Beyond the Basic Solow Growth Model, Part 1

Agenda

• The Basic Solow Growth Model.
 ➢ Predictions
 ➢ Shortcomings
• The Growth Accounting Formula.

The Basic Solow Growth Model

• The Basic Solow Growth Model:
 ➢ Y/N depends on v, n-dot, δ, and A.
 ➢ Changes in v, δ, and A lead to changes in the level of Y/N but they affect y-dot only during the transition period.

The Basic Solow Growth Model

• The Basic Solow Growth Model:
 ➢ Assumes countries have similar “technology.”
 • The production function, v, δ, n-dot, and A will be similar.
 • Assumes A is fixed; a-dot = 0.
 ➢ Implies differences in Y/N are only explained because of differences in K/N.

Basic Solow Growth Model Predictions

• Prediction #1: Once the steady state has been achieved, there is no persistent growth in Y/N.

Solow Growth Model

Y/N

(Y/N)k

Y/N

(K/N)k

K/N

Hb/N

S/N

A
Basic Solow Growth Model Predictions

- However, persistent growth in Y/N has continued.

Long-run Economic Growth

- Prediction #2: For any country, growth rates should decline over time as economies approach their steady states.

Basic Solow Growth Model Predictions

- However, growth rates have actually accelerated.
Basic Solow Growth Model Predictions

• Prediction #3: A higher v always raises Y/N. And promotes faster y-dot during the transition period.

• However,
 ➢ Higher saving and investment don’t always foster faster growth.
 • If capital is misallocated, it can even lower A.
 • Investments must be “effective.”
 • India in the 1950s.
 • Housing, booms in “non-productive” assets.

• Prediction #4: Poor countries should always grow faster than rich countries. There should be an inverse correlation between (an initial) Y/N and (subsequent) y-dot.

• However,
 ➢ Poor countries have NOT always grown faster than rich ones.
Basic Solow Growth Model Predictions

- Prediction #5: All countries converge to the same Y/N.
 - This is known as “The Convergence Hypothesis.”
 - Also known as Absolute Convergence.

The Convergence Hypothesis

However,
- Convergence hasn’t happened everywhere.
 - Income per capita as % of US has not narrowed.

Basic Solow Growth Model Predictions

- Failures of the Basic Solow Growth Model:
 - Does NOT explain accelerating growth rates.
 - Does NOT explain persistent growth.
 - Does NOT explain why increasing v does not always lead to higher Y/N.
 - Does NOT explain why poor countries don’t always grow faster than rich countries.
 - Does NOT explain non-convergence.
Moving Beyond the Basic Solow Growth Model

• We must think more broadly about how growth rates are determined and what can be done to increase them.

• We do this through the Growth Accounting Formula.

Growth Accounting Formula

• From the production function
 \[Y = A * f(N, K) = A * N^x * K^{1-x} \]
 \[y-dot = a-dot + x * n-dot + (1 - x) * k-dot \]

- \(n-dot \) and \(k-dot \) are weighted by the factor’s relative importance in production
 - Where \(x \) is labor’s share of output (70%)
 - And \(1 - x \) is capital’s share of output (30%)

- Independent of the form of the production function

Growth Accounting Formula

- Growth accounting formula
 \[y-dot = a-dot + x * n-dot + (1 - x) * k-dot \]

- \(y-dot \) depends on
 - \(a-dot \),
 - \(n-dot \), and
 - \(k-dot \)

- Identifies the contributions of \(N, K, \) and \(A \) to \(y-dot \)

Growth Accounting Formula

- If
 \[y-dot = a-dot + x * n-dot + (1 - x) * k-dot \]

- Then
 \[a-dot = y-dot - x * n-dot - (1 - x) * k-dot \]

- Since \(y-dot, n-dot \) and \(k-dot \) can be measured, \(a-dot \) can be calculated.
 - Indirect measurement of \(a-dot \).
 - \(a-dot \) is a residual, called the Solow residual.

Historical Growth Accounting

Sources of Growth

- a-dot accounts for a significant portion of growth, and fluctuations in growth, in developed countries.
 - To permanently increase \(y-dot \) must permanently increase \(a-dot \).
Growth Accounting Formula

- If \(a \cdot \text{dot} = 0 \)
- And \(n \cdot \text{dot} = k \cdot \text{dot} = 1\%
- Then \(y \cdot \text{dot} = 1\%
 \begin{itemize}
 \item y\cdot \text{dot} = 0\% + 0.7 \times 1\% + 0.3 \times 1\% = 1\%
 \end{itemize}
- This is a balanced growth path.
 \begin{itemize}
 \item Steady state position
 \end{itemize}

Growth Accounting Formula

- If \(a \cdot \text{dot} = 1\%
- And \(n \cdot \text{dot} = k \cdot \text{dot} = 1\%
- Then \(y \cdot \text{dot} = 2\%
 \begin{itemize}
 \item y\cdot \text{dot} = 1\% + 0.7 \times 1\% + 0.3 \times 1\% = 2\%
 \end{itemize}
- Even though K/N is constant, Y/N increases.
 \begin{itemize}
 \item Production function has shifted upward
 \end{itemize}

Exogenous Technological Change

- A constant \(a \cdot \text{dot} > 0 \) is better than \(a \cdot \text{dot} = 0 \).
 \begin{itemize}
 \item The Solow growth model does not show rising \(Y/N \) unless \(a \cdot \text{dot} > 0 \).
 \end{itemize}

- Cannot adequately explain long-run growth without explaining the determinants of \(a \cdot \text{dot} \).
 \begin{itemize}
 \item Challenge is to explain changes in \(a \cdot \text{dot} \)
 \begin{itemize}
 \item Slowdown in \(a \cdot \text{dot} \) in 1973 – 1995.
 \item Speed up in \(a \cdot \text{dot} \) since 1995.
 \end{itemize}
 \end{itemize}

Nonfarm Business Productivity

<table>
<thead>
<tr>
<th>Period</th>
<th>Percent per Annun</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-73</td>
<td>2.49</td>
</tr>
<tr>
<td>1973-95</td>
<td>1.26</td>
</tr>
<tr>
<td>1995-05</td>
<td>2.87</td>
</tr>
</tbody>
</table>