Unemployment and Inflation, Part 3

Agenda
- Inflation and the Triangle Model.
- The DAD – SAS Model.
- Inflation Adjustment and the Attainment of General Equilibrium.
- Inflation, Disinflation, and Deflation.

Inflation and the triangle model

- Definition of inflation:
 \[
 \pi_t = \left(\frac{P_t - P_{t-1}}{P_{t-1}} \right) \times 100
 \]
 - Where \(P \) is the general price level.

Inflation and the triangle model

- Three explicit factors for explaining inflation.
 - Called the triangle model.
 - Inflation, \(\pi \), depends on 3 components:
 - Inflationary expectations, \(\pi^e \).
 - Excess demand, \(\pi^{ED} \).
 - Inflation shocks, \(\pi^z \).
• Inflationary expectations, π^e:

- If people expect a particular level of inflation, that level will likely occur even without any pressure from the output or labor market.

Modeling π^e is extremely difficult.

- Rational expectations
 - Based on forward-looking behavior.

- Adaptive expectations
 - Based on backward-looking behavior
 - Dependent on effect of staggered wage and price behavior.

• Excess demand inflation, π^{ED}:

- Excess demand is measured by the output gap.

$$\pi^{ED} = f(Y - Y^*)$$

- Where $f > 0$.

 - The bigger is f, the faster is the change in π_t for any given output gap.
 - The bigger is the output gap, the faster is the change in π_t for any given f.

• Key Assumption: Inflation expectations are formed by simple adaptive expectations.

$$\pi^e = \pi_{t-1}$$
Inflation and the triangle model

• Excess demand inflation, π^{ED}:

 ➢ **Key Assumption**: Because of wage and price stickiness, current excess demand inflation depends on lagged excess demand.

 $$\pi^{ED}_t = f(Y_{t-1} - Y^*_{t-1})$$

• Inflation shocks, π^Z:

 ➢ Inflation shocks are assumed to be exogenous.
 - Changes in input costs that are independent of demand:
 - Changes in imported goods prices, especially oil.
 - Price versus exchange rate.
 - Changes in competitive pressures.

• Inflation:

 $$\pi_t = \pi_{t-1} + f(Y_{t-1} - Y^*_{t-1}) + Z_t$$

 ➢ Expected inflation, plus
 ➢ Excess demand inflation, plus
 ➢ Inflation shocks.

• This is also the **new** SRAS curve.
The SRAS curve

- The original SRAS curve was based on P-level adjustment

- The new SRAS curve is now based on π adjustment

The Phillips curve and the SRAS curve

- The expectations-augmented Phillips curve:
 \[\pi = \pi' - f(u - \overline{u}) \]

- Okun’s Law:
 \[\frac{(Y^* - Y)}{Y^*} = 2(u - \overline{u}) \]
 or
 \[u - \overline{u} = 0.5 \frac{(Y^* - Y)}{Y^*} \]

The Phillips curve and the SRAS curve

- Short-run Aggregate Supply (SRAS) curve:
 \[\pi = \pi' + g(Y - Y^*) \]
 - If \[\pi_t = \pi_{t-1} \]
 - then \[\pi_t = \pi_{t-1} + g(Y_{t-1} - Y^*_{t-1}) \]
The Phillips curve and the SRAS curve

- Short-run Aggregate Supply (SRAS) curve:
 \[\pi_t = \pi_{t-1} + g(Y_{t-1} - Y^*_{t-1}) \]
 - Adding inflation shocks:
 \[\pi_t = \pi_{t-1} + g(Y_{t-1} - Y^*_{t-1}) + Z_t \]
 - and we have the new SRAS curve.

The Phillips curve and the SRAS curve

- Short-run Aggregate Supply (SRAS) curve:
 \[\pi_t = \pi_{t-1} + g(Y_{t-1} - Y^*_{t-1}) + Z_t \]
 - Inflation equals:
 - Expected inflation, plus
 - Excess demand inflation, plus
 - Inflation (or supply) shocks.

The new SRAS Curve

The AD Curve

- The Aggregate Demand (AD) curve is based on levels of the underlying variables.
 - The level of C^d, I^d, G, T, L, and M^s \(\Rightarrow\) level of Y and P.
The **DAD Curve**

- The *Dynamic Aggregate Demand* (DAD) curve is based on growth rates of the underlying variables.
 - Growth rate of C^d, I^d, G, T, L, and M^s \Rightarrow growth rate of Y and P (or π).

The **DAD Curve**

General equilibrium in the **DAD-SAS model**

- π adjustment can occur because of:
 - Demand shocks (shifts in the DAD curve),
 - Inflation shocks (shifts in the SRAS curve), or
 - Supply shocks (shifts in both the SRAS and LRAS curve).
The DAD–SAS model and π adjustment

- Types of DAD Shock:
 - Favorable (increases Y relative to Y^*):
 - Rightward shifts in the IS curve and/or the LM curve that increases output relative to full-employment output.
 - Unfavorable (decreases Y relative to Y^*):
 - Leftward shifts in the IS curve and/or the LM curve that decreases output relative to full-employment output.

An increase in government purchases:

- In Year 0, the economy is in general equilibrium.
 - Denote the general equilibrium level of output by Y^*.

The DAD–SAS model and π adjustment

- An increase in government purchases:
 - In Year 1, government purchases increase.
 - Assume Ricardian equivalence does NOT hold.
 - An increase in government purchases shifts both the IS and DAD curves to the right.
The DAD–SAS model and π adjustment

• An increase in government purchases:

 ➢ In Year 1, the increase in government purchases increases output but leaves inflation unchanged.

 • Short-run equilibrium at the DAD and SRAS intersection.
 – The labor market is temporarily out of equilibrium.

 • π adjustment does NOT take place in Year 1 because of:
 – Lagged adjustment to excess demand, and
 – Inflationary expectations (which are lagged inflation).

• An increase in government purchases:

 ➢ In Year 2, inflation begins to rise.

 • In Year 2, the SRAS curve shifts up because of excess aggregate demand in Year 1, i.e., $Y_1 > Y^*_1$.

 – How far the SRAS curve shifts up depends on the explicit inflation adjustment process for the economy.

 – Generally it is a multiyear process dependent on the amount of excess aggregate demand.

• An increase in government purchases:

 ➢ In Year 2, inflation begins to rise.

 • Higher inflation reduces the real money supply, M/P.

 – Alternatively, the purchasing power of the nominal money supply, M^*, has been reduced.

 • A lower real money supply shifts the LM curve to the left, raising the real interest rate.

• An increase in government purchases:

 ➢ In Year 2, inflation begins to rise.

 • A higher real interest rate will:

 – Reduce interest-sensitive spending.
 – Reduce output and employment, and
 – Raise the unemployment rate.
The DAD–SAS model and π adjustment

- An increase in government purchases:
 - In Year 3, inflation continues to rise.
 - In Year 3, the SRAS curve shifts up again because of excess aggregate demand in Year 2, i.e., $Y_3 > Y^*$.
 - Because excess aggregate demand in Year 2 is less than in Year 1, the upward shift of the SRAS in Year 3 will be smaller than in Year 2.

- In Year 4 and beyond, this process continues until general equilibrium is re-established in both the IS-LM and DAD-SAS models.
 - Output will be at its full-employment level.
 - The real money supply is lower.
 - The real interest rate is higher.
 - Inflation will be permanently higher.

The DAD–SAS model and π adjustment

- Results of demand shocks:
 - The economy reaches Y^* through the repetition of π adjustment year after year.
 - Each year, conditions in the previous year determine π in the current year:
 - Inflationary expectations and
 - Excess/insufficient demand.

The DAD–SAS model and π adjustment

- Types of Inflation Shocks:
 - Unfavorable (increases π):
 - Higher imported goods and/or raw material prices.
 - Especially oil.
 - Weaker currency.
 - Reduced competitive pressures.
 - Exogenous wage push.
 - Reduced globalization.
 - Increased regulation.
The DAD–SAS model and π adjustment

• Types of Inflation Shock:
 ➢ Favorable (reduces π):
 • Lower imported goods or raw material prices.
 ➢ Especially oil.
 ➢ Stronger currency.
 • Increased competitive pressures.
 ➢ Globalization.
 ➢ Decreased regulation.

• A short-run adverse supply shock:
 ➢ In Year 0, the economy is in general equilibrium.

A short-run adverse inflation shock

\[\pi \]
\[Y^* \]
\[\pi_0 \]
\[SAS_0 \]
\[DAD_0 \]
\[Y_0 \]
\[Y \]

The DAD–SAS model and π adjustment

• A short-run adverse inflation shock:
 ➢ In Year 1, imported goods inflation increases.
 • An increase in imported goods inflation immediately increases the inflation rate and shifts the SRAS curve up.
 • Higher inflation reduces the real money supply, M/P.
 • A lower real money supply shifts the LM curve shifts to the left, raising the real interest rate.
The DAD–SAS model and \(\pi \) adjustment

- A short-run adverse inflation shock:
 - In Year 1, the increase in imported goods inflation raises the inflation rate and decreases output.
 - A higher real interest rate will:
 - Reduce interest-sensitive spending,
 - Reduce output and employment, and
 - Raise the unemployment rate.

- In Year 2, inflation will begin to fall.
 - The SRAS curve shifts down because of the insufficient aggregate demand in Year 1, i.e., \(Y_1 < Y^* \).
 - As the SRAS curve shifts down, inflation falls.
 - A lower price level increases the real money supply.
 - A higher real money supply shifts the LM curve to the right, reducing the real interest rate.

- In Year 3 and beyond, inflation continues to fall until general equilibrium is re-established in both the IS-LM and DAD-SAS models.
 - Output will be at its full-employment level.
 - The real money supply is back to its original level.
 - The real interest rate is back to its original level.
 - Inflation will be back at its original level.
The DAD–SAS model and π adjustment

• Results of inflation shocks:
 - The economy reaches Y^* through the repetition of π adjustment year after year.
 - Each year, conditions in the previous year determine π in the current year:
 • Inflationary expectations and
 • Excess/insufficient demand.

• Summary of (Short-term) Effects:
 - Favorable DAD Shock
 • Higher Y (relative to Y^*) and π.
 - Unfavorable DAD Shock
 • Lower Y (relative to Y^*) and π.
 - Favorable SAS Shock
 • Higher Y (relative to Y^*) and lower π.
 - Unfavorable SAS Shock
 • Lower Y (relative to Y^*) and higher π.

• (Long-run) Supply shocks:
 - Supply shocks occur when there are permanent changes in:
 • Productivity.
 • Competitive pressures.
 - (Long-run) Supply shocks change Y^*.
 • Because Y^* changes, the π adjustment process is altered.
 • and permanently change π.

• A long-run adverse supply shock:
 - In Year 0, the economy is in general equilibrium.
An adverse supply shock

The DAD–SAS model and π adjustment

- A long-run adverse supply shock:
 - In Year 1, there is a decrease in productivity.

 - A decrease in productivity shifts BOTH the SRAS curve up and the LRAS curve (and the FE line) to the left.
 - The short-run effects could be:
 - Greater than,
 - Equal to, or
 - Less than the long-run effects.

The DAD–SAS model and π adjustment

- A long-run adverse supply shock:
 - In Year 1, the upward shift of the SRAS curve:
 - Increases inflation,
 - Reduces the real money supply,
 - Shifts the LM curve to the left,
 - Raises the real interest rate,
 - Reduces interest-sensitive spending, and
 - Reduces output and employment.

The DAD–SAS model and π adjustment

- A long-run adverse supply shock:
 - In Year 1, the leftward shift of the LRAS curve also reduces the economy’s full-employment level of output.
 - Which reduces general equilibrium output.
The **DAD–SAS model and \(\pi \) adjustment**

- A long-run adverse supply shock:
 - In Year 2, if the short-run effects are less than the long-run effects, then:
 - Output in Year 1 is greater than the new, lower full-employment level of output, i.e., \(Y_1 > Y^*_{1} \).
 - So there is excess aggregate demand and the SRAS curve will shift up and inflation will rise.
 - This process continues until general equilibrium is re-established.

- An adverse supply shock:
 - The economy moves to its new \(Y^* \) and results in a permanent change in \(\pi \).
 - It is likely that the new \(Y^* \) will be reached through a repetition of \(\pi \) adjustment year after year.
 - Each year, conditions in the previous year determine \(\pi \) in the current year:
 - Inflationary expectations and
 - Excess/insufficient demand.

Aggregate Demand and Aggregate Supply

- A long-run adverse supply shock:
 - Once general equilibrium has been re-established:
 - Output is at its new, lower full-employment level.
 - Inflation will be permanently higher.

Inflation & Deflation

- The key to understanding rates of change in inflation is the \(\pi \) adjustment equation.

\[
\pi_t = \pi_{t-1} + g(Y_{t-1} - Y^*_{t-1}) + Z_t
\]

- This equation can describe the process of:
 - Steady inflation,
 - Accelerating inflation,
 - Disinflation, or
 - Deflation
Inflation, disinflation and deflation

- Stable inflation, $\pi_t = \pi_{t-1}$:
 - Inflation stabilizes when $Y_{t-1} = Y^*_{t-1}$.
 - $u = \overline{u}$

- Accelerating inflation, $\pi_t > \pi_{t-1}$:
 - Inflation accelerates when $Y_{t-1} > Y^*_{t-1}$.
 - $u < \overline{u}$

- Disinflation, $\pi_t < \pi_{t-1}$:
 - Inflation decelerates when $Y_{t-1} < Y^*_{t-1}$.
 - $u > \overline{u}$
 - Policy makers can choose a disinflationary path.
 - The deeper the recession, the faster the disinflation
 - The shallower the recession, the slower disinflation
 - Either way, u must rise above \overline{u}.

- Deflation, $\pi_t < 0$:
 - Prices decline generally requires that Y_{t-1} be substantially below Y^*_{t-1}.
 - $u > \overline{u}$ by a substantial amount and
 - for a sustained period of time.