Inflation and the DAD – SAS Model: A General Framework for Macroeconomic Analysis, Part 4

Agenda

• Inflation and the Triangle Model.
• The DAD – SAS Model.
• Inflation Adjustment and the Attainment of General Equilibrium.
• Inflation, Disinflation, and Deflation.

Inflation and the triangle model

• Definition of inflation:

\[\pi_t = \left\{ \frac{(P_t - P_{t-1})}{P_{t-1}} \right\} \times 100 \]

➢ Where \(P \) is the general price level.

Inflation and the triangle model

• Three explicit factors for explaining inflation.
 ➢ Called the triangle model.

• Inflation, \(\pi \), depends on 3 components:
 ➢ Inflationary expectations, \(\pi^e \).
 ➢ Excess demand, \(\pi^{ED} \).
 ➢ Inflation shocks, \(\pi^z \).
Inflation and the triangle model

• Inflationary expectations, π^e:

 ➢ If people expect a particular level of inflation, that level will likely occur even without any pressure from the output or labor market.

Inflation and the triangle model

• Inflationary expectations, π^e:

 ➢ Modeling π^e is extremely difficult.

 • Rational expectations

 ➢ Based on forward-looking behavior.

 • Adaptive expectations

 ➢ Based on backward-looking behavior

 ➢ Dependent on effect of staggered wage and price behavior.

Inflation and the triangle model

• Excess demand inflation, π^{ED}:

 ➢ Excess demand is measured by the output gap.

 $\pi^{ED} = f(Y - Y^*)$

 ➢ Where $f > 0$.

 • The bigger is the output gap, the faster is the change in π_t for any given f.

 • The bigger is f, the faster is the change in π_t for any given output gap.

Inflation and the triangle model

- Excess demand inflation, π^{ED}:

 ➢ **Key Assumption**: Because of wage and price stickiness, current excess demand inflation depends on lagged excess demand.

 $$\pi^{ED}_t = f (Y_{t-1} - Y^*_{t-1})$$

- Inflation shocks, π^Z:

 ➢ **Key Assumption**: Inflation shocks affect inflation contemporaneously.

 $$\pi^Z_t = Z_t$$

Inflation and the triangle model

- **Inflation**:

 $$\pi_t = \pi_{t-1} + f (Y_{t-1} - Y^*_{t-1}) + Z_t$$

 ➢ Expected inflation, plus
 ➢ Excess demand inflation, plus
 ➢ Inflation shocks.

 • This is also the **new** SRAS curve.
The SRAS curve

- The original SRAS curve was based on P-level adjustment
- The new SRAS curve is now based on \(\pi \) adjustment

The Phillips curve and the SRAS curve

- The expectations-augmented Phillips curve:
 \[\pi = \pi' - f(u - \bar{u}) \]
- Okun’s Law:
 \[\frac{(Y^* - Y)}{Y^*} = 2(u - \bar{u}) \]
 or
 \[u - \bar{u} = 0.5 \frac{(Y^* - Y)}{Y^*} \]

The Phillips curve and the SRAS curve

- Short-run Aggregate Supply (SRAS) curve:
 \[\pi = \pi' + g(Y - Y^*) \]
 - If
 \[\pi_t = \pi_{t-1} \]
 - then
 \[\pi_t = \pi_{t-1} + g(Y_{t-1} - Y_{t-1}^*) \]
The Phillips curve and the SRAS curve

- Short-run Aggregate Supply (SRAS) curve:
 \[\pi_t = \pi_{t-1} + \frac{1}{g} (Y_{t-1} - Y^*_{t-1}) \]
 ➢ Adding inflation shocks:
 \[\pi_t = \pi_{t-1} + \frac{1}{g} (Y_{t-1} - Y^*_{t-1}) + Z_t \]
 ➢ and we have the new SRAS curve.

The AD Curve

- The Aggregate Demand (AD) curve is based on levels of the underlying variables.
 ➢ The level of C, I, G, T, L, and M* =⇒ level of Y and P.
The *DAD Curve*

- The *Dynamic Aggregate Demand* (DAD) curve is based on growth rates of the underlying variables.
 - Growth rate of C, I, G, T, L, and M => growth rate of Y and P (or π).

General equilibrium in the *DAD-SAS model*

- π can occur because of:
 - Demand shocks (shifts in the DAD curve),
 - Inflation shocks (shifts in the SRAS curve), or
 - Supply shocks (shifts in both the SRAS and LRAS curves).
The DAD–SAS model and \(\pi \) adjustment

- Types of DAD Shock:
 - Favorable (increases \(Y \) relative to \(Y^* \)):
 - Rightward shifts in the IS curve and/or the LM curve that increases output relative to full-employment output.
 - Unfavorable (decreases \(Y \) relative to \(Y^* \)):
 - Leftward shifts in the IS curve and/or the LM curve that decreases output relative to full-employment output.

The DAD–SAS model and \(\pi \) adjustment

- An increase in government purchases:
 - In Year 0, the economy is in general equilibrium.
 - Denote the general equilibrium level of output by \(Y^* \).

An increase in government purchases

- In Year 1, government purchases increase.
 - Assume Ricardian equivalence does NOT hold.
 - An increase in government purchases shifts both the IS and DAD curves to the right.
The DAD–SAS model and π adjustment

- An increase in government purchases:
 - In Year 1, the increase in government purchases increases output but leaves inflation unchanged.
 - Short-run equilibrium at the DAD and SRAS intersection.
 - The labor market is temporarily out of equilibrium.
 - π adjustment does NOT take place in Year 1 because of:
 - Lagged adjustment to excess demand, and
 - Inflationary expectations (which are lagged inflation).

24-29

The DAD–SAS model and π adjustment

- An increase in government purchases:
 - In Year 2, inflation begins to rise.
 - In Year 2, the SRAS curve shifts up because of excess aggregate demand in Year 1, i.e., Y₁ > Y*.
 - How far the SRAS curve shifts up depends on the explicit inflation adjustment process for the economy.
 - Generally it is a multiyear process dependent on the amount of excess aggregate demand.

24-30

The DAD–SAS model and π adjustment

- An increase in government purchases:
 - In Year 2, inflation begins to rise.
 - Higher inflation reduces the real money supply, M₀/P.
 - Alternatively, the purchasing power of the nominal money supply, M₀, has been reduced.
 - A lower real money supply shifts the LM curve to the left, raising the real interest rate.

24-31

The DAD–SAS model and π adjustment

- An increase in government purchases:
 - In Year 2, inflation begins to rise.
 - A higher real interest rate will:
 - Reduce interest-sensitive spending.
 - Reduce output and employment, and
 - Raise the unemployment rate.
The DAD–SAS model and π adjustment

• An increase in government purchases:
 ➢ In Year 3, inflation continues to rise.
 • In Year 3, the SRAS curve shifts up again because of excess aggregate demand in Year 2, i.e., \(Y_3 > Y^* \).
 - Because excess aggregate demand in Year 2 is less than in Year 1, the upward shift of the SRAS in Year 3 will be smaller than in Year 2.

The DAD–SAS model and π adjustment

• An increase in government purchases:
 ➢ In Year 4 and beyond, this process continues until general equilibrium is re-established in both the IS-LM and DAD-SAS models.
 • Output will be at its full-employment level.
 • The real money supply is lower.
 • The real interest rate is higher.
 • Inflation will be permanently higher.

The DAD–SAS model and π adjustment

• Results of demand shocks:
 ➢ The economy reaches \(Y^* \) through the repetition of π adjustment year after year.
 ➢ Each year, conditions in the previous year determine π in the current year:
 • Inflationary expectations and
 • Excess/insufficient demand.

The DAD–SAS model and π adjustment

• Types of Inflation Shocks:
 ➢ Unfavorable (increases π):
 • Higher imported goods and/or raw material prices.
 ➢ Especially oil.
 ➢ Weaker currency.
 • Reduced competitive pressures.
 ➢ Exogenous wage push.
 ➢ Reduced globalization.
 ➢ Increased regulation.
The \textit{DAD–SAS} model and π adjustment

• Types of Inflation Shock:

 ➢ Favorable (reduces π):

 • Lower imported goods or raw material prices.
 ➢ Especially oil.
 ➢ Stronger currency.

 • Increased competitive pressures.
 ➢ Globalization.
 ➢ Decreased regulation.

The \textit{DAD–SAS} model and π adjustment

• A short-run adverse inflation shock:

 ➢ In Year 0, the economy is in general equilibrium.

A short-run adverse inflation shock

\begin{figure}
\begin{center}
\begin{tikzpicture}
\draw[->] (-2,0) -- (2,0) node[right] {Y};
\draw[->] (0,-2) -- (0,2) node[above] {π};
\draw (0,0) -- (2,-2) node[below] {DAD$_0$};
\draw (0,0) -- (-2,2) node[left] {SAS$_0$};
\end{tikzpicture}
\end{center}
\end{figure}

The \textit{DAD–SAS} model and π adjustment

• A short-run adverse inflation shock:

 ➢ In Year 1, imported goods inflation increases.

 • An increase in imported goods inflation \textit{immediately} increases the inflation rate and shifts the SRAS curve \textit{up}.

 • Higher inflation reduces the real money supply, M/P.

 • A lower real money supply shifts the \textit{LM} curve shifts to the left, raising the real interest rate.
The \textit{DAD–SAS} model and π adjustment

- A short-run adverse inflation shock:
 - In Year 1, the increase in imported goods inflation raises the inflation rate and decreases output.
 - A higher real interest rate will:
 - Reduce interest-sensitive spending,
 - Reduce output and employment, and
 - Raise the unemployment rate.

- A lower real interest rate:
 - Increases interest-sensitive spending,
 - Increases output and employment, and
 - Decreases the unemployment rate.

The \textit{DAD–SAS} model and π adjustment

- A short-run adverse inflation shock:
 - In Year 2, inflation will begin to fall.
 - In Year 2, the \textit{SRAS} curve shifts down because of the insufficient aggregate demand in Year 1, i.e., $Y_1 < Y^*$.
 - As the \textit{SRAS} curve shifts down, inflation falls.
 - A lower price level increases the real money supply.
 - A higher real money supply shifts the \textit{LM} curve to the right, reducing the real interest rate.

- A short-run adverse inflation shock:
 - In Year 2, inflation will begin to fall.
 - In Year 3 and beyond, inflation continues to fall until general equilibrium is re-established in both the \textit{IS–LM} and \textit{DAD–SAS} models.
 - Output will be at its full-employment level.
 - The real money supply is back to its original level.
 - The real interest rate is back to its original level.
 - Inflation will be back at its original level.
The DAD–SAS model and \(\pi \) adjustment

- Results of inflation shocks:
 - The economy reaches \(Y^* \) through the repetition of \(\pi \) adjustment year after year.
 - Each year, conditions in the previous year determine \(\pi \) in the current year:
 - Inflationary expectations and
 - Excess/insufficient demand.

The DAD–SAS model and \(\pi \) adjustment

- Summary of (Short-term) Effects:
 - Favorable DAD Shock
 - Higher \(Y \) (relative to \(Y^* \)) and \(\pi \).
 - Unfavorable DAD Shock
 - Lower \(Y \) (relative to \(Y^* \)) and \(\pi \).
 - Favorable SAS Shock
 - Higher \(Y \) (relative to \(Y^* \)) and lower \(\pi \).
 - Unfavorable SAS Shock
 - Lower \(Y \) (relative to \(Y^* \)) and higher \(\pi \).

The DAD–SAS model and \(\pi \) adjustment

- (Long-run) Supply shocks:
 - Supply shocks occur when there are permanent changes in:
 - Productivity.
 - Competitive pressures.
 - (Long-run) Supply shocks change \(Y^* \):
 - Because \(Y^* \) changes, the \(\pi \) adjustment process is altered.
 - and permanently change \(\pi \).

The DAD–SAS model and \(\pi \) adjustment

- A long-run adverse supply shock:
 - In Year 0, the economy is in general equilibrium.
The DAD–SAS model and \(\pi \) adjustment

- A long-run adverse supply shock:
 - In Year 1, there is a decrease in productivity.
 - A decrease in productivity shifts **BOTH** the SRAS curve up and the LRAS curve (and the \(FE \) line) to the left.
 - The short-run effects could be:
 » Greater than,
 » Equal to, or
 » Less than the long-run effects.

The DAD–SAS model and \(\pi \) adjustment

- A long-run adverse supply shock:
 - In Year 1, the upward shift of the SRAS curve:
 - Increases inflation,
 - Reduces the real money supply,
 - Shifts the LM curve to the left,
 - Raises the real interest rate,
 - Reduces interest-sensitive spending, and
 - Reduces output and employment.

- In Year 1, the leftward shift of the LRAS curve also reduces the economy’s full-employment level of output.
 - Which reduces general equilibrium output.
The DAD–SAS model and π adjustment

• A long-run adverse supply shock:
 ➢ In Year 2, if the short-run effects are less than the long-run effects, then:
 • Output in Year 1 is greater than the new, lower full-employment level of output, i.e., $Y_1 > Y^*_1$.
 • So there is excess aggregate demand and the SRAS curve will shift up and inflation will rise.
 ➢ This process continues until general equilibrium is re-established.

Aggregate Demand and Aggregate Supply

• A long-run adverse supply shock:
 ➢ Once general equilibrium has been re-established:
 • Output is at its new, lower full-employment level.
 • Inflation will be permanently higher.

The DAD–SAS model and π adjustment

• An adverse supply shock:
 ➢ The economy moves to its new Y^* and results in a permanent change in π.
 ➢ It is likely that the new Y^* will be reached through a repetition of π adjustment year after year.
 ➢ Each year, conditions in the previous year determine π in the current year:
 • Inflationary expectations and
 • Excess/insufficient demand.

Inflation & Deflation

• The key to understanding rates of change in inflation is the π adjustment equation.
 $$\pi_t = \pi_{t-1} + g(Y_{t-1} - Y^*_{t-1}) + Z_t$$

• This equation can describe the process of:
 ➢ Steady inflation,
 ➢ Accelerating inflation,
 ➢ Disinflation, or
 ➢ Deflation
Inflation, disinflation and deflation

- Stable inflation, \(\pi_t = \pi_{t-1} \):
 \[\text{Inflation stabilizes when } Y_{t-1} = Y^*_t. \]
 \[u = \overline{u}. \]

- Accelerating inflation, \(\pi_t > \pi_{t-1} \):
 \[\text{Inflation accelerates when } Y_{t-1} > Y^*_t. \]
 \[u < \overline{u}. \]

- Deflation, \(\pi_t < 0 \):
 \[\text{Prices declines generally requires that } Y_{t-1} \text{ be substantially below } Y^*_t. \]
 \[u > \overline{u} \text{ by a substantial amount and } \]
 \[\text{for a sustained period of time.} \]

- Disinflation, \(\pi_t < \pi_{t-1} \):
 \[\text{Inflation decelerates when } Y_{t-1} < Y^*_t. \]
 \[u > \overline{u}. \]

 \[\text{Policy makers can choose a disinflationary path.} \]
 \[\text{The deeper the recession, the faster the disinflation} \]
 \[\text{The shallower the recession, the slower disinflation} \]
 \[\text{Either way, } u \text{ must rise above } \overline{u}. \]