convergence Theorem, if σ is Bayesian then almost surely $\sigma[s_1, \ldots, s_n]$ is a convergent sequence—it converges to the agent’s prediction “at infinity.” However, these predictions need not be deterministic as shown by the above example.

Experimentation. If one entertains testing whether an individual is a Bayesian updater experimentally, one may find the prospects of presenting the potential subject with all signal sequences in S^∞ daunting. An immediate response that follows from our main result is that an agent that is non-Bayesian will violate Theorem 1’s condition of soundness for some n, and therefore be detected as non-Bayesian in finite time.

Beyond that, the construction in our proof translates directly when considering only finite sequences of signals bounded in length. Specifically, we have the following immediate corollary:

Corollary (Finite Experimentation) Suppose we restrict the domain of σ to $\bigcup_{n=0}^{T} S^n$ for some integer T. Then σ is Bayesian if and only if the (soundness) condition in Theorem 1 is satisfied for $0 \leq n < T$. The measure over $K \times S^T$ that explains σ in this case is the measure μ_T constructed in Theorem 1’s proof.

In the following section we consider a generalization of Theorem 1 regarding the case in which only partial (and arbitrary) predictions are observed.

Bayesian statistician or Bayesian economic agent. According to the definition of Bayesian updating rules in Section 2, a Bayesian agent has a belief μ over $K \times S^\infty$ and updates his beliefs over K using the observed signals. However, the term Bayesian is often
used in the statistics literature in a more restrictive sense, where it is also assumed that the measure \(\mu \) is such that the signals \(s_1, s_2, \ldots \) are independently identically distributed given the state of nature (often called the parameter) \(k \). The intuition is that \(s_1, s_2, \ldots \) are samples from some distribution that depends on the parameter \(k \). The statistician has some prior belief over the true parameter that governs the distribution of the sample, and she updates her belief given the observations. As the following example shows, the framework of this paper, which allows an arbitrary belief over \(K \times S^\infty \), gives rise to updating rules which are strange from the point of view of Bayesian statistics:

Example Assume that \(K = S = \{0, 1\} \). Then \(\Delta(K) \) can be identified with the interval \([0, 1]\), where an element \(p \in [0, 1] \) stands for the probability measure over \(K \) that assigns probability \(1 - p \) to 0 and probability \(p \) to 1. Consider the updating rule \(\sigma \) given by

\[
\sigma(s_1, \ldots, s_n) = \begin{cases}
1/(n + 2), & \text{if } s_1 + \cdots + s_n \text{ is even} \\
1 - 1/(n + 2), & \text{if } s_1 + \cdots + s_n \text{ is odd}.
\end{cases}
\]

In particular, \(\sigma() = 1/2 \). This updating rule is such that a signal ‘0’ strengthens the agent’s previous opinion about the state of nature, whereas a signal ‘1’ changes it drastically in the other direction. A Bayesian statistician, who believes the signals to be i.i.d cannot exhibit such a behavior. However, \(\sigma \) clearly satisfies the condition of Theorem 1 and therefore is Bayesian according to our definition.

Degrees of Freedom Consider an updating rule \(\sigma \) that is defined over sequences of signals of length up to \(T \), i.e., \(\sigma : \bigcup_0^T S^n \rightarrow \Delta(K) \). Note that the number of degrees of freedom for specifying such \(\sigma \) is \((|K| - 1) \cdot \frac{|S|^{T+1} - 1}{|S|-1} \). On the other hand, the number of degrees of freedom available for specifying a belief \(\mu \) over \(K \times S^T \) is \(|K| \times |S|^T - 1 \). If \(|K| = |S| \) then the number of degrees of freedom for specifying \(\mu \) equals the number of degrees of freedom for specifying \(\sigma \). If \(|K| > |S| \) then the the set of Bayesian updating rules has smaller dimension than the set of all updating rules, which means that the condition in Theorem 1 restricts the dimension of \(\sigma \). Note that the number of (non-linear) degrees of freedom corresponding to a measure \(\mu \) which
corresponds to i.i.d signals given the state of nature (according to the statistics paradigm) is $|K| \times (|S| - 1)$, which is much smaller.

4. Partial Observations

In many situations, it may be difficult to access the full range of predictions corresponding to all signal sequences and one may observe an arbitrary set of predictions. Those are, of course, still subject to some consistency restrictions in order to be explained as the outcome of a Bayesian updating process. The focus of the current section is the identification of these general restrictions.

Formally, we now assume that σ is defined over an arbitrary subset A of S^*. Again, we ask whether σ can be derived from a Bayesian updating rule. In other words, we inspect when σ can be extended to S^* in such a way as to satisfy the condition presented in Theorem 1.

It is useful to view S^* as the set of nodes of an infinite tree: The root is the empty sequence, and the immediate successors of a node $(s_1, \ldots, s_n) \in S^*$ are all the elements $(s_1, \ldots, s_n, \tilde{s}_{n+1})$, where $\tilde{s}_{n+1} \in S$. A sub-tree is given by a pair (r, L) where $r \in S^*$ and $L \subseteq S^*$ is a set of successors of r such that any branch of S^* that passes through r passes through a unique element of L. r is the root of the sub-tree and L is the set of its leaves. we say that a sub-tree (r, L) is contained in A if $r \in A$ and $L \subseteq A$.

The following simple example illustrates some of the notation and the condition required for consistency with Bayesian updating.

Example 1 Consider the case in which $S = \{u, d\}$ and $K = \{0, 1\}$ so that a prediction can now be summarized by one number (say, the probability that the state is 1). Suppose further that predictions are available only for

$$A = \{\Phi, (s_1 = u), (s_1 = d, s_2 = u), (s_1 = d, s_2 = d)\}$$

(so, in particular, there is no prediction available for the revelation $s_1 = d$). Figure 1 illustrates two such scenarios, where numbers in each node correspond to the available predictions and shaded circles correspond to missing observations. The two panels differ
Consider first panel (a). If we are to complete the observation regarding \(s_1 = d \), from Theorem 1, it must be the case that this prediction, call it \(x \), is in between 0.3 and 0.5. But then 0.1, the reported prior, cannot be in between 0.2 and \(x \), and there would be no way in which to fill out the missing observation matching \(s_1 = d \) and satisfy the restriction posited in Theorem 1. Note that this is, in fact, (indirectly) a consequence of 0.1 not being a convex combination of the predictions appearing in the leaves of the sub-tree: 0.2, 0.3, and 0.5.

In contrast, in panel (b) of the Figure, the prediction in the root, 0.4, is certainly a convex combination of those appearing in the leaves, and there are many ways in which to complete the sub-tree (for \(s_1 = d \)) in a consistent manner. In fact, any prediction within \([0.4, 0.5]\) would satisfy the conditions of Theorem 1.
The example generalizes directly. In fact, Theorem 2 illustrates that the necessary and sufficient condition for σ to be extended to a Bayesian updating rule over S^* is that for each sub-tree that is contained in A, the prediction at the root is within the convex hull of the predictions in the leaves. Formally,

Theorem 2 (Partial Observations) Let K be a Borel set of states of nature, S a finite set of signals, $A \subseteq S^*$ and $\sigma : A \rightarrow \Pi(K)$.

1. If σ can be extended to a Bayesian updating rule over S^* and the probability measure μ over $K \times S^\infty$ explains σ then

 \[
 \sigma(r) \in \text{Conv}\{\sigma[l] | l \in L\}
 \]
 \[(7)\]

 for every sub-tree (r, L) that is contained in A and such that $\mu(s_1, \ldots, s_n) > 0$ where $r = (s_1, \ldots, s_n)$.

2. If (7) is satisfied for every sub-tree (r, L) that is contained in A then σ can be extended to a Bayesian updating rule over S^*.

The formal proof of Theorem 2 is omitted, as it is a direct application of Theorem 1. Indeed, the necessity of the condition follows immediately from the type of arguments used to prove Theorem 1. To prove sufficiency, we restrict S^* to finite trees and consider all minimal sub-trees that are contained in A. These are sub-trees that contain no other sub-tree contained in A. Each such sub-tree can be completed in a consistent manner, as in the example. We then look at the resulting (extended) prediction and repeat the procedure until all finite predictions are completed in a manner consistent with Theorem 1’s prediction. We can then use an extension to S^* to utilize Theorem 1.

5. **General Signal Space**

Our analysis thus far allowed for arbitrary state spaces but restricted the signals to be taken from a finite set. In this section we extend our main result to general signal spaces. The
difficulty arising from continuous signal spaces can be easily seen: The condition of Theorem 1 ensured that for any sequence of signals \((s_1, ..., s_n)\), the prediction is a convex combination of the predictions corresponding to all continuation signal sequences \((s_1, ..., s_n, \tilde{s}_{n+1})\). The weights placed on each such prediction, denoted by \(\lambda(\tilde{s}_{n+1}; s_1, ..., s_n)\) in the proof of Theorem 1, were not determined uniquely. In order to repeat the construction of the original proof, and end up with an admissible measure, we need to make sure we select \(\lambda(\tilde{s}_{n+1}; s_1, ..., s_n)\) in a way that makes it measurable with respect to all its arguments. When \(S\) is discrete this is, of course, immediate as any selection will be measurable.

For a Borel space \(X\) we denote by \(\Delta(X)\) the Borel space of all Borel probability measures over \(X\). For \(\mu \in \Delta(\Delta(X))\), the barycenter of \(\mu\) is the unique element \([\mu]\) of \(\Delta(X)\) such that

\[
\int h \, d[\mu] = \int \left(\int h \, d\omega \right) \mu(d\omega)
\]

for every bounded measurable function \(h : X \to \mathbb{R}\). Note that if \(\mu\) is a discrete probability, concentrated on a finite set of atoms, then the barycenter of \(\mu\) is the weighted average of the atoms of \(\mu\). The map \(\mu \mapsto [\mu]\) is a Borel map from \(\Delta(\Delta(X))\) to \(\Delta(X)\). For a universally measurable subset\(^5\) \(A\) of \(\Delta(X)\), we denote by \(BC(A)\) the set of all barycenters of Borel measures over \(\Delta(X)\) that are concentrated on \(A\):

\[
BC(A) = \{[\mu]|\mu \in \Delta(\Delta(X)) \text{ and } \mu(A) = 1\}.
\]

In the general setting, the barycenter of a set of distributions over \(K\) will replace the convex hull in Theorem 1 (note that if \(A\) is finite then \(BC(A)\) is the convex hull of \(A\)). The reason we define barycenters for universally measurable sets (and not just for Borel sets) is that the set \(\{\sigma[s_1, \ldots, s_{n+1}]|s_{n+1} \in S\}\) is not necessarily a Borel set, even for a Borel function \(\sigma\). However, as the image of a Borel space in another Borel space, this subset is analytic, and it is known that every analytic set is universally measurable.

\(^5\)A subset \(A\) of a Borel space \(X\) is universally measurable if it is measurable with respect to the completions of all Borel probability measures on \(X\).
We now turn to the formulation of the theorem for general signal spaces. An updating rule \(\sigma : S^* \to \Delta(K) \) is called Borel if the restriction of \(\sigma \) to \(S^n \) is a Borel function for every \(n \). It is Bayesian if there exists a probability measure \(\mu \) over \(K \times S^\infty \) such that \(\sigma[s_1, \ldots, s_n] \) is the conditional distribution of \(\mu \) given \(s_1, \ldots, s_n \) for \(\mu \)-almost every \(s_1, \ldots, s_n \). As in Theorem 1, for a Bayesian updating rule, it is immediate to show that the predictions at stage \(n \) must be in the barycenter of those at stage \(n + 1 \). The theorem illustrates the converse as well.

Theorem 3 (General Spaces) Let \(S, K \) be Borel spaces, and let \(\sigma : S^* \to \Delta(K) \) be a Borel updating rule.

1. If \(\sigma \) is Bayesian and \(\mu \) explains \(\sigma \) then
 \[
 \sigma[s_1, \ldots, s_n] \in \text{BC} (\{ \sigma[s_1, \ldots, s_n, s_{n+1}] | s_{n+1} \in S \}) \text{ almost-surely.}
 \]

2. If, for every \(s_1, \ldots, s_n \in S \),
 \[
 \sigma[s_1, \ldots, s_n] \in \text{BC} (\{ \sigma[s_1, \ldots, s_n, s_{n+1}] | s_{n+1} \in S \})
 \]
 then \(\sigma \) is Bayesian.

The proof of the theorem relies on results on selection of measurable functions and appears in the Appendix.

6. **Plausibility of Signal Sequences**

In principle, our main result does not rule out situations in which the derived distribution \(\mu \) places zero probability on some sequences of signals (that our hypothetical subject may face in the experimental questionnaire). Indeed, consider the following example:

Example 2 Assume that \(K = S = \{0,1\} \). Then \(\Delta(K) \) can be identified with the interval \([0,1]\), where an element \(p \in [0,1] \) stands for the probability measure over \(K \) that assigns
probability $1 - p$ to 0 and probability p to 1. Consider the updating rule σ given by

$$\sigma(s_1, \ldots, s_n) = \frac{s_1 + \cdots + s_n}{n}, \text{ and } \sigma() = \frac{1}{2}.$$

It is easy to verify that it satisfies the condition in Theorem 1. The corresponding probability measure μ over $K \times S^\infty$ is an atomic probability with two mass-$\frac{1}{2}$ atoms, one at $(0,0,0,\ldots)$ and one at $(1,1,1,\ldots)$: If the state of nature is 0 the agent expects to receive with probability 1 the signal 0 at every stage, and if the state of nature is 1 the agent expects to receive with probability 1 the signal 1 at every stage. The values of $\sigma(s_1, \ldots, s_n)$ for a sequence of non-identical signals s_1, \ldots, s_n is irrelevant, because according to μ such a sequence has probability 0.

In order to guarantee that every finite sequence $\alpha \in S^*$ has a strictly positive probability, we need to ensure that the numbers $\lambda(s_{n+1}|s_1, \ldots, s_n)$ are strictly positive (recall (6)). To achieve this, we have to replace the Convex Hull in Theorem 1 with its relative interior.\(^6\)

7. Event-Based Predictions

One natural direction for generalization of our analysis could come from discarding the sequencing aspect inherent in our model of signal observations. That is, one could contemplate predictions that are based on arbitrary subsets of some underlying space representing the information the agent can receive. As we show in this section, a condition analogous to the soundness conditions we identified in the signaling model is necessary but not sufficient in such a set formulation of the problem.

Formally, let P be a Borel space and let \mathcal{I} be a family of Borel subsets of P. Assume that we are given a function $\sigma : \mathcal{I} \to \Delta(K)$. As before, for $\alpha \in \mathcal{I}$, we denote by $\sigma[\alpha]$ the image of α under σ. We say that σ is Bayesian if there exists some probability distribution μ over

6The relative interior of a convex set X is its interior within its affine hull (the minimal set containing all affine combinations of points in X). When, as in our case, X is a polygon, the relative interior of X contains all the points that do not belong to a face of X. \(\)
$K \times P$ such that

$$\sigma[\alpha](C) = \frac{\mu(C \times \alpha)}{\mu_P(\alpha)}$$

for every $\alpha \in \mathcal{I}$ and every Borel subset C of K, where μ_P is the marginal of μ over P. Note that the right hand side of the last equation is the conditional probability (under μ) of C given α. The model of Section 2 is a special case, where $P = S^\infty$ and \mathcal{I} is the set of all cylinders of the form $(s_1, \ldots, s_n) \times S^\infty$ for some $s_1, \ldots, s_n \in S^\infty$. In the general setting of this section we do not assume that the information is given by a dynamic process of signals.

The soundness condition in Theorem 1 can be adapted to a necessary condition for σ to be rationalizable by μ in the general model:

If $\alpha, \alpha_1, \ldots, \alpha_n \in \mathcal{I}$ and $\alpha = \cup_i \alpha_i$ and α_i are pairwise disjoint then $\sigma[\alpha] \in \text{Conv}\{\sigma[\alpha_i] | 1 \leq i \leq n\}$ (provided that $\mu_P(\alpha) > 0$).

However, without further assumptions on \mathcal{I} the condition is not sufficient, as shown by the following example:

Example Let $K = \{0, 1\}$ so that a prediction can be summarized by a number (the probability that the state is 1) and let $P = \{a, b, c\}$. Assume that

$$\sigma[\{a\}] = 0.1, \sigma[\{b\}] = 0.3, \sigma[\{c\}] = 0.5, \sigma[\{a, b\}] = 0.2, \sigma[\{b, c\}] = 0.4, \sigma[\{a, c\}] = 0.2.$$

The reader can verify that these predictions satisfy the above conditions. However, they cannot be rationalized by any μ as the following argument suggests:

$$\begin{align*}
\sigma[\{a\}] &= 0.1, \quad \sigma[\{b\}] = 0.3, \quad \sigma[\{a, b\}] = 0.2 \implies \mu_P(a) = \mu_P(b). \\
\sigma[\{b\}] &= 0.3, \quad \sigma[\{c\}] = 0.5, \quad \sigma[\{b, c\}] = 0.4 \implies \mu_P(b) = \mu_P(c). \\
\sigma[\{a\}] &= 0.1, \quad \sigma[\{c\}] = 0.5 \quad \sigma[\{a, c\}] = 0.2 \implies \mu_P(a) = 3\mu_P(c).
\end{align*}$$

Let $\alpha \in \mathcal{I}$. By a *partition of α* we mean mutually disjoint subsets $(\alpha_1, \ldots, \alpha_n)$ of \mathcal{I} such that $\alpha = \bigcup_i \alpha_i$. α_i are called *atoms* of the partition. As can be seen from the example, $\sigma[\alpha], \sigma[\alpha_1], \ldots, \sigma[\alpha_n]$ restricts the set of possible quotients between the probabilities $\mu_P(\alpha_i)$ of the atoms, and restrictions that are derived from different partitions can contradict one
another.

Consider the directed graph whose nodes are the elements of \mathcal{I} with an arrow from $\beta \in \mathcal{I}$ to $\alpha \in \mathcal{I}$ if $\alpha \subseteq \beta$ and there exists no $\gamma \in \mathcal{I}$ such that $\alpha \subseteq \gamma \subsetneq \beta$. If the graph is a forest (i.e., has no cycles) then it is a union of trees, and we can carry out the proof of Theorem 1 going from the root to the leaves on each tree. One can verify that the graph being a forest is equivalent to the condition that for every $\alpha_1, \alpha_2 \in \mathcal{I}$, either $\alpha_1 \subseteq \alpha_2$ or $\alpha_2 \subseteq \alpha_1$ or $\alpha_1 \cap \alpha_2 = \emptyset$. Note that in the special case of Section 2 the graph is a tree and the condition is satisfied.

8. Conclusions

The paper identified a simple condition for an updating rule to be indistinguishable from Bayesian updating. The essence of the condition pertains to the effects of additional information. It is simple enough to identify a non-Bayesian updater in finite time. It is general enough to encompass environments with arbitrary state and signal spaces. It also extends nicely to situations in which only partial responses to information are observable.
References

Proof of Theorem 3.

The proof requires the following measurable selection result (first proven by Robert J. Aumann, appearing as Theorem 14.3.2 in Klein, 1984). As usual, we use the term graph of a correspondence F from X to Y to denote the set $\{(x,y) | y \in F(x)\}$.

Proposition (Measurable Selection) Let X, Y be Borel spaces, and let F be a correspondence from X to Y such that the graph of F is a Borel subset of $X \times Y$, and let $\lambda \in \Delta(X)$. Then there exists a λ-measurable map $f : X \rightarrow Y$ such that $f(x) \in F(x)$ for λ-almost $x \in X$.

As in Theorem 1, the argument for necessity is similar to that of the finite case. Indeed, fix s_1, \ldots, s_n. After observing a sequence s_1, \ldots, s_n of signals, a Bayesian agent has a probability distribution λ over S which reflects her prediction regarding the next signal s_{n+1} she will receive. Given s_{n+1}, the agent will update her prediction over K to $\sigma[s_1, \ldots, s_{n+1}]$. Therefore λ induces a distribution λ' over distributions over K: The agent’s belief about what her posterior predictions corresponding to the additional observation of s_{n+1} are. Thus $\lambda' \in \Delta(\Delta(K))$. Naturally, λ' is concentrated on the set $\{\sigma[s_1, \ldots, s_n, s_{n+1}] | s_{n+1} \in S\}$, and, moreover, the Bayesian updating rule dictates that the barycenter of λ' be equal to $\sigma[s_1, \ldots, s_n]$.

We now prove sufficiency. For every s_1, \ldots, s_n, by the assumption of the theorem there exists a probability measure λ' over $\Delta(\Delta(K))$ which is concentrated on $\{\sigma[s_1, \ldots, s_n, s_{n+1}] | s_{n+1} \in S\}$ such that the barycenter of λ' is $\sigma[s_1, \ldots, s_n]$. We will use the following lemma (appearing as Corollary 18.24 in Aliprantis and Border, 2006. We provide a short proof here for the sake of completeness).

Lemma Let X, Y be Borel spaces and let $g : Y \rightarrow X$ be a surjective measurable map, and let $\lambda' \in \Delta(X)$. Then there exists $\lambda \in \Delta(Y)$ such that $g(\lambda) = \lambda'$.
Proof of Lemma. Consider the correspondence F from X to Y such that $F(x) = \{ y \in Y | g(y) = x \}$. Then the graph of F and the graph of g are the same set. Thus the graph of F is a Borel set (as the graph of the Borel function g). It follows from the measurable selection proposition that there exists a λ'-measurable function $f : X \to Y$ such that $g \circ f = \text{id}_{\lambda'}$ almost surely. Then $\lambda = f(\lambda')$ satisfies $g(\lambda) = \lambda'$. \blacksquare

By the Lemma, λ' can be pulled back to a probability measure over S. Denote this probability measure by $\lambda[s_1, \ldots, s_n]$. By the measurable selection proposition $\lambda[s_1, \ldots, s_n]$ can be selected in a way that is measurable with respect to s_1, \ldots, s_n. The distribution μ_n over $K \times S^n$ is define as follows: s_1 is randomized according to $\lambda[]$, s_2 given s_1 is randomized according to $\lambda[s_1]$, ..., s_n given s_1, \ldots, s_{n-1} is randomized according to $\lambda[s_1, \ldots, s_{n-1}]$ and k is randomized according to $\sigma[s_1, \ldots, s_n]$. \blacksquare