IS – LM Model, Part 1

Agenda

• The IS Curve

The IS Curve

• Interest Rate Assumption:
 ➢ There is only 1 interest rate.

• Spending Assumptions:
 ➢ Cp depends primarily on YD (+) and a little bit on R (-).
 ➢ Ip depends primarily on R (-).
 ➢ Gp is exogenous.
 ➢ Xp depends on εr (-) and on Yf (+).
 ➢ Mp depends primarily on Y (+) and on εr (+).
 • (X - M) depends primarily on Y (-), on Yf (+) and on εr (-).

Deriving the IS Curve

• In the Keynesian Cross model, find Ye
 ➢ Change r, find the new Ye
 ➢ Change r again, find the new Ye

• Plot the pairs of Ye’s and r’s

Deriving the IS Curve, 1

Y1

Deriving the IS Curve, 2

Deriving the IS Curve, 3
The IS Curve

- The IS Curve is the combinations of \(Y \) and \(R \) that establish equilibrium in the market for goods and services, i.e., where \(Y = E_p \).
 - This is where \(I = S \)
- The slope of the IS curve reflects the combined interest rate sensitivity of \(C, I, X \) and \(M \).

Changes in Interest Rates

Changes in Exogenous Spending

Changes in Interest Sensitivity, 1

Changes in Interest Sensitivity, 2
The IS Curve

- Observations:
 - Changes in R, move along a given IS curve.
 - Changes in \(\Delta_p \) related to changes in \(r \), shift the IS curve.
 - If \(\Delta_p \) increases, IS curve shifts right.
 - If \(\Delta_p \) decreases, IS curve shifts left.
 - Changes in the Interest Rate sensitivity of spending, rotate the IS curve.
 - More interest sensitive \(\Rightarrow \) flatter IS curve.
 - Less interest sensitive \(\Rightarrow \) steeper IS curve.

The IS Curve

- Disequilibria Adjustment:
 - Suppose we are off the IS curve.

Disequilibria Dynamics

- Disequilibria Adjustment:
 - Suppose we are off the IS curve to the right.
 - At the given R, \(\Delta_p < Y \) so either:
 - R must decrease to stimulate more \(\Delta_p \), or
 - Y must decrease to meet \(\Delta_p \).
 - Suppose we are off the IS curve to the left.
 - At a given R, \(\Delta_p > Y \) so that either:
 - R must increase to dampen \(\Delta_p \), or
 - Y must increase enough to meet \(\Delta_p \).
 - Adjustment is primarily through changes in Y.