The Production Function

• A production function shows how businesses transform factors of production into output of goods and services through the applications of technology.

Factors of production:
- Capital (K)
- Labor (N)
- Other (raw materials, land, energy, etc.)

The productivity of factors depends on technology and management (A).
The Production Function

- The economy’s production function is:

\[Y = AF(K, N) \]

- Shows how much output \(Y \) can be produced from a given amount of capital \(K \) and labor \(N \) and a given level of technology \(A \).

- The parameter \(A \) is “total factor productivity” or the effectiveness with which \(K \) and \(N \) are used.

The Production Function

- A more specific production function that works well in macroeconomics is the Cobb-Douglas production function.

\[Y = AK^\alpha N^{1-\alpha} \]

- For the U.S. economy it would be:

\[Y = AK^{0.3}N^{0.7} \]
The Production Function

- The Production Function: Output and Capital

 ➢ Two main properties of this production function:

 • Exhibits increasing returns to capital.
 - Slopes upward because more K produces more Y.

 • Exhibit diminishing marginal product of capital.
 - Slope becomes flatter because each additional increment of K produces less additional Y.

The Production Function

- The Production Function: Output and Capital

 ➢ Marginal product of capital, \(MPK = \frac{\Delta Y}{\Delta K} \).

 • Equals the slope of production function graph (\(Y \) vs. \(K \)).

 • \(MPK \) is always positive.

 • \(MPK \) declines as \(K \) increases.

The Marginal Product of Capital

\[Y = A_F(K, N) \]

The Marginal Product of Capital

\[MPK \]

\[K \]
The Production Function

• The Production Function: Output and Capital

 ➢ What happens if N or A changes?

The Production Function: Output & Capital

\[Y = A_0 F(K, N_0) \]

The Production Function

• The Production Function: Output and Labor

 ➢ Shows how Y depends on N for a given K and $A.$
The Production Function

- The Production Function: Output and Labor

 ➢ Two main properties of this production function:

 - Exhibits increasing returns to labor.
 - Slopes upward because more N produces more Y.

 - Exhibit diminishing marginal product of labor.
 - Slope becomes flatter because each additional increment of N produces less additional Y.

The Production Function

- The Production Function: Output and Labor

 ➢ Marginal product of labor, $MPN = \Delta Y/\Delta N$.

 - Equals the slope of production function graph (Y vs. N).

 - MPN is always positive.

 - MPN declines as N increases.

The Marginal Product of Labor

\[Y = A_0F(K_0, N) \]

The Marginal Product of Labor

\[MPN \]
The Production Function

• The Production Function: Output and Labor
 ➢ What happens if K or A changes?

Y = A_0 F(K_0, N)

The Production Function

• Productivity is calculated as a residual:

$$A = \frac{Y}{K^{0.3} N^{0.7}}$$

• Productivity growth is calculated as:

$$\% \Delta A = \Delta A / A \times 100$$

The Production Function: Output & Labor

• Observations about productivity growth:
 ➢ Productivity moves sharply from year to year.
 ➢ Productivity grew strongly from the mid-1950’s through 1973, very slowly from 1973 through 1995, and more quickly again since 1995.
The Production Function

• Supply shocks:
 - Supply shocks affect the amount of output that can be produced for a given amount of inputs.
 - Also called productivity shocks.

The Production Function

• Supply shocks:
 - Supply shocks shift the production function.
 - **Negative or adverse shock:** A decline in \(A \) usually causes the slope of production function to decrease at each level of input.
 - **Positive or beneficial shock:** An increase in \(A \) usually causes the slope of production function to increase at each level of input.

Effects of an Adverse Supply Shock

\[Y = A_f(K, N) \]

The Demand for Labor

• The demand for labor is determined by individual business firms.
 - The **aggregate demand for labor** is the sum of all the business firms’ demand for labor.

• The demand for labor depends on the costs and benefits of hiring additional workers.
The Demand for Labor

• How much labor do firms want to use?

➢ Assumptions:
 • The capital stock fixed, i.e., a short-run analysis.
 • Workers are homogeneous.
 • The labor market is competitive.
 • Firms maximize profits.

The Demand for Labor

• What is the cost of hiring one more worker?

➢ The marginal cost of hiring one more worker is the cost of that worker to the firm, i.e., the nominal wage:

\[W \]

The Demand for Labor

• What is the benefit of hiring one more worker?

➢ The benefit of hiring one more worker is the additional income that the worker generates, i.e., the marginal revenue product of labor:

\[MRPN = P \times MPN \]

The Demand for Labor

• How much labor do firms want to use?

➢ A profit-maximizing firm will hire additional workers up to the point where the marginal revenue product of labor equals the nominal wage:

\[W = MRPN = P \times MPN \]
The Demand for Labor

• How much labor do firms want to use?
 ➢ This equilibrium condition:
 \[W = MRPN = P \times MPN \]
 ➢ can be re-written as:
 \[w = MPN \]
 • because \(w = \frac{W}{P} \) and \(MRPN = P \times MPN \).

Marginal Cost of Hiring an Extra Worker

Marginal Benefit of Hiring an Extra Worker

The Determination of Labor Demand
The Demand for Labor

• How much labor do firms want to use?
 ➢ Costs and benefits of hiring one extra worker.
 • If \(w > MPN \), profits rise if number of workers declines.
 • If \(w < MPN \), profits rise if number of workers increases.
 • When \(w = MPN \), profits are maximized.

The Demand for Labor

• How much labor do firms want to use?
 ➢ The labor demand curve shows the relationship between the real wage rate (\(w \)) and the quantity of labor demanded (\(N \)).

Determination of the Labor Demand Curve

The Demand for Labor

• The Labor Demand Curve, \(N_D \).
 ➢ Changing the real wage rate:
 • An increase in the real wage rate means \(w > MPN \) unless \(N \) is reduced so the \(MPN \) increases.
 • A decrease in the real wage rate means \(w < MPN \) unless \(N \) is increased so the \(MPN \) decreases.
The Demand for Labor

- The Labor Demand Curve, N_D.
 - The labor demand curve is downward sloping.
 - The higher the real wage, the less labor firms will hire.
 - Because $w = MPN$ in equilibrium (regardless of what w is), the N_D curve is the same as the MPN curve.

The (Aggregate) Labor Demand Curve

- Factors that shift the labor demand curve:
 - Changes in the capital stock, ΔK.
 - Increases in K raise MPN and shift the labor demand curve to the right.
 - Supply shocks, ΔA.
 - Beneficial supply shocks raise MPN and shift the labor demand curve to the right.

Effect of an Increase in K or A
Key Diagram #1: The Production Function

\[Y = A_0 F(K_0, N) \]

Key Diagram #2a: Demand for Labor

Key Diagrams #1 & #2a.

- Factors that Shift the Production Function and the Demand for Labor:
 - Increases in the capital stock, \(K \), shift the production function higher, increase the MPN and the demand for labor.
 - Increases in productivity, \(A \), shift the production function higher, increase the MPN and the demand for labor.