Beyond the Basic Solow Growth Model, Part 2

Agenda
- Extending the Basic Solow Growth Model.
 - Accounting for Differences in A.
 - Conditional Convergence.
- Endogenous Technological Change.
 - New Growth Theory.
- Policy Implications.

Extending the Basic Solow Growth Model

Accounting for A and a-dot:
- Differences in Technology,
- Differences in Economic Attributes,
- Differences in Institution, and
- Differences in Quality of Labor Force.

Extending the Basic Solow Growth Model

- Countries do NOT have similar “Technology”
 - Composition of Capital Stock,
 - Quality of Capital Stock,
 - Infrastructure, and
 - Business Organization and Management.

Extending the Basic Solow Growth Model

- Countries do NOT have similar “Economic Attributes”
 - Topography and climate,
 - Geographic size,
 - Population size,
 - Cultures, …

Extending the Basic Solow Growth Model

- Countries do NOT have similar “Economic Attributes” (more)
 - Composition of output, and
 - Existence of local monopolies.
 - Closed economies,
 - Tariffs, quotas, and
 - Business regulations.

Extending the Basic Solow Growth Model

- Countries do NOT have similar “Institutions”
 - Institutions are the
 - Formal rules,
 - Customs,
 - Practices, and
 - Patterns of behavior that govern economic action.
Extending the Basic Solow Growth Model

• Countries do NOT have similar “Institutions”
 - Limited, honest government,
 - Honest and competent institutions,
 - Rule of Law,
 - Property Rights,
 - Free Markets,
 - Government regulations of business,
 - Efficient systems of schooling, and
 - Efficient systems of public health.

• Countries do NOT have the similar “Quality of Labor”
 - Size of the labor force,
 • Including labor force participation rates,
 - Educational levels and job skills,
 - Work ethics, work hours, and labor market flexibility, and
 - Health of the workforce.

Differences in A

Conditional Convergence

Extending the Basic Solow Growth Model

• Differences in technology, economic attributes, institutions, and/or quality of labor imply a different production function.
 - And a different steady state Y/N.

• Conditional Convergence
 - Basic Solow Growth Model predicts “absolute” convergence.
 - Extended Solow Growth Model recognizes “conditional” convergence.
 • Y/N will eventually converge for countries with similar economic attributes.
 • This is the conditional convergence hypothesis.
 - Real world observations support this proposition.
Endogenous Technological Change

• Increasing the Long-run Growth Rate.
 ➢ To permanently increase y-dot, must permanently increase a-dot.
 • From the growth accounting formula.
 • In the basic Solow Growth Model, y-dot can only be increased during a transition period.
 ➢ The only way to always be in a transition period is for A to keep increasing, i.e., a-dot > 0.

Endogenous Technological Change

• So we need an explicit theory of technological change.
 ➢ If a-dot = 0, then y-dot = n-dot and y-dot is exogenous because n-dot is exogenous.
 ➢ If a-dot = a > 0, then y-dot > n-dot but y-dot is still exogenous because a is exogenous.
 ➢ To endogenize y-dot we must endogenize a-dot, i.e., provide an explanation for technological change.

New Growth Theory

• Is an attempt to explain A and a-dot within the model.
 ➢ Focuses on the determinants of A and a-dot and integrates A back into the production function.

A Production Function for Technology

• Technology, and its production, encompasses so many aspects that it is difficult to formulate a simple theory.
 • Start with a production function for technology, i.e.,
 ➢ Technology is the result of a process that transforms inputs into technology.

A Production Function for Technology

• Suppose
 ➢ $\Delta A = f (K_A, N_A, A, E)$
 ➢ where
 • A = technological innovation.
 • K_A = capital devoted to technological innovation.
 • $K_A < K$
 • N_A = labor input devoted to technological innovation.
 • $N_A < N$
 • E = economic environment in which technological innovation takes place.
 ➢ The degree of monopoly power.

A Production Function for Technology

• Determinants of Technological Innovation
 ➢ Capital and Labor.
 • K_A and N_A are the K and N used in research and development.
 • Increases in A come from research and development.
 ➢ Countries that invest more in research and development will grow faster.
 • K_A and N_A can be influenced by policy choices.
 ➢ This makes A endogenous.
A Production Function for Technology

Determinants of Technological Innovation

<table>
<thead>
<tr>
<th>Economic Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable government.</td>
</tr>
<tr>
<td>Protection of property rights.</td>
</tr>
<tr>
<td>Openness to trade.</td>
</tr>
<tr>
<td>Enforcement of patent and copyright laws.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Goods and Patents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public good can be used without diminishing the amount available to others.</td>
</tr>
<tr>
<td>Technology is generally a public good.</td>
</tr>
<tr>
<td>« One idea/process can be used over and over again without diminishing it, i.e., it is “non-excludable.”</td>
</tr>
<tr>
<td>« Unless it can be protected by patents, copyrights, or trade secrets which attempt to make technology excludable.</td>
</tr>
</tbody>
</table>

Determinants of Technological Innovation

Technology.

- \(\Delta A \) is also dependent on A.
 - Technology is used to develop new(er) technology.
 - The methods and tools used to come up with new ideas and new, more efficient ways to produce goods and services.
 - There are important spillover effects from A.
 - i.e., new ideas spawn other new ideas.

Economic Environment.

- Need an environment in which entrepreneurs and innovators thrive and create new ideas.
 - Stable government.
 - Protection of property rights.
 - Openness to trade.
 - Enforcement of patent and copyright laws.

Public Goods and Patents.

- Non-patented ideas/processes are public goods.
 - Have the highest payoff for economic growth.
 - But no incentive to create.
- If A is patented, then its public good element is reduced.
 - But the incentive to develop A is increased.

Technological developments can also be differentiated by how broadly they can be applied.

- General purpose technologies (rather than specific purpose technologies) have the strongest effects on growth.
A Production Function for Technology

- Determinants of Technological Innovation
 - Economic Environment.
 - Public Goods and Patents.
 - In assigning copyrights, patents, and property rights, policy makers are making compromises between the incentives to create and economic growth.
 - Patent protection is for a limited amount of time.
 - Then the idea/process becomes public good.

Endogenous Technological Change

- Identifying Causes of Technological Growth
 - Technological development is a complicated process.
 - Difficult to generalize.
 - Difficult to capture in a model.
 - Some economists argue that the growth process is too difficult to generate into a model.

Not-so-New Growth Theory

- #1: Basic Ideas for Growth.
 - Maintain a stable government.
 - Good governance,
 - Anti-corruption, and
 - Competent institutions.
 - Enact sound social policies.
 - Adequate public health,
 - Adequate education, and
 - Basic infrastructure.

- #2: Specialization and the Market
 - Profit incentive will lead to specialization and endogenous technological innovation.
 - Increase competitive pressures.
 - Open the economy to international trade.
- #3: The Role of the Entrepreneur
 - Waves of innovation.

Not-so-New Growth Theory

- #1: Basic Ideas for Growth.
 - Enact sound economic policies.
 - Create competitive markets.
 - Give them freedom to operate.
 - Reform tax codes and spending to promote growth.
 - Save and invest.
 - Maintain low and stable inflation.
Policy Implications

• Basic Solow Growth Model:
 ➢ Increase v to increase I to increase K.
 ➢ Increase research and development and economic incentives to boost A.

• Expanded Solow Growth Model:
 ➢ Educate the labor force and improve its job skills.
 ➢ Create/change economic attributes and institutions to be more growth compatible.

Policies Implications

• Faster growth has accrued to those who:
 ➢ Have higher levels of K-to-L.
 ➢ More educated labor force.
 ➢ Institutions that foster innovation.

• Faster growth has also accrued to those who:
 ➢ Reduce protectionism.
 ➢ Privatize government controlled activities.
 ➢ Adopt industrial policies.

Conclusions

• Don’t have a really good explanation for technological change or, therefore, growth.

• Models are not irrelevant.
 ➢ They help understand the growth process.
 ➢ They are used as guides for policy.
 • But cannot be used mechanistically.