Business Cycles & Output in the Short-Run

Agenda

• Introduction to Business Cycles.
• Keynesian Cross Model.

Business Cycle Terminology

• Components of a Business Cycle
 ➢ Peak
 ➢ Recession
 ➢ Trough
 ➢ Recovery and expansion

Business Cycle Terminology

• Features of a Business Cycle
 ➢ Pervasive nature.
 ➢ Recurrent but not periodic.
 ➢ Expansions longer than recessions.
 ➢ Differ in length.

Length of Business Cycle Expansions

<table>
<thead>
<tr>
<th>Business Expansion Beginning in:</th>
<th>37</th>
<th>45</th>
<th>39</th>
<th>24</th>
<th>106</th>
<th>56</th>
<th>12</th>
<th>92</th>
<th>120</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Months</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
<td>200</td>
<td>225</td>
</tr>
</tbody>
</table>

Length of Business Cycle Contractions

<table>
<thead>
<tr>
<th>Business Contraction Beginning in:</th>
<th>8</th>
<th>11</th>
<th>16</th>
<th>8</th>
<th>16</th>
<th>11</th>
<th>6</th>
<th>16</th>
<th>8</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Months</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>
Business Cycle Terminology

• Peak
 ➢ The maximum level that business activity reaches.
 • Can only be determined after the fact.
 • Generally associated with an output ratio > 0%.

• Boom
 ➢ An extended economic expansion where the output ratio is high (well above 0%) and rising.

Business Cycle Terminology

• Recessions (Hard landings)
 ➢ Popular definition:
 • 2 or more consecutive quarters of declining GDP.
 ➢ Official definition:
 • A period of significant decline in total output, income, employment, and trade,
 usually lasting from 6 months to a year, and
 marked by widespread contractions in many sectors of the economy.

Business Cycle Terminology

• Growth recessions (soft landings)
 ➢ A recurring period of slow growth in total output, income, employment, and trade,
 usually lasting a year or more
 • May occur without a recession, in which case the economy continues to grow, but at a pace significantly below its long-run growth.
 • May precede or be preceded by a recession.
 ➢ Actual growth will be less than potential growth
 • Unemployment rate will rise

Business Cycle Terminology

• Troughs
 ➢ The minimum level that economic activity reaches.
 • Can only be determined after the fact.
 • Generally associated with an output ratio < 0%.

Keynesian Cross Model

• Keynesian Cross (or Multiplier) Model
 ➢ Determining Equilibrium Income
 ➢ The Consumption Function
Keynesian Cross Model

- Determining Equilibrium Income, Ye
 - Actual Expenditures, E
 - \(Y = E = C + I + G + (X - M) \)

Determining Equilibrium Y

- Actual Expenditures, E
 - Actual E is identically equal to actual Y
 - Economy is ALWAYS on the \(Y = E \) line
 - Easiest to think of this line as actual production

Determining Equilibrium Y

- Planned Expenditures, Ep
 - By definition, \(E = C + I + G + (X - M) \)
 - By assumption
 - \(C = C_p \)
 - \(G = G_p \)
 - \(X = X_p \)
 - \(M = M_p \)
 - \(I = I_p + I_u \)
 - where \(I_u \) is unplanned inventory investment
 - can be either positive or negative

Determining Equilibrium Y

- Planned Expenditures, Ep
 - Explaining Ep
 - \(E_p = C_p + I_p + G_p + (X_p - M_p) \)

Exogenous Spending
Determining Equilibrium Y

- The (Planned) Consumption Function
 - The relationship between C and $(Y - T)$
 - $C = C_0 + mpc(Y - T)$

 - where C_0 represents all of the non-income influences on consumption (autonomous consumption)
 - Interest rates (-)
 - Consumer confidence (+)
 - Wealth (+)
 - Expected future income (+)

- The (Planned) Consumption Function
 - The relationship between C and $(Y - T)$
 - $C = C_0 + mpc(Y - T)$

 - where mpc is the marginal propensity to consume
 - The proportion of an increase in $(Y - T)$ that is spent
 - Equal to $\frac{\Delta C}{\Delta (Y-T)}$
 - $0 < mpc < 1$

Determining Equilibrium Y

- The (Planned) Consumption Function
 - The relationship between C and $(Y - T)$
 - $C = C_0 + mpc(Y - T)$

 - where C_0 is autonomous consumption, and
 - where $mpc(Y-T)$ is induced consumption

The Consumption Function

- $C = C_0 + mpc(Y - T)$

- $\Delta C = mpc \cdot \Delta (Y - T)$

- Autonomous planned expenditures

Determining Equilibrium Y

- The Planned Expenditure Function, Ep
 - $Ep = Cp + Ip + Gp + (Xp - Mp)$ and
 - $Cp = C0 + mpc(Y - T)$

 - $Ep = C0 + mpc(Y - T) + Ip + Gp + (Xp - Mp)$
 - $Ep = C0 + mpcY - mpcT + Ip + Gp + (Xp - Mp)$

 - If we let $Ap = C0 - mpcT + Ip + Gp + (Xp - Mp)$
 - Autonomous planned expenditures

 - then $Ep = Ap + mpcY$
Planned Expenditure Function

\[Ep = Ap + mpcY \]

Determining Equilibrium Y

- Equilibrium is a situation where there is no pressure for any change, i.e.,
 - Where plans are fully realized, \(E = Ep \)
 - Therefore, \(Y = Ye \) at that \(Y \) where \(E = Ep \)

If \(Y = 2600 \)

- \(If\ Cp = 100 + 0.9 \times (2600 - 100) = 2350 \)
- \(Ip = 200 \)
- \(Gp = 150 \)
- \(Xp = 150 \)
- \(-Mp = 250 \)
- \(Then\ Ep = 2600 \)

- So \(Ep = Y = E \Rightarrow Iu = 0 \)
Determining Equilibrium Y

- Algebraically,
 \[Y = C + I + G + (X - M) \]
 \[\text{And } C = C_0 + mpc(Y - T) \]
 \[Y = C_0 + mpcY - mpcT + I + G + (X - M) \]
 \[\text{Let } Ap = C_0 - mpcT + I + G + (X - M) \]
 \[Y = Ap + mpcY \]
 \[Y = \frac{Ap}{1 - mpc} \]

Determining Equilibrium Y

- Ye, an endogenous variable, depends on:
 - Ap, the sum of several exogenous variables, and
 - mpc, a parameter

Determining Equilibrium Y

- If
 \[Ap = 1,000 \] and \[mpc = 0.9 \],
 - then
 \[Y = \frac{Ap}{1 - mpc} \]
 \[= \frac{1,000}{0.1} \]
 \[= 10,000 \]

Determining Equilibrium Y

- So the economy is in equilibrium.
 - Is this a “good” thing?
 - Is Ye >, =, or < Yn?

Determining Equilibrium Y

- Disequilibria Dynamics
 - What happens if the economy is not at equilibrium?
 - Y > Ye or
 - Y < Ye?
 - Think of Y = E as production and Ep as spending.
Disequilibria Dynamics

- Suppose $Y = 3000$
 - If $C_p = 100 + 0.9 \times (3000 - 100) = 2710$
 - $I_p = 200$
 - $G_p = 150$
 - $X_p = 150$
 - $-M_p = -250$
 - Then $E_p = 2960$
- So $E_p < Y$ \Rightarrow $I_u = 40$
 - How would businesses respond to this disequilibrium?

- Suppose $Y = 2000$
 - If $C_p = 100 + 0.9 \times (2000 - 100) = 1810$
 - $I_p = 200$
 - $G_p = 150$
 - $X_p = 150$
 - $-M_p = -250$
 - Then $E_p = 2060$
- So $E_p > Y$ \Rightarrow $I_u = -60$
 - How would businesses respond to this disequilibrium?

Determining Equilibrium Y

- Disequilibria Dynamics:
 - If $E > E_p$, then $I_u > 0$ and Y will fall to Y_e
 - If $E < E_p$, then $I_u < 0$ and Y will rise to Y_e
 - The adjustment process is very rapid
 - 6 months to a year