The Production Function

- A production function shows how businesses transform factors of production into output of goods and services through the applications of technology.

Factors of production:
- Capital (K)
- Labor (N)
- Other (raw materials, land, energy, etc.)

- The productivity of factors depends on technology and management (A).
The Production Function

• The economy’s production function is:

\[Y = AF(K, N) \]

➢ Shows how much output (Y) can be produced from a given amount of capital (K) and labor (N) and a given level of technology (A).

➢ The parameter \(A \) is “total factor productivity” or the effectiveness with which \(K \) and \(N \) are used.

The Production Function

• A more specific production function that works well in macroeconomics is the Cobb-Douglas production function.

\[Y = AK^\alpha N^{(1-\alpha)} \]

• For the U.S. economy it would be:

\[Y = AK^{0.3}N^{0.7} \]
The Production Function

- The Production Function: Output and Capital

 ➢ Two main properties of this production function:
 • Exhibits increasing returns to capital.
 – Slope upward because more K produces more Y.
 • Exhibit diminishing marginal product of capital.
 – Slope becomes flatter because each additional increment of K produces less additional Y.

 Marginal product of capital, \(MPK = \frac{\Delta Y}{\Delta K} \).
 • Equals the slope of production function graph (\(Y \) vs. \(K \)).
 • \(MPK \) is always positive.
 • \(MPK \) declines as \(K \) increases.

The Marginal Product of Capital

\[Y = A_0F(K, N_0) \]

The Marginal Product of Capital

\[MPK \]

\[K \]
The Production Function

• The Production Function: Output and Capital
 ➢ What happens if \(N \) or \(A \) changes?

\[
Y = A_0 F(K, N_0)
\]

The Production Function: Output & Capital

The Production Function

• The Production Function: Output and Labor
 ➢ Shows how \(Y \) depends on \(N \) for a given \(K \) and \(A \).
The Production Function

- The Production Function: Output and Labor
 - Two main properties of this production function:
 - Exhibits increasing returns to labor.
 - Slopes upward because more N produces more Y.
 - Exhibit diminishing marginal product of labor.
 - Slope becomes flatter because each additional increment of N produces less additional Y.

Marginal product of capital, \(MPN = \frac{\Delta Y}{\Delta N} \).
- Equals the slope of production function graph (Y vs. N).
- \(MPN \) is always positive.
- \(MPN \) declines as N increases.

The Marginal Product of Labor

\[Y = A_0 F(K_0, N) \]
The Production Function

- The Production Function: Output and Labor
 - What happens if K or A changes?

The Production Function: Output & Labor

\[Y = A_0 F(K_0, N) \]

The Production Function

- Productivity is calculated as a residual:
 \[A = \frac{Y}{K^{0.3} N^{0.7}} \]

- Productivity growth is calculated as:
 \[\% \Delta A = \frac{\Delta A}{A} \times 100 \]

The Production Function

- Observations about productivity growth:
 - Productivity moves sharply from year to year.
 - Productivity grew strongly from the mid-1950’s through 1973, very slowly from 1973 through 1995, and more quickly again since 1995.
The Production Function

- Supply shocks:
 - Supply shocks affect the amount of output that can be produced for a given amount of inputs.
 - Also called productivity shocks.
 - Negative or adverse shock: A decline in A usually causes the slope of production function to decrease at each level of input.
 - Positive or beneficial shock: An increase in A usually causes the slope of production function to increase at each level of input.

The Demand for Labor

- The demand for labor is determined by individual business firms.
 - The aggregate demand for labor is the sum of all the business firms’ demand for labor.
 - The demand for labor depends on the costs and benefits of hiring additional workers.
The Demand for Labor

• How much labor do firms want to use?

 ➢ Assumptions:
 • The capital stock fixed, i.e., a short-run analysis.
 • Workers are homogeneous.
 • The labor market is competitive.
 • Firms maximize profits.

The Demand for Labor

• What is the cost of hiring one more worker?

 ➢ The marginal cost of hiring one more worker is the cost of that worker to the firm, i.e., the nominal wage:

 \[W \]

The Demand for Labor

• What is the benefit of hiring one more worker?

 ➢ The benefit of hiring one more worker is the additional income that the worker generates, i.e., the marginal revenue product of labor:

 \[MRPN = P \times MPN \]

The Demand for Labor

• How much labor do firms want to use?

 ➢ A profit-maximizing firm will hire additional workers up to the point where the marginal revenue product of labor equals the nominal wage:

 \[W = MRPN = P \times MPN \]
The Demand for Labor

• How much labor do firms want to use?
 ➢ This equilibrium condition:
 \[W = MRPN = P \times MPN \]
 ➢ can be re-written as:
 \[w = MPN \]
 • because \(w = \frac{W}{P} \) and \(MRPN = P \times MPN \).

Marginal Cost of Hiring an Extra Worker

Marginal Benefit of Hiring an Extra Worker

The Determination of Labor Demand
The Demand for Labor

• How much labor do firms want to use?

➢ Costs and benefits of hiring one extra worker.
 • If \(w > MPN \), profits rise if number of workers decreases.
 • If \(w < MPN \), profits rise if number of workers increases.
 • When \(w = MPN \), profits are maximized.

The Demand for Labor

• How much labor do firms want to use?

➢ The labor demand curve shows the relationship between the real wage rate (\(w \)) and the quantity of labor demanded (\(N \)).

Determination of the Labor Demand Curve

• The Labor Demand Curve, \(N_D \).

➢ Changing the real wage rate:
 • An increase in the real wage rate means \(w > MPN \) unless \(N \) is reduced so the \(MPN \) increases.
 • A decrease in the real wage rate means \(w < MPN \) unless \(N \) is increased so the \(MPN \) decreases.
The Demand for Labor

- The Labor Demand Curve, N_D.
 - The labor demand curve is downward sloping.
 - The higher the real wage, the less labor firms will hire.
 - Because $w = MPN$ in equilibrium (regardless of what w is), the N_D curve is the same as the MPN curve.

Effect of an Increase in K or A

- Factors that shift the labor demand curve:
 - Changes in the capital stock, ΔK.
 - Increases in K raise MPN and shift the labor demand curve to the right.
 - Supply shocks, ΔA.
 - Beneficial supply shocks raise MPN and shift the labor demand curve to the right.
Key Diagram #1: The Production Function

\[Y = A_0 F(K_0, N) \]

Key Diagram #2a: Demand for Labor

Factors that Shift the Production Function and the Demand for Labor:

- Increases in the capital stock, \(K \), shift the production function higher, increase the MPN and the demand for labor.
- Increases in productivity, \(A \), shift the production function higher, increase the MPN and the demand for labor.

Next Time

- Productivity, Output, and Employment, Part 2
 - The Supply of Labor
 - Labor Market Equilibrium
 - Unemployment
 - Okun’s Law