Long-Run Economic Growth, Part 2

Agenda
• Fundamental Determinants of Living Standards.
• Policies to Raise Long-Run Living Standards.

The Solow Model
• Fundamental determinants of living standards:
 ➢ The saving rate.
 ➢ Population growth.
 ➢ Productivity growth.

The Solow Model
• Fundamental determinants of living standards:
 ➢ Increasing the saving rate:
Effect of an increase in the saving rate

\[Y/N = A^* \alpha(K/N) \]

\[(S/N)_A = (I_p/N)_A \]

\[S/N = s^*A^* \alpha(K/N) \]

\[Y/N = (n + d)K/N \]

\[Y/N = \alpha^*(K/N) \]

The Solow Model

• The adjustment mechanism:

 ➢ A higher saving rate shifts the saving function up.

 ➢ At the original \(K/N \), at \((K/N)_A \), \(S/N \) is now greater than \(I_p/N \).

 ➢ Consequently, \(K/N \) will increase, causing:
 • \(Y/N \) to increase along the production function,
 • \(S/N \) to increase along the new saving function, and
 • \(I_p/N \) to increase along the balanced investment function.

The Solow Model

• The adjustment mechanism (continued):

 ➢ Because of diminishing marginal product of capital, the increase in \(S/N \) is smaller than the increase in \(I_p/N \) for every increase in \(K/N \).

 ➢ Eventually \(S/N \) will equal \(I_p/N \) at a new, higher steady state at B.

The Solow Model

• The adjustment mechanism (continued):

 ➢ At B, \(Y/N \) has increased, \(K/N \) has increased, \(S/N \) has increased, and \(I_p/N \) has increased.

 ➢ At steady state B, \(\Delta Y/Y = \Delta N/N = \Delta K/K \).

 ➢ During the transition period from steady state A to steady state B:
 • \(\Delta Y/Y > \Delta N/N \) because \(Y/N \) was increasing, and
 • \(\Delta K/K > \Delta N/N \) because \(K/N \) was increasing.
The Solow Model

• Fundamental determinants of living standards:
 - Increasing the saving rate means:
 - A higher capital-labor ratio, K/N,
 - A higher output per worker, Y/N, and
 - A higher consumption per worker, C/N.

• Should raising the saving rate be a policy goal?
 - Not necessarily.
 » There is a trade-off between present and future consumption.
 » The cost is lower consumption in the short run.

Effect of a faster population growth rate

\[
\begin{align*}
S/N = sA^*(K/N) \\
I/N &= (x + d)K/N \\
Y/N &= A^*(K/N) \\
(Y/N)_A &= (I/N)_A \\
(S/N)_A &= (I/N)_A
\end{align*}
\]
The Solow Model

• The adjustment mechanism:
 ➢ A slower population growth rate rotates the balanced investment function down.
 ➢ At the original K/N, at $(K/N)_A$, S/N is now greater than I_b/N.
 ➢ Consequently, K/N will increase, causing:
 • Y/N to increase along the production function,
 • S/N to increase along the saving function, and
 • I_b/N to increase along the new I_b/N function.

The Solow Model

• The adjustment mechanism (continued):
 ➢ Because of diminishing marginal product of capital, the increase in S/N is smaller than the increase in I_b/N for every increase in K/N.
 ➢ Eventually S/N will equal I_b/N at a new, higher steady state at B.

The Solow Model

• Fundamental determinants of living standards:
 ➢ Slowing the population growth rate means:
 • A higher capital-labor ratio, K/N,
 • A higher output per worker, Y/N, and
 • A higher consumption per worker, C/N.

The Solow Model

• The adjustment mechanism (continued):
 ➢ At B, Y/N has increased, K/N has increased, S/N has increased, and I_b/N has increased.
 ➢ At steady state B, $\Delta Y/Y = \Delta N/N = \Delta K/K$.
 ➢ During the transition period from steady state A to steady state B:
 • $\Delta Y/Y > \Delta N/N$ because Y/N was increasing, and
 • $\Delta K/K > \Delta N/N$ because K/N was increasing.
The Solow Model

• Fundamental determinants of living standards:
 - Slowing the population growth rate:
 - Should reducing population growth be a policy goal?
 - Doing so will raise consumption per worker but it will reduce total output and consumption.
 - We have also assumed that the proportion of the population of working age is fixed which may not be true.
 - Increasing the productivity growth rate:

Effect of a productivity improvement

\[\frac{Y}{N} = A \cdot f(\frac{K}{N}) \]

\[\frac{(S/N)}{N} = \frac{(I/N)}{N} \]

\[\frac{I/N}{N} = (n + d) \cdot \frac{K}{N} \]

\[\frac{S/N}{N} = s \cdot A \cdot f(\frac{K}{N}) \]

The Solow Model

• The adjustment mechanism:
 - An improvement in productivity shifts both the production and saving functions up.
 - At the original \(K/N \), \(Y/N \) is now higher.
 - Also at the original \(K/N \), \(S/N \) is now greater than \(I/N \).
The Solow Model

• The adjustment mechanism:
 ➢ Consequently, K/N will increase, causing:
 • Y/N to increase along the new production function,
 • S/N to increase along the new saving function, and
 • I_b/N to increase along the balanced investment function.

The Solow Model

• The adjustment mechanism (continued):
 ➢ Because of diminishing marginal product of capital, the increase in S/N is smaller than the increase in I_b/N for every increase in K/N.
 ➢ Eventually S/N will equal I_b/N at a new, higher steady state at B.

The Solow Model

• The adjustment mechanism (continued):
 ➢ At B, Y/N has increased, K/N has increased, S/N has increased, and I_b/N has increased.
 ➢ At steady state B, $\Delta Y/Y = \Delta N/N = \Delta K/K$.
 ➢ During the transition period from steady state A to steady state B:
 • $\Delta Y/Y > \Delta N/N$ because Y/N was increasing, and
 • $\Delta K/K > \Delta N/N$ because K/N was increasing.

The Solow Model

• Fundamental determinants of living standards:
 ➢ An improvement in productivity means:
 • A higher capital-labor ratio, K/N,
 • Higher output per worker, Y/N, and
 • Higher consumption per worker, C/N.
The Solow Model

- Fundamental determinants of living standards:
 - An improvement in productivity means:
 - Productivity improvement directly improves the amount that can be produced at any capital-labor ratio.
 - The increase in output per worker also increases the supply of saving, and indirectly causes the long-run capital-labor ratio to rise.

The Solow Model

- Fundamental determinants of living standards:
 - Can consumption per worker grow indefinitely?
 - The saving rate cannot rise forever.
 - The population growth rate cannot fall forever.
 - Productivity and innovation can always occur.

The Solow Model

- Fundamental determinants of living standards:
 - So living standards can rise continuously.
 - The rate of productivity improvement is the dominant factor determining how quickly living standards rise.

Application: The growth of China

- Population of 1.3 billion people.
 - A huge labor force with a comparative advantage in labor-intensive industries where wages are low.

- A low, but rapidly growing, level of GDP.
 - About 1/7 of US GDP per capita in 2007.
Real GDP growth in China and the US

Application: The growth of China

- Rapid output growth attributable to:
 - Saving is very high.
 - Current consumption is very low.
 - Huge increases in capital investment.
 - Productivity growth is very rapid.
 - Due in part from changing to a market economy.
 - Due to adopting foreign technologies through FDI, etc.
 - Population growth has slowed.

- Will China ever catch up to the U.S.?
 - Problems China faces:
 - Weak banking system.
 - Rapidly aging population.
 - Increasing income inequality.
 - Much unemployment in rural areas.
Policies to Raise Long-Run Living Standards

• Policies to increase the saving rate:
 ➢ If private markets are efficient, the government should not try to change the saving rate.
 • The private markets’ saving rate represents its optimal trade-off of present for future consumption.
 • However, if tax laws or myopia cause an inefficiently low level of saving, government policy to raise the saving rate may be justified.

Policies to Raise Long-Run Living Standards

• Policies to increase the saving rate:
 ➢ Increase private saving.
 • Raise the real interest rate to encourage saving.
 – The response of saving to changes in the real interest rate seems to be small.
 • Provide tax incentives to encourage saving.
 – The response of saving to changes in tax incentives also seems to be small.

Policies to Raise Long-Run Living Standards

• Policies to increase the saving rate:
 ➢ Increase government saving.
 • Reduce the government deficit or run a surplus.
 – Through reduced government purchases or higher taxes.
 » But under Ricardian equivalence, tax increases to reduce the deficit won’t affect national saving.

Policies to Raise Long-Run Living Standards

• Policies to raise the productivity growth rate:
 ➢ Improve the infrastructure:
 • Infrastructure is the highways, bridges, utilities, dams, airports, etc.
 – Research suggests a link between the amount and quality of infrastructure and productivity growth.
Policies to Raise Long-Run Living Standards

• Policies to raise the **productivity growth rate**:
 ➢ Build human capital:
 • Research shows a strong connection between productivity and human capital.
 • Government can encourage human capital formation through educational policies, worker training and relocation programs, and health programs.
 • Another form of human capital is entrepreneurial skill.
 – Government could help by removing barriers like red tape.

Encourage research and development:
 • Encourage R & D through direct and/or indirect means:
 – Government funding of R & D efforts.
 – Government tax incentives for R & D activities.
 – Enforcement of patents, trademarks, etc.

Summary

• Fundamental determinants of living standards:
 ➢ The saving rate,
 ➢ The population growth rate, and
 ➢ Productivity growth.

• The productivity growth rate is the **dominant factor** in determining how quickly living standards increase.

• Government can influence living standards with policies designed to:
 ➢ Increase the saving rate,
 ➢ Slow the population growth rate, and/or
 ➢ Raise the productivity growth rate.