Long-Run Economic Growth, Part 1

Agenda

- The Sources of Economic Growth
- Growth Dynamics: The Solow Model

Long-Run Economic Growth

- Countries have grown at very different rates over long spans of time.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>3.45</td>
<td>3.71</td>
<td>7.41</td>
<td>20.86</td>
<td>1.45</td>
</tr>
<tr>
<td>Canada</td>
<td>3.65</td>
<td>4.44</td>
<td>7.43</td>
<td>24.20</td>
<td>2.0</td>
</tr>
<tr>
<td>France</td>
<td>1.57</td>
<td>2.49</td>
<td>5.27</td>
<td>16.42</td>
<td>1.8</td>
</tr>
<tr>
<td>Germany</td>
<td>1.61</td>
<td>3.84</td>
<td>8.81</td>
<td>19.35</td>
<td>1.8</td>
</tr>
<tr>
<td>Japan</td>
<td>1.56</td>
<td>3.80</td>
<td>5.96</td>
<td>15.10</td>
<td>2.4</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.66</td>
<td>5.06</td>
<td>6.78</td>
<td>22.10</td>
<td>1.9</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3.19</td>
<td>4.93</td>
<td>6.67</td>
<td>21.98</td>
<td>1.4</td>
</tr>
<tr>
<td>United States</td>
<td>2.45</td>
<td>5.30</td>
<td>9.96</td>
<td>13.24</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Note: Figures are in U.S. dollars at 1990 prices adjusted for differences in the purchasing power of the various national currencies.

The Sources of Economic Growth

- The economy’s production function is:
 \[Y = AF(K, N) \]

- The growth accounting formula:
 \[\Delta Y/Y = \Delta A/A + a_K \Delta K/K + a_N \Delta N/N \]

 ➢ The \(a \) terms are the output elasticities with respect to the \(K \) and \(N \) inputs.
The Sources of Economic Growth

- According to the growth accounting formula:

\[
\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + a_K \frac{\Delta K}{K} + a_N \frac{\Delta N}{N}
\]

- A rise of 10% in \(A \) raises output by 10%.
- A rise of 10% in \(K \) raises output by \(a_K \) times 10%.
- A rise of 10% in \(N \) raises output by \(a_N \) times 10%.

Accounting for Growth:

- Collect data on \(\Delta Y/Y \), \(\Delta K/K \), and \(\Delta N/N \).
- Adjust for quality changes.
- Estimate \(a_K \) and \(a_N \) from historical data.

Table 6.3 Sources of Economic Growth

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor growth</td>
<td>1.47</td>
<td>1.40</td>
<td>1.13</td>
<td>1.54</td>
<td>0.95</td>
</tr>
<tr>
<td>Capital growth</td>
<td>0.11</td>
<td>0.27</td>
<td>0.00</td>
<td>0.56</td>
<td>0.80</td>
</tr>
<tr>
<td>Total input growth</td>
<td>1.53</td>
<td>2.17</td>
<td>1.82</td>
<td>1.80</td>
<td>1.76</td>
</tr>
<tr>
<td>Productivity growth</td>
<td>1.01</td>
<td>1.53</td>
<td>-0.27</td>
<td>1.62</td>
<td>0.99</td>
</tr>
<tr>
<td>Total output growth</td>
<td>2.54</td>
<td>3.39</td>
<td>1.55</td>
<td>2.52</td>
<td>2.75</td>
</tr>
</tbody>
</table>

The Sources of Economic Growth

• Accounting for Growth:
 ➢ Why the post-1973 productivity slowdown?
 • Measurement—inadequate accounting for quality improvements.
 • The legal and human environment—regulations for pollution control and worker safety, crime, and declines in educational quality.

The Sources of Economic Growth

• Accounting for Growth:
 ➢ Why the post-1973 productivity slowdown?
 • Oil prices—huge increase in oil prices reduced productivity of capital and labor, especially in basic industries.
 • New industrial revolution—learning process for information technology from 1973 to 1990 meant slower growth.

Growth Dynamics: The Solow Model

• Three basic questions about growth:
 ➢ What is the relationship between the long-run standard of living and the saving rate, population growth rate, and rate of technical progress?
 ➢ How does economic growth change over time?
 • Will it speed up, slow down, or stabilize?
 ➢ Are there economic forces that will allow poorer countries to catch up to richer countries?

The Solow Model

• Basic assumptions:
 ➢ Population and work force grow at same rate n.
 ➢ Economy is closed (i.e., $NX = 0$) and $G = 0$.
 • $C = Y - I$
The Per-Worker Production Function

- The per-worker production function is:
 \[Y/N = A_0 f(K/N) \]
 or
 \[y = A_0 f(k) \]
 - \(K/N \) or \(k \) is called the capital-labor ratio.
 - Assume no productivity growth, i.e., \(A \) is fixed.

- What happens if:
 - \(N \) changes?
 - \(K \) changes?
 - \(A \) changes?
The Per-Worker Saving Function

- The per-worker saving function:
 - Assume that saving is proportional to income:
 \[S = sY \]
 - where \(s \) is the saving rate and is between 0 and 1.
 - In per-worker terms, this would be:
 \[S/N = sY/N \]

The Per-Worker Production, Saving Functions

- What happens if:
 - \(s \) changes?
 - \(A \) changes?
Gross Investment

- Gross investment, I, must:
 - Replace worn out capital, dK, and
 - Expand the capital stock, kK

$$I = dK + kK = (k + d)K$$

- Or, in per-worker terms:

$$I/N = (k + d)K/N$$

Balanced Investment Function

- Balanced Investment, I_b, is defined as:
 - The gross investment that is required to keep K/N steady at its current level.
 - If K/N is constant, then $\Delta K/K = \Delta N/N$, or

$$k = n$$
Balanced Investment Function

- If
 \[\frac{I}{N} = (k + d)\frac{K}{N} \]
 - and
 \[k = n \]
 - Then balanced investment is given by:
 \[I_b/N = (n + d)K/N \]
The Solow Model

- The Solow Model combines:
 - The per-worker production function,
 - The per-worker saving function, and
 - The per-worker balanced investment function.
- Initially assumes that A is constant.
 - So there is no productivity growth.

Determining the Steady State

- How fast is the economy growing at A?
 - At the steady state, Y/N is constant.
 - Therefore,

$$\Delta Y/Y = \Delta N/N$$

- The economy grows at the same rate as the labor force.
The Solow Model

• How fast is the capital stock growing at A?
 ➢ At the steady state, K/N is constant.
 ➢ Therefore,

\[
\frac{\Delta K}{K} = \frac{\Delta N}{N}
\]

• The capital stock grows at the same rate as the labor force.

Therefore, in a steady state:

\[
\frac{\Delta Y}{Y} = \frac{\Delta N}{N} = \frac{\Delta K}{K}
\]

➢ so Y/N and K/N are constant over time, assuming no productivity growth.

The Solow Model

• Disequilibrium dynamics:
 ➢ What if the economy is not at its steady-state?
 • Suppose $(K/N)_1 < (K/N)_c$.

\[
\frac{S}{N} = s\cdot A^\theta (K/N)
\]

\[
I_{b}/N = (n + d)K/N
\]

\[
Y/N = A^\theta (K/N)
\]

\[
(S/N)_1 = (I/N)_1
\]

\[
(S/N)_2 = (I/N)_2
\]

\[
Y/N = A^\theta (K/N)
\]

\[
I_{b}/N = (n + d)K/N
\]

\[
S/N = s\cdot A^\theta (K/N)
\]
The Solow Model

• Disequilibrium dynamics:
 ➢ What adjustment mechanism moves the economy?
 • If \((K/N)_1 < (K/N)_A\), then at \((K/N)_1\), \(S/N > I_p/N\).
 • If \(S/N > I_p/N\), then \(K/N\) will increase.
 • This process will continue until \(K/N = (K/N)_A\).

The Solow Model

• Disequilibrium dynamics:
 ➢ What if the economy is not at its steady-state?
 • Suppose \((K/N)_1 > (K/N)_A\).

\[
\begin{align*}
\frac{Y}{N} &= \frac{Y}{(Y/N)_A} \\
\frac{S/N}{I_p/N} &= \frac{(S/N)_1}{(I_p/N)_1} \\
\frac{S/N}{I_p/N} &= \frac{(S/N)_1}{(I_p/N)_1} = \frac{s*A*H(K/N)}{(n + d)K/N} \\
\frac{Y}{N} &= \frac{A*H(K/N)}{(Y/N)_A} \\
\frac{K/N}{(K/N)_A} &= \frac{I_p/N}{(I_p/N)_A} = \frac{(n + d)K/N}{s*A*H(K/N)}
\end{align*}
\]
The Solow Model

- Disequilibrium dynamics:
 - The growth process is stable.
 - The economy will always converge over time to the SAME steady state.
 - However, growth rates during the transition period will be different.
 - When $K/N < (K/N)_A$, $\Delta Y/Y > \Delta N/N$.
 - When $K/N > (K/N)_A$, $\Delta Y/Y < \Delta N/N$.

- With no productivity growth:
 - The economy reaches a steady state,
 - with a constant capital-labor ratio, K/N, and
 - with a constant output per worker, Y/N.

Key Diagram #4: The Solow Model

- Factors that Shift the:
 - Production Function: A
 - Saving Function: s and A
 - Balanced Investment Function: n and d