Long-Run Economic Growth

• Countries have grown at very different rates over long spans of time.

<table>
<thead>
<tr>
<th>Country</th>
<th>Levels of real GDP per capita</th>
<th>Annual growth rate 1870-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>3.45</td>
<td>5.71</td>
</tr>
<tr>
<td>Canada</td>
<td>5.05</td>
<td>4.47</td>
</tr>
<tr>
<td>France</td>
<td>4.81</td>
<td>3.26</td>
</tr>
<tr>
<td>Germany</td>
<td>8.21</td>
<td>3.86</td>
</tr>
<tr>
<td>Japan</td>
<td>4.97</td>
<td>1.35</td>
</tr>
<tr>
<td>Sweden</td>
<td>6.64</td>
<td>5.06</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3.91</td>
<td>4.67</td>
</tr>
<tr>
<td>United States</td>
<td>2.45</td>
<td>1.31</td>
</tr>
</tbody>
</table>

Note: Figures are in U.S. dollars at 1990 prices adjusted for differences in the purchasing power of the various national currencies.

The Sources of Economic Growth

• The economy’s production function is:

\[Y = AF(K, N) \]

• The growth accounting formula:

\[\Delta Y / Y = \Delta A / A + a_K \Delta K / K + a_N \Delta N / N \]

➢ The \(a \) terms are the output elasticities with respect to the \(K \) and \(N \) inputs.
The Sources of Economic Growth

• According to the growth accounting formula:

\[\Delta Y/Y = \Delta A/A + a_K \Delta K/K + a_N \Delta N/N \]

- A rise of 10% in \(A \) raises output by 10%.
- A rise of 10% in \(K \) raises output by \(a_K \) times 10%.
- A rise of 10% in \(N \) raises output by \(a_N \) times 10%.

The Sources of Economic Growth

• Accounting for Growth:
 - Collect data on \(\Delta Y/Y \), \(\Delta K/K \), and \(\Delta N/N \).
 - Adjust for quality changes.
 - Estimate \(a_K \) and \(a_N \) from historical data.

Table 6.3 Sources of Economic Growth

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor growth</td>
<td>0.47</td>
<td>1.40</td>
<td>1.51</td>
<td>1.54</td>
</tr>
<tr>
<td>Capital growth</td>
<td>0.11</td>
<td>0.77</td>
<td>0.03</td>
<td>0.56</td>
</tr>
<tr>
<td>Total input growth</td>
<td>1.53</td>
<td>2.17</td>
<td>1.82</td>
<td>1.90</td>
</tr>
<tr>
<td>Productivity growth</td>
<td>1.01</td>
<td>1.53</td>
<td>-0.27</td>
<td>1.02</td>
</tr>
<tr>
<td>Total output growth</td>
<td>2.54</td>
<td>3.30</td>
<td>1.55</td>
<td>2.02</td>
</tr>
</tbody>
</table>

Table extracted from "The Sources of Economic Growth".
The Sources of Economic Growth

• Accounting for Growth:
 ➢ Why the post-1973 productivity slowdown?
 • Measurement — inadequate accounting for quality improvements.
 • The legal and human environment — regulations for pollution control and worker safety, crime, and declines in educational quality.

Growth Dynamics: The Solow Model

• Three basic questions about growth:
 ➢ What is the relationship between the long-run standard of living and the saving rate, population growth rate, and rate of technical progress?
 ➢ How does economic growth change over time?
 • Will it speed up, slow down, or stabilize?
 ➢ Are there economic forces that will allow poorer countries to catch up to richer countries?

The Solow Model

• Basic assumptions:
 ➢ Population and work force grow at same rate n.
 ➢ Economy is closed (i.e., $NX = 0$) and $G = 0$.
 • $C = Y - I$
The Per-Worker Production Function

- The per-worker production function is:
 \[Y/N = A_0 f(K/N) \]
 or
 \[y = A_0 f(k) \]
 - \(K/N \) or \(k \) is called the capital-labor ratio.
 - Assume no productivity growth, i.e., \(A \) is fixed.

- What happens if:
 - \(N \) changes?
 - \(K \) changes?
 - \(A \) changes?
The Per-Worker Saving Function

• The per-worker saving function:
 ➢ Assume that saving is proportional to income:
 \[S = sY \]
 • where \(s \) is the saving rate and is between 0 and 1.
 ➢ In per-worker terms, this would be:
 \[S/N = sY/N \]

The Per-Worker Production, Saving Functions

• What happens if:
 ➢ \(s \) changes?
 ➢ \(A \) changes?
Changes in s

\[Y/N = A_0 \cdot f(K/N) \]

\[S/N = s \cdot Y/N = s \cdot A_0 \cdot f(K/N) \]

Changes in A

\[Y/N = A_0 \cdot f(K/N) \]

\[S/N = s \cdot Y/N = s \cdot A_0 \cdot f(K/N) \]

Gross Investment

- Gross investment, I, must:
 - Replace worn out capital, dK, and
 - Expand the capital stock, kK

\[I = dK + kK = (k + d)K \]

- Or, in per-worker terms:
\[I/N = (k + d)K/N \]

Balanced Investment Function

- **Balanced Investment**, I_p, is defined as:
 - The gross investment that is required to keep K/N steady at its **current level**.
 - If K/N is constant, then $\Delta K/K = \Delta N/N$, or

\[k = n \]
Balanced Investment Function

• If

\[I/N = (k + d)K/N \]

and

\[k = n \]

Then balanced investment is given by:

\[I_b/N = (n + d)K/N \]

The Per-Worker Balanced Investment Function

• What happens if:

 ➢ \(n \) changes?

 ➢ \(d \) changes?
The Solow Model

- The Solow Model combines:
 - The per-worker production function,
 - The per-worker saving function, and
 - The per-worker balanced investment function.
- Initially assumes that A is constant.
 - So there is no productivity growth.

Determining the Steady State

- How fast is the economy growing at A?
 - At the steady state, Y/N is constant.
 - Therefore,
 \[\Delta Y/Y = \Delta N/N \]
 - The economy grows at the same rate as the labor force.
The Solow Model

- How fast is the capital stock growing at A?
 - At the steady state, K/N is constant.
 - Therefore,

 \[\frac{\Delta K}{K} = \frac{\Delta N}{N} \]

 - The capital stock grows at the same rate as the labor force.

Therefore, in a steady state:

\[\frac{\Delta Y}{Y} = \frac{\Delta N}{N} = \frac{\Delta K}{K} \]

so Y/N and K/N are constant over time, assuming no productivity growth.

The Solow Model

- Disequilibrium dynamics:
 - What if the economy is not at its steady-state?
 - Suppose $(K/N)_t < (K/N)_c$.

Disequilibrium dynamics

\[
\begin{align*}
 Y/N & = A^*(K/N) \\
 (S/N)_t & = (I/N)_t \\
 I_t/N & = (s + d)K/N \\
 S/N & = sA^*(K/N) \\
\end{align*}
\]
The Solow Model

• Disequilibrium dynamics:

 ➢ What adjustment mechanism moves the economy?

 • If \((K/N)_1 < (K/N)_A\), then at \((K/N)_1\), \(S/N > I_b/N\).
 • If \(S/N > I_b/N\), then \(K/N\) will increase.
 • This process will continue until \(K/N = (K/N)_A\).
The Solow Model

• Disequilibrium dynamics:
 ➢ The growth process is stable.
 ➢ The economy will always converge over time to the SAME steady state.
 ➢ However, growth rates during the transition period will be different.
 • When \(K/N < (K/N)_A \), \(\Delta Y/Y > \Delta N/N \).
 • When \(K/N > (K/N)_A \), \(\Delta K/K < \Delta N/N \).

The Solow Model

• With no productivity growth:
 ➢ The economy reaches a steady state,
 ➢ with a constant capital-to-labor ratio, \(K/N \), and
 ➢ with constant output-per-worker, \(Y/N \).

Key Diagram #4: The Solow Model

• Factors that Shift the:
 ➢ Production Function: \(A \)
 ➢ Saving Function: \(s \) and \(A \)
 ➢ Balanced Investment Function: \(n \) and \(d \)