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We show how these facts can be used to calibrate key parameters of noisy-information 
models with infinite regress as well as to test predictions made by this class of models. We 
also consider a range of extensions to the basic noisy-information model that can 
potentially better reconcile theory and empirics. While some extensions like level-k 
thinking are unsuccessful, incorporating heterogeneous long-run priors can address the 
empirical shortcomings of the basic noisy-information model.   
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I. Introduction 

Keynes (1936) famously observed that a successful investment is one that anticipates what other investors 

will think is a successful investment. But if those other investors are following the same logic, successful 

investing then requires anticipating what others will anticipate you anticipate about their anticipation. This 

iteration over increasingly higher-order beliefs (i.e., what I think you think I think…) is central to many 

economic scenarios and has become increasingly emphasized and studied in the macroeconomic context. 

Woodford (2003), for example, shows how noisy private information can lead firms to change their prices 

very gradually due to the slow-moving higher-order beliefs about the actions of other firms. More recent 

work has emphasized how different assumptions about higher-order beliefs can alleviate the “forward 

guidance” puzzle1 (e.g. Angeletos and Lian 2018, Gabaix 2020, Fahri and Werning 2019). But a major 

stumbling block to this literature has been the complete absence of any empirical evidence, other than that 

of the experimental literature, on the higher-order beliefs of economic agents, especially when it comes to 

their expectations of macroeconomic variables.2 

This paper takes a first step at filling this gap by studying the higher-order macroeconomic 

expectations of firm managers using a novel survey of firms in New Zealand. This survey asks managers 

not only about their own expectations over macroeconomic variables (first-order expectations) as in 

Coibion, Gorodnichenko and Kumar (2018; henceforth CGK), but also about what they think other 

managers expect for inflation, i.e. their higher-order beliefs. This allows us to provide a unique set of facts 

relating first-order and higher-order macroeconomic beliefs of firms. We also provide new evidence on the 

learning process through a variety of randomized information treatments that characterize how agents’ first- 

and higher-order beliefs respond to different kinds of information about the economy. Jointly, these data 

provide a novel set of empirical facts that can be used to discipline and test models of higher-order thinking. 

We document a number of dimensions along which noisy-information models with higher-order 

expectations are (and are not) consistent with the facts from the survey. 

The survey builds on earlier surveys of firms in New Zealand described in CGK and Kumar et al. 

(2015). Relative to this earlier work, we rely on two new waves of the survey run in 2017Q4-2018Q2 using 

a fresh draw of firms. We highlight several features of this unique data set. First, the average higher-order 

forecast of inflation across firms is almost identical to the average first-order forecast of inflation. Second, 

the cross-sectional standard deviation of higher-order beliefs (disagreement) is significantly smaller than 

                                                 
1 Standard New Keynesian models that abstract from information frictions imply that announcements about monetary 
policy in the distant future can have unrealistically large contemporaneous economic effects. 
2 The experimental literature has documented a number of striking features about higher-order expectations, and we 
explicitly build on this previous work. The main differences are that we study actual macroeconomic expectations of 
actual firm managers, rather than much more narrowly-defined expectations of undergraduates in typical experiments.   
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the dispersion in first-order beliefs about inflation. Third, the average uncertainty around firms’ higher-

order beliefs about inflation is significantly lower than their uncertainty around their own forecasts. Fourth, 

we find in the cross-section that firms with larger forecasts of inflation also tend to have larger higher-order 

inflation forecasts, but the correlation is not perfect. Fifth, the amount of disagreement across agents in both 

first-order and higher-order beliefs is greater than the average amount of uncertainty in both first-order and 

higher-order beliefs. Sixth, providing firms with information about the higher-order beliefs of other firms 

moves both first-order and higher-order beliefs significantly more than providing firms with information 

about the first-order beliefs of other firms. 

These stylized facts provide a unique and novel way to test and calibrate noisy-information models 

with infinite regress (i.e., when agents can correctly infer what others think about what they think about 

what others think…). For example, we show that a basic noisy-information model in which agents receive 

both public and private signals about the fundamental is consistent with both the lower disagreement and 

uncertainty around higher-order forecasts than first-order forecasts. As the relative levels of each are 

determined by the same underlying parameter in the model, the empirical moments also provide an 

overidentification test that is not rejected by the data. However, we also document that the basic noisy-

information model is inconsistent with several of the stylized facts coming from our survey. One such 

counterfactual prediction of the model is that the cross-sectional correlation between individuals’ first-order 

and second-order beliefs should be exactly one, whereas that correlation is positive but less than one in the 

data. A second counterfactual prediction of the model is that the uncertainty in either first- or higher-order 

inflation forecasts should be equal to the cross-sectional disagreement in those same forecasts, whereas in 

the data uncertainty is systematically and significantly lower than the amount of disagreement. Finally, the 

model is inconsistent with the fact that information treatments regarding higher-order beliefs of firms have 

stronger estimated effects on expectations than information treatments regarding first-order beliefs. A basic 

noisy-information model instead implies that, in updating their beliefs in response to these signals, 

managers should place more weight on their prior beliefs when told about the average higher-order beliefs 

of other firms than when told about the average forecast of other firms, because they tend to be more 

confident about the former than the latter. Our empirical evidence goes in precisely the opposite direction: 

the estimated weight on prior beliefs is actually much smaller when firms are told about the higher-order 

beliefs of other firms than about their first-order beliefs.  

Given the inability of the basic noisy-information model to explain these empirical facts, we 

consider whether variations on the basic model help match the data. Most help only along some dimensions. 

For example, if agents receive both private and semi-public (rather than public) signals, this can potentially 

explain the imperfect cross-sectional correlation between first-order and higher-order beliefs found in the 

survey. However, this alternative formulation of the model does not help in reconciling theory and empirics 
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along the other margins: the cross-sectional variance and uncertainty of expectations are still the same in 

this model, and agents should not be responding more strongly to signals about higher-order than first-order 

beliefs unless the former was much more precise. Similarly, if we allow agents to be “overconfident” about 

the precision of private signals, as in e.g. Daniel, Hirshleifer, and Subrahmanyam (1998), we can account 

for the lower forecast uncertainty than cross-sectional dispersion in beliefs found in the data (since the 

overconfidence of agents reduces their uncertainty relative to what it should be). But by itself, this form of 

overconfidence still cannot explain the stronger reaction of beliefs in empirical treatments to signals about 

higher-order beliefs than first-order beliefs. Allowing for measurement error in survey responses or 

differences in level-k thinking, which determines how higher-order beliefs are formed, again can help along 

one or two dimensions but are generally unable to fully bring the model in line with the empirical evidence. 

Furthermore, we provide evidence that these mechanisms are either too small to bring data and theory into 

line or that they make additional predictions which are at odds with the data. 

A more promising solution is allowing for the possibility that agents hold different beliefs about 

long-run levels of inflation toward which they skew their forecasts, as in Patton and Timmermann (2010). 

In this environment, differences in forecasts across agents reflect not just idiosyncratic signals but also 

heterogeneity in beliefs about long-run outcomes (“long-run” prirors). Since agents are aware of their own 

long-run priors, cross-sectional disagreement in forecasts (which is magnified by differences in priors) 

exceeds forecast uncertainty (which is independent of long-run prior), consistent with the data. If agents 

are unsure about the exact distribution of others’ long-run priors, then the model also implies an imperfect 

(albeit positive) correlation between first-order and higher-order beliefs, again in line with the data. A key 

characteristic of this model is that, because agents know about their own long-run prior, they try to undo 

this effect when forming beliefs about others’ beliefs: higher-order beliefs are therefore less dispersed and 

more precise than in the basic noisy-information model. Long-run priors also provide variation that can 

account for why information about higher-order beliefs can result in lower estimated weight on priors. 

However, the additional flexibility afforded by the model implies that its parameters are now under-

identified by the moments of our data (but can be potentially identified with additional data) and the 

mapping between data and theory documented for the basic noisy-information model is more complex. 

Nonetheless, we interpret this approach as providing a viable avenue to reconciling the data with the broader 

class of noisy-information models. 

Our paper speaks directly to several literatures. The first focuses on providing empirical evidence 

on the nature of the expectations formation process of different economic agents. The second consists of 

theoretical work emphasizing the importance of higher-order beliefs in accounting for macroeconomic and 

financial dynamics. We contribute to both literatures by providing new empirical evidence on both first-

order and higher-order beliefs of firms and show how this evidence can be used to test and quantify 
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theoretical models of higher-order beliefs. 

There is, by now, an extensive literature on how households, firms, financial market participants 

and even central bankers form their expectations, especially about aggregate conditions. One strand of this 

literature has focused primarily on how expectations data can speak to models of the expectations formation 

process. Coibion and Gorodnichenko (2012, 2015), for example, document a systematic under-reaction of 

the expectations of these agents to macroeconomic shocks, consistent with models of imperfect information 

acquisition and processing. More recent work such as Bordalo et al. (2018, 2019, 2020), Broer and Kohlhas 

(2018), Angeletos, Huo and Shastry (2020), and Afrouzi et al. (2020) provide evidence that there is 

concurrently an element of over-reaction in their expectations, albeit along different dimensions. A closely 

related approach relies on randomized information treatments to characterize how agents respond to new 

information (Armantier et al. 2015, Cavallo et al. 2017). Another strand of this literature has focused on 

characterizing whether/how agents’ macroeconomic expectations affect their decisions. CGK and Coibion, 

Gorodnichenko and Ropele (2020), for example, show how the inflation expectations of firms feed into 

their pricing, investment and employment decisions. Crump et el. (2018), Coibion, Gorodnichenko and 

Weber (2019), and D’Acunto et al. (2020) focus on the link between inflation expectations and consumption 

decisions of households. Roth and Wolfhart (2020) study the link between households’ macroeconomic 

optimism and their desired spending. Our main contribution relative to this literature is that we are the first 

to provide direct empirical evidence on the higher-order beliefs of firms and to characterize how these relate 

to their first-order beliefs as well as the characteristics of both the firm and the manager. We are also the 

first to include information about higher-order beliefs as a source of information in randomized treatments 

as well as to study how higher-order beliefs respond to new information. 

There has also been, in parallel, a growing body of theoretical work emphasizing the potential 

importance of higher-order thinking and dynamics in macroeconomics and finance. Angeletos and La’O 

(2009), for example, highlight the importance of considering higher-order beliefs separately from an agent’s 

own beliefs. Bacchetta and Wincoop (2008) show that the difference between higher-order and own 

expectations is important for determining the pricing volatility of assets as well as the link between asset 

pricing and expectations of future asset payoffs. Nimark (2008) emphasizes the role of higher-order 

expectations in pricing decisions for generating inflation inertia. Angeletos and Huo (2020) show that 

higher-order expectations can generate dynamics equivalent to myopia and anchoring. Huo and Takayama 

(2015) study the role of higher-order beliefs in generating persistent effects of confidence shocks. We 

contribute to this literature by providing a novel set of moments on the higher-order beliefs of firms and 

show how these can be used to test and quantify models of higher-order beliefs.     

The remainder of the paper is organized as follows. We first describe in Section 2 how the survey was 

implemented as well as the key empirical findings from the survey and information treatments. Section 3 
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considers how well a basic noisy-information model of higher-order expectations under strategic 

complementarities in prices and infinite regress in expectations can account for the empirical patterns as well 

as how the data can be used to calibrate parameters of the model. Section 4 considers extensions and alternatives 

to the basic noisy-information model that can potentially reconcile theory and data. Section 5 concludes.  

II. Survey 

This paper utilizes two additional waves of the survey of firm managers in New Zealand described in CGK.  

The first wave was implemented between 2017Q4 and 2018Q1.  The follow-up ran from 2018Q1 to 

2018Q2, such that each firm manager from the first wave was invited to participate in the second wave 

three months after his or her initial interview.  The first wave included 1,025 firms, with 515 of these 

participating in the second wave. 

2.1 Sampling Frame and Protocol 

We obtained information on the population of firms in New Zealand from two sources:  Kompass New 

Zealand (KNZ) and Equifax (EQ).  Following the Australia and New Zealand Standard Industrial 

Classification 2006 (ANZSIC06), firms are classified into one of four broad industries: manufacturing, 

trade, construction and transportation, and professional and financial services. Following CGK, we focus 

on firms with six or more employees. We targeted for two thirds of the sample to come from professional 

and financial services and manufacturing as these industries account for relatively large shares of New 

Zealand’s GDP (New Zealand Treasury, 2016).3 The remainder of the sample comes from firms in other 

industries, i.e. trade, construction, communication and transportation. We excluded industries related to the 

government, community service, agriculture, fishing and mining, and energy, gas and water from the 

sample. These sectors are often dominated by a few extensively regulated firms or by very small firms. 

Within each industry, firms are classified as small (6-19 workers), medium (20-49 workers) and large (50 

or more workers). To make the survey population more representative, we oversampled firms with 50-99 

workers and 100+ workers in each industry. To this end, we contacted all firms that fall into these two 

employment size groups. We then computed the relative shares of firms in the remaining employment size 

groups and include enough firms to match the relative share of their size and industry. 

To achieve the target of 1,000 firms in the sample, we invited 10,100 firms to participate in the 

survey. Each firm’s general manager received an email containing an information sheet and survey 

questionnaire about ten days before receiving a phone call to collect responses. Note that the initial 

questionnaire sent to managers did not include the treatment information and the subsequent related 

                                                 
3 New Zealand Treasury (2016), New Zealand: Economic and Financial Overview 2016, Wellington. See 
https://treasury.govt.nz/sites/default/files/2010-04/nzefo-16.pdf. 
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questions.  We called each firm three times to elicit responses. After the third round of calls, we examined 

the response rates for sectors, subsectors and employment size groups.  We then targeted groups in which 

responses rates were low.  We continued contacting firms until we hit the target sample size. Appendix F 

reports response rates by industry and size.  

Responses were collected over the phone. A research assistant (RA) called the general manager 

and recorded answers by hand while also recording the phone call.  An independent RA then listened to the 

recording and confirmed the accuracy of the handwritten responses. For the confidentiality of the 

participants, the recordings were deleted following data collection. The handwritten questionnaires were 

then entered into a spreadsheet, with two independent RAs verifying that the handwritten and spreadsheet 

responses matched. As discussed in CGK, responses of managers are consistent with information available 

from other sources and the quality of the survey is reasonably high.4  

We provide some summary statistics of the characteristics of respondents in Table 1. The average 

firm size is relatively small, with about 40 employees. This is representative of the distribution of firm size 

in New Zealand. Some firms however are much larger, with the biggest having 800 employees. The average 

firm in our sample is 26 years old and sells most of its products in New Zealand. However, our sample also 

includes many firms that export extensively. In addition, we collected some characteristics of the individual 

respondents. Most have been at the firm over 10 years and are well-educated, with average years of 

schooling exceeding 16 years. Twenty percent of respondents are women. Overall, there is relatively little 

cross-sectional variation in managers’ socioeconomic characteristics. 

The second wave (follow-up) of the survey was implemented three months after the initial wave. For 

the follow-up, we contacted all firms that participated in the main wave of the survey. The response rate was 

approximately 50 percent. We achieved a high response rate because we provided respondents with a 

monetary incentive of $50 gift voucher and dinner and entertainment ticket worth $50. Further, respondents 

                                                 
4 We verified our survey data against the publicly available online information in four ways. First, we verified 
managers’ responses about the age of the firm using the information from the Companies Office or their website. We 
find that the reported age in the survey match exactly with the information available in the Companies Office or their 
website for 1012 firms. Information about age of 20 firms is not available in any other source. Second, we verified 
whether the firm exports or not. Firms that indicated in the survey that they export overseas, this information is 
available in their websites. Third, we asked in the survey about the number of Directors, number of shareholders and 
the number of shares issued in the business. There are 862 firms classified as Companies in this survey, i.e. public or 
private companies. We find that more than 98 percent of these firms’ responses match with the information available 
in the Companies Office. Last, we verified survey responses on firms’ products and prices. To do this, we randomly 
selected around 20 percent of the firms (206 firms) and asked them about their main product and price of the main 
product. For 203 firms, details about their main products are available in their websites. 43 out of 203 firms list their 
prices online in their websites. The reported prices of main products do not match the online information for only 4 
firms; this is equivalent to 1 percent. For firms whose prices are not listed online, we made phone enquiries about the 
price of their main products. These were general customer enquiries about their prices. To this end, we made 163 
phone enquiries and 94 percent of the firms’ reported price matched with the quotes provided.  
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enter into a pool draw to win a cash prize of $5,000. The main reason for non-participation was that the general 

manager was too busy to respond in a reasonable time frame. We find (Appendix Table 1) that the observable 

characteristics of managers/firms do not help predict whether firms participated in the second round.  

2.2 Survey questions 

After collecting basic demographic information about firms, the survey asks respondents to report their 

beliefs about future aggregate variables (inflation, unemployment rate, and wages) and about future firm-

specific outcomes (employment, fixed assets, prices, and wages).  The horizon for aggregate variables is 

one-year ahead. The horizon for firm-specific variables is three-month ahead (which was determined by the 

timing of the follow-up) and six-month ahead. Firms were also asked to report their perceptions and nowcasts 

(e.g., their perception of inflation over the previous twelve months). The survey asks a few hypothetical 

questions to provide us with estimates of parameters that would be difficult to identify otherwise.  

Inflation expectations were elicited in two ways. First, firms were asked to assign probabilities for 

possible outcomes (see Appendix Table 2 for specific formulation of questions). These distributional 

questions are similar to the questions asked in the Survey of Consumer Expectations (SCE) run by the 

Federal Reserve Bank of New York. Second, firms were asked to provide point predictions for future 

inflation and other variables. We do not restrict responses for this type of questions in any way (e.g., we do 

not censor responses or prompt respondents to reconsider if responses are outside some range). In contrast 

to previous surveys, we collect information not only about managers’ own expectations about future 

inflation but also about what managers think about other managers’ inflation expectations.5  

The survey has two additional novel parts. First, after the core part of the survey is complete, 

respondents are invited to participate in a strategic game to infer their level of thinking. This game is similar to 

Nagel (1995) and we provide more details in section 4.5. Second, after the game, firms are randomly assigned 

into control and treatment groups. Firms in treatment groups are provided with different pieces of information, 

while firms in the control group are told nothing. The treatments are described in section 2.4, but some include 

information about the higher-order expectations of other firms. We use these treatments to study how firms 

form their expectations and how they use these expectations to set prices, wages, employment, and fixed assets.  

 

2.3 Unconditional Moments of First and Higher-Order Expectations 

To gauge firms’ expectations of inflation as well as their expectations of what other managers expect about 

inflation, we rely primarily on probability distribution questions. Firms were first asked to assign probabilities 

                                                 
5 In the survey, we first asked about managers’ first-order expectations than enquired about their higher-order 
expectations. We verified in a subsequent survey of managers that if we randomly change the ordering of these 
questions, the resulting distributions of answers are insensitive to the ordering.  
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to a wide range of different possible outcomes for overall price changes over the next 12 months, following 

CGK. From the probabilities that they assign, we construct implied forecasts of each manager using mid-point 

values of each bin (the two end bins are assigned values of +30 and -30). We also measure the uncertainty in 

their forecast (standard deviation of probabilities across bins). To measure their higher-order expectations, 

firms were asked an equivalent distributional question (Appendix Table 2) with respect to what they believe 

“other managers (drawn from all sectors of the New Zealand economy in a representative way) think will 

happen to overall prices in the economy.” Using this question, we construct the implied forecast and 

uncertainty of each manager for their higher-order expectation. To the best of our knowledge, this is the first 

time anyone has surveyed firm managers about their higher-order expectations of macroeconomic variables. 

 Summary results are presented in Table 2. In terms of first-order inflation expectations, the results 

closely follow CGK. The average forecast of inflation across managers is 3.4%, significantly above actual 

inflation at the time. Managers are quite uncertain about their forecasts, with an average standard deviation 

in their forecasts of 1.1 percentage point. They also display significant disagreement: the cross-sectional 

standard deviation in forecasts is 3%. These results are also similar to the moments of households’ inflation 

expectations in the SCE (Kumar et al. 2015). Respondents were asked to provide forecasts of the 

unemployment rate and changes in wages over the next twelve months, both using distributional questions. 

Their responses are uncorrelated with their forecasts of inflation but are similarly dispersed. They anticipate 

on average relatively low wage growth (1.1%) and relatively high unemployment (a 12-month forecast of 

unemployment of 4.9% at a time when the actual unemployment rate was 4.4%). Respondents were also 

asked about planned actions on the part of their firms over the next 3 months. As reported in Table 2, 

managers expected their firms to raise their prices by less than 1% and raise their wages by very little, 

whereas they expected their employment to grow by 3% and their investment by close to 2%. In each case, 

the cross-sectional distribution is very dispersed around these numbers (although much less so for wage 

growth), with firms reporting a wide range of expected outcomes. 

 The most novel dimension of the survey is the fact that respondents were asked about their higher-

order inflation expectations, i.e. what they thought other managers were predicting for aggregate inflation 

over the next twelve months. First, we find that the mean higher-order inflation expectation is almost 

identical to the mean first-order inflation expectation (3.5% vs. 3.4%), and we cannot reject the null of 

equality for the two. Thus, we do not observe a stronger or weaker bias in higher-order expectations than 

we do in lower-order inflation expectations. Note that this equality in the average first- and higher-order 

forecasts is not because managers report identical values for the two. In fact, only 2% report the same first-

order and higher-order forecasts.6 Figure 1 plots the underlying distributions of both first-order forecasts 

                                                 
6 We also find that 44% of respondents report positive probability for a fewer number of inflation bins in their higher-
order inflation expectations than first-order expectations. 28% report the same number of bins. 28% report positive 
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(Panel A) and higher-order forecasts (Panel B). The two are quite different. For example, first-order 

forecasts have a large mass of forecasts between 0 and 2% but a significant tail of much higher values, 

while higher-order forecasts have a smaller mass in the 0-2% range but a larger one in the 3-4% range. The 

near-equality of the average forecasts is therefore not an artifact of respondents providing the same 

responses to first-order and higher-order forecasts. Figure 1 also shows that conditional on assigning a 

positive probability to an inflation bin, assigned probabilities vary considerably and so the average 

probability assigned to a bin (red circles in the figure) masks dramatic heterogeneity across managers.  

 Figure 2 plots the distribution of the within-manager difference in expectations (first-order 

expectations minus higher-order expectation) across managers.  The figure demonstrates that, even within 

a given inflation bin, a typical manager often assigns different probabilities to first-order and higher-order 

expectations. For example, while the mean probability assigned to the [0,2) inflation bin is similar for first-

order expectations (32.7) and higher-order expectations (27.7), the standard deviation of the within-

manager probability difference for this bin is 32.8. The average difference in assigned probabilities across 

bins (red circles in the figure) has an inverted-W shape: the difference is negative for bins [2,4) and [4,6) 

and positive for bins [-4,-2), [-2,0) and [6,8), [8,10). This pattern suggests that, when we examine the within-

manager distribution of beliefs, the distribution of higher-order beliefs for a given manager is on average 

more concentrated than the distribution of first-order beliefs of that manager.  

There is, nonetheless, a strong positive correlation between a manager’s inflation forecast and their 

higher-order expectation (Figure 3). Managers who expect higher inflation also tend to believe that other 

managers expect higher inflation as well. This relationship is imperfect, with a correlation of 0.68, but the 

slope coefficient between the two is strongly positive at 0.66 and statistically significant at standard levels. 

First-order expectations are therefore informative about managers’ higher-order beliefs, but there is clearly 

independent variation in the latter that is not explained by the former.  

 Table 2 reveals two other striking facts about higher-order inflation beliefs of managers in New 

Zealand. One is that there is significantly lower cross-sectional disagreement about higher-order beliefs 

than for first-order beliefs: the cross-sectional standard deviation of higher-order beliefs is 2.4%, well below 

the 3.1% found for first-order beliefs. In other words, while managers disagree a lot about what will happen 

to inflation over the next year, there is much more agreement about what they think other managers are 

predicting inflation to be. As we discuss in more detail in sections 3 and 4, this pattern points toward a role 

for public signals since public signals will lead to coordination in higher-order beliefs.  

Another novel characteristic of the data documented in Table 2 is that managers are generally more 

certain about their higher-order inflation forecasts than they are about their first-order forecasts: the average 

                                                 
probability for a greater number of inflation bins in their higher-order inflation expectations than first-order 
expectations. 
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uncertainty in higher-order forecasts is 0.9% whereas it is 1.1% for first-order forecasts. We can again 

strongly reject the null of equality for these two levels of uncertainty. Our results in Figure 2 suggest that 

this pattern does not arise from aggregation but rather stems from within-manager differences. One might 

expect uncertainty to accrue as agents extrapolate from their belief to what others might know, but the 

opposite is true in the data: confidence is higher about the beliefs of others than about their own beliefs. As 

discussed in subsequent sections, this striking feature of the data is also consistent with simple models of 

noisy information in which agents receive public signals along with their private signals.   

A final fact apparent from Table 2 is that the average level of uncertainty in managers’ forecasts (both 

first-order and higher-order) is lower than the average cross-sectional dispersion in those same forecasts. For 

both first-order and higher-order beliefs, we can strongly reject the null of equality in average disagreement 

and cross-sectional dispersion. Uncertainty and disagreement are sometimes treated as interchangeable in the 

literature, but we find a clear difference in their levels here, both for first-order and higher-order beliefs. As 

we will see in sections 3 and 4, this feature of the data will be one of the most difficult to explain in the context 

of theoretical models, which generally impose a very tight link between uncertainty and disagreement.7 

These facts hold when we examine sample splits by firm or manager characteristics (Appendix 

Figure 6 and Appendix Table 3). Consistent with CGK, manager characteristics appear to play little role in 

generating cross-sectional heterogeneity (see also Appendix Table 7), likely reflecting the fact that 

managers are much less heterogeneous than the general population. There is more variation in the moments 

across firm characteristics such as size, age, and the number or competitors but the qualitative patterns are 

similar across subsamples.     

2.4 Effect of Information Treatments on Expectations 

In addition to these unconditional moments of respondents’ expectations, we conducted an experiment to 

assess how agents revise both their first- and higher-order beliefs in response to new information. After asking 

firms about their inflation expectations and higher-order expectations in the initial wave of the survey, we 

provided randomly selected subsets of firms with different types of information. We divided managers into 

five groups. Group A is a control group and did not receive any information. The surveys of 300 respondents 

in Group A were completed first and the resulting moments of this group were used to implement the 

subsequent information treatments (which require information about firms’ beliefs). Group B received 

information about the average beliefs of survey participants about inflation. Group C received information 

about the average higher-order inflation expectations of survey participants. Group D’s signal consisted of 

both information about average expectations and average higher-order expectations. Note that average first-

                                                 
7 Appendix Figure 5 shows histograms for implied-mean predictions and uncertainty for first- and higher-order 
expectations.  
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order and higher-order expectations estimated from the control group, 3.3% and 3.5% respectively, are very 

similar to the average expectations for the full sample presented in Table 2. We utilize Group E to compare 

the impact of information about other managers’ beliefs to information about lagged inflation, as in CGK.  

Immediately after providing firms with information,8 we asked them to report their point 

predictions for inflation (one-year ahead) and for their beliefs about what other managers in the economy 

predict for inflation (one-year ahead). Measuring revisions in expectations immediately after the treatment 

allows us to obtain the instantaneous effect of the treatment on firms’ beliefs. Note that priors are measured 

as mean expected inflation implied by the reported distribution of future inflation while the posteriors are 

measured as point predictions. Different formulations of the inflation questions are deliberately used pre- 

and post-treatment to avoid antagonizing respondents by repeatedly asking them to answer identical 

distributional questions multiple times.9 Any difference in responses induced by the formulation of the 

questions will be captured in the control group’s responses and so will not affect the results of the 

information treatment. In the follow-up wave (three months after the initial wave), we asked firms to report 

distributions of their beliefs about future inflation. Using responses from the follow-up survey, we construct 

another measure of posteriors as the mean expected inflation implied by the reported distribution. This set 

of posteriors provides a sense of the persistence of the treatment effects of information on expectations.  

To assess the influence of various information treatments on managers’ beliefs, we use the 

following econometric specification:  

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟௜ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑏 × 𝑃𝑟𝑖𝑜𝑟௜ + 𝑒𝑟𝑟𝑜𝑟௜  (1) 

where slope 𝑏 captures the strength of manager i’s prior relative to the treatment, and the value associated 

with the treatment is absorbed into the constant term (since it is common across firms within that group). 

More informative priors should be associated with high values of 𝑏. If the estimated slope 𝑏෠ is equal to 

zero, the treatment is interpreted as a completely informative signal which causes managers to discard their 

priors in favor of the signal. If 0 <  𝑏෠ <  1, the treatment is interpreted as a partially informative signal and 

managers will update their posterior somewhat but will still rely partially on the prior. If 𝑏෠ is approximately 

one, managers see the information provided as uninformative and do not update their prior beliefs at all.  

Because we use point predictions for posteriors and implied means for priors, the estimated slope may be 

biased up or down depending on how managers respond to probability distribution questions vs. point 

forecasts (see e.g. Kleinjans and van Soest 2010, Fischhoff and Bruine de Bruin 1999, Bruine de Bruin et 

                                                 
8 For the control group we simply continue with the questions. 
9 One of the only repeated questions is a first-order point prediction of inflation expectations in the first wave of the 
survey. The format of this question follows the Michigan Survey of Consumers, which is closer to the post-treatment 
point prediction for future inflation. We use this information to quantify measurement error in reported inflation 
expectations. Because we did not elicit point predictions in the follow-up wave of the survey, we use the SCE format 
for pre-treatment beliefs.   
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al. 2000), but this will be observable in the estimated 𝑏 for the control group. Because we are interested in 

how managers respond not only to new information but also to different kinds of information, we estimate 

specification (1) for each treatment separately. 

Table 3 reports the estimated coefficients on the prior expectation for both own inflation 

expectations and higher-order inflation expectations in specification (1). We find that when no information 

is provided, the point estimate of the slope is approximately 0.7 (row 1). This estimate does not mean that 

firms revise their beliefs in the absence of information treatment by large amounts. Instead, this estimate 

likely highlights differences between expectations elicited as point predictions and expectations elicited as 

probability distributions. Indeed, when we use point predictions for future inflation that were elicited before 

the informational treatment was provided, we find that the slope is close to one for the control group 

(Appendix Table 5).  

 With this benchmark in mind, we turn to Treatment B (provide firms with 𝐸[𝜋], row 2 in Table 

3). When we elicit expectations immediately after the treatment, firms assign 0.50 weight on the prior when 

they update their first-order inflation expectations (column 1) and 0.43 weight when they update their 

higher-order inflation expectations (column 2).10 These weights are statistically different from the weight 

assigned by the control group. If we normalize these weights by the weights in the control group, the 

adjusted weights are approximately 0.7 and 0.6 for first-order and higher-order beliefs respectively. Thus, 

Treatment B has useful information content that leads firms for revise their beliefs. This finding that firms 

place some weight on the forecasts of other firms in revising their first-order beliefs is consistent with the 

experimental evidence in CGK, but the finding that they revise their higher-order beliefs in a comparable 

manner is completely novel to the literature, to the best of our knowledge. 

Another novel dimension of the experiment is that firms in treatment group C received information 

about the average higher-order belief of other firms (row 3 in Table 3). This previously unexplored 

information treatment leads to the striking result that the estimated weights on priors are considerably 

smaller than the information treatment using first-order beliefs: 0.09 and 0.12 for first- and higher-order 

beliefs. These estimates suggest that managers perceive the information about firms’ higher-order 

expectations as a very informative signal that leads them to place little weight on their prior beliefs, both 

when they update their first-order and higher-order beliefs. The weights on the prior are similar in Treatment 

D (provide firms with both first- and higher-order information, row 4 in Table 3). We interpret this result 

as indicating that information in the average first-order inflation forecast has relatively little incremental 

content relative to information in the average higher-order inflation forecast.  

                                                 
10 Appendix Figures 1 through 4 shows scatter plots of posteriors against priors.  
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For firms receiving information about the past realization of inflation (Treatment E, row 5 in Table 

3), the weight on the prior is 0.059 for first-order expectations and 0.062 for higher-order expectations. The 

former confirms an earlier result in CGK and is consistent with other evidence for firms in Italy (Coibion, 

Gorodnichenko and Ropele, 2020) as well as households in the U.S. (Armantier et al. 2015, Coibion, 

Gorodnichenko and Weber 2019) and the Netherlands (Coibion, Geogarakos, Gorodnichenko and van 

Rooij 2019). While the high weight assigned to information about recent inflation in revising first-order 

beliefs is therefore well-documented, the fact that higher-order beliefs respond in an equivalent manner is 

completely new to the literature. Strikingly, firms seem to view information about other firms’ higher-order 

beliefs as being almost as informative as information about recent inflation.      

Conducting the same analysis using the posterior belief reported in the follow-up wave (three 

months after the treatment) produces similar results (see columns (4) and (5) of Table 3).  We see mean 

reversion in the reported responses of the control group.  Treatments C, D and E result in low weights on 

priors while Treatment B yields weights approximately half-way between the control group and the other 

treatment groups. These results indicate that the effect of information is persistent after three months and 

that the size of treatment effects continue to depend on the type of signal that the firm received.11,12 

2.5 Summary 

Using a novel survey of firm managers in New Zealand, we document six new empirical facts (summarized 

in Table 4) relating first-order and higher-order inflation expectations of business managers and CEOs. To 

the best of our knowledge, these represent the first empirical characterization of higher-order beliefs of 

firms from a survey. These facts can potentially speak not just to the way in which agents form their beliefs 

about the aggregate economy, but also to the role played by higher-order beliefs in this process. In the next 

section, we consider to what extent these facts are consistent with simple noisy-information models in 

which higher-order beliefs can play an important role as well as how these stylized facts can potentially be 

used to shed new light on underlying parameters of these models. 

III. Interpreting Survey Results through a Noisy-Information Model 

Our results demonstrate that not only can one measure the higher-order expectations of economic agents 

                                                 
11 CGK and Cavallo et al. (2017) find that the difference in beliefs for treatment and control groups largely disappears 
six months after the treatment. We reconcile these results by using the findings in Coibion, Gorodnichenko and Ropele 
(2020) who study a long panel of firms to document that informational treatments have significant effects on 
expectations after three months but vanish after six months. In a similar spirit, Coibion, Gorodnichenko and Weber 
(2019) find that information treatment effects are detectable 3 months after the treatment but not discernable after 6 
months.  
12 While the response of actions to information treatments is not the main focus of this paper (we are interested in how 
beliefs are formed), we document in Appendix G that managers act on the beliefs revised in response to the information 
treatments. Thus, changes in beliefs are translated into changes in actions.   
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but also that these expectations can play an important role in shaping beliefs. This is illustrated for example 

by the large revisions in firms’ first-order inflation expectations when presented with information about 

other firms’ higher-order expectations. How should we think about these results on the higher-order beliefs 

of firms? Are they consistent with what theory would predict? In general, strategic complementarities in 

pricing behavior require that firms think not only of their own expectations of a fundamental, but also of 

other firms’ expectations and actions. Firm A must think about the fundamental and what Firm B thinks of 

the fundamental. Firm B then anticipates the fundamental, what firm A thinks of the fundamental, and what 

Firm A thinks that Firm B thinks. Firm A’s expectations must respond accordingly, etc. As firms anticipate 

each other’s actions, they must form higher-order beliefs that involve iterating a problem to progressively 

higher levels of reasoning. In this section, we use the static model of Morris and Shin (2002)—which is a 

workhorse model in this literature—to demonstrate how the expectations and higher-order expectations of 

the firms in our survey compare to the predictions of a model of strategic complementarities where firms 

perform infinite regress in their expectations.  

3.1 A Simple Model of Expectations Formation and Price-Setting 

Firm 𝑖 ∈ [0,1] chooses to set its optimal price, 𝑝௜, as a linear combination of its expectation of a 

fundamental, 𝑚, and its expectation of the aggregate price level in the economy, 𝑝:  

𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼𝐸௜[𝑝],  (2) 

where parameter 𝛼 ∈  (0,1) describes the degree of complementarity in pricing. Because 𝑝 ≡ ∫ 𝑝௝𝑑𝑗
ଵ

଴
,  

manager 𝑖 can iterate the optimal price equation forward by substituting the average optimal price equation 

for the aggregate price level to obtain: 

𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼𝐸௜ൣ∫ 𝑝௝𝑑𝑗൧ (2’) 

Define the average expectation in the economy for variable 𝑚 as 𝐸[𝑚] ≡ ቂ∫ 𝐸௝(𝑚)𝑑𝑗
ଵ

଴
ቃ and let 

𝐸௜ ቂ𝐸[𝑚]ቃ be the expectation of manager 𝑖 about the average expectation in the economy. In a similar spirit, 

𝐸௜[𝑝̅] is the first-order (“own”) expectation about the price level, 𝐸௜ ቂ𝐸[𝑝̅]ቃ is a higher-order expectation 

about the price level in the sense that this is an expectation of manager 𝑖 about what other managers think 

about the price level. We can iterate these expectations to the 𝑘th higher order recursively: 𝐸
௞

[𝑋] ≡

ቂ∫ 𝐸௝ ቀ𝐸
௞ିଵ

[𝑋]ቁ
ଵ

଴
𝑑𝑗ቃ.  

Using the definition of the price level and repeated substitutions in equation (2’), we find that the 

aggregate price level becomes an average of progressively higher-order expectations of the fundamental, 

weighted by the complementarities present at each step:  

𝑝 = (1 − 𝛼)𝐸[𝑚] + 𝛼(1 − 𝛼)𝐸
ଶ

[𝑚] + 𝛼ଶ(1 − 𝛼)𝐸
ଷ

[𝑚] + ⋯ . (3) 
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It follows that the optimal choice of 𝑝௜ depends on the manager’s expectation of each event in equation (3). 

𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼(1 − 𝛼)𝐸௜ ቂ𝐸[𝑚]ቃ + 𝛼ଶ(1 − 𝛼)𝐸௜ ቈ𝐸
ଶ

[𝑚]቉ + ⋯.  (4) 

This captures the notion that optimal decisions of a firm depend not just on their expectations of the 

fundamental but also what they think other firms think about the fundamental, etc. 

To characterize how firms form their expectations about the fundamental as well as how they form 

their higher-order expectations, we assume that they operate under imperfect information. Rather than 

observing 𝑚 perfectly, they each receive one noisy public signal and one private signal. Each signal reflects 

the true value of 𝑚 combined with some noise. Specifically, the public signal about the fundamental takes 

the following form: 𝑦 = 𝑚 + 𝜀 where 𝜀 ∼ 𝑁൫0, 𝜅௬
ିଵ൯ and is common across all firms. In addition, each 

firm 𝑖 also receives its own private signal about 𝑚: 𝑥௜ = 𝑚 + 𝑣௜  with 𝑣௜ ∼ 𝑁(0, 𝜅௫
ିଵ) where 𝜀 and 𝑣௜ are 

uncorrelated and 𝑣௜ is i.i.d. across managers. 𝜅௫ and 𝜅௬ capture the precision of each type of signal. Firms 

weigh their signals according to the relative noise in each to obtain an individual expectation of 𝑚:  

𝐸௜[𝑚] =
఑೤

఑
𝑦 +

఑ೣ

఑
𝑥௜ = (1 − 𝛿)𝑦 + 𝛿𝑥௜,  (5) 

where 𝜅 = 𝜅௫ + 𝜅௬  and, for ease of notation, we denote 
఑ೣ

఑
 and 

఑೤

఑
 as 𝛿 and 1 − 𝛿, respectively, for the 

remainder of the paper. As the private signal becomes more precise relative to the public signal, the firm 

places relatively more weight on it in forming beliefs about the fundamental. Aggregating equation (5) 

across managers gives the average expectation about the fundamental in the economy: 

𝐸 [𝑚] = (1 − 𝛿)𝑦 + 𝛿𝑚. (6) 

Manager 𝑖’s expectation about the average expectation of other managers in the economy is  

𝐸௜ ቂ𝐸 [𝑚]ቃ = (1 − 𝛿)𝑦 + 𝛿𝐸௜[𝑚] = (1 − 𝛿ଶ)𝑦 + 𝛿ଶ𝑥௜.  (7) 

One can obtain progressively higher-order expectations of 𝑚 by continuing to substitute 𝐸௜[𝑚] for 𝑚 to find: 

𝐸௜ ቈ𝐸
௞

[𝑚]቉ = ൫1 − 𝛿௞ିଵ൯𝑦 + 𝛿௞ିଵ𝐸௜ ቈ𝐸
௞ିଵ

 [𝑚]቉ = (1 − 𝛿௞)𝑦 + 𝛿௞𝑥௜.  (8) 

Equation (8) shows that higher-orders of reasoning will depend progressively more on the public signal as 

that signal is common across firms.  

Using the firm’s optimal price-setting in equation (4), we can substitute for manager 𝑖’s 

expectations of 𝑚 at various orders to obtain the optimal price as a function of received signals:  

𝑝௜ = (1 − 𝛼) ∑ 𝛼௞ ቂ[1 − 𝛿௞ାଵ]𝑦 + 𝛿௞ାଵ𝑥௜ቃஶ
௞ୀ଴ .  (9) 

It follows that every agent sets the optimal price at:  

𝑝௜  = 𝜙௬𝑦 + 𝜙௫𝑥௜, (10) 

where 𝜙௬ =
ଵିఋ

(ଵିఈ)ఋା(ଵିఋ)
 and 𝜙௫ =

(ଵିఈ)ఋ

(ଵିఈ)ఋା(ଵିఋ)
.  The realization of the aggregate price is the integral of 
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equation (10) across the support of all managers:  

𝑝  ≡ ∫ 𝑝௝𝑑𝑗
ଵ

଴
= 𝜙௬𝑦 + 𝜙௫𝑚. (11) 

Using these results, we can derive the first-order expectation of manager 𝑖 about the price level: 

𝐸௜[𝑝] = 𝜙௬𝑦 + 𝜙௫൫(1 − 𝛿)𝑦 + 𝛿𝑥௜൯ = (1 − 𝜙௫𝛿)𝑦 + 𝜙௫𝛿𝑥௜. (12) 

Aggregating across agents gives the average first-order expectation about the price level: 

𝐸[𝑝] = 𝜙௬𝑦 + 𝜙௫൫(1 − 𝛿)𝑦 + 𝛿𝑚൯ = (1 − 𝜙௫𝛿)𝑦 + 𝜙௫𝛿𝑚. (13) 

The individual expectation of the left-hand side in equation (13) characterizes an individual manager’s 

higher-order expectation: 

𝐸௜ ቂ𝐸[𝑝]ቃ = 𝜙௬𝑦 + 𝜙௫[(1 − 𝛿ଶ)𝑦 + 𝛿ଶ𝑥௜] = (1 − 𝜙௫𝛿ଶ)𝑦 + 𝜙௫𝛿ଶ𝑥௜. (14) 

Aggregating equation (15) gives the mean of the higher-order expectation: 

𝐸
ଶ

[𝑝] = 𝜙௬𝑦 + 𝜙௫[(1 − 𝛿ଶ)𝑦 + 𝛿ଶ𝑚] = (1 − 𝜙௫𝛿ଶ)𝑦 + 𝜙௫𝛿ଶ𝑚. (15) 

These derivations demonstrate that firms in the noisy-information model have two sources of uncertainty: 

noise in the public signal and noise in the private signal. When firms make inferences about the fundamental 

𝑚 or when we consider unconditional distributions of 𝑝̅, both sources of uncertainty appear. However, for 

a given period, firms observe 𝑦 and thus know this portion of other firms’ information sets. Indeed, equation 

(11) demonstrates that the price level is a function of public signal 𝑦 (observed) and fundamental 𝑚 

(unobserved). Because for firm 𝑖 the expected value of 𝑚 is a linear combination of 𝑦 and private signal 𝑥௜, 

the only source of uncertainty about 𝑝̅ is the realized private signals of other firms. As a result, uncertainty 

about 𝑝̅ is described by distributions conditional on 𝑦.  Specifically, one can show that the distributions of 

these conditional expectations are:  

𝐸௜[𝑝]|𝑦~𝑁൫ൣ𝜙௬ + 𝜙௫(1 − 𝛿)൧𝑦 + 𝜙௫𝛿𝑚, (𝜙௫𝛿)ଶ𝜅௫
ିଵ൯, (16a) 

𝐸[𝑝]|𝑦~𝑁൫ൣ𝜙௬ + 𝜙௫(1 − 𝛿)൧𝑦 + 𝜙௫𝛿𝑚, 0൯,  (16b) 

𝐸௜ ቂ𝐸[𝑝]ቃ |𝑦~𝑁൫ൣ𝜙௬ + 𝜙௫(1 − 𝛿ଶ)൧𝑦 + 𝜙௫𝛿ଶ𝑚, (𝜙௫𝛿ଶ)ଶ𝜅௫
ିଵ൯,  (16c) 

𝐸
ଶ

[𝑝̅]|𝑦~𝑁൫ൣ𝜙௬ + 𝜙௫(1 − 𝛿ଶ)൧𝑦 + 𝜙௫𝛿ଶ𝑚, 0൯.  (16d) 

Jointly, these equations allow us to compare this basic noisy-information model to the first five empirical 

moments identified in section 2. Specifically, equations (12) and (14) characterize the first and higher-order 

expectations of firm i respectively, while the average first-order and higher-order expectations of prices are 

in equations (13) and (15) respectively. Uncertainty in first-order and higher-order expectations come from 

(16a) and (16c), as do the levels of cross-sectional dispersion in each. 

3.2 Comparing Predictions of the Model to Moments in the Data 

We now compare the empirical facts about higher-order expectations from the survey to predictions of the 



17 
 

model.  

Fact 1: The mean higher-order expectation is almost identical to the mean first-order expectation. 

The model predicts that the mean of the distribution of firms’ own expectations of the aggregate price level 

(𝐸௜[𝑝]) can be similar to that of the firms’ higher-order expectation of the aggregate price level ቀ𝐸௜ ቂ𝐸[𝑝]ቃቁ, 

that is, their expectation of other managers’ expectation. Specifically, the difference between 𝐸௜[𝑝] and 

𝐸௜ ቂ𝐸[𝑝]ቃ depends on how far 𝑦 is from 𝑚:  

ቀ𝐸[𝑝] − 𝐸
ଶ

[𝑝]ቁ |𝑦 = 𝜙௫(1 − 𝛿)𝛿[𝑚 − 𝑦].  (17) 

Similar average first-order and higher-order expectations will therefore arise whenever the public signal is 

close to the fundamental. Hence, the basic noisy-information model can readily accommodate this first fact. 

In addition, in the model, any difference between the mean first-order and higher-order expectations speak 

directly to the sign of [𝑚 − 𝑦]. As shown in Table 2, among firms in New Zealand at the time of survey, 

𝐸[𝜋]|𝑦 is 3.41 and 𝐸
ଶ

[𝜋]|𝑦 is 3.50. The small negative difference between the two is consistent with 𝑦 

being greater than 𝑚 (that is, the public signal is more “inflationary” than the fundamental). Whether the 

difference is large or small depends on the magnitudes of 𝜙௫ and 𝛿, but since 𝜙௫ , 𝛿 ∈ (0,1) we expect that 

𝑚 − 𝑦 < −0.09. As we show later, 𝛿 ≈ 0.8 and 𝜙௫ ≈ 0.55 so that 𝑚 − 𝑦 ≈ −1. Incidentally, the survey 

responses were collected at a time when oil prices were rising, possibly sending an “inflationary” public 

signal to firms in New Zealand.13  

 Fact 2: First-order and higher-order expectations are positively but imperfectly correlated across firms.  

Because the private signal 𝑥௜ is the only source of cross-sectional variation in expectations, our model 

predicts a perfect correlation between higher- and lower-order expectations. To see this, note that equations 

(12) and (14) can be combined to express higher-order beliefs of firm i solely in terms of that firm’s first-

order belief and the public signal: 

𝐸௜ ቂ𝐸[𝑝]ቃ = (1 − 𝛿)𝑦 + 𝛿𝐸௜[𝑝] 

As a result, the basic model cannot explain the imperfect correlation between first-order and higher-order 

beliefs across firms. In principle, measurement error in survey responses could be one natural reason for an 

imperfect correlation, and we explore this explanation in detail in section 4.1 as well as other potential 

sources for the imperfect correlation. 

                                                 
13 Coibion and Gorodnichenko (2015) and Coibion et al. (2020) document that households’ inflation expectations are 
sensitive to the price of oil, gasoline and similar goods. Kumar et al. (2015) and CGK present suggestive evidence of 
high sensitivity of managers’ inflation expectations to changes in oil prices and other energy products frequently 
purchased by consumers.  



18 
 

 Despite this inconsistency, the positive average relationship between firms’ first-order and higher-order 

beliefs can still be related to the model. For example, Figure 3 documented that the slope of the relationship 

between the two in the survey is approximately 0.6. That would imply a value of 𝛿 = 0.6, so that the precision 

of the private signal should be 50% greater than that of the public signal. However, to the extent that there might 

be measurement error in the survey responses, this would imply that the empirical regression in Figure 3 

understates the true slope of the relationship between first-order and higher-order beliefs and therefore 0.6 is a 

lower bound for the value of 𝛿 in the theory. We return to this point in more detail in section 4.1.  

The joint distribution of first- and higher-order beliefs can also inform us about the level of the public 

signal 𝑦 and the fundamental 𝑚. Note that when 𝐸௜[𝑝] = 𝐸௜ ቂ𝐸[𝑝]ቃ, equations (12) and (14) imply that 𝐸௜[𝑝] =

𝐸௜ ቂ𝐸[𝑝]ቃ = 𝑥௜ = 𝑦. Our regression estimates suggest that this point (that is, when the fitted regression line 

crosses the 45-degree line in Figure 3) occurs at 𝐸௜[𝑝] = 𝐸௜ ቂ𝐸[𝑝]ቃ = 3.6 and therefore 𝑦 = 3.6%. Since, as 

shown earlier, 𝑚 − 𝑦 ≈ −1, we can infer 𝑚 ≈ 2.6. In other words, the underlying fundamental inflation in 

New Zealand should have been approximately 2.6 percent during this period but firms systematically believe 

inflation is higher because of an inflationary public signal. Strikingly, the implied fundamental is close to actual 

inflation: CPI and PPI inflation rates in 2018Q1 were 2.2 and 2.7 percent respectively. 

Fact 3: The cross-sectional dispersion in first-order expectations is greater than the dispersion in higher-

order expectations.  

Private signals are the reason why agents disagree about macroeconomic variables in the noisy-information 

model. Equations (16a) and (16c) predict that the cross-sectional variance of higher-order expectations is 

given by 𝑉𝑎𝑟 ቀ𝐸௜ ቂ𝐸[𝑝]ቃ |𝑦 ቁ = (𝜙௫𝛿ଶ)ଶ𝜅௫
ିଵ while the cross-sectional variance in first-order expectations 

is given by 𝑉𝑎𝑟(𝐸௜[𝑝]|𝑦) = (𝜙௫𝛿)ଶ𝜅௫
ିଵ. The ratio of cross-sectional variances for 𝐸௜ ቂ𝐸[𝑝]ቃ |𝑦 and 𝐸௜[𝑝]|𝑦 

is therefore given by 

 
௏௔௥ቀா೔ቂா[௣]ቃ|௬ ቁ

௏௔௥(ா೔[௣]|௬)
= 𝛿ଶ < 1.  (18) 

This implies that the basic noisy-information model correctly predicts that the cross-sectional variance of 

higher-order beliefs is smaller than that of first-order beliefs. This is because higher-order beliefs place more 

weight on the public signal than first-order beliefs and are therefore more tightly concentrated.  

Furthermore, the basic noisy-information model relates the relative level of these variances to 𝛿, as 

was the case with fact 2. In this case, the ratio of the two dispersion measures in the survey implies 𝛿 ≈ 0.80 

(bootstrap s.e. 0.02), that is, the precision of the private signal is about four times larger than the precision 

of the public signal. Note that both facts 2 and 3 pin down the same parameter 𝛿 with two different moments, 

so we can think of this as an over-identification test for the model. To the extent that we need two different 
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values of 𝛿 to match both facts, one could interpret this as a rejection of the model. But as explained 

previously, we view the implied 𝛿 needed to match fact 2 as a lower bound, so there need not necessarily be 

an inconsistency in the required parameter values.  

Because 𝑉𝑎𝑟(𝐸௜[𝑝]|𝑦) = (𝜙௫𝛿)ଶ𝜅௫
ିଵ, we can go even further and use the amount of disagreement 

in the data to precisely identify the levels of precision in each signal (𝜅௫ and 𝜅௬) if we know both 𝛿 and 𝜙௫. 

𝛿 is pinned down by the relative cross-sectional variances. The other parameter is given by 𝜙௫ =

(ଵିఈ)ఋ

(ଵିఈ)ఋା(ଵିఋ)
, so we can assign a value to 𝜙௫ if we have an estimate of strategic complementarity 𝛼. While 

we cannot obtain 𝛼 directly from moments of inflation expectations, we can recover this parameter from a 

series of hypothetical questions that were also included in the survey:  

For the next three questions, suppose that neither you nor your competitors face any costs in 
changing your prices. Also suppose that you get news that the general level of prices went up 
by 10% in the economy:  
a. By what percentage do you think your competitors would raise their prices on average? 
b. By what percentage would your firm raise its price on average?  
c. By what percentage would your firm raise its price if your competitors did not change their 

price at all in response to this news? 
  

As explained in Afrouzi (2018), these hypothetical questions capture the components of the 

individual firm’s price setting equation:  𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼𝐸௜[𝑝].   Part a. of the question captures the 

response of firm 𝑖’s price to a change in 𝐸௜[𝑝̅], or the expected price increase of competitors.  Part b. captures 

the whole right-hand side of the equation, and part c. measures (1 − 𝛼)𝐸௜[𝑚], or the amount that firms 

would adjust prices if unconstrained by competitors’ response.  Given these component pieces, it follows 

that 𝛼 is the slope in the regression of {the answer in “b” minus the answer in “c”} on {the answer in “a”}.  

When we implement this regression in our sample, we find 𝛼ො ≈ 0.7 (s.e. 0.02). It follows that 𝜙௫ ≈ 0.55 

(bootstrap s.e. 0.06) given 𝛿 = 0.8, that is, firms put 55% weight on their private signals and 45% on the 

public signal when setting prices.   

With this value of 𝜙௫, we can then further identify the precision of both private and public signals. 

Because in the data disagreement is 𝑉𝑎𝑟(𝐸௜[𝑝]|𝑦) = (𝜙௫𝛿)ଶ𝜅௫
ିଵ = 3.06ଶ, it follows that 𝜅௫ ≈ 0.02 

(bootstrap s.e. 0.003). Using 𝛿 ≡
఑ೣ

఑ೣା఑೤
, we find that 𝜅௬ = 0.005 (bootstrap s.e. 0.001). These estimates 

suggest that both signals could be rather imprecise. However, this imprecision agrees with the notion that 

firms should pay little attention to inflation if inflation is stable and low (e.g., Sims 2003, Mackowiak and 

Wiederholt 2009), which is the case in New Zealand, an early adopter of inflation targeting. Hence, not 

only can the model correctly replicate the empirical fact that disagreement across firms is lower for higher-

order than first-order expectations, these moments can help identify all of the relevant structural parameters 

in the model, when combined with an independent estimate of strategic complementarity.   
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Fact 4: The average uncertainty in first-order expectations is greater than the uncertainty in higher-order 

expectations.  

The average uncertainty in firms’ first-order and higher-order expectations are given in equations (16a) and 

(16c), such that Ω൛ா೔ൣாത[௣̅]൧|௬ൟ = (𝜙௫𝛿ଶ)ଶ𝜅௫
ିଵ (where Ω൛ா೔ൣாത[௣̅]൧|௬ൟ is the conditional variance of firm i’s 

forecast about other firms’ expectations) and Ω{ா೔[௣]|௬} = (𝜙௫𝛿)ଶ𝜅௫
ିଵ (where Ω{ா೔[௣]|௬} is the conditional 

variance of firm i’s first-order expectation). As with disagreement, the ratio of uncertainty in higher-order 

expectations to uncertainty in first-order expectations also pins down 𝛿 since  

Ω൛ா೔ൣாത[௣̅]൧|௬ൟ Ω{ா೔[௣]|௬}⁄ = 𝛿ଶ < 1. 

Thus, the basic noisy-information model correctly predicts that average uncertainty about higher-order 

expectations should be lower than the corresponding uncertainty in first-order expectations. This is because 

higher-order beliefs place relatively more weight on public signals, which are known with certainty by 

firms, than private signals, which are unobserved by other firms, relative to first-order expectations. 

 In addition, data on the relative amount of uncertainty in first-order and higher-expectations again 

identifies 𝛿. Strikingly, column (4) of Table 2 implies that the ratio of standard deviations implied by the 

reported distributions for own expectations of inflation (=1.11) and for expectations about other managers 

(=0.89) is 0.81 (bootstrap s.e. 0.03), the same value as found using data on disagreement. Hence, using 

either moments of uncertainty or moments of disagreement leads to the same value of 𝛿. This can therefore 

be interpreted as an over-identification restriction implied by the theory which is consistent with the data. 

 

Fact 5: The cross-sectional variance in first-order (higher-order) inflation expectations is greater than the 

average uncertainty in first-order (higher-order) expectations.  

Equations (16a) and (16c) imply that the level of disagreement in either first-order or higher-order 

expectations should be identical to the average uncertainty in either first-order or higher-order expectations. 

In other words, 𝑉𝑎𝑟 ቀ𝐸௜ ቂ𝐸[𝑝]ቃ |𝑦 ቁ = Ω
ቄா೔ቂா[௣]ቃ|௬ቅ

= Ω{ா೔[௣]|௬} = 𝑉𝑎𝑟(𝐸௜[𝑝]|𝑦) because both uncertainty 

and disagreement are determined by the variance of the noise in the private signals. As documented in Table 

2 however, uncertainty is about a third of disagreement in the survey of firms in New Zealand, both for 

first-order expectations as well as higher-order expectations. Hence this restriction implied by the basic 

noisy-information model is clearly at odds with the data. 

 

Fact 6: The response of both first-order and higher-order inflation expectations is greater to an information 

treatment about the higher-order beliefs of other firms than it is to a treatment about the first-order beliefs 

of other firms.  
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In the basic noisy-information model, the average first-order and higher-order price expectations are both 

a linear combination of the public signal 𝑦 and the fundamental 𝑚. Telling a firm in the model what either 

average expectation is would therefore allow them to fully infer the fundamental (since they already know 

the public signal), and all firms provided with this information would therefore form the exact same beliefs. 

In the survey, providing firms with information treatments about either average first-order or higher-order 

inflation expectations does not lead to a full convergence of beliefs after the provision of these information 

treatments. To avoid this extreme prediction from the model, we assume that firms interpret the treatment 

information as noisy signals (e.g., because we give moments from the survey that have sampling errors).  

Specifically, when thinking about the information treatment involving the average inflation 

expectation of other firms, we interpret this as providing a signal for 𝐸[𝑝] given by 

𝑠஻ = 𝐸[𝑝] + 𝜉஻,  (19) 

where 𝜉஻~𝑁(0, 𝜅஻
ିଵ) and 𝜉஻ is uncorrelated with noise 𝜀 and 𝜈௜.

14 Note that because 𝐸[𝑝] = (1 − 𝜙௫𝛿)𝑦 +

𝜙௫𝛿𝑚 and firms observe 𝑦 directly, signal 𝑠஻ has the same content as signal 𝑠̃஻ = 𝜙௫𝛿𝑚 + 𝜉஻ = 𝐻஻𝑚 +

𝜉஻ with 𝐻஻ ≡ 𝜙௫𝛿. Using Bayes rule, we can derive beliefs about 𝑚 after observing 𝑠̃஻ 

𝐸௜(𝑚|𝑠̃஻ , 𝑥௜ , 𝑦) = 𝐸௜(𝑚|𝑥௜ , 𝑦) + 𝑃஻൫𝑠̃஻ − 𝜙௫𝛿𝐸௜(𝑚|𝑥௜, 𝑦)൯,  (20) 

where 𝑃஻ = 𝛿𝜅ିଵ𝜙௫𝛿(𝜅஻
ିଵ + (𝜙௫𝛿)ଶ𝛿𝜅ିଵ)ିଵ is the gain of the Kalman filter and 𝜅 is the precision of the 

prior 𝐸௜(𝑚|𝑥௜ , 𝑦). We can re-write this equation as: 

𝐸௜
௣௢௦௧(𝑚) = (1 − 𝑃஻𝐻஻)𝐸௜

௣௥௘(𝑚) + 𝑃஻𝑠̃஻ =
఑ಳ

షభ

఑ಳ
షభା(థೣఋ)మఋ఑షభ 𝐸௜

௣௥௘(𝑚) + 𝑃஻𝑠̃஻, (21) 

where 𝐸௜
௣௢௦௧(𝑚) denotes expectations after receiving the additional information while 𝐸௜

௣௥௘(𝑚) denotes 

expectations before receiving additional information. Importantly, the coefficient on the prior belief 

𝐸௜
௣௥௘(𝑚) can identify 𝜅஻, the perceived precision of the signal 𝑠̃஻.  

 We can generalize the form of this signal across treatment types to: 

𝐸௜
௉௢௦௧[𝑚] = (1 − 𝑃𝐻)𝐸௜

௉௥௘[𝑚] + 𝑃𝑠̃    (22) 

which one can estimate by regressing post-treatment expectations on pre-treatment expectations and a 

constant. A low coefficient on pre-treatment (prior) expectations indicates that managers strongly respond 

to a signal (i.e., a high weight on 𝑠̃ and a low weight on the prior). The response of firm i’s expectations of 

𝑝 and 𝐸[𝑝] to information is given by 

 𝐸௜
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = 𝑃𝐻 ൤

𝜙௬

𝜙௬ + 𝜙௫(1 − 𝛿)
൨ 𝑦 + (1 − 𝑃𝐻)𝐸௜

௉௥௘ ቈ
𝑝

𝐸[𝑝]
቉ + ൤

𝜙௫

𝛿𝜙௫
൨ 𝑃𝑠̃.  (23) 

Note that weight on the prior (1 − 𝑃𝐻) is the same for first- and higher-order expectations about the price 

                                                 
14 Although 𝑠஻ does not have index 𝑖 (we drop it to simplify notation), we interpret 𝑠஻ as a private signal because we 
do not tell a firm receiving this signal that other firms receive this signal too.   



22 
 

level. Equation (23) implies that, for a given signal, agents should place the same weight on their prior 

beliefs when updating both their first-order and higher-order beliefs about inflation. This is remarkably 

consistent with what we observe in Table 2, where we cannot reject the null of equality for responses of 

first-order and higher-order beliefs to each type of information treatment. So the model is consistent with 

the fact that first-order and higher-order beliefs respond similarly to information treatments. 

Turning to the treatment about the higher-order expectations of other firms, we interpret this as a 

signal of the same form as equation (19) and given by:  

𝑠̃஼ =  𝜙௫𝛿ଶ𝑚 + 𝜉஼ = 𝐻஼𝑚 + 𝜉஼   (24) 

with 𝜉஼~𝑁(0, 𝜅஼
ିଵ) and  𝐻஼ ≡ 𝜙௫𝛿ଶ so that  

𝐸௜
௣௢௦௧(𝑚) = (1 − 𝑃஼𝐻஼)𝐸௜

௣௥௘(𝑚) + 𝑃஼ 𝑠̃஼ =
఑಴

షభ

఑಴
షభା(థೣఋమ)మఋ఑షభ 𝐸௜

௣௥௘(𝑚) + 𝑃஼ 𝑠̃஼  (25) 

where 𝑃஼ = 𝛿𝜅ିଵ𝜙௫𝛿ଶ(𝜅஼
ିଵ + (𝜙௫𝛿ଶ)ଶ𝛿𝜅ିଵ)ିଵ is the gain from the Kalman filter. If signals about first-

order and higher-order expectations were perceived as equally precise (𝜅஼
ିଵ = 𝜅஻

ିଵ) by firms, we would 

have 𝑃஻ > 𝑃஼ , that is, signal 𝑠஻ (treatment with the average first-order expectation) would receive a higher 

weight than signal 𝑠஼ (treatment with the average higher-order expectation) when firms update their beliefs. 

Intuitively, because higher-order beliefs are more concentrated on the public signal, which is consistent 

with fact 3, they are interpreted by firms as containing less information about the unobserved 𝑚 and would 

therefore get less attention from managers. This result implies that, under equally precise signals, we would 

expect to observe a stronger response of both first-order and higher-order beliefs to information about the 

average first-order belief than about the information about the average higher-order belief. As shown in 

Table 3, we observe exactly the opposite in the survey of firms: their expectations respond more strongly 

to treatments about higher-order expectations of other firms than they do to treatments of first-order 

expectations of other firms. Note that facts 3 and 6 therefore deliver a contradiction that is hardwired into 

the baseline model.  They cannot hold simultaneously as the first requires higher-order beliefs to be less 

dispersed while the second requires higher-order beliefs to be more dispersed. In the context of the basic 

noisy-information model, the only way to match fact 6 simultaneously with fact 3 would be for managers 

to interpret signals about higher-order beliefs as being far more precise than signals about first-order beliefs 

(we would need 𝜅஼ ≈ 10𝜅஻ to match the responses). Because there is a priori no reason to expect this to be 

true, we interpret this empirical fact as being at odds with the basic noisy-information model.   

 

3.3 Summary 

We use a basic model of noisy information with infinite regress of expectations to interpret the data on first- 

and higher-order expectations from the survey. Despite its simplicity, this basic model is consistent with a 

number of the empirical facts from the survey, as summarized in Table 4. For example, it can explain why 
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both disagreement and average uncertainty are lower for higher-order than first-order inflation expectations. 

The simple model is consistent with, and provides an interpretation for, the fact that average first-order and 

higher-order inflation expectations are so close in the data. And it can explain why, in the cross-section, a firm 

with larger first-order expectations tends to have larger higher-order expectations. We also show that the 

moments from the survey can be used to recover the realized shocks and the underlying parameters of the 

model, a feature which can be useful to discipline these models in the future. Furthermore, the model makes 

over-identifying restrictions on parameters in the sense that different moments can be used to identify the 

same parameters. Strikingly, we find that these different moments are generally consistent with one another 

in terms of the parameter values they imply. The model can also rationalize the fact that agents update both 

their first-order and higher-order expectations by similar amounts in response to an information treatment.  

 However, we also document several limitations of the canonical noisy-information model with 

infinite regress in terms of its ability to rationalize the data. First, while first- and higher-order expectations 

are highly correlated across firms in the data, there is significant heterogeneity that the canonical model cannot 

easily explain. Second, the model predicts that the level of uncertainty and cross-sectional dispersion of 

expectations should be the same, a feature we can strongly reject in the data. Third, if we view the information 

treatments as being noisy signals, it is difficult to rationalize the difference in response across types of 

treatments. This interpretation of the data would require firms to believe that the signal about the higher-order 

expectations of other firms be much more precise than the signal about the first-order expectations of other 

firms. As a result of these contradictions between data and theory, we consider whether variants on the basic 

noisy-information model can better come to grips with the empirical facts on the higher-order beliefs of firms.  

IV. Extensions 

There are a number of ways that one can deviate from the basic noisy-information model to potentially 

address the differences between our empirical results and the basic model with infinite regress. The first 

approach we consider simply incorporates measurement error in survey responses. A second is to augment 

the signal space with a semi-public signal. Both can help generate additional idiosyncratic variation in 

expectations and weaken the predicted link between first-order and higher-order expectations. Another 

approach is to allow for heterogeneity in “long-run” priors, which would generate additional variation in 

the beliefs of agents even before they receive their idiosyncratic signals. A fourth approach is to relax the 

assumption that agents utilize the signals in the optimal way, allowing instead for overreaction to some 

signals. The final strategy we consider introduces behavioral/cognitive constraints that prevent agents from 

engaging in the infinite regress used in our stylized model. In this section, we characterize the extent to 

which each of these alternatives helps reconcile theory and empirics. 
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4.1 Measurement Error in Survey Responses 

Perhaps the simplest way to potentially explain some of the departures of the basic model from the data is 

to allow for reporting/measurement error. Specifically, we assume that instead of reporting their true 

expectations, firms report this expectation plus an independent noise term of the form 𝑣ிை ∼ 𝑁(0, 𝜅ிை
ିଵ) for 

first-order expectations and 𝑣ுை ∼ 𝑁(0, 𝜅ுை
ିଵ ) for higher-order expectations. Since these errors are mean 

zero, they do not change the ability of the model to explain the first stylized fact, namely the near equality 

of average first- and higher-order expectations. The introduction of uncorrelated error terms to both first- 

and higher-order expectations can immediately help reconcile our model with the second stylized fact, 

namely the finding that the cross-sectional correlation between first- and higher-order expectations is less 

than one in the data. As long as the variance of the noise in first- and higher-order reported forecasts is 

sufficiently similar (𝜅ுை ≈ 𝜅ிை), then fact 3 will still hold as the cross-sectional variance of higher-order 

forecasts will still be given by a fraction of the cross-sectional variance of first-order forecasts. Fact 4 also 

continues to hold, assuming that measurement error affects only reported mean forecasts and not the 

distributions around the forecasts, so that reported uncertainty in both first- and higher-order forecasts is 

unchanged. Under this condition, the noisy-information model with measurement error can also explain 

fact 5, since the cross-sectional variance of forecasts will be greater than the average uncertainty in both 

first- and higher-order forecasts: 

𝑉𝑎𝑟(𝐸௜[𝑝]|𝑦) = (𝜙௫𝛿)ଶ𝜅௫
ିଵ + 𝜅ிை

ିଵ > (𝜙௫𝛿)ଶ𝜅௫
ିଵ = Ω{ா೔[௣]|௬} 

𝑉𝑎𝑟൫𝐸௜ൣ𝐸ത[𝑝]൧|𝑦൯ = (𝜙௫𝛿ଶ)ଶ𝜅௫
ିଵ + 𝜅ுை

ିଵ > (𝜙௫𝛿ଶ)ଶ𝜅௫
ିଵ = 𝛺{ா೔ൣாത[௣̅]൧|௬}. 

  Introducing measurement error can therefore help the model match the first five empirical facts 

qualitatively. However, measurement error cannot help match the effect of information treatments, unless 

one were prepared to assume that measurement error was perceived as significantly lower for higher-order 

beliefs than first-order beliefs. In addition, it is difficult for measurement error to quantitatively explain the 

differences between the basic noisy-information model and empirical facts 2 and 5.  

  To see this, note that we have repeated, within-survey measurements of first-order beliefs (point 

predictions) in the first wave of the survey and we can use these repeated measurements to assess the 

quantitative importance of measurement errors (that is, a respondent reports his/her belief plus a reporting 

error). We find that the correlation between pre-treatment point predictions and post-treatment point 

predictions (within the control group) is 0.98, so the implied amount of measurement error is quite small 

(𝜅ிை
ିଵ ≈ 0.02 × (𝜙௫𝛿)ଶ𝜅௫

ିଵ). In contrast, the amount of measurement error needed to explain the data is 

quite large. For example, to explain the difference between average uncertainty in first-order expectations 

and the cross-dispersion in those expectations, one would need 𝜅ிை
ିଵ ≈ 6.5 × (𝜙௫𝛿)ଶ𝜅௫

ିଵ so that 
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௏௔௥(ா೔[௣]|௬)

ஐ{ಶ೔[೛]|೤}
= 1 +

఑ಷೀ
షభ

(థೣఋ)మ఑ೣ
షభ ≈ 7.5 as in the data.15 In short, while allowing for measurement error in the 

survey data is qualitatively helpful along some (but not all) dimensions as summarized in Table 4, it is 

quantitatively insufficient to account for departures between the model and the data.  

 
4.2 Semi-Public Signals 

Another way to break the perfect correlation between firms’ first- and higher-order expectations is to allow 

for multiple sources of idiosyncratic variation in managers’ expectations rather than a single idiosyncratic 

noise term in the firm’s private signal. For example, we consider the case where firms receive a semi-public 

signal (rather than the fully public one in section 3) in addition to their private signal. The semi-public 

signal case looks very similar to the basic model presented in Section 3 with the twist that the public signal 

is no longer perfectly observed, but includes a manager-specific error term:16 

𝑥௜ = 𝑚 + 𝜈௜,ଵ  (26) 

𝑦௜ = 𝑦 + 𝜈௜,ଶ = 𝑚 + 𝜀 + 𝜈௜,ଶ  (27) 

where 𝜈௜,ଵ ∼ 𝑁(0, 𝜅௫
ିଵ), 𝜀 ∼ 𝑁൫0, 𝜅௬

ିଵ൯, and 𝜈௜,ଶ ∼ 𝑁(0, 𝜅௭
ିଵ).  

In this setting, because first- and higher-order expectations are formed as different mixtures of signals 

𝑥௜ and 𝑦௜, the implied correlation between 𝐸௜[𝑝̅] and 𝐸௜ൣ𝐸ത[𝑝̅]൧ becomes less than one, as we see in the data 

(fact 2). While the inclusion of a semi-public signal therefore helps explain the observed imperfect correlation 

between the two expectations in the data, it does less well in reconciling the remaining discrepancies between 

the data and the basic model (see Appendix C for derivations). For example, introducing a semi-public signal 

does not explain the difference between cross-sectional disagreement and uncertainty in the model: in this 

modification, uncertainty should be higher than disagreement because now managers are uncertain not only 

about the fundamental 𝑚 but also the common component 𝑦 in the semi-public signal 𝑦௜.  As a result, the 

model continues to be strongly at odds with fact 5. Furthermore, the presence of a semi-public signal rather 

than a public signal also cannot explain why information treatments involving higher-order beliefs of other 

firms lead to larger revisions in forecasts than treatments involving first-order beliefs. With a semi-public 

signal, agents continue to place relatively more weight on the latter signal than on private signals when 

                                                 
15 We could also consider the amount of measurement error needed to reconcile the model with an estimated slope of 
0.6 in Figure 3, assuming the true 𝛿 = 0.8, as needed to match fact 4. In this case, measurement error in first-order 
expectations would need to be 𝜅ிை

ିଵ ≈ 0.25 × (𝜙௫𝛿)ଶ𝜅௫
ିଵ, again much larger than what we estimate from revisions in 

first-order point forecasts. 
16 With minor modifications, the model with a semi-public signal may be interpreted as allowing for different public 
signals across industries.  Specifically, rather than assigning each manager a public signal with idiosyncratic noise, 
we partition the semi-public signal into industry-specific public signals. In this case, each firm in industry 𝑗 receives 
𝑦௝ ∼ 𝑁(𝑦, 𝜅௭

ିଵ).  This structure allows managers to consider only the public information of their direct competitors 
and to form higher-order expectations in a manner consistent with this motivation. 
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forming higher-order beliefs, and because they know all other agents do the same and do so based on a 

correlated signal, uncertainty about the higher-order beliefs of other firms is lower than uncertainty about the 

first-order beliefs of other firms. Receiving a signal about first-order beliefs of other firms should therefore 

(assuming equally precise treatment signals) lead to a stronger response in beliefs than receiving an equivalent 

signal about the higher-order beliefs of other firms. Therefore, this extension of the basic model cannot explain 

why managers respond more to the higher-order signal than the first-order signal. In short, as summarized in 

Table 4, the semi-public signal fares even worse than measurement error in reconciling theory and data.   

 

4.3 Heterogeneity in Long-Run Priors 

An alternative extension to the basic noisy-information model of Section 3 is to introduce heterogeneity in 

prior beliefs. Specifically, we follow Patton and Timmermann (2010), who propose a modification to the basic 

noisy-signal model to rationalize large disagreement in short-horizon forecasts. They posit that forecasters 

shrink their optimal inflation forecast (that is, the forecast based on information in objective signals) toward 

their prior beliefs about long-run inflation. In other words, forecasters “anchor” their reported predictions to 

their long-run forecasts, or “long-run” priors. As we show below, this modification helps us address several 

issues in the basic noisy-information model. To keep the exposition concise, we focus only on key results here 

and present detailed derivations in Appendix D.     

The signal structure about 𝑚 is unchanged and managers still set prices as in equation (2) but, as in 

Patton and Timmermann (2010), their reported expectation of the aggregate price level (which they use to set 

prices) is now skewed by the manager’s “long-run” prior 𝜇௜: 

𝐸௜
∗[𝑝̅] = 𝜔𝜇௜ + (1 − 𝜔)𝐸௜ൣ∫ 𝑝௝𝑑𝑗൧ = 𝜔𝜇௜ + (1 − 𝜔)൛(1 − 𝛼)𝐸௜ൣ𝐸ത[𝑚]൧ + 𝛼𝐸௜ൣ𝐸ത[𝑝̅]൧ൟ  (28) 

where 𝐸௜
∗[𝑝̅] denotes the skewed first-order expectation of 𝑝̅ (𝐸௜[𝑝̅] continues to denote the correct 

mathematical expectation of 𝑝̅), 𝜇௜ ∼ 𝑁൫𝜇̅, 𝜅ఓ
ିଵ൯ and 𝜔 =

௏௔௥൫ா೔ൣ∫ ௣ೕௗ௝൧൯

ఊమା௏௔௥൫ா೔ൣ∫ ௣ೕௗ௝൧൯
.  𝛾ଶ ≥ 0 is a parameter 

measuring the extent to which the managers prefer their own priors. 𝜅ఓ
ିଵ and 𝜇̅ measure the dispersion and 

average level of the “long-run” priors. We assume that only first-order expectations of managers are skewed 

directly. We further allow the average prior 𝜇̅ to be unobserved so that the dispersion of 𝜇௜ extends into 

higher-order expectations.  An individual firm now sets its price as a function of its “long-run” prior, a sum 

of progressively higher-order expectations of the aggregate prior, 𝜇̅, and a sum of progressively higher-

order expectations of 𝑚. We impose further structure on 𝐸௜ ቂ𝐸ത௞[𝜇̅]ቃ, the 𝑘th-order expectation of the average 

prior by assuming that managers do not know 𝜇̅, but each observes a private signal of the mean  𝜍௜ ∼

𝑁(𝜇̅, 𝜅చ
ିଵ).  We further allow the manager’s own “long-run” prior to skew their view of the aggregate “long-
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run” prior: 𝐸௜[𝜇̅] = 𝜔′𝜇௜ + (1 − 𝜔′)𝜍௜ where 𝜔ᇱ =
఑ഒ

షభ

ఊమା఑ഒ
షభ.17 The uncertainty about the aggregate prior, 

𝜅చ
ିଵ, is necessary to bring priors and the dispersion they provide into higher-order expectations. If 𝜇̅ were 

known with certainty, 𝜔ᇱ = 0 and 𝜍௜ = 𝜇̅ ∀ 𝑖.  This would mean that disagreement and uncertainty about 

higher-order expectations would be equal, which is rejected in the data (fact 5). Apart from extending the 

effect of “long-run” priors into higher-order expectations, this modelling approach features 𝐸ത[𝜇̅] =  𝜇̅ so 

that 𝐸௜ ቂ𝐸ത௞[𝜇̅]ቃ is the same ∀ 𝑘.  

 With heterogeneous priors, there are now two sources of variation between first- and higher-order 

beliefs: information in the private signal as well as the difference between the agent’s prior belief and the prior 

belief they assign to others. Since the two sources are uncorrelated by assumption and the weights on signals are 

different for first- and higher-order expectations, heterogeneity in “long-run” priors generates an imperfect 

correlation in the cross-section between the first-order and second-order beliefs of agents and the slope in the 

regression of higher-order expectations on first-order expectations is less than 1, as observed in the data (fact 2). 

However, the difference between the average first-order expectations and average higher-order expectations 

remains determined as in the basic model, so fact 1 can still be satisfied. 

 In addition, we can show that if 𝜅ఓ
ିଵ > 0  and 𝜅చ

ିଵ > 0 (i.e., “long-run” priors are heterogeneous with 

an uncertain mean level), then average uncertainty in both first- and higher-order expectations must be lower 

than the cross-sectional disagreement in first- and higher-order expectations respectively. For example, 

uncertainty (Ω{ா೔[௣̅]|௬}) and disagreement (𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧) in first-order beliefs are related as follows: 

𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ = Ω{ா೔[௣̅]|௬} + (𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)ଶ𝜅ఓ
ିଵ. 

Hence, fact 5 is satisfied (unlike in the basic noisy-information model) because the dispersion in “long-run” 

priors provides another source of cross-sectional variation in expectations that is not reflected in uncertainty 

around forecasts since managers take their “long-run” priors as given.  

In contrast to the basic noisy-information model which unambiguously predicts that Ω{ா೔[௣̅]|௬} >

Ω
ቄா೔ቂா[௣]ቃ|௬ቅ

 and 𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ > 𝑉𝑎𝑟 ቂ𝐸௜ൣ𝐸ത[𝑝̅]൧ቃ, the ranking of first- and higher-order uncertainty and 

disagreement in the noisy-information model with “long-run” priors depends on parameter values. As we show 

in Appendix D, if 𝜅௫
ିଵ and 𝜅ఓ

ିଵ are large relative to 𝜅చ
ିଵ and, the model with “long-run” priors can reproduce 

Ω{ா೔[௣̅]|௬} > Ω
ቄா೔ቂா[௣]ቃ|௬ቅ

 and 𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ > 𝑉𝑎𝑟 ቂ𝐸௜ൣ𝐸ത[𝑝̅]൧ቃ and thus match facts 3 and 4.  When 𝜅௫
ିଵ is high, 

there is a lot of dispersion in private signals. Moving from first-order to higher-order beliefs, managers place 

less weight on their own priors and on their private signals, as in the basic noisy information model, which 

                                                 
17 Setting 𝜔ᇱ = 1 nests the case in which managers assume that all other managers share their own prior. 
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tends to reduce dispersion and uncertainty in higher-order beliefs relative to first-order beliefs. A high 𝜅ఓ
ିଵ 

indicates a lot of heterogeneity in long-run priors about average prices. Since managers understand that they 

have a biased first-order belief and that other managers report biased first-order beliefs too, when thinking 

about what other managers believe, each manager tries to remove their own bias (i.e., their “long-run” prior) 

from the reported value. This tends to reduce dispersion in higher-order beliefs relative to first-order beliefs. 

When 𝜅చ
ିଵ is high on the other hand, there is a lot of dispersion in beliefs about other managers’ priors. This 

therefore tends to increase both uncertainty and dispersion in higher-order forecasts relative to first-order 

forecasts. Reproducing facts 3 and 4 therefore requires that this last force be weaker than the prior two.   

To understand how the model with long-run priors can potentially match fact 6 as well, one should 

recall why the basic noisy-information model could not simultaneously match the strong estimated response 

of expectations (i.e., a low value of the slope coefficient in specification (1)) to treatment C (relative to 

treatment B) as well as the levels of disagreement and uncertainty observed in the data. Intuitively, matching 

a low slope in response to treatment C requires a higher value of 𝜅ିଵ (the combined precision of private 

and public signals) so that agents are less confident in their priors about higher-order beliefs and therefore 

respond strongly to higher-order signals. Matching the levels of disagreement and uncertainty instead 

requires a lower value of 𝜅ିଵ, so that agents are relatively more confident in their higher-order beliefs thus 

reaching a contradiction.18 In contrast, the model with long-run priors decouples these moments by allowing 

another source of variation (long-run priors).  

Because there are now two unobserved states 𝑚 and 𝜇̅ and we have a common public signal only for 

fundamental 𝑚, the weights placed on these fundamentals in forming expectations change as we increase the 

order of expectations: the weight on 𝑚 is shrinking as managers put increasingly more weight on the public 

signal 𝑦, while the weight on 𝜇̅ does not. In other words, as we increase the order of expectations in the signals, 

the content of the signals is increasingly skewed (in relative terms) toward 𝜇̅. Also note that our signals 𝑠஻ 

and 𝑠஼ effectively have a higher order of expectations than 𝐸௜[𝑝̅] and 𝐸௜ൣ𝐸ത[𝑝̅]൧ respectively. This leads to a 

discrepancy in the weights assigned to the fundamentals in the expectations that are getting updated relative 

to the weights embedded in the signals. When we extrapolate the posterior beliefs for a given order of 

expectations (e.g., 𝐸௜
௉௢௦௧௘௥௜௢௥[𝑝̅]) from the prior beliefs for that order (e.g., 𝐸௜

௉௢௦௧௘௥௜௢௥[𝑝̅]) in response to a 

signal that measures a higher order of expectations (e.g., signal B that provides 𝐸ത[𝑝̅] + 𝑛𝑜𝑖𝑠𝑒), this 

extrapolation overstates the contribution due to 𝜇̅ and understates the contribution due to 𝑚.  

                                                 
18 As we discuss above, the basic noisy-information model can match the estimated regression coefficients in 
specification (1) for treatments C and B if signal C is more precise than signal B. However, this would require signal C 
to be an order of magnitude more precise than signal B (i.e., 𝜅஼ ≈ 10𝜅஻). Relaxing the equality of precision in signals B 
and C also helps the model with “long-run” priors to match quantitatively the estimated differences in slopes for signals 
B and C but the required difference in precision is much more modest: it is enough to have 𝜅஼ ≈ 2𝜅஻. 



29 
 

This feature of the experiment implies that from the point of the model, equation (1) is generally 

misspecified: one cannot express the observed posterior first (higher) order expectations for 𝑝̅ as a function 

of only the signal received in the treatment and the observed prior first (higher) order expectations for 𝑝̅. 19 

The misspecification introduces omitted terms that depend on prior beliefs about 𝑚 and 𝜇̅. Furthermore, given 

the structure of the model (specifically the fact that higher-order signals put smaller weights on 𝑚), the omitted 

term for 𝐸௜
௉௥௜௢௥(𝑚) creates a positive bias in the estimated slope on observed prior first (higher) order 

expectations for 𝑝̅, while the omitted term for 𝐸௜
௉௥௜௢௥(𝜇̅) creates a negative bias. As a result, on the one hand, 

the true response to signal C in this modified model will tend to be weaker than the true response to signal B 

because we need to match the fact that uncertainty in higher-order expectations is lower than uncertainty in 

first-order expectations, just as was the case in the basic noisy-information model. On the other hand, provided 

that we have large variation in 𝜇௜, the misspecification can lead to large negative biases in the estimated slopes 

in response to treatment C relative to treatment B thus matching fact 6 (see Appendix D for more details). In 

summary, at least qualitatively, this model provides one potential way to reconcile theory and data. 

While heterogeneity in priors can thus potentially account for all the deviations between the basic 

noisy-information model and the data, this more sophisticated model does not permit easy identification of 

structural parameters from the empirical moments. For example, with heterogeneous “long-run” priors, the 

ratio of higher-order disagreement and first-order disagreement does not uniquely pin down 𝛿 as in equation 

(18). The mapping from moments to parameters is more complex and requires solving a system of nonlinear 

equations. Furthermore, given the data available in our survey, the system is under-identified and, therefore, 

one needs additional assumptions to calibrate model parameters (Appendix D provides an example). 

Alternatively, one could bring in additional data. Particularly useful would be first- and higher-order long-

run inflation expectations to measure 𝜇௜ and 𝐸௜[𝜇̅] to recover 𝛾, 𝛾′, and 𝜅చ (see Appendix D for more 

details), but unfortunately these data were not part of our survey. The inability to pin down more parameters 

of the model implies that, without additional input, it is difficult to determine whether this model is 

quantitatively able to match all features of the data. Nonetheless, the structure of the model and the patterns 

observed in the data suggest that the model with long-run priors should assign a prominent role to variation 

in long-run priors (𝜅ఓ
ିଵ, 𝜅చ

ିଵ) because we need this variation to generate a negative bias in the estimated 

slope coefficients in response to treatment C.   

 

4.4 Overconfidence 

The data show considerable heterogeneity in managers’ inflation expectations as well as cross-sectional 

                                                 
19 There is one  exception when we study the response of 𝐸௜ൣ𝐸ത[𝑝̅]൧ to signal B. In this case, the order of expectations 
is the same for measured expectations 𝐸௜ൣ𝐸ത[𝑝̅]൧ and for the signal.   
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disagreement exceeding subjective uncertainty. This suggests that managers disagree with each other about 

the level of inflation but do not realize how much they disagree. In the previous section, we explained this 

disagreement with heterogeneity in long-run priors. As an alternative to heterogeneity in priors, we can explain 

the large degree of heterogeneity across managers and the disparity between disagreement and subjective 

uncertainty by modeling managers as overconfident about the precision of their signals. Over-confidence 

means that managers have excessive faith that their signals reflect the truth (Moore and Healy 2008).  In this 

extension, we allow managers to hold beliefs about signal precision that differ from the truth.  In order to 

generate the same patterns seen in the data, managers must overestimate the precision of the private signal, 

𝜅௫, as in Daniel, Hirshleifer and Subrahmanyam (1998). Specifically, managers continue to receive public 

and private signals as in section 3 where 𝜈௜ ∼ 𝑁(0, 𝜅௫
ିଵ) is the noise in the private signal and 𝜀 ∼ 𝑁൫0, 𝜅௬

ିଵ൯ 

is the noise in the public signal. However, we allow them to overestimate the precision of the private signal 

such that 𝐸௜[𝜅௫] > 𝜅௫ and they therefore overestimate its relative precision as well: 𝛿ሚ =
ா[఑ೣ]

఑೤ାா[఑ೣ]
>

఑ೣ

఑೤ା఑ೣ
= 𝛿. This means that firms’ perceived level of the fundamental will be overly sensitive to the private 

signal but insufficiently sensitive to the public signal. We provide derivations in Appendix E.  

The model with overconfidence can correctly reproduce facts 1, 3 and 4 following the same logic as 

the basic noisy-information model. With respect to fact 2, there is still only one idiosyncratic source of 

information, so while the model can reproduce the positive average relationship between first-order and higher-

order expectations of firms, it generates the same counterfactual prediction of a perfect correlation between the 

two as in the basic noisy-information model. Allowing for overconfidence, however, helps explain fact 5: the 

greater cross-sectional disagreement in first- and higher-order expectations relative to the uncertainty in those 

expectations. This is due to the fact that the low uncertainty that firms anticipate reflects the perceived precision 

of the private signal, which is greater than its true precision. The dispersion in forecasts however is driven by 

the actual dispersion in private signals, and therefore exceeds the uncertainty perceived by firms.20  

Quantitatively, the degree of overconfidence needed to match this fact is relatively large. The 

disagreement and uncertainty terms for each first-order and higher-order expectations give us four 

independent moments to pin down three parameters:  𝜅௫, 𝜅௬, and 𝐸௜[𝜅௫]. As before, we use a value of 𝛼 based 

on a separate set of survey questions following Afrouzi (2018). The ratio of cross-sectional variances of 

                                                 
20 An alternative to the overconfidence approach is the diagnostic model of Bordalo et al. (2018, 2019, 2020) in which 
agents over-respond to all signals. In this context, we can formalize this as perceiving both public and private signals 
as being more precise than they actually are. If the over-precision is proportional across signals, agents will allocate 
the same relative weights to public and private signals as in the basic noisy-information model of Section 3. The cross-
sectional variance of beliefs will be unchanged but the average uncertainty about both first-order and higher-order 
beliefs will be lower, since these rely on perceived precision of the signals. As a result, this alternative formulation of 
overconfidence or diagnostic expectations can also explain why uncertainty is lower than disagreement in the data.  
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higher-order and first-order expectations implies that 𝛿ሚ ≈ 0.8.21  Given this estimate and our estimated value 

of 𝛼, we obtain 𝜙෨௫ ≈ 0.55. This in turn implies that the perceived precision of the private signal is 𝐸௜[𝜅௫] ≈

0.15.   This significantly exceeds the value of 𝜅௫ ≈ 0.02 implied by the cross-sectional disagreement. In other 

words, managers should perceive private signals to be roughly an order of magnitude more precise than they 

actually are. From 𝛿ሚ and 𝐸௜[𝜅௫], we find that 𝜅௬ ≈ 0.04. The relative weights assigned to private and public 

signals in forming beliefs about the price level are quantitatively very different from the optimal ones: the 

optimal weight on private signals in forming first-order beliefs is 𝛿𝜙௫ ≈ 0.04 while the actual weight used 

by overconfident agents is 𝛿ሚ𝜙෨௫ ≈ 0.44.  Because the actual private signals are in fact quite imprecise, the 

large weight the managers assign to them results in a large degree of heterogeneity and disagreement.  

 With respect to information treatments, the structure of the basic noisy-information model is 

preserved in this setting, but with perceived signal precisions (and associated response parameters) in lieu 

of actual signal precisions. Thus, it’s still the case that managers should respond more strongly to Signal B 

(first-order treatment) than Signal C (higher-order treatment) which is counterfactual. By itself, 

overconfidence therefore only helps the model match fact 5. However, there is, at least, one potential way to 

reconcile the model of overconfidence with our results on the effects of information treatments. Specifically, 

if one were willing to consider models of overconfidence in which agents are potentially overconfident about 

the quality of the signals introduced in the information experiment, then this could reconcile the model with 

the data. Specifically, this would require managers to have differential overconfidence in signals B and C. In 

that sense, such a model would resemble the basic noisy-information model in requiring differential precisions 

for signals B and C, that is, both models require an extra degree of freedom to rationalize the observed 

reactions to signals. But a priori it’s not clear why one might expect overprecision of this type.  

 

4.5 Level-𝒌 Thinking 

The basic noisy-information models assumes that agents undertake infinite degrees of reasoning about the 

pricing decisions of others. Reasoning of this sort is, however, difficult and computationally intensive. 

Managers are therefore likely, due to either cognitive constraints or recognizing the costs of such reasoning, 

to limit their degrees of thinking to levels well below infinity. In this section, we introduce cognitive 

constraints via level-k thinking, i.e. restricting how far individuals go in terms of higher-order thinking.  

 To make our model of expectations consistent with level-𝑘 thinking, we revise the optimal pricing 

equation in equation (9) such that firm 𝑖 will weigh the public and private signals according to 

                                                 
21 The model is overidentified as the ratio of higher-order uncertainty to first-order uncertainty also pins down an estimate 
of 𝛿ሚ. This additional restriction again implies that 𝛿ሚ ≈ 0.8.   
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𝑝௜(𝑘) =
∑ ఈೝቂൣଵିఋೝశభ൧௬ାఋೝశభ௫೔ቃೖ

ೝసబ

∑ ఈೝ ೖ
ೝసబ

,  

where 𝑘 is the firm’s type.  We allow firms to fall into one of three different thinking types such that 𝑘 =

0,1,2. A level-0 firm will have pricing strategies in equation (10) with 𝜙௫,଴ = 𝛿 and 𝜙௬,଴ = 1 − 𝛿. These 

strategies ignore the strategic complementarity in prices and rely only on the relative precision of the public 

and private signals.  One can show that the strategies for level-1 and level-2 firms will shift weight towards 

the public signal; that is, 𝜙௫,଴ > 𝜙௫,ଵ > 𝜙௫,ଶ and 𝜙௬,଴ < 𝜙௬,ଵ < 𝜙௬,ଶ as 𝜙௫,௞ = 𝛿
ଵାఈఋା⋯ା(ఈఋ)ೖ

ଵାఈା⋯ାఈೖ  and 

𝜙௬,௞ = 1 − 𝜙௫,௞. The aggregate price-level will then be a weighted average of the pricing behavior of each 

type of firm 𝑝 = ∑ 𝜔௞𝑝(𝑘)തതതതതതଶ
௞ୀ଴  where 𝜔௞ is the proportion of firms thinking at level-𝑘 and 𝑝(𝑘) = 𝜙௫,௞𝑚 +

𝜙௬,௞𝑦 . Heterogeneity in strategies means that firms must consider the distribution of types in forming their 

expectations. For simplicity, we model that all firms behave as if all other firms are of their own type. 

 Due to their cognitive constraints, level-0 and level-1 firms are unable to iterate expectations past 

their first-order expectation. As a result, their higher-order expectations are the same as their first-order 

expectations. For level-2 firms, higher-order expectations reflect an extra level of iteration relative to their 

first-order expectations but do not go through the full iteration of firms in the basic noisy-information model. 

Nonetheless, it is still the case that 𝐸௜,ଶ ቂ𝐸[𝑝]ቃ = (1 − 𝛿)𝑦 + 𝛿𝐸௜,ଶ[𝑝] as in the basic model where 𝐸௜,ଶ 

denotes the expectation of firm i of level-2.  

 The model with level-k thinking can readily accommodate the same facts as the noisy-information 

model. For example, one can show (Appendix B) that for level-0 and level-1 firms, higher-order and first-

order expectations are the same, so fact 1 holds exactly for them and can hold for level-2 firms just like for 

firms in the basic noisy-information model. Similarly, the dispersion of higher-order expectations will be 

lower for level-2 firms than the dispersion in their first-order expectations, while it will be identical for 

level-0 and level-1 firms, so fact 3 will hold as long as there are some level-2 firms. The same logic holds 

for fact 3 in terms of average uncertainty. Unlike the basic model, fact 2 will also now be satisfied. This is 

because level-0 and level-1 firms have a slope relationship of one between their first-order and higher-order 

beliefs while level-2 firms have a slope relationship of 𝛿 < 1. Because we mix groups of firms with 

different slopes, there will be an imperfect correlation between first- and higher-order beliefs across all 

firms, with a positive average slope that is less than 1.  

 The level-k model does not have a clear prediction for the difference between disagreement and 

uncertainty. However, using the proportions of types observed in our data, any feasible calibration of 𝛿 yields 

disagreement and uncertainty estimates that are approximately equal (see Appendix B for derivations). Finally, 

the model with level-k thinking will not be able to match fact 6, the stronger response of beliefs to higher-order 

than first-order treatments. This is because level-2 firms will respond like firms in the basic noisy-information 
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model, i.e. more strongly to lower-order signals. Level-0 and level-1 firms will respond equally strongly to the 

two signals since these firms do not distinguish between first-order and higher-order moments.  

While level-k thinking helps match some empirical facts that the basic model cannot, it also makes 

testable predictions regarding firms’ beliefs and their level of thinking. For example, key to the model’s 

ability to match fact 2 is that higher-order and first-order expectations have a slope relationship of 1 when 

k=0 or 1 but a slope less than one for k=2. In the survey, we asked questions that allow us to characterize 

the degree of level-k thinking of firms and thereby test these additional predictions of the model. 

Specifically, following Nagel (1995), Nagel and Duffy (1997) and many others, we characterize managers’ 

degree of reasoning by asking the following question:  

“Please choose a number from zero to 100. We will take your number as well as the numbers 
chosen by other managers to calculate the average pick. The winning number will be the number 
that is closest to two-thirds (2/3) of the average. The individual(s) with the winning number will 
receive (or share with other winners in case of tie) $500.” 

A 𝑘th-level thinker provides the following guess: 𝑔(𝑘) = ቀ
ଶ

ଷ
ቁ

௞
×  50. The distribution of managers’ guesses 

appears in Figure 4. Guesses appear throughout the entire interval (0-100).  However, when we restrict the 

sample to those managers who spent at least 20 seconds on the question, the guesses pile on integers 

associated with reasoning types as defined by the equation above between 𝑘 =  1 and 𝑘 =  5, with the 

number of managers of each type declining with 𝑘. Accordingly, we classify these managers by their guess 

and assign 𝑘 =  0 to those who answer the question in less than 20 seconds.22,23 The average guess in our 

sample is 33 when we use all responses and 21 when we use guesses with response time of 20 or more 

seconds. In our survey, 36.8 percent of managers are 𝑘 =  0, as opposed to 20 to 27.3 percent in the 

experimental studies. Our sample is also more heavily weighted towards higher thinking types (𝑘 ≥ 3) than 

other papers, with roughly a quarter of the sample performing such high degrees of reasoning.24 Individual 

levels of thinking are generally uncorrelated with the observable characteristics of firms and managers as 

well as industry fixed effects (Appendix Table 6).  

Table 5 documents how various moments of survey expectations from New Zealand vary with the 

level of k of each agent. Mean expected inflation and disagreement about future inflation decrease in 𝑘, 

while uncertainty is approximately constant across 𝑘. These patterns hold for first- and higher-order 

                                                 
22 The guesses associated with 𝑘 = 0 therefore fall throughout the [0,100] interval, rather than at 50 as in Nagel (1995). 
23 As a robustness check, we consider an alternative treatment of guesses with short response times: we code responses 
as level-zero thinking if response times are less than 20 seconds and responses are between 47 and 53; we set level of 
thinking to missing for other responses with response time less than 20 seconds. We denote this alternative coding 
with 𝑘′. 
24 Camerer (1997) reports that average responses for CEOs at Cal Tech’s Board of Trustees, for portfolio managers, 
and for Wharton’s MBA students are 38, 24, and 38 respectively. However, Camerer (1997) reports generally lower 
average scores for subjects participating in experimental settings.  
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inflation expectations and are broadly consistent with theoretical predictions: low-𝑘 firms should disagree 

more (since they place more weight on private signals) and should be more likely to have expectations with 

larger departures from fundamentals. The precision of signals (𝜅௫, 𝜅௬), the relative precision of the private 

signal (𝛿), and the weight on the private signal (𝜙௫) exhibit an inverted-U shape in 𝑘 whereas the theory 

predicts that 𝜙௫,௞ should decrease in 𝑘 monotonically. Finally, while in our theoretical setting the cross-

sectional correlation between first- and higher-order inflation expectations is perfect (recall that private 

signals 𝑥௜ is the only source of variation in the cross-section), one might more generally expect the 

correlation to be stronger for low-level thinkers because these thinkers do not distinguish between low- and 

high-level expectations. In fact, we find that the correlation between first- and higher-order inflation 

expectations is weakly increasing in 𝑘. In short, we do not observe clear links between the level of thinking 

done by managers and their reported first-order and higher-order inflation expectations.  

This evidence should be interpreted with caution for several reasons. First, sample sizes are relatively 

small so the sampling uncertainty in the estimates is relatively large. Second, the amount of predicted variation 

in sensitivity of beliefs and possible actions to new information across different k can be quantitatively small 

depending on underlying parameter values. The fact that we cannot uncover meaningful differences depending 

on the level of thinking may therefore reflect underlying parameter values rather than a failure of the model. 

Third, while beauty contest questions are commonly used to assess the level of thinking in the experimental 

literature, these measures may not necessarily be appropriate to measure the levels of thinking used by 

managers when they revise their inflation expectations or make decisions about employment, investment, etc. 

In this case, the fact that we do not find variation in expectations or behavior for different levels of k could 

simply reflect a poor identification of relevant 𝑘. Future work could consider alternative approaches to measure 

cognitive abilities of firm managers to assess whether these affect their beliefs and decisions.   

V. Concluding remarks 

This paper presents novel survey evidence on the higher-order inflation expectations of firms. Higher-order 

expectations are often perceived to be crucial to many decisions and play a key role in many macroeconomic 

models. Yet empirical evidence on them has been completely lacking. Our survey therefore provides 

unprecedented empirical evidence on how firms form higher-order beliefs about inflation and how these 

relate to their first-order beliefs. The resulting empirical facts can be used to both test and quantify models 

with higher-order beliefs. For example, we illustrate how our empirical moments can be used to pin down 

the parameters of a basic noisy-information model. These results can therefore be of immediate practical 

use for future work using this class of models.  

Our results can also help identify along which dimensions noisy-information models could be 

extended. Indeed, while simple models of noisy-information can go a long way in rationalizing observed 
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expectations of firms, the mapping from expectations to actions is more complex than is commonly postulated 

by these models. One increasingly popular departure from the noisy-information model with infinite regress 

is to assume cognitive constraints on agents in the form of level-k thinking. But our results suggest that this 

approach is unlikely to be fruitful in accounting for apparent deviations between the data and theory. While 

we are able to identify the level of thinking associated with each manager, we find little evidence that any 

important dimension of the data is related to these differing levels of thinking. Other extensions to the basic 

noisy-information model seem more promising. One such avenue is incorporating heterogeneity in priors. 

This extension can help explain many of the otherwise puzzling empirical results, but the additional flexibility 

introduced by this model also implies that our data moments are insufficient to pin down all the parameters 

of the model. Another promising avenue is allowing for overconfidence or diagnostic expectations on the part 

of agents, which also allows the model to conform more closely to our survey results. 

While these results present a theoretical challenge to basic noisy-information models, they 

nonetheless should be of immediate interest to policymakers. For example, communication-based policy 

tools (e.g., forward guidance) often rely on moving not only first-order but also higher-order expectations.  

These results provide a rationale for utilizing survey measures of inflation expectations in policymaking as 

well as a foundation for policies operating via information interventions (e.g., forward-guidance). Our 

findings therefore contribute to a broader research agenda explaining the expectations formation of agents 

and utilizing these expectations in policymaking.  
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Table 1. Descriptive statistics for the initial wave of the survey. 

 Mean St.dev. 
 (1) (2) 
Firm characteristics   

Employment 37.70 67.98 
Age 25.97 19.23 
Share of domestic sales in total sales 97.19 7.69 
Number of competitors 8.78 6.26 

Manager characteristics   
Tenure at the firm 11.48 7.32 
Gender (female=1) 0.19 0.39 
Years of schooling 16.71 1.92 

Sectoral shares   
Manufacturing 0.31  
Construction 0.08  
Transport and communication 0.07  
Trade 0.17  
Other services 0.36  

 
Notes: The table provides summary characteristics of respondents in the first wave of survey. All statistics are unweighted. The 
number of observations is 1,032. 
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Table 2. Expectations of future inflation and other managers’ inflation expectations. 

 
# obs. Mean 

St.dev. 
(disagreement) 

Uncertainty 
Correlation with 

expected inflation 
 (1) (2) (3) (4) (5) 
Initial wave (pre-experiment)      

Expected inflation, 12-month ahead 1,032  3.41  3.06  1.11 1.00 
Expected inflation expectation of other managers, 12-month ahead 1,032 3.50 2.43 0.89 0.68 
p-value for equality of moment  0.18 0.00 0.00  

      
Initial wave (post experiment)          

Expected inflation, 12-month ahead 1,032 3.25 1.76 - 1.00 
Expected inflation expectation of other managers, 12-month ahead 1,032 3.23 1.42 - 0.62 
p-value for equality of moment  0.79 0.00 -  

      
Follow-up wave          

Expected inflation, 12-month ahead 515 3.03 2.11 0.89 1.00 
Expected inflation expectation of other managers, 12-month ahead 515 3.49 1.74 1.14 0.70 
p-value for equality of moment  0.00 0.00 0.00  
      

Memorandum      
Expected inflation, 12-month ahead, point prediction, initial wave 1,032 3.76 2.52 - 0.63 
Perceived inflation, previous 12 months, point prediction, initial wave  1,032 4.11 2.55 - 0.93 
Expected unemployment rate, 12-month ahead 1,032 4.90 0.55 0.40 -0.01 
Expected aggregate wage growth rate, 12-month ahead 1,032 1.14 1.12 1.27 0.03 
Expected price change for firm products, 3-month ahead  1,032 0.86 2.04 - 0.07 
Expected wage change for firm employees, 3-month ahead 1,032 0.30 0.77 - 0.13 
Expected change for firm fixed assets, 3-month ahead 1,032 1.75 3.47 - 0.15 
Expected change for firm employment, 3-month ahead 1,032 3.05 5.07 - -0.08 

 
Notes: The table reports basic moments of first-order and higher-order expectations of inflation. Column (3) reports the cross-sectional standard deviation of mean inflation forecasts. 
Column (4) reports the average (across managers) standard deviation of the reported distribution for future inflation. Column (5) for memorandum items reports correlation with 
expected inflation (12-month ahead) in the first row of the table.  
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Table 3. Effect of Information Treatment on Expectations. . 

  Initial wave  Follow-up wave 

Row Treatment Own 
Expectations 

Higher-order 
Expectations 

p-value 
equality 

 Own 
Expectations 

Higher-order 
Expectations 

p-value 
equality 

  (1) (2) (3)  (4) (5) (6) 

(1) Group A, Control 0.727*** 0.699*** 0.35  0.744*** 0.708*** 0.45 

  (0.020) (0.021)   (0.038) (0.038)  

(2) Group B, 𝐸[𝜋௧] 0.502*** 0.430*** 0.21  0.461*** 0.513*** 0.45 

  (0.041) (0.039)   (0.065) (0.049)  

(3) Group C, 𝐸
ଶ

[𝜋௧] 0.090*** 0.118*** 0.36  0.116*** 0.146*** 0.61 

  (0.018) (0.024)   (0.043) (0.047)  

(4) Group D, 𝐸[𝜋௧] and 𝐸
ଶ

[𝜋௧] 0.096*** 0.071*** 0.37  0.155*** 0.097** 0.18 

  (0.022) (0.019)   (0.038) (0.042)  

(5) Group E, 𝜋௧ିଵ 0.059*** 0.062*** 0.90  0.088** -0.006 0.14 

  (0.015) (0.021)   (0.043) (0.040)  

 Observations 1,032 1,032   515 515  

 𝑅ଶ 0.757 0.759   0.653 0.602  
 
Notes: The table reports the coefficient on managers’ pre-treatment inflation expectations in specification (1).  The dependent variable in each column is 
the post-treatment inflation expectation.  All inflation expectations are measured at the one-year-ahead horizon. Group B was provided information about 
the average first-order inflation expectation of other firms (𝐸[𝜋௧]), group C was provided information about the average higher-order inflation expectation 

(𝐸
ଶ

[𝜋௧]), group D received both pieces of information, while group E was told the most recent inflation rate (𝜋௧ିଵ). Group A is the control group and 
received no information. Columns (1) and (2) present results for post-treatment inflation expectations measured immediately after treatment.  Columns (4) 
and (5) present results for post-treatment inflation expectations measured three months after treatment. Columns (1) and (4) are for firms’ own inflation 
expectations   Columns (2) and (5) present the same results for the expectation of other firms’ inflation expectations.  Column (3) reports p-values of the 
null hypothesis that columns (1) and (2) are equal.  Column (6) reports p-values of the null hypothesis that columns (4) and (5) are equal. Robust standard 
errors are reported in parentheses. ***, **, and * indicate significance at the 0.01, 0.05 and 0.10 percent levels, respectively. 
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Table 4. Empirical Stylized Facts and Theory Predictions. 

Empirical Stylized Facts 

Basic noisy-
information model with  
with private and public 

signals 

Noisy-information model with: 

reporting error 
in survey 

heterogeneous 
long-run priors 

overconfidence 
in private 

signals 

semi-public 
signal 

level-k 
thinking 

Fact 1: The average first-order inflation expectations is 
approximately equal to average higher-order inflation 
expectations   

Yes Yes Yes Yes Yes Yes 

Fact 2: First-order and higher-order inflation 
expectations are positively but not perfectly correlated 
in the cross-section with a slope coefficient less than 
one. 

No: Perfect correlation 
with slope less than one 

Yes Yes 

No: Perfect 
correlation with 
slope less than 

one 

Yes Yes 

Fact 3: The cross-sectional dispersion in first-order 
inflation expectations is greater than the dispersion in 
higher-order inflation expectations.  

Yes Yes Yes Yes Yes Yes 

Fact 4: The average uncertainty in first-order inflation 
expectations is greater than the uncertainty in higher-
order inflation expectations. 

Yes Yes Yes Yes Yes Yes 

Fact 5: The average level of uncertainty in first-order 
(higher-order) inflation expectations is smaller than the 
cross-sectional dispersion in first-order (higher-order) 
inflation expectations. 

No Yes Yes Yes No No 

Fact 6: The response of both first-order and higher-
order inflation expectations is greater to an information 
treatment about the higher-order inflation expectations 
of others than to an information treatment about the 
first-order inflation expectations of others. 

No No Yes No No No 

       
Notes: The table summarizes the empirical stylized facts from the survey (column 1) and the extent to which the models of sections 3 and 4 are consistent with these moments. In 
terms of matching fact 1, all of the “Yes” answers mean that the models can be consistent with fact 1 for specific realizations. The “Yes” response of the model with heterogeneous 
long-run priors to fact 3 is conditional on parameter values (see section 4.3). For fact 6, the “No” responses mean that models cannot match the fact without assuming that signals 
about the higher-order beliefs of other firms would have significantly less noise than signals about first-order beliefs of firms (see section 3.2). The “No” response for level-k 
thinking to Fact 5 is conditional on the distribution of firms in the data (see section 4.5).  
  



43 
 

Table 5. Moments of inflation expectations and implied parameter values by level of thinking. 

 Level of thinking   
 

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 
 memorandum 

𝑘ᇱ = 0 
 (1) (2) (3) (4) (5) (6)  (7) 
Moment of own (first-order) inflation expectations         

Mean 5.16 2.60 2.24 2.40 2.46 1.54  3.53 
Disagreement 2.83 2.91 2.50 2.71 2.60 2.49  2.87 
Uncertainty 1.29 1.06 0.95 0.92 1.02 1.03  1.10 
         

Moment of higher-order inflation expectations         
Mean 4.87 2.83 2.74 2.69 2.62 2.13  3.87 
Disagreement 2.09 2.40 2.17 2.32 2.20 1.58  2.54 
Uncertainty 0.88 0.95 0.80 0.92 0.93 0.86  0.90 

         
Correlation between first- and higher-order 
inflation expectations 

0.48 0.66 0.68 0.70 0.71 0.79  0.65 

         
Slope in the regression of higher-order beliefs on 
first-order beliefs 

0.36 0.54 0.59 0.60 0.60 0.50  0.58 
(0.04) (0.06) (0.05) (0.08) (0.06) (0.05)  (0.06) 

         
Strategic complementarity in pricing, 𝛼 0.68 0.69 0.75 0.56 0.84 0.82  0.82 
 (0.04) (0.05) (0.06) (0.06) (0.05) (0.10)  (0.07) 
         
Implied parameters         

𝛿  0.74 0.82 0.87 0.86 0.85 0.63  0.89 
𝜙௫  0.47 0.59 0.62 0.72 0.47 0.24  0.58 
𝜅௫  0.015 0.028 0.047 0.052 0.023 0.004  0.032 
𝜅௬  0.004 0.007 0.012 0.013 0.006 0.001  0.008 
         

Observations 378 216 160 134 110 34  72 
 
Notes: The table reports moments of inflation expectations by level of thinking 𝑘. Classification of managers into various level of 𝑘 is described in section 5.1. Coding 𝑘′ for level 
of thinking sets 𝑘ᇱ = 0 for guesses in the beauty contest with response time of 20 seconds or more and responses close to 50 and response time less than 20 seconds. The coding of 
𝑘 and 𝑘′ is identical for 𝑘 > 0. Disagreement is the cross-sectional standard deviation of mean inflation forecasts. Uncertainty is the average (across managers) standard deviation 
of the reported distribution for future inflation. Parameters 𝛼, 𝛿, 𝜙௫, 𝜅௫ , 𝜅௬ implied by these moments are calculated as in section 4. Precision of signals 𝜅௫ , 𝜅௬ is calculated using 
disagreement in first- and higher-order inflation expectations. Figures in parentheses report heteroskedasticity-robust standard errors for estimated regression coefficients.   
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Figure 1. Probability distributions of first-order and higher-order inflation expectations. 
Panel A: First-order expectations 

 
Panel B: Higher-order expectations 

 
Notes: The red circles show the average probability assigned to a given bin across all respondents. The sum of red circles is 100%. The shaded areas 
show the share of respondents reporting a given probability range in a given range. For example, take the [0,2] bin. Light-shade area shows the share 
of respondents that assigned zero probability that inflation next year will be in the [0,2] bin. A slightly darker area shows the share of respondents that 
assigned (0%,10%] probability that inflation next year will be in the [0,2] bin.  An even darker area shows the share of responses that assigned 
(10%,20%] probability that inflation next year will be in the [0,2] bin. And so on. The darkest area shows the share of respondents that assigned 
(90%,100%] probability that inflation next year will be in the [0,2] bin. By construction, the shared areas sum up to 100%. Average probabilities (red 
circles in the figure) and the corresponding standard derivations across bins are reported in Appendix Table 4.  
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Figure 2. Distribution of within-respondent differences in probabilities assigned to first- and -higher-order 
beliefs.  

 
Notes: The red circles show the average difference in probability assigned to a given bin across all respondents. The sum of 
red circles is 0%. The W-shape of the difference in probabilities means that people assign lower probabilities for tail 
outcomes when they think about others’ expectations. In other words, the distribution of higher-order beliefs is more 
concentrated than the distribution of first-order expectations.  The shaded areas show the share of respondents reporting a 
given range in probability difference. For example, take the [0,2] bin. Light-shade area at the bottom of the bar chart shows 
the share of respondents that have a difference (between higher-order and first-order probabilities assigned to the [0,2] bin) 
between 80% and 100%. For instance, if somebody assigns 100% probability for first-order (own) expectations for this bin 
and 0% probability for higher-order expectation, this person will be in this group.  A slightly darker area shows the share of 
respondents that assigned (60%,80%] difference in probability that inflation next year will be in the [0,2] bin. And so on. 
By construction, the shared areas sum up to 100%. Average difference in probabilities (red circles in the figure) and the 
corresponding standard derivations of the differences across bins are reported in Appendix Table 4. 
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Figure 3. Own Expectations and Higher-order Expectations.  

 
Notes: The figure reports the relationship between a manager’s own expectation of inflation and their higher-order expectation of 
inflation. Expectations are measured as mean expectations implied by the reported probability distributions for future inflation (see 
Appendix Table 2 for the wording of the questions). Expectations are for the one-year-ahead horizon.  
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Figure 4. Responses to Beauty Contest Question. 

 
Notes: This figure shows the distribution of guesses from the beauty contest game. We asked managers to provide a guess between zero 
and 100 with the guess closest to 2/3 of the average guess receiving a prize. For managers who spent at least 20 seconds in considering 
their guess, we see clumping of guesses at those points which correspond neatly with level-k types as defined in Nagel (1995). Those 
managers who answered the question in less than 20 seconds made guesses dispersed across the full interval. 
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Appendix Figure 1. Revision of beliefs immediately after treatment: first-order beliefs. 
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Appendix Figure 2. Revision of beliefs immediately after treatment: higher-order beliefs. 
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Appendix Figure 3. Revision of beliefs in the follow-up survey: first-order beliefs. 
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Appendix Figure 4. Revision of beliefs in the follow-up survey: higher-order beliefs. 
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Appendix Figure 5. Distribution of moments for first- and higher-order inflation expectations.  

 
Notes: the figure shows the distribution of implied means (Panel A) and implied uncertainty (standard deviation; Panel B) across 
managers. Both moments are computed using probability distributions for expectation inflation.  The moments are computed for first-
order (“own”) and higher-order (“others’”) expectations. 
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Appendix Figure 6. Distribution of the difference between first-order and higher-order expectations across inflation bins by subsample.  

 
Notes: each panel reports the distribution of {average probability assigned for a given inflation bin by first-order inflation expectations} minus {average probability assigned for a 
given inflation bin by higher-order inflation expectations}.  
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Appendix Table 1. Predictors of selection into the follow-up wave of the survey.  

 Dependent variable:  
Participation in the follow-up wave of the survey 

 (1) (2) (3) (4) 
     
Ln(Employment) -0.026 -0.022 -0.020 -0.023 
 (0.023) (0.023) (0.024) (0.024) 
Ln(Age) -0.028 -0.029 -0.029 -0.027 
 (0.018) (0.018) (0.018) (0.018) 
Share of domestic sales -0.002 -0.002 -0.002 -0.003 
 (0.002) (0.002) (0.002) (0.002) 
Number of competitors -0.004 -0.005 -0.005 -0.005 
 (0.003) (0.004) (0.004) (0.004) 
Manager’s tenure at the firm  -0.004 -0.004 -0.004 
  (0.002) (0.002) (0.002) 
Manager’s gender (male = 1)  -0.015 -0.015 -0.023 
  (0.039) (0.039) (0.040) 
Manager’s years of schooling  0.001 0.001 0.001 
  (0.008) (0.008) (0.008) 
Level of thinking, k   0.004 0.004 
   (0.011) (0.011) 
Constant 0.892*** 0.926*** 0.913*** 1.000*** 
 (0.222) (0.259) (0.262) (0.268) 
     
Observations 1,032 1,032 1,032 1,032 
R-squared 0.005 0.007 0.007 0.011 
Industry FE No No No Yes 

 
Notes: the table reports estimates of the linear probability model to check selection on observable characteristics of firms and managers. 
Participation is the dummy variable equal to one if a firm participates in the follow-up and zero otherwise. Industry fixed effects are at 
the one-digit level. Robust standard errors are reported in parentheses. ***, **, and * indicate significance at the 0.01, 0.05 and 0.10 
percent levels, respectively. 
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Appendix Table 2. Distribution of probability bins 

Panel A. Own expectations 
Please assign probabilities (from 0-100) to the following ranges of possible overall price changes for the New Zealand 
economy over the next 12 months: (Note that the probabilities in the column should sum to 100)  

Percentage Price Changes PER YEAR over the next 12 months.  
Probabilities 

More than 25%:                ……………… %  
From 15 to 25%:                 ………………  % 
From 10 to 15%:                 ………………  % 
From 8 to 10%:                  ……………… %   
From 6 to 8%:                   ……………… %   
From 4 to 6%:                   ……………… %   
From 2 to 4%:                   ……………… %   
From 0 to 2%:                  ……………… % 
From -2 to 0%:                 ……………… % 
From -4 to -2%:    …………….. % 
From -6 to -4%:    …………….. % 
From -6 to -8%:      ……………… % 
From -8 to -10%:     ……………… %   
From -10 to -15%:                 ………………  % 
From -15 to -25%:                 ………………  % 
Less than -25%:                 ……………… %  
Total (the column should sum to 100%):        100  %  

 
 

Panel B. Expectations of Other Managers’ Beliefs 
We would like to know what your opinion is about what other managers (drawn from all sectors of the New Zealand 
economy in a representative way) think will happen to overall prices in the economy. Please assign probabilities 
(from 0-100) to the following ranges of beliefs that other managers might hold about overall price changes in the 
economy over the next 12 months for New Zealand: (Note that the probabilities in the column should sum to 100)  

Percentage Price Changes PER YEAR over the next 12 months.  
Probabilities 

More than 25%:                ……………… %  
From 15 to 25%:                 ………………  % 
From 10 to 15%:                 ………………  % 
From 8 to 10%:                 ……………… %   
From 6 to 8%:                  ……………… %   
From 4 to 6%:                  ……………… %   
From 2 to 4%:                  ……………… %   
From 0 to 2%:                  ……………… % 
From -2 to 0%:                ……………… % 
From -4 to -2%:    …………….. % 
From -6 to -4%:    …………….. % 
From -6 to -8%:      ……………… % 
From -8 to -10%:     ……………… %   
From -10 to -15%:                  ………………  % 
From -15 to -25%:                 ………………  % 
Less than -25%:                ……………… %  
Total (the column should sum to 100%):        100  %  
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Appendix Table 3. Moments for first- and higher-order inflation expectations by subsamples.  

Sample 

Mean  Disagreement  Uncertainty  Correlation of 
HO and FO 
expectations 

First-
order 

Higher-
order 

 
First-
order 

Higher-
order 

 
First-
order 

Higher-
order 

 

(1) (2)  (3) (4)  (5) (6)  (7) 
Full sample  3.41 3.50  3.06 2.43  1.11 0.89  0.68 
            
Industry Manufacturing 3.37 3.66  3.06 2.12  1.07 0.90  0.64 
 Service 3.41 3.38  3.09 2.54  1.14 0.89  0.71 
 Construction 3.52 3.78  2.85 2.70  0.99 0.91  0.67 
            
Firm size [6,10] 0.88 1.50  0.93 1.19  0.87 0.90  -0.00 
 [11,49] 3.98 3.96  2.97 2.44  1.17 0.88  0.66 
 50 or more 5.96 5.51  2.54 1.47  1.33 0.90  0.01 
            
Manager 
education 

Some college or less 3.46 3.55  3.07 2.44  1.09 0.86  0.72 
College 3.39 3.40  2.98 2.37  1.11 0.90  0.68 
Graduate studies 3.36 3.54  3.14 2.50  1.11 0.93  0.65 

            
Gender Male 3.33 3.44  3.05 2.44  1.10 0.90  0.68 

Female  3.74 3.75  3.06 2.37  1.15 0.86  0.67 
            
Firm age 10 years or less 2.99 3.19  2.91 2.31  1.08 0.81  0.75 

(10,25] years 3.18 3.43  2.99 2.49  1.04 0.91  0.67 
More than 25 years 3.62 3.61  3.14 2.41  1.14 0.90  0.66 

            
Manager 
tenure 

15 years or less 1.86 2.31  2.36 2.19  0.97 0.92  0.62 
[16,29] years 2.79 2.92  2.85 2.27  1.05 0.85  0.74 
29 years or more 5.61 5.33  2.63 1.70  1.30 0.92  0.23 

            
Number of 
competitors 

[1,2] 5.97 5.48  2.27 1.41  1.33 0.92  0.11 
[3,10] 4.72 4.55  2.97 2.29  1.20 0.90  0.52 
11 or more 1.00 1.61  1.18 1.39  0.91 0.88  0.31 

Notes: Columns (1) and (2) report average inflation expectations for first-order (FO) and higher-order (HO) expectations. Inflation expectations are measured as implied means 
from the reported distributions. Columns (3) and (4) report the standard deviation (disagreement) for FO and HO inflation expectations (implied means) across firms. Columns (5) 
and (6) report average uncertainty for FO and HO inflation expectations across firms. Uncertainty is measured as the standard deviation implied by the reported probability 
distribution. Column (7) reports the correlation between FO and HO inflation expectations (implied means) across firms.   
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Appendix Table 4. Distribution of first-order and higher-order expectations across inflation bins. 

Inflation bin 

Average probability  
(standard deviation of probability) 

First-order 
expectations 

Higher-order 
expectations 

First-order minus 
higher-order 
expectations 

(1) (2) (3) 
[25, ∞) 0.0 0.0 0.0 
 (0.0) (0.0) (0.0) 
[15,25) 0.2 0.1 0.1 
 (1.8) (1.0) (2.1) 
[10,15) 1.5 0.6 0.9 
 (6.2) (3.0) (6.8) 
[8,10) 7.3 3.5 3.8 
 (16.7) (8.8) (17.6) 
[6,8) 15.4 12.2 3.2 
 (22.7) (24.5) (27.3) 
[4,6) 17.3 29.4 -12.1 
 (25.0) (36.6) (35.1) 
[2,4) 13.8 19.6 -5.8 
 (21.1) (29.5) (36.7) 
[0,2) 32.7 27.7 5.0 
 (37.6) (35.3) (32.8) 
[-2,0) 10.3 6.2 4.1 
 (20.5) (16.3) (23.9) 
[-4,-2) 1.3 0.8 0.5 
 (6.5) (3.8) (7.4) 
[-6,-4) 0.2 0.0 0.2 
 (3.2) (0.0) (3.2) 
[-8,-6) 0.0 0.0 0.0 
 (0.8) (0.0) (0.8) 
[-10,-8) 0.0 0.0 0.0 
 (0.9) (0.0) (0.9) 
[-15,-10) 0.0 0.0 0.0 
 (0.0) (0.0) (0.0) 
[-25,-15) 0.0 0.0 0.0 
 (0.0) (0.0) (0.0) 
(-∞,-25) 0.0 0.0 0.0 
 (0.0) (0.0) (0.0) 

Notes: The table reports average probability (standard deviation in parentheses) assigned by managers to future 
inflation bins indicated in the left column.  
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Appendix Table 5. Effect of Information Treatment on Expectations. 

  
Initial wave  

Follow-up 
wave 

Row Treatment Own 
Expectations 

 Own 
Expectations 

  (1)  (4) 

(1) Group A, Control 0.968***  0.973*** 

  (0.014)  (0.045) 

(2) Group B, 𝐸[𝜋𝑡] 0.625***  0.574*** 

  (0.051)  (0.076) 

(3) Group C, 𝐸
ଶ

[𝜋𝑡] 0.122***  0.157** 

  (0.026)  (0.061) 

(4) Group D, 𝐸[𝜋𝑡] and 𝐸
ଶ

[𝜋𝑡] 0.115***  0.175*** 

  (0.031)  (0.049) 

(5) Group E, 𝜋௧ିଵ 0.073***  0.096* 

  (0.020)  (0.054) 

 Observations 1,032  515 

 𝑅ଶ 0.840  0.672 
 
Notes: the table replicates analysis in Table 3 with the regressor being the point prediction for inflation rather than implied mean. See 
note to Table 3 for more details.  
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Appendix Table 6. Predictors of level of thinking. 

   Sample   
Dependent variable:  
𝑘, level of thinking 

All responses  Responses with 𝑘 > 0  
Responses with non-

missing 𝑘′ 
 (1) (2)  (3) (4)  (5) (6) 
Firm characteristics         

Ln(Employment) -0.314*** -0.315***  -0.023 -0.021  -0.131 -0.140 
 (0.066) (0.068)  (0.088) (0.090)  (0.093) (0.095) 
Ln(Age) -0.038 -0.035  0.022 0.023  -0.023 -0.017 
 (0.048) (0.048)  (0.055) (0.055)  (0.057) (0.057) 
Share of domestic sales -0.013** -0.011  -0.012* -0.013*  -0.017** -0.019** 
 (0.006) (0.007)  (0.007) (0.008)  (0.007) (0.008) 
Number of competitors 0.044*** 0.043***  0.002 0.002  0.008 0.007 

 (0.011) (0.011)  (0.012) (0.012)  (0.012) (0.012) 
Manager characteristics         

Manager’s tenure at the firm -0.011* -0.012*  -0.007 -0.006  -0.002 -0.003 
 (0.007) (0.006)  (0.009) (0.009)  (0.009) (0.009) 
Manager’s gender (female = 1) 0.006 -0.005  0.093 0.084  0.007 -0.031 
 (0.110) (0.111)  (0.126) (0.129)  (0.133) (0.137) 
Manager’s years of schooling 0.008 0.010  0.024 0.024  0.021 0.021 

 (0.023) (0.023)  (0.026) (0.026)  (0.027) (0.027) 
         
Observations 1,032 1,032  654 654  726 726 
R2 0.144 0.148  0.009 0.011  0.019 0.022 
Industry FE No Yes  No Yes  No Yes 

 
Notes: The table report results of regressing level of thinking 𝑘 on firm and manager characteristics. Industry fixed effects are at the 
one-digit level. Coding 𝑘′ for level of thinking sets 𝑘ᇱ = 0 for responses with response time of 20 seconds or more and responses close 
to 50 and response time less than 20 seconds. The coding of 𝑘 and 𝑘′ are identical for 𝑘 > 0. Robust standard errors are reported in 
parentheses. ***, **, and * indicate significance at the 0.01, 0.05 and 0.10 percent levels, respectively. 
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Appendix Table 7. Predictors of inflation expectations. 

 Dependent variable: 

 Expected inflation,  
implied mean  Expected inflation,  

implied uncertainty 
 First-order Higher-order  First-order Higher-order 
 (1) (2)  (3) (4) 

Firm characteristics 
Sector (omitted category: Manufacturing) 

Services 0.082 -0.278**  0.080* 0.001 
 (0.143) (0.111)  (0.047) (0.047) 
Construction -0.148 -0.100  -0.108 0.028 

 (0.258) (0.213)  (0.077) (0.092) 
 
Employment (omitted category: [6,10] employees) 

11 to 49 employees 1.419*** 1.142***  0.166*** -0.051 
 (0.141) (0.135)  (0.050) (0.055) 
50 or more employees 2.333*** 1.826***  0.248*** -0.053 

 (0.245) (0.181)  (0.072) (0.077) 
 
Number of competitors (omitted category: 1 or 2 competitors) 

3 to 10 competitors -0.729*** -0.488***  -0.078 -0.022 
 (0.213) (0.144)  (0.065) (0.065) 
11 competitors or more -3.072*** -2.262***  -0.227*** -0.065 

 (0.236) (0.183)  (0.075) (0.076) 
 
Firm age (omitted category: 10 years old or less) 

11 to 25 years old 0.126 0.185  -0.047 0.095 
 (0.171) (0.148)  (0.055) (0.058) 
26 or more years old 0.437** 0.173  0.083 0.087 

 (0.175) (0.145)  (0.057) (0.057) 
 
Manager characteristics 
Gender 

Male -0.050 -0.069  -0.007 0.042 
 (0.174) (0.133)  (0.051) (0.056) 
 
Education (omitted category: some college or less) 

College diploma -0.065 -0.135  0.013 0.046 
 (0.148) (0.122)  (0.047) (0.053) 
Graduate studies -0.131 -0.029  0.014 0.071 

 (0.163) (0.128)  (0.053) (0.054) 
 
Tenure in the industry (omitted category: 15 years or less) 

16 to 29 years 0.424*** 0.227*  0.035 -0.082 
 (0.144) (0.134)  (0.047) (0.052) 
30 years or more 1.162*** 1.082***  0.101* -0.013 

 (0.217) (0.175)  (0.060) (0.072) 
      
Observations 1,032 1,032  1,032 1,032 
R-squared 0.547 0.542  0.094 0.009 

Notes: the table reports estimated coefficients for the regression of a given moment for inflation expectations on a set of indicator 
variables capturing firm and manager characteristics. The dependent variables are indicated in column titles. Robust standard errors are 
reported in parentheses.  ***,**,* indicate statistical significance at 1, 5, and 10 percent levels.   
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Appendix B:  
Response to Information by Level-k 
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Our discussion in Section 3 assumes that firms perform infinite iterations of the optimal pricing function.  That is, firms are 

capable of infinite degrees of reasoning, an assumption which models of level-𝑘 thinking challenge.  To make our model of 

expectations consistent with level-𝑘 thinking, we revise the optimal pricing equation in equation (10) such that firm 𝑖 will 

weigh the public and private signals according to 

𝑝௜(𝑘) =
∑ ఈೝቂൣଵିఋೝశభ൧௬ାఋೝశభ௫೔ቃೖ

ೝసబ

∑ ఈೝ ೖ
ೝసబ

, (B1) 

where 𝑘 is the firm’s type.  We allow firms to fall into one of three different thinking types such that 𝑘 = 0,1,2.  A level-0 

firm will have pricing strategies in equation (11) with 𝜙௫,଴ = 𝛿 and 𝜙௬,଴ = 1 − 𝛿.  These strategies ignore the strategic 

complementarity in prices and rely only on the relative precision of the public and private signals.  One can show that the 

strategies for level-1 and level-2 firms will shift weight towards the public signal; that is, 𝜙௫,଴ > 𝜙௫,ଵ > 𝜙௫,ଶ and 𝜙௬,଴ <

𝜙௬,ଵ < 𝜙௬,ଶ as 𝜙௫,௞ = 𝛿
ଵାఈఋା⋯ା(ఈఋ)ೖ

ଵାఈା⋯ାఈೖ  and 𝜙௬,௞ = 1 − 𝜙௫,௞. 

 The aggregate price-level will then be a weighted average of the pricing behavior of each type of firm 

𝑝 = ∑ 𝜔௞𝑝(𝑘)തതതതതതଶ
௞ୀ଴  (B2) 

where 𝜔௞ is the proportion of firms thinking at level-𝑘 and 𝑝(𝑘) = 𝜙௫,௞𝑚 + 𝜙௬,௞𝑦 . 

Heterogeneity in strategies means that firms must consider the distribution of types in forming their expectations.  

Our data on the expectations of firms about the distribution of other types suggests that firms assign the greatest weight to 

firms of their own type.  For simplicity, we model that all firms behave as if all firms are of their own type. 

 Level-0 firms will form expectations of the aggregate price level 

𝐸௜,଴[𝑝] = 𝜙௫,଴𝑥௜ + ൫1 − 𝜙௫,଴൯𝑦 = 𝛿𝑥௜ + (1 − 𝛿)𝑦. (B3a) 

Just as these firms do not iterate expectations in the price-setting equation, they do not iterate on expectations of the price 

level.  Namely, they fail to substitute their expectation of 𝑚 into equation (B2). 

 Level-1 and level-2 firms are capable of iterating their expectation of the price level.  Accordingly, their first-order 

expectations are: 

𝐸௜,ଵ[𝑝] = 𝜙௫,ଵ𝛿𝑥௜ + ൫1 − 𝜙௫,ଵ𝛿൯𝑦 (B3b) 

𝐸௜,ଶ[𝑝] = 𝜙௫,ଶ𝛿𝑥௜ + ൫1 − 𝜙௫,ଶ𝛿൯𝑦 (B3c) 

The aggregate expectation for each type is therefore: 

𝐸଴[𝑝] = ϕ௫,଴𝑚 + ൫1 − ϕ௫,଴൯𝑦  (B4a) 

𝐸ଵ[𝑝] = ϕ௫,ଵ𝛿𝑚 + ൫1 − ϕ௫,ଵ𝛿൯𝑦  (B4b) 

𝐸ଶ[𝑝] = ϕ௫,ଶ𝛿𝑚 + ൫1 − ϕ௫,ଶ𝛿൯𝑦  (B4c) 

Aggregating across types and firms gives: 

𝐸[𝑝] = ∑ 𝜔௞𝐸௞[𝑝]ଶ
௞ୀ଴ = (𝜔଴(1 − 𝛿)𝜙௫,଴ + 𝜙ത௫𝛿)𝑚 + ൫1 − (𝜔଴(1 − 𝛿)𝜙௫,଴ + 𝜙ത௫𝛿)൯𝑦, (B5) 

where 𝜙ത௫ = ∑ 𝜔௞𝜙௫,௞
ଶ
௞ୀ଴ .  Because by definition level-0 and level-1 firms are unable to iterate expectations past their first-

order expectation, their higher-order expectation is the same as their first-order expectation: 

𝐸௜,଴ ቂ𝐸[𝑝]ቃ = 𝜙௫,଴𝑥௜ + ൫1 − 𝜙௫,଴൯𝑦 = 𝛿𝑥௜ + (1 − 𝛿)𝑦, (B6a) 
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𝐸௜,ଵൣ𝐸[𝑝]]൧ = 𝜙௫,ଵ𝐸௜[𝑚] + (1 − 𝜙௫,ଵ)𝑦 = 𝜙௫,ଵ𝛿𝑥௜ + ൫1 − 𝜙௫,ଵ𝛿൯𝑦. (B6b) 

Unlike level-0 and level-1 firms, level-2 firms will be able to iterate their expectations for a second time, substituting 

𝐸௜[𝑚] = 𝛿𝑥௜ + (1 − 𝛿)𝑦: 

𝐸௜,ଶ ቂ𝐸[𝑝]ቃ = 𝜙௫,ଶ𝛿𝐸௜[𝑚] + ൫1 − 𝜙௫,ଶ𝛿൯𝑦 = 𝜙௫,ଶ𝛿ଶ𝑥௜ + ൫1 − 𝜙௫,ଶ𝛿ଶ൯𝑦. (B6c) 

The aggregate higher-order expectations for each type are: 

𝐸଴

ଶ
[𝑝] = ϕ௫,଴𝑚 + ൫1 − 𝜙௫,଴൯𝑦 (B7a)  

𝐸ଵ

ଶ
[𝑝] = 𝜙௫,ଵ𝛿𝑚 + ൫1 − 𝜙௫,ଵ𝛿൯𝑦 (B7b) 

𝐸ଶ

ଶ
[𝑝] = 𝜙௫,ଶ𝛿ଶ𝑚 + ൫1 − 𝜙௫,ଶ𝛿ଶ൯𝑦 (B7c) 

The average higher-order expectation is then: 

𝐸
ଶ

[𝑝] = ∑ 𝜔௞𝐸௞

ଶ
[𝑝]ଶ

௞ୀ଴ .  

The cross-sectional disagreement for first-order and higher-order beliefs is given by: 

𝑉𝑎𝑟[𝐸௜[𝑝̅]|𝑦] = ൫𝜔଴(1 − 𝛿)𝜙௫,଴ + 𝜙ത௫𝛿൯
ଶ

𝜅௫
ିଵ, (B8) 

𝑉𝑎𝑟ൣ𝐸௜ൣ𝐸ത[𝑝̅]൧|𝑦൧ = ൫∑ 𝜔௞𝜙௫,௞𝛿௞ଶ
௞ୀ଴ ൯

ଶ
𝜅௫

ିଵ, (B9) 

while uncertainty is given as a weighted sum of the uncertainty of each type of agent: 

Ω{ா೔[௣̅]|௬} = ∑ 𝜔௞Ω{ாೖ[௣̅]|௬}
ଶ
௞ୀ଴ = ቀ𝜔଴𝜙௫,଴

ଶ + 𝜔ଵ൫𝜙௫,ଵ𝛿൯
ଶ

+ 𝜔ଶ൫𝜙௫,ଶ𝛿൯
ଶ

ቁ 𝜅௫
ିଵ, (B10) 

Ω
ቄா೔ቂா[௣]ቃ|௬ቅ

= ∑ 𝜔௞Ω
ቄாೖቂா[௣]ቃ|௬ቅ

ଶ
௞ୀ଴ = ∑ 𝜔௞൫𝜙௫,௞𝛿௞൯

ଶ
𝜅௫

ିଵଶ
௞ୀ଴ . (B11) 

The relationship between disagreement and uncertainty is ambiguous.  Expanding on equations (B8) and (B10) gives 

𝑉𝑎𝑟[𝐸௜[𝑝̅]|𝑦] − Ω{ா೔[௣̅]|௬}

= ൛ൣ𝜔଴(𝜔଴ − 1)𝜙௫,଴ + 𝜔ଵ(𝜔ଵ − 1)𝜙௫,ଵ𝛿 + 𝜔ଶ(𝜔ଶ − 1)𝜙௫,ଶ𝛿൧

+ 2ൣ𝜔଴𝜔ଵ𝜙௫,଴𝜙௫,ଵ𝛿 + 𝜔଴𝜔ଶ𝜙௫,଴𝜙௫,ଶ𝛿 + 𝜔ଵ𝜔ଶ𝜙௫,ଵ𝜙௫,ଶ𝛿ଶ൧ൟ𝜅௫
ିଵ 

The first set of square brackets is unambiguously negative.  The second set of square brackets is unambiguously positive, 

but the sign of the sum is uncertain and depends on several parameters.  A similar result obtains for higher-order 

expectations: 

𝑉𝑎𝑟ൣ𝐸௜ൣ𝐸ത[𝑝̅]൧|𝑦൧ − Ω൛ா೔ൣாത[௣̅]൧|௬ൟ = ൝൥෍ 𝜔௞(𝜔௞ − 1)𝜙௫,௞𝛿௞

ଶ

௞ୀ଴

൩ + 2ൣ𝜔଴𝜔ଵ𝜙௫,଴𝜙௫,ଵ𝛿 + 𝜔଴𝜔ଶ𝜙௫,଴𝜙௫,ଶ𝛿ଶ + 𝜔ଵ𝜔ଶ𝜙௫,ଵ𝜙௫,ଶ𝛿ଷ൧ൡ 𝜅௫
ିଵ 

Using our data on the distribution of 𝑘, we assign 𝜔଴ = 0.362, 𝜔ଵ = 0.213,  and 𝜔ଶ = 0.424.  Given these values and our 

estimated value of 𝛼 = 0.7, the disagreement and uncertainty terms will change only with the value of 𝛿, which is used to 

calculate 𝜙௫,଴, 𝜙௫,ଵ, and 𝜙௫,ଶ and is bounded between 0 and 1.  For any value in this range, disagreement and uncertainty 

are similar for both first-and higher-order expectations. 

As Section 3.2 outlines, managers can transform signals about the average first-order and higher-order inflation 

expectation (signals B and C) into signals about 𝑚.  Signal B, in Equation (19), will be differently perceived by managers 

at different 𝑘 levels. 

𝑠̃஻,଴ = 𝐻஻,଴𝑚 + 𝜉஻ = ϕ௫,଴𝑚 + 𝜉஻  (B12a) 
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𝑠̃஻,ଵ = 𝐻஻,ଵ𝑚 + 𝜉஻ = ϕ௫,ଵ𝛿𝑚 + 𝜉஻  (B12b) 

𝑠̃஻,ଶ = 𝐻஻,ଶ𝑚 + 𝜉஻ = ϕ௫,ଶ𝛿𝑚 + 𝜉஻ (B12c) 

Note that the interpretation of signals may be incorrect because agents’ perception of the data generating process (DGP) 

may deviate from the actual DGP. For example, for level-0 firms perception of DGP is given by equation (B3a) while actual 

DGP is given by equation (B2). Indeed, only agents with the highest 𝑘 have the correct perception. As a result, although 

agents believe they should interpret signals as in equations (B8), the effective signals are different. For level-0 firms:  

𝑠̃஻,଴ = (𝜔଴(1 − 𝛿)𝜙௫,଴ + 𝜙ത௫𝛿)𝑚 + ൫1 − (𝜔଴(1 − 𝛿)𝜙௫,଴ + 𝜙௫𝛿)൯𝑦 + 𝜉஻ − ൫1 − ϕ௫,଴൯𝑦 

= 𝜙௫,଴𝑚 + ቀ(𝜔଴ − 1)𝜙௫,଴ + 𝛿൫𝜔ଵ𝜙௫,ଵ + 𝜔ଶ𝜙௫,ଶ൯ቁ (𝑚 − 𝑦) + 𝜉஻  

= 𝜙௫,଴𝑚 + 𝜉ሚ஻,଴ (B12a’) 

where 𝜉ሚ஻,଴ ≡ ቀ(𝜔଴ − 1)𝜙௫,଴ + 𝛿൫𝜔ଵ𝜙௫,ଵ + 𝜔ଶ𝜙௫,ଶ൯ቁ (𝑚 − 𝑦) + 𝜉஻. Thus, level-0 firms interpret 𝜉ሚ஻,଴ as uncorrelated 

noise, but in fact the “noise” is correlated with fundamental 𝑚 and public signal 𝑦. This interpretation of the signal means 

that, in the long run, level-0 firms may be overconfident in their expectations because 𝑉𝑎𝑟൫𝜉ሚ஻,଴൯ > 𝑉𝑎𝑟(𝜉஻) and, relatedly, 

these firms may have more disagreement because they may overreact to the perceived signals.  

Likewise, for level-1 and level-2 firms:  

𝑠̃஻,ଵ = 𝐻஻,ଵ𝑚 + 𝜉ሚ஻,ଵ = 𝜙௫,ଵ𝛿𝑚 + 𝜉ሚ஻,ଵ (B12b’) 

𝑠̃஻,ଶ = 𝐻஻,ଵ𝑚 + 𝜉ሚ஻,ଵ = 𝜙௫,ଶ𝛿𝑚 + 𝜉ሚ஻,ଶ (B12c’) 

where 𝜉ሚ஻,ଵ ≡ ൫𝜔଴𝜙௫,଴ + ൫𝜙ത௫ − 𝜙௫,ଵ൯𝛿൯(𝑚 − 𝑦) + 𝜉஻ and 𝜉ሚ஻,ଶ ≡ ൫𝜔଴𝜙௫,଴ + ൫𝜙௫ − 𝜙௫,ଶ൯𝛿൯(𝑚 − 𝑦) + 𝜉஻. 

For each group, we can then show: 

𝐸௜,଴
௉௢௦௧[𝑚] = ൬

఑ಳ
షభ

఑ಳ
షభା൫థೣ,బ൯

మ
ఋ఑షభ

൰ 𝐸௜
௉௥௘[𝑚] + 𝑃஻,଴𝑠̃஻,଴ (B13a) 

𝐸௜,ଵ
௉௢௦௧[𝑚] = ൬

఑ಳ
షభ

఑ಳ
షభା൫థೣ,భఋ൯

మ
ఋ఑షభ

൰ 𝐸௜
௉௥௘[𝑚] + 𝑃஻,ଵ𝑠̃஻,ଵ (B13b)  

𝐸௜,ଶ
௉௢௦௧[𝑚] = ൬

఑ಳ
షభ

఑ಳ
షభା൫థೣ,మఋ൯

మ
ఋ఑షభ

൰ 𝐸௜
௉௥௘[𝑚] + 𝑃஻,ଶ𝑠̃஻,ଶ (B13c) 

where the coefficient on the prior corresponds to (1 − 𝑃𝐻) in equation (23). Because 𝜙௫,ଶ < 𝜙௫,ଵ < 𝜙௫,଴, we can predict 

that the weight on the prior increases in level of thinking 𝑘.  

Combining equations (B3), (B6) and (B13) gives:  

𝐸௜,଴
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = ൬

൫థೣ,బ൯
మ

ఋ఑షభ

఑ಳ
షభା൫థೣ,బ൯

మ
ఋ఑షభ

൰ ൤
1 − 𝜙௫,଴

1 − 𝜙௫,଴
൨ 𝑦 + ൬

఑ಳ
షభ

఑ಳ
షభା൫ఃೣ,బ൯

మ
ఋ఑షభ

൰ 𝐸௜,଴
௉௥௘ ቈ

𝑝

𝐸[𝑝]
቉ + ൤

𝜙௫,଴

𝜙௫,଴
൨ 𝑃஻,଴𝑠̃஻,଴  

𝐸௜,ଵ
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = ൬

൫థೣ,భఋ൯
మ

ఋ఑షభ

఑ಳ
షభା൫థೣ,భఋ൯

మ
ఋ఑షభ

൰ ൤
1 − 𝜙௫,ଵ𝛿

1 − 𝜙௫,ଵ𝛿
൨ 𝑦 + ൬

఑ಳ
షభ

఑ಳ
షభା൫ఃೣ,భఋ൯

మ
ఋ఑షభ

൰ 𝐸௜,ଵ
௉௥௘ ቈ

𝑝

𝐸[𝑝]
቉ + ൤

𝜙௫,ଵ𝛿

𝜙௫,ଵ𝛿
൨ 𝑃஻,ଵ𝑠̃஻,ଵ  

𝐸௜,ଶ
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = ൬

൫థೣ,మఋ൯
మ

ఋ఑షభ

఑ಳ
షభା൫థೣ,మఋ൯

మ
ఋ఑షభ

൰ ቈ
1 − 𝜙௫,ଵ𝛿

൫1 −  𝛿(𝜔଴(1 − 𝛿)𝜙௫,଴ + 𝜙ത௫𝛿)൯
቉ 𝑦 + ൬

఑ಳ
షభ

఑ಳ
షభା൫థೣ,మఋ൯

మ
ఋ఑షభ

൰ 𝐸௜,ଵ
௉௥௘ ቈ

𝑝

𝐸[𝑝]
቉ + ቈ

𝜙௫,ଶ𝛿

𝜙௫,ଶ𝛿ଶ቉ 𝑃஻,ଶ𝑠̃஻,ଶ  

Note that the difference in weight on priors across 𝑘 is largely governed by variation in 𝐻஻,௞ across 𝑘. Given our parameter 

estimates for 𝛼 and 𝛿 as well as the distribution of types, we find that 𝜙௫,଴ ≈ 0.80,  𝜙௫,ଵ𝛿 ≈ 0.59, 𝜙௫,ଶ𝛿 ≈ 0.55. Thus, 

while the model predicts differentiated responses to signals across 𝑘, the differences could be rather small.  
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We can derive similar expressions for signal C, which gives firms the average higher-order expectations.  Because firms 

incorrectly perceive the DGP, signals must be translated into the effective signals: 

𝑠̃஼,଴ = 𝐻஼,଴𝑚 + 𝜉ሚ஼,଴ = 𝜙௫,଴𝑚 + 𝜉ሚ஼,଴ (B14a’) 

𝑠̃஼,ଵ = 𝐻஼,ଵ𝑚 + 𝜉ሚ஼,ଵ = 𝜙௫,ଵ𝛿𝑚 + 𝜉ሚ஼,ଵ (B14b’) 

𝑠̃஼,ଶ = 𝐻஼,ଶ𝑚 + 𝜉ሚ஼,ଶ = 𝜙௫,ଶ𝛿ଶ𝑚 + 𝜉ሚ஼,ଶ (B14c’) 

where 𝜉ሚ஼,଴ ≡ ൣ(1 − 𝜔଴)𝜙௫,଴ + 𝜔ଵ𝜙௫,ଵ𝛿 + 𝜔ଶ𝜙௫,ଶ𝛿ଶ൧(𝑦 − 𝑚) + 𝜉஼ ,  𝜉ሚ஼,ଵ ≡ ൣ𝜔଴𝜙௫,଴ + (1 − 𝜔ଵ)𝜙௫,ଵ𝛿 + 𝜔ଶ𝜙௫,ଶ𝛿ଶ൧(𝑦 −

𝑚) + 𝜉஼, and 𝜉ሚ஼,ଶ ≡ ൣ𝜔଴𝜙௫,଴ + 𝜔ଵ𝜙௫,ଵ𝛿 + (1 − 𝜔ଶ)𝜙௫,ଶ𝛿ଶ൧(𝑦 − 𝑚) + 𝜉஼. 

Firms then update their expectations of the fundamental according to: 

𝐸௜,଴
௉௢௦௧[𝑚] = ൬

఑಴
షభ

఑಴
షభା൫థೣ,బ൯

మ
ఋ఑షభ

൰ 𝐸௜
௉௥௘[𝑚] + 𝑃஼,଴𝑠̃஼,଴ (B15a) 

𝐸௜,ଵ
௉௢௦௧[𝑚] = ൬

఑಴
షభ

఑಴
షభା൫థೣ,భఋ൯

మ
ఋ఑షభ

൰ 𝐸௜
௉௥ [𝑚] + 𝑃஼,ଵ𝑠̃஼,ଵ (B15b)  

𝐸௜,ଶ
௉௢௦௧[𝑚] = ൬

఑಴
షభ

఑಴
షభା൫థೣ,మఋమ൯

మ
ఋ఑షభ

൰ 𝐸௜
௉௥௘[𝑚] + 𝑃஼,ଶ𝑠̃஼,ଶ (B15c) 

Equations (B15a) and (B15b) imply that, provided 𝜅஻ = 𝜅஼, the weight on priors for level-0 and level-1 firms is the same 

when firms are presented with signals B and C because these firms cannot perform a second iteration on expectations.  

Combining equations (B3), (B6) and (B15) gives:  

𝐸௜,଴
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = ൬

൫థೣ,బ൯
మ

ఋ఑షభ

఑೎
షభା൫థೣ,బ൯

మ
ఋ఑షభ

൰ ൤
1 − 𝜙௫,଴

1 − 𝜙௫,଴
൨ 𝑦 + ൬

఑಴
షభ

఑಴
షభା൫థೣ,బ൯

మ
ఋ఑షభ

൰ 𝐸௜,଴
௉௥௘ ቈ

𝑝

𝐸[𝑝]
቉ + ൤

𝜙௫,଴

𝜙௫,଴
൨ 𝑃஼,଴𝑠̃஼,଴  

𝐸௜,ଵ
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = ൬

൫థೣ,భఋ൯
మ

ఋ఑షభ

఑೎
షభା൫థೣ,భఋ൯

మ
ఋ఑షభ

൰ ൤
1 − 𝜙௫,ଵ𝛿

1 − 𝜙௫,ଵ𝛿
൨ 𝑦 + ൬

఑಴
షభ

఑಴
షభା൫థೣ,భఋ൯

మ
ఋ఑షభ

൰ 𝐸௜,ଵ
௉௥௘ ቈ

𝑝

𝐸[𝑝]
቉ + ൤

𝜙௫,ଵ𝛿

𝜙௫,ଵ𝛿
൨ 𝑃஼,ଵ𝑠̃஼,ଵ  

𝐸௜,ଶ
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = ൭

൫𝜙௫,ଶ𝛿ଶ൯
ଶ

𝛿𝜅ିଵ

𝜅஼
ିଵ + ൫𝜙௫,ଶ𝛿ଶ൯

ଶ
𝛿𝜅ିଵ

൱ ቈ
1 − 𝜙௫,ଶ𝛿

1 − 𝜙௫,ଶ𝛿ଶ቉ 𝑦 + ൭
𝜅஼

ିଵ

𝜅஼
ିଵ + ൫𝜙௫,ଶ𝛿ଶ൯

ଶ
𝛿𝜅ିଵ

൱ 𝐸௜,ଵ
௉௥௘ ቈ

𝑝

𝐸[𝑝]
቉

+ ቈ
𝜙௫,ଶ𝛿

𝜙௫,ଶ𝛿ଶ቉ 𝑃஼,ଶ𝑠̃஼,ଶ 

Given our parameter estimates for 𝛼 and 𝛿 as well as the distribution of types, we find that 𝜙௫,଴ ≈ 0.80,  𝜙௫,ଵ𝛿 ≈ 0.59, 𝜙௫,ଶ𝛿ଶ ≈

0.44. These estimates determine the difference in the weight given to priors across 𝑘.  

Firms in Group D receive both signals.  If the noise terms in both signals are uncorrelated 

𝐸௜,௞
௣௢௦௧(𝑚) = ൫1 − 𝑃஽,௞𝐻஽,௞൯𝐸௜

௣௥௘(𝑚) + 𝑃஽,௞ 𝑠̃஽,௞,  (B16) 

where 𝐻஽,଴ = [𝜙௫,଴ 𝜙௫,଴]′, 𝐻஽,ଵ = [𝜙௫,ଵ𝛿 𝜙௫,ଵ𝛿]′, 𝐻஽,ଶ = [𝜙௫,ଶ𝛿 𝜙௫,ଶ𝛿ଶ]′,   𝑅஽ = 𝑑𝑖𝑎𝑔{𝜅஻
ିଵ, 𝜅஼

ିଵ}, and 𝑃஽,௞ =

𝛿𝜅ିଵ𝐻஽,௞
ᇱ ൫𝑅஽ + 𝛿𝜅ିଵ𝐻஽,௞𝐻஽,௞

ᇱ ൯
ିଵ

.  

All thinking types are able to correctly process Signal E, which contains an estimate of past inflation.  Intuitively, 

signal E provides direct information about the fundamental and updating beliefs does not require thinking about the behavior 

of other agents in the economy. We therefore do not expect to see any difference between responses to this signal across 𝑘.  
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Appendix C:  
Extension of the basic noisy-

information model:  
Semi-public signal 
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A. Setup 

As in equation (2), we assume that managers set prices as a linear combination of their expectations of the aggregate price 

level and a fundamental: 

𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼𝐸௜[𝑝̅]  (C.1) 

In contrast to the basic noisy-information model, we allow managers to observe two signals with idiosyncratic noise, a 

private signal 𝑥௜ and a semi-public signal 𝑦௜: 

𝑥௜ = 𝑚 + 𝑣௜,ଵ           (C.2) 

𝑦௜ = 𝑦 + 𝑣௜,ଶ = 𝑚 + 𝜀 + 𝑣௜,ଶ.         (C.3) 

with 𝑣௜,ଵ ∼ 𝑁(0, 𝜅௫
ିଵ), 𝜀 ∼ 𝑁(0, 𝜅௬

ିଵ), and 𝑣௜,ଶ ∼ 𝑁(0, 𝜅௭
ିଵ).  The optimal price level is set as a sum of iteratively higher-

order expectations of 𝑚 as in Section 3: 

𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼(1 − 𝛼)𝐸௜ ቂ𝐸[𝑚]ቃ + 𝛼ଶ(1 − 𝛼)𝐸௜ ቈ𝐸
ଶ

[𝑚]቉ + ⋯.     (C.4) 

Manger i’s expectation of 𝑚 is given by: 

𝐸௜[𝑚] = (1 − 𝛿ᇱ)𝑦௜ + 𝛿ᇱ𝑥௜         (C.5) 

where 𝛿ᇱ =
఑ೣ

఑ᇲ =
఑ೣ

఑ೣା఑೤ା఑೥
 represents the relative precision of the private signal.  The aggregate expectation of 𝑚 is then 

𝐸ത[𝑚] = (1 − 𝛿ᇱ)𝑦 + 𝛿ᇱ𝑚         (C.6) 

In forming higher-order expectations about 𝑚, managers substitute in their expectations of both 𝑚 and 𝑦.  Because managers 

receive only one signal about 𝑦 diluted by Gaussian noise, a manager’s best expectation of the public signal is his own semi-

public signal.  That is, 𝐸௜[𝑦] = 𝑦௜.  The mangers expectation about the average expectation of other managers in the 

economy is therefore:  

𝐸௜ ቂ𝐸 [𝑚]ቃ = (1 − 𝛿ᇱ)𝑦௜ + 𝛿ᇱ𝐸௜[𝑚] = ൫1 − 𝛿ᇱଶ
൯𝑦௜ + 𝛿ᇱଶ

𝑥௜.      (C.7) 

One can obtain progressively higher-order expectations of 𝑚 by continuing to substitute 𝐸௜[𝑚] for 𝑚 and 𝑦௜ for 𝑦 to find: 

𝐸௜ ቈ𝐸
௞

[𝑚]቉ = ൫1 − 𝛿ᇱ௞ିଵ
൯𝑦௜ + 𝛿௞ିଵ𝐸௜ ቈ𝐸

௞ିଵ
 [𝑚]቉ = ൫1 − 𝛿ᇱ௞

൯𝑦௜ + 𝛿ᇱ௞
𝑥௜.   (C.8) 

We can substitute this into equation (C.4) to find the optimal price as a function of the private and semi-public signals. 

𝑝௜ = (1 − 𝛼) ∑ 𝛼௞ ቂൣ1 − 𝛿ᇱ௞ାଵ
൧𝑦 + 𝛿ᇱ௞ାଵ

𝑥௜ቃஶ
௞ୀ଴ .   (C.9) 

It follows that every agent sets the optimal price at:  

𝑝௜  = 𝜙௬
ᇱ 𝑦 + 𝜙௫

ᇱ 𝑥௜,  (C.10) 

where 𝜙௬
ᇱ =

ଵିఋᇲ

(ଵିఈ)ఋᇲା(ଵିఋᇲ)
 and 𝜙௫

ᇱ =
(ଵିఈ)ఋᇲ

(ଵିఈ)ఋᇲା(ଵିఋᇲ)
.  Note that the structure of the problem is identical to the structure we 

have for the basic noisy-information model. The only difference is that for the semi-public signal version of the model we 

have 𝛿′ and in the basic noisy-information model we have 𝛿. Therefore: 

𝑝 ≡ ∫ 𝑝௝𝑑𝐽 = 𝜙௬
ᇱ 𝑦 + 𝜙௫

ᇱ 𝑚
ଵ

଴
         (C.11) 

A manager’s optimal expectation of this is: 

𝐸௜[𝑝] = 𝜙௬
ᇱ 𝑦௜ + 𝜙௫

ᇱ ൫(1 − 𝛿ᇱ)𝑦௜ + 𝛿ᇱ𝑥௜൯ = (1 − 𝜙௫
ᇱ 𝛿ᇱ)𝑦௜ + 𝜙௫

ᇱ 𝛿ᇱ𝑥௜    (C.12) 
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Aggregating across agents gives the average expectation about the price level: 

𝐸[𝑝] = 𝜙௬
ᇱ 𝑦 + 𝜙௫

ᇱ ൫(1 − 𝛿ᇱ)𝑦 + 𝛿ᇱ𝑚൯ = 𝑚 + (1 − 𝜙௫
ᇱ 𝛿ᇱ)𝜀      (C.13) 

The manager’s higher-order expectation is then given by: 

𝐸௜ ቂ𝐸[𝑝]ቃ = 𝜙௬
ᇱ 𝑦௜ + 𝜙௫

ᇱ ቀ൫1 − 𝛿ᇱଶ
൯𝑦௜ + 𝛿ᇱଶ

𝑥௜ቁ = ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯𝑦௜ + 𝜙௫
ᇱ 𝛿ᇱଶ

𝑥௜   (C.14) 

and the average higher-order expectation is: 

𝐸
ଶ

[𝑝] = ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯𝑦 + 𝜙௫
ᇱ 𝛿ᇱଶ

𝑚 = 𝑚 + ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯𝜀     (C.15) 

Because 𝑦 is a common component of 𝑦௜, 𝜀 does not contribute to cross-sectional disagreement: 

𝑉𝑎𝑟[𝐸௜[𝑝̅]|𝑦] = (1 − 𝜙௫
ᇱ 𝛿ᇱ)ଶ𝜅௭

ିଵ + (𝜙௫
ᇱ 𝛿ᇱ)ଶ𝜅௫

ିଵ       (C.16) 

𝑉𝑎𝑟ൣ𝐸௜[𝐸ത[𝑝̅]|𝑦]൧ = ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯
ଶ

𝜅௭
ିଵ + ൫𝜙௫

ᇱ 𝛿ᇱଶ
൯

ଶ
𝜅௫

ିଵ       (C.17) 

Uncertainty will incorporate uncertainty about both 𝑚 and 𝑦.  While 𝑦 is shared across agents, it is unknown to the individual 

because the semi-public signal includes idiosyncratic noise:  

Ω௜[𝐸௜[𝑝]|𝑦௜] = (1 − 𝜙௫
ᇱ 𝛿ᇱ)ଶ𝜅௭

ିଵ +  (𝜙௫
ᇱ 𝛿ᇱ)ଶ𝜅௫

ିଵ + ൫𝜙௫
ᇱ (1 − 𝛿ᇱ)൯

ଶ
𝜅௬

ିଵ,     (C.18) 

Ω௜ ቂ𝐸௜ ቂ𝐸[𝑝]ቃ ቚ𝑦௜ቃ = ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯
ଶ

𝜅௭
ିଵ +  ൫𝜙௫

ᇱ 𝛿ᇱଶ
൯

ଶ
𝜅௫

ିଵ + ൫𝜙௫
ᇱ 𝛿ᇱ(1 − 𝛿ᇱ)൯

ଶ
𝜅௬

ିଵ.    (C.19) 

This implies that uncertainty is higher than disagreement, the opposite of what is observed in the data.  Therefore, adding a 

semi-public signal does not explain the disparity between cross-sectional disagreement and uncertainty observed in the data 

 Note that because 𝐸௜[𝑝] and 𝐸௜ ቂ𝐸[𝑝]ቃ have different loadings on 𝑦௜ and  𝑥௜ (two sources of cross-sectional 

variation), 𝐸௜[𝑝] and 𝐸௜ ቂ𝐸[𝑝]ቃ are not perfectly correlated, which contrasts with the basic noisy-information model.   

B. Response to information.   
Including a semi-public signal introduces the realization of the public signal noise, 𝜀, to the state space.  Managers form 

expectations about the price level and the aggregate belief of the price level according to: 

𝐸௜ ൤
𝑝̅

𝐸ത[𝑝̅]
൨ = ൤

1 (1 − 𝜙௫
ᇱ )

1 (1 − 𝜙௫
ᇱ 𝛿ᇱ)

൨ 𝐸௜ ቂ
𝑚
𝜀

ቃ        (C.18) 

Denote 

 Υ = ቂ
𝜐ଵ 𝜐ଶ

𝜐ଷ 𝜐ସ
ቃ = ൤

1 (1 − 𝜙௫
ᇱ )

1 (1 − 𝜙௫
ᇱ 𝛿ᇱ)

൨.        (C.19) 

Manager 𝑖’s priors about the state space are formed as combinations of the private and semi-public signals. 

𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ = ൤
𝛿ᇱ𝑥௜ + (1 − 𝛿ᇱ)𝑦௜

𝛿ᇱ(𝑦௜ − 𝑥௜)
൨ = ቂ

𝛿ᇱ (1 − 𝛿ᇱ)

−𝛿ᇱ 𝛿ᇱ ቃ ቂ
𝑥௜

𝑦௜
ቃ     (C.20) 

with a priori uncertainty conditional on a realization of the public signal, 𝑦 formed according to: 

Ψ ≡ ൤
𝜓ଵ 𝜓ଶ

𝜓ଷ 𝜓ସ
൨ ≡ 𝐸 ቊ൤

𝐸௉௥௘[𝑚] − 𝑚

𝐸௉௥௘[𝜀] − 𝜀
൨ ൤

𝐸௉௥௘[𝑚] − 𝑚

𝐸௉௥௘[𝜀] − 𝜀
൨

ᇱ

ቋ  

= ቈ
(1 − 𝛿ᇱ)൫𝑣௜,ଶ + 𝜀൯ + 𝛿ᇱ𝑣௜,ଵ

𝛿ᇱ൫𝑣௜,ଶ + 𝜀 − 𝑣௜,ଵ൯
቉ ቈ

(1 − 𝛿ᇱ)൫𝑣௜,ଶ + 𝜀൯ + 𝛿ᇱ𝑣௜,ଵ

𝛿ᇱ൫𝑣௜,ଶ + 𝜀 − 𝑣௜,ଵ൯
቉

ᇱ
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= ቈ
(1 − 𝛿ᇱ)ଶ𝜅௭

ିଵ + 𝛿ᇱଶ
𝜅௫

ିଵ (1 − 𝛿ᇱ)𝛿ᇱ𝜅௭
ିଵ + 𝛿ᇱଶ

𝜅௫
ିଵ

(1 − 𝛿ᇱ)𝛿ᇱ𝜅௭
ିଵ + 𝛿ᇱଶ

𝜅௫
ିଵ 𝛿ᇱଶ(𝜅௭

ିଵ + 𝜅௫
ିଵ)

቉ (C.21) 

Signals come of the form: 

𝑠 = 𝐻 ቂ
𝑚
𝜀

ቃ + 𝜉 (C.22) 

Manager’s update their expectations about the state space as a mixture of the signal and their priors: 

𝐸௜
௉௢௦௧ ቂ

𝑚
𝜀

ቃ = (𝐼 − 𝑃𝐻)𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ + 𝑃𝑠        (C.23) 

Manager’s posterior first-order and higher-order expectations are therefore 

𝐸௜
௉௢௦௧ ൤

𝑝̅

𝐸ത[𝑝̅]
൨ = 𝐸௜ ൤

𝑝̅

𝐸ത[𝑝̅]
൨ = Υ(𝐼 − 𝑃𝐻)𝐸௜

௉௥௘ ቂ
𝑚
𝜀

ቃ + Υ𝑃𝑠      (C.24)  

 
C. Econometric specification  

To better understand the structure of equation (C.24) and its econometric implementation, consider the case of one signal 

in 𝑠. In this case, 𝐻 is a 1 × 2 matrix: 𝐻 = [ℎଵ ℎଶ].25 The Kalman gain is a 2 × 1 vector and the variance-covariance 

matrix is a single variance term 𝛫క = 𝜅௦
ିଵ. Hence, 

𝑃 = ቂ
𝑝ଵ

𝑝ଵ
ቃ =

ஏுᇱ

఑ೞ
షభାுஏுᇱ

=
ଵ

ஃ
൤
ℎଵ𝜓ଵ + ℎଶ𝜓ଶ

ℎଵ𝜓ଷ + ℎଶ𝜓ସ
൨ (C.25) 

where Λ ≡ 𝜅௦
ିଵ + ℎଵ

ଶ𝜓ଵ + ℎଵℎଶ(𝜓ଶ + 𝜓ଷ) + ℎଶ
ଶ𝜓ସ.  

Hence we can re-write equation (C.24) as  

𝐸௜
௉௢௦௧ ൤

𝑝̅

𝐸ത[𝑝̅]
൨ = Υ ൤

1 − 𝑝ଵℎଵ −𝑝ଵℎଶ

−𝑝ଶℎଵ 1 − 𝑝ଶℎଶ
൨ 𝐸௜

௉௥௘ ቂ
𝑚
𝜀

ቃ + Υ𝑃𝑠  

=
ଵ

ஃ 
Υ ቈ

𝜅௦
ିଵ + ℎଵℎଶ𝜓ଷ + ℎଶ

ଶ𝜓ସ −ℎଵℎଶ𝜓ଵ − ℎଶ
ଶ𝜓ଶ

−ℎଵ
ଶ𝜓ଷ − ℎଵℎଶ𝜓ସ 𝜅௦

ିଵ + ℎଵℎଶ𝜓ଶ + ℎଵ
ଶ𝜓ଵ

቉ 𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ + Υ𝑃𝑠  

=
ଵ

ஃ 
Υ ቊ𝜅௦

ିଵ𝐼 + ቈ
ℎଵℎଶ𝜓ଷ + ℎଶ

ଶ𝜓ସ −ℎଵℎଶ𝜓ଵ − ℎଶ
ଶ𝜓ଶ

−ℎଵ
ଶ𝜓ଷ − ℎଵℎଶ𝜓ସ ℎଵℎଶ𝜓ଶ + ℎଵ

ଶ𝜓ଵ

቉ቋ 𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ + Υ𝑃𝑠  

=
ଵ

ஃ 
𝜅௦

ିଵΥ𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ +
ଵ

ஃ 
Υ ቈ

ℎଵℎଶ𝜓ଷ + ℎଶ
ଶ𝜓ସ −ℎଵℎଶ𝜓ଵ − ℎଶ

ଶ𝜓ଶ

−ℎଵ
ଶ𝜓ଷ − ℎଵℎଶ𝜓ସ ℎଵℎଶ𝜓ଶ + ℎଵ

ଶ𝜓ଵ

቉ 𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ + Υ𝑃𝑠  

=
ଵ

ஃ 
𝜅௦

ିଵ𝐸௜
௉௥௘ ൤

𝑝̅

𝐸ത[𝑝̅]
൨ +

ଵ

ஃ 
Υ ቈ

ℎଵℎଶ𝜓ଷ + ℎଶ
ଶ𝜓ସ −ℎଵℎଶ𝜓ଵ − ℎଶ

ଶ𝜓ଶ

−ℎଵ
ଶ𝜓ଷ − ℎଵℎଶ𝜓ସ ℎଵℎଶ𝜓ଶ + ℎଵ

ଶ𝜓ଵ

቉ 𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ + Υ𝑃𝑠  

=
ଵ

ஃ 
𝜅௦

ିଵ𝐸௜
௉௥௘ ൤

𝑝̅

𝐸ത[𝑝̅]
൨  

+
ଵ

ஃ
ቈ
𝜐ଵℎଵℎଶ𝜓ଷ + 𝜐ଵℎଶ

ଶ𝜓ସ − 𝜐ଶℎଵ
ଶ𝜓ଷ − 𝜐ଶℎଵℎଶ𝜓ସ −𝜐ଵℎଵℎଶ𝜓ଵ − 𝜐ଵℎଶ

ଶ𝜓ଶ + 𝜐ଶℎଵℎଶ𝜓ଶ + 𝜐ଶℎଵ
ଶ𝜓ଵ

𝜐ଷℎଵℎଶ𝜓ଷ + 𝜐ଷℎଶ
ଶ𝜓ସ − 𝜐ସℎଵ

ଶ𝜓ଷ − 𝜐ସℎଵℎଶ𝜓ସ −𝜐ଷℎଵℎଶ𝜓ଵ − 𝜐ଷℎଶ
ଶ𝜓ଶ + 𝜐ସℎଵℎଶ𝜓ଶ + 𝜐ସℎଵ

ଶ𝜓ଵ

቉ 𝐸௜
௉௥௘ ቂ

𝑚
𝜀

ቃ  

+Υ𝑃𝑠  (C.26) 

Similar to equation (23) for the basic noisy-information model, equation (C.26) relates posterior beliefs on 𝑝̅ to 

prior beliefs on 𝑝̅, public signal 𝑦 and the new information in the signal provided in a treatment (𝑠). The coefficient on the 

prior beliefs is governed by the gain of the Kalman filter. At the same time, equation (C.26) features new terms that depend 

                                                 
25 Below we show later what value 𝐻 takes in our signals.  
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on the pre-treatment beliefs on fundamentals  𝐸௜
௉௥௘[𝜀] and 𝐸௜

௉௥௘[𝑚]. Because we do not observe these terms and 𝐸௜
௉௥௘[𝜀]  and 

𝐸௜
௉௥௘[𝑚] are all correlated with 𝐸௜

௉௥௘[𝑝̅] and 𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧, we may have biased estimates of the slope coefficient on prior 

beliefs about 𝑝̅ when we regress posterior beliefs on prior beliefs and a constant (equation (1) in the paper).  

In what follows, we sign and quantify these potential biases. We consider first signal B (that is, we provide firms 

with information on 𝐸௜
௉௥௘[𝑝̅]) and then we consider signal C (that is, we provide firms with information on 𝐸௜

௉௢௦௧ൣ𝐸ത[𝑝̅]൧).  

      
Signal B 

Given equation (C.12), we can show that ℎଵ = 1 and ℎଶ = (1 − 𝜙௫
ᇱ 𝛿ᇱ).  Note also that 𝜐ଵ = 𝜐ଷ = 1.  Given the expressions 

for 𝜐ଶ and 𝜐ସ in Equation (C.19) 

𝐵ଶଵ ≡ 𝜐ଷℎଵℎଶ𝜓ଷ + 𝜐ଷℎଶ
ଶ𝜓ସ − 𝜐ସℎଵ

ଶ𝜓ଷ − 𝜐ସℎଵℎଶ𝜓ସ = (ℎଶ − 𝜐ସ)𝜓ଷ + ℎଶ(ℎଶ − 𝜐ସ)𝜓ସ = 0 (C.27) 

𝐵ଶଶ ≡ −𝜐ଷℎଵℎଶ𝜓ଵ − 𝜐ଷℎଶ
ଶ𝜓ଶ + 𝜐ସℎଵℎଶ𝜓ଶ + 𝜐ସℎଵ

ଶ𝜓ଵ = (𝜐ସ − ℎଶ)𝜓ଵ + ℎଶ(𝜐ସ − ℎଶ)𝜓ଶ = 0  (C.28) 

Hence, the relationship between 𝐸௜
௉௢௦௧ൣ𝐸ത[𝑝̅]൧ and 𝐸௜

௉௥௘ൣ𝐸ത[𝑝̅]൧ in equation (C.26) is not biased. 

 One can also show that  

𝐵ଵଵ ≡ 𝜐ଵℎଵℎଶ𝜓ଷ + 𝜐ଵℎଶ
ଶ𝜓ସ − 𝜐ଶℎଵ

ଶ𝜓ଷ − 𝜐ଶℎଵℎଶ𝜓ସ = (ℎଶ − 𝜐ଶ)𝜓ଷ + ℎଶ(ℎଶ − 𝜐ଶ)𝜓ସ 

= 𝜙௫
ᇱ (1 − 𝛿ᇱ)[𝜓ଷ + (1 − 𝜙௫

ᇱ 𝛿ᇱ)𝜓ସ] > 0   (C.29) 

𝐵ଵଶ ≡ −𝜐ଵℎଵℎଶ𝜓ଵ − 𝜐ଵℎଶ
ଶ𝜓ଶ + 𝜐ଶℎଵℎଶ𝜓ଶ + 𝜐ଶℎଵ

ଶ𝜓ଵ = (𝜐ଶ − ℎଶ)𝜓ଵ + ℎଶ(𝜐ଶ − ℎଶ)𝜓ଶ  

= −𝜙௫
ᇱ (1 − 𝛿ᇱ)[𝜓ଵ + (1 − 𝜙௫

ᇱ 𝛿ᇱ)𝜓ଶ] < 0 (C.30) 

 Equation (C.20) shows that both 𝐸௜
௉௥௘[𝑚] and 𝐸௜

௉௥௘[𝜀] are composed of signals 𝑥௜ and 𝑦௜.  We can therefore 

construct the omitted term as omitted terms due to 𝑥௜ and due to 𝑦௜: 

𝑂௜
(஻ଵ;ிை)

≡
ଵ

ஃ
[𝛿ᇱ(𝐵ଵଵ − 𝐵ଵଶ)]𝑥௜ (C.31) 

𝑂௜
(஻ଶ;ிை)

≡
ଵ

ஃ
[𝐵ଵଵ − 𝛿ᇱ(𝐵ଵଵ − 𝐵ଵଶ)]𝑦௜ (C.32) 

From Equation (##), we see that 

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘[𝑝̅], 𝑂௜

(஻ଵ;ிை)
ቁ =

ଵ

ஃ
ൣ𝜙௫

ᇱ 𝛿ᇱଶ(𝐵ଵଵ − 𝐵ଵଶ)൧𝜅௫
ିଵ > 0  

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘[𝑝̅], 𝑂௜

(஻ଶ;ிை)
ቁ =

ଵ

ஃ
(1 − 𝜙௫

ᇱ 𝛿ᇱ)[𝐵ଵଵ − 𝛿ᇱ(𝐵ଵଵ − 𝐵ଵଶ)]𝜅௭
ିଵ ≶ 0  

The bias due to private signal terms, 𝑥௜, is 

 𝑏𝑖𝑎𝑠ଵ
(஻:ிை)

≡
஼௢௩ቀா೔

ುೝ೐[௣̅],ை೔
(ಳభ,ಷೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

> 0  

The bias due to private signal terms, 𝑥௜, is 

 𝑏𝑖𝑎𝑠ଶ
(஻:ிை)

≡
஼௢௩ቀா೔

ುೝ೐[௣̅],ை೔
(ಳమ,ಷೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

≶ 0  

The overall bias may then go in either direction: 

𝑏𝑖𝑎𝑠஻:ிை ≡ 𝑏𝑖𝑎𝑠ଵ
஻:ிை + 𝑏𝑖𝑎𝑠ଶ

஻:ிை ≶ 0     

 

Signal C 
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Given Equation (C.14), we can show that ℎଵ = 1 and ℎଶ = ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯.  Using the values of 𝜐ଵ, 𝜐ଶ, 𝜐ଷ and 𝜐ସ given in 

Equation (C.19), we can show: 

𝐵ଵଵ ≡ 𝜐ଵℎଵℎଶ𝜓ଷ + 𝜐ଵℎଶ
ଶ𝜓ସ − 𝜐ଶℎଵ

ଶ𝜓ଷ − 𝜐ଶℎଵℎଶ𝜓ସ = (ℎଶ − 𝜐ଶ)𝜓ଷ + ℎଶ(ℎଶ − 𝜐ଶ)𝜓ସ 

= 𝜙௫
ᇱ ൫1 − 𝛿ᇱଶ

൯ൣ𝜓ଷ + ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯𝜓ସ൧ > 0   (C.33) 

𝐵ଵଶ ≡ −𝜐ଵℎଵℎଶ𝜓ଵ − 𝜐ଵℎଶ
ଶ𝜓ଶ + 𝜐ଶℎଵℎଶ𝜓ଶ + 𝜐ଶℎଵ

ଶ𝜓ଵ = (𝜐ଶ − ℎଶ)𝜓ଵ + ℎଶ(𝜐ଶ − ℎଶ)𝜓ଶ  

= −𝜙௫
ᇱ ൫1 − 𝛿ᇱଶ

൯ൣ𝜓ଵ + ൫1 − 𝜙௫
ᇱ 𝛿ᇱଶ

൯𝜓ଶ൧ < 0 (C.34) 

Using the logic outlined in the discussion of Signal B, we can characterize the omission in terms of omitted terms due to 𝑥௜ 

and due to 𝑦௜: 

𝑂௜
(஼ଵ;ிை)

≡
ଵ

ஃ
[𝛿ᇱ(𝐵ଵଵ − 𝐵ଵଶ)]𝑥௜ (C.35) 

𝑂௜
(஼ଶ;ிை)

≡
ଵ

ஃ
[𝐵ଵଵ − 𝛿ᇱ(𝐵ଵଵ − 𝐵ଵଶ)]𝑦௜ (C.36) 

Using equation (C.20), we see that 

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘[𝑝̅], 𝑂௜

(஼ଵ;ிை)
ቁ =

ଵ

ஃ
ൣ𝜙௫

ᇱ 𝛿ᇱଶ(𝐵ଵଵ − 𝐵ଵଶ)൧𝜅௫
ିଵ > 0  

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘[𝑝̅], 𝑂௜

(஼ଶ;ிை)
ቁ =

ଵ

ஃ
(1 − 𝜙௫

ᇱ 𝛿ᇱ)[𝐵ଵଵ − 𝛿ᇱ(𝐵ଵଵ − 𝐵ଵଶ)]𝜅௭
ିଵ ≶ 0  

The bias due to private signal terms, 𝑥௜, is 

 𝑏𝑖𝑎𝑠ଵ
(஼:ிை)

≡
஼௢௩ቀா೔

ುೝ೐ൣாത[௣̅]൧,ை೔
(಴భ,ಷೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

> 0  

The bias due to semi-public signal terms, 𝑥௜, is 

 𝑏𝑖𝑎𝑠ଶ
(஼:ிை)

≡
஼௢௩ቀா೔

ುೝ೐ൣாത[௣̅]൧,ை೔
(಴మ,ಷೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

≶ 0    

The overall bias may then go in either direction: 

𝑏𝑖𝑎𝑠஼:ிை ≡ 𝑏𝑖𝑎𝑠ଵ
஼:ிை + 𝑏𝑖𝑎𝑠ଶ

஼:ிை ≶ 0     

The bias in the regression of higher-order posteriors in priors can be outlined similarly: 

𝐵ଶଵ ≡ 𝜐ଷℎଵℎଶ𝜓ଷ + 𝜐ଷℎଶ
ଶ𝜓ସ − 𝜐ସℎଵ

ଶ𝜓ଷ − 𝜐ସℎଵℎଶ𝜓ସ = (ℎଶ − 𝜐ସ)𝜓ଷ + ℎଶ(ℎଶ − 𝜐ସ)𝜓ସ  

= 𝜙௫
ᇱ 𝛿ᇱ(1 − 𝛿ᇱ)ൣ𝜓ଷ + ൫1 − 𝜙௫

ᇱ 𝛿ᇱଶ
൯𝜓ସ൧ > 0   (C.37) 

𝐵ଶଶ ≡ −𝜐ଷℎଵℎଶ𝜓ଵ − 𝜐ଷℎଶ
ଶ𝜓ଶ + 𝜐ସℎଵℎଶ𝜓ଶ + 𝜐ସℎଵ

ଶ𝜓ଵ = (𝜐ସ − ℎଶ)𝜓ଵ + ℎଶ(𝜐ସ − ℎଶ)𝜓ଶ  

= −𝜙௫
ᇱ 𝛿ᇱ(1 − 𝛿ᇱ)ൣ𝜓ଵ + ൫1 − 𝜙௫

ᇱ 𝛿ᇱଶ
൯𝜓ଶ൧ < 0 (C.38) 

Using the logic outlined in the discussion of Signal B, we can characterize the omission in terms of omitted terms due to 𝑥௜ 

and due to 𝑦௜: 

𝑂௜
(஼ଵ;ிை)

≡
ଵ

ஃ
[𝛿ᇱ(𝐵ଶଵ − 𝐵ଶଶ)]𝑥௜ (C.39) 

𝑂௜
(஼ଶ;ிை)

≡
ଵ

ஃ
[𝐵ଶଵ − 𝛿ᇱ(𝐵ଶଵ − 𝐵ଶଶ)]𝑦௜ (C.40) 

From Equation (C.20), we see that 

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧, 𝑂௜

(஼ଵ;ுை)
ቁ =

ଵ

ஃ
ൣ𝜙௫

ᇱ 𝛿ᇱଷ(𝐵ଶଵ − 𝐵ଶଶ)൧𝜅௫
ିଵ > 0  

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧, 𝑂௜

(஼ଶ;ுை)
ቁ =

ଵ

ஃ
൫1 − 𝜙௫

ᇱ 𝛿ᇱଶ
൯[𝐵ଶଵ − 𝛿ᇱ(𝐵ଶଵ − 𝐵ଶଶ)]𝜅௭

ିଵ ≶ 0  
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The bias due to private signal terms, 𝑥௜, is 

 𝑏𝑖𝑎𝑠ଵ
(஼:ுை)

≡
஼௢௩ቀா೔

ುೝ೐ൣாത[௣̅]൧,ை೔
(಴భ,ಹೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

> 0  

The bias due to semi-public signal terms, 𝑥௜, is 

 𝑏𝑖𝑎𝑠ଶ
(஼:ுை)

≡
஼௢௩ቀா೔

ುೝ೐ൣாത[௣̅]൧,ை೔
(಴మ,ಹೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

≶ 0  

The overall bias may then go in either direction: 

𝑏𝑖𝑎𝑠஼:ுை ≡ 𝑏𝑖𝑎𝑠ଵ
஼:ுை + 𝑏𝑖𝑎𝑠ଶ

஼:ுை ≶ 0    

We conclude that estimating equation (C.26) for signal C generally yields biased estimates. Although we cannot 

identify the model parameters from the moments collected in the survey, we experimented with various calibrations of the 

model and we found that biases are generally small.  
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Appendix D:  
Extension of the basic noisy-

information model:  
Heterogenous long-run priors 
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A. Setup 

As in equation (2), we allow managers to set prices as a linear combination of their expectations of the aggregate price level 

and a fundamental: 

𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼𝐸௜
∗[𝑝̅]  (D.1) 

Following Patton and Timmermann (2010), we allow expectations of the aggregate price level to be skewed by the 

manager’s “long-run” prior, 𝜇௜: 

𝐸௜
∗[𝑝̅] = 𝜔𝜇௜ + (1 − 𝜔)𝐸௜[𝑝̅] = 𝜔𝜇௜ + (1 − 𝜔)(1 − 𝛼)𝐸௜ൣ𝐸ത[𝑚]൧ + (1 − 𝜔)𝛼𝐸௜ൣ𝐸ത[𝑝̅]൧  (D.2) 

where 𝜇௜ ∼ 𝑁൫𝜇̅, 𝜅ఓ
ିଵ൯, 𝜔 =

௏௔௥(ா೔[௣̅])

ఊమା௏௔௥(ா೔[௣̅])
, and  𝛾ଶ ≥ 0 is a parameter measuring the extent to which the managers prefer 

their own “long-run” priors.  𝛾ଶ = 0 means that the manager forms his entire expectation based on information contained 

in signals 𝑦 and 𝑥.   

The average expectation is: 

𝐸ത[𝑝̅] = 𝜔𝜇̅ + (1 − 𝜔)(1 − 𝛼)𝐸തଶ[𝑚] + (1 − 𝜔 )𝛼𝐸തଶ[𝑝̅]  (D.3) 

and, given the skew towards the “long-run” prior, the individual higher-order expectation is: 

𝐸௜ൣ𝐸ത[𝑝̅]൧ = 𝜔𝐸௜[𝜇̅] + (1 − 𝜔)(1 − 𝛼)𝐸௜ൣ𝐸തଶ[𝑚]൧ + (1 − 𝜔 )𝛼𝐸௜[𝐸തଶ[𝑝̅]]   (D.4) 

Note that, by assumption, managers directly skew only their own (first-order) expectation of the price level and do not skew 

higher-order expectations. Following the same logic, we find further higher-order expectations: 

𝐸തଶ[𝑝̅] = 𝜔𝐸ത[𝜇̅] + (1 − 𝜔)(1 − 𝛼)𝐸തଷ[𝑚] + (1 − 𝜔)𝛼𝐸തଷ[𝑝̅]  (D.5) 

𝐸௜ൣ𝐸തଶ[𝑝̅]൧  = 𝜔𝐸௜ൣ𝐸ത[𝜇̅]൧ + (1 − 𝜔)(1 − 𝛼)𝐸௜ൣ𝐸തଷ[𝑚]൧ + (1 − 𝜔)𝛼𝐸௜ൣ𝐸തଷ[𝑝̅]൧  (D.6) 

The price is set as: 

𝑝௜ = (1 − 𝛼)𝐸௜[𝑚] + 𝛼𝜔𝜇௜ + 𝛼(1 − 𝜔)(1 − 𝛼)𝐸௜ൣ𝐸ത[𝑚]൧ + 𝛼ଶ(1 − 𝜔)𝐸௜ൣ𝐸ത[𝑝̅]൧  

= (1 − 𝛼)𝐸௜[𝑚] + 𝛼𝜔𝜇௜ + 𝛼(1 − 𝜔)(1 − 𝛼)𝐸௜ൣ𝐸ത[𝑚]൧  

+𝛼ଶ(1 − 𝜔)𝜔𝐸௜[𝜇̅] + 𝛼ଶ(1 − 𝜔)ଶ(1 − 𝛼)𝐸௜ൣ𝐸തଶ[𝑚]൧ + 𝛼ଷ(1 − 𝜔)ଶ𝜔𝐸௜ൣ𝐸ത[𝜇̅]൧  

+𝛼ଷ(1 − 𝜔)ଷ(1 − 𝛼)𝐸௜ൣ𝐸തଷ[𝑚]൧ + 𝛼ସ(1 − 𝜔)ଷ𝐸௜ൣ𝐸തଷ[𝑝̅]൧ + ⋯  (D.7) 

We can rewrite equation (D.7) as: 

𝑝௜ = 𝛼𝜔𝜇௜ + 𝛼𝜔 ∑ 𝛼௞ାଵ(1 − 𝜔)௞ାଵ𝐸௜ ቂ𝐸ത௞[𝜇̅]ቃஶ
௞ୀ଴   

+(1 − 𝛼) ∑ 𝛼௞(1 − 𝜔)௞ൣ൫1 − 𝛿௞ାଵ൯𝑦 + 𝛿௞ାଵ𝑥௜൧ஶ
௞ୀ଴    (D.8) 

To make progress, we need to impose some structure on 𝐸௜ ቂ𝐸ത௞[𝜇̅]ቃ.  The optimal price depends on the individual’s 

expectations of the average prior, 𝜇̅.  We allow this mean to be unknown, but let each manager observe a private signal of 

the mean: 𝜍௜ ∼ 𝑁(𝜇̅, 𝜅చ
ିଵ). We assume that the manager’s own “long-run” prior skews his view of the aggregate prior (this 

assumption extends the effect of priors into higher-order expectations):  

𝐸௜[𝜇̅] = 𝜔ᇱ𝜇௜ + (1 − 𝜔′)𝜍௜  (D.9) 
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where 𝜔ᇱ =
఑ഒ

షభ

(ఊᇱ)మା఑ഒ
షభ and (𝛾′)ଶ ≥ 0 is a parameter measuring the extent to which the managers prefer their own “long-run” 

priors when he is forming beliefs about 𝜇̅. 

The average value of expectation 𝐸௜[𝜇̅] in equation (D.9) is 𝐸ത[𝜇̅] = 𝜇̅.  Therefore, 𝐸௜ൣ𝐸ത[𝜇̅]൧ = 𝜔ᇱ𝜇௜ + (1 − 𝜔′)𝜍௜ 

and 𝐸തଶ[𝜇̅] = 𝜇̅. By using repeated substitutions, we find that the expectation for all orders of expectations of the aggregate 

prior are the same, i.e. 𝐸ത௞[𝜇̅] = 𝜇̅ for any 𝑘.  Using this insight, we find that the optimal price formula can be written as : 

𝑝௜ = 𝛼𝜔𝜇௜ + 𝛼𝜔 ∑ 𝛼௞ାଵ(1 − 𝜔)௞ାଵ(𝜔ᇱ𝜇௜ + (1 − 𝜔ᇱ)𝜍௜)ஶ
௞ୀ଴   

+(1 − 𝛼) ∑ 𝛼௞(1 − 𝜔)௞ൣ൫1 − 𝛿௞ାଵ൯𝑦 + 𝛿௞ାଵ𝑥௜൧ஶ
௞ୀ଴   (D.10) 

We can further rewrite this equation in terms of strategies: 

𝑝௜ = 𝜙ఓ𝜇௜ + 𝜙చ𝜍௜ + 𝜙௫𝑥௜ + 𝜙௬𝑦  (D.11) 

where  

𝜙ఓ = 𝛼𝜔 ቂ1 +
ఈ(ଵିఠ)

ଵିఈ(ଵିఠ)
𝜔ᇱቃ  (D.12) 

𝜙చ = 𝛼𝜔 ቂ
ఈ(ଵିఠ)

ଵିఈ(ଵିఠ)
(1 − 𝜔ᇱ)ቃ  (D.13) 

𝜙௫ =
ఋ(ଵିఈ)

ଵିఈఋ(ଵିఠ)
  (D.14) 

𝜙௬ =
(ଵିఈ)

ଵିఈ(ଵିఠ)
−

ఋ(ଵିఈ)

ଵିఈఋ(ଵିఠ)
  (D.15) 

To simplify notation, define  

𝜃 ≡ 𝜙ఓ + 𝜙చ =
ఈఠ

ଵିఈ(ଵିఠ)
  (D.16) 

Note that  

1 − 𝜃 = 𝜙௫ + 𝜙௬ =
(ଵିఈ)

ଵିఈ(ଵିఠ)
  (D.17) 

If long-priors priors don’t matter, 𝜔 = 0, 𝜔ᇱ = 0, 𝜃 = 0. 

Given equation (D.11), the aggregate price level is:  

𝑝̅ = 𝜃𝜇̅ + 𝜙௫𝑚 + 𝜙௬𝑦.   (D.18) 

The expectations are formed accordingly (with the weight assigned to the “long-run” prior): 

𝐸௜[𝑝̅] = 𝜔𝜇௜ + (1 − 𝜔)[𝜃𝐸௜[𝜇̅] + (1 − 𝜃)𝐸௜(𝑚)]  

= 𝜔𝜇௜ + (1 − 𝜔)ൣ𝜃𝐸௜[𝜇̅] + 𝜙௫𝛿𝑥௜ + ൫(1 − 𝜙௫𝛿) − 𝜃൯𝑦൧  

= (𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)𝜇௜ + (1 − 𝜔)𝜃(1 − 𝜔ᇱ)𝜍௜ + (1 − 𝜔)ൣ𝜙௫𝛿𝑥௜ + ൫(1 − 𝜙௫𝛿) − 𝜃൯𝑦൧  (D.19) 

The average expected price is:  

𝐸ത[𝑝̅] = (𝜔 + (1 − 𝜔)𝜃)𝜇̅ + (1 − 𝜔)ൣ𝜙௫𝛿𝑚 + ൫(1 − 𝜙௫𝛿) − 𝜃൯𝑦൧  (D.20) 

Manager 𝑖 then expects other managers to believe:  

𝐸௜ൣ𝐸ത[𝑝̅]൧ = (𝜔 + (1 − 𝜔)𝜃)𝐸௜[𝜇̅] + (1 − 𝜔)ൣ𝜙௫𝛿𝐸௜[𝑚] + ൫(1 − 𝜙௫𝛿) − 𝜃൯𝑦൧    

= (𝜔 + (1 − 𝜔)𝜃)𝜔ᇱ𝜇௜ + (𝜔 + (1 − 𝜔)𝜃)(1 − 𝜔ᇱ)𝜍௜  

+(1 − 𝜔)ൣ𝜙௫𝛿ଶ𝑥௜ + ൫(1 − 𝜙௫𝛿ଶ) − 𝜃൯𝑦൧  (D.21) 

The average higher-order expectation is   
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𝐸തଶ[𝑝̅] = (𝜔 + (1 − 𝜔)𝜃)𝜇̅ + (1 − 𝜔)ൣ𝜙௫𝛿ଶ𝑚 + ൫(1 − 𝜙௫𝛿ଶ) − 𝜃൯𝑦൧  (D.22) 

Note that the basic noisy-information model is nested in this when 𝜔 = 0.   

Difference in average higher-order and first-order expectations is given by: 

𝐸തଶ[𝑝̅] − 𝐸ത[𝑝̅] = (1 − 𝜔)𝜙௫𝛿(1 − 𝛿)(𝑦 − 𝑚) > 0  (D.23) 

Using equations (D.19)-(D.22), we can find expressions for cross-sectional disagreement and for forecast uncertainty.   

𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ = (𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)ଶ𝜅ఓ
ିଵ + ൫(1 − 𝜔)𝜃(1 − 𝜔ᇱ)൯

ଶ
𝜅చ

ିଵ + (1 − 𝜔)ଶ(𝜙௫𝛿)ଶ𝜅௫
ିଵ  (D.24) 

𝑉𝑎𝑟 ቂ𝐸௜ൣ𝐸ത[𝑝̅]൧ቃ = ൫(𝜔 + (1 − 𝜔)𝜃)𝜔ᇱ൯
ଶ

𝜅ఓ
ିଵ + ൫(𝜔 + (1 − 𝜔)𝜃)(1 − 𝜔ᇱ)൯

ଶ
𝜅చ

ିଵ  

+(1 − 𝜔)ଶ(𝜙௫𝛿ଶ)ଶ𝜅௫
ିଵ  (D.25) 

Ω{ா೔[௣̅]|௬} = ൫(1 − 𝜔)𝜃(1 − 𝜔ᇱ)൯
ଶ

𝜅చ
ିଵ + (1 − 𝜔)ଶ(𝜙௫𝛿)ଶ𝜅௫

ିଵ  (D.26) 

Ω{ா೔ൣாത[௣̅]൧|௬} = ൫(𝜔 + (1 − 𝜔)𝜃)(1 − 𝜔ᇱ)൯
ଶ

𝜅చ
ିଵ + (1 − 𝜔)ଶ(𝜙௫𝛿ଶ)ଶ𝜅௫

ିଵ  (D.27) 

While deriving expressions for uncertainty in equations (D.26) and (D.27), we assume that each manager knows his own 

“long-run” prior with certainty and is not considering that his “long-run” prior differs from the aggregate prior. 

Note that, unlike the basic noisy-information model where uncertainty about higher-order expectations is always 

lower than uncertainty in first-order expectations, the “long-run” prior modification of the basic model does not make a 

clear prediction, that is, the difference in uncertainty for higher- and first-order expectations is ambiguous and depends on 

parameter values (in particular on relative magnitudes of 𝜅చ
ିଵ and 𝜅௫

ିଵ):   

Ω{ா೔ൣாത[௣̅]൧|௬} − Ω{ா೔[௣̅]|௬} = ቂ𝜔 ቀ(𝜔 + (1 − 𝜔)𝜃) + ൫(1 − 𝜔)𝜃൯ቁቃ (1 − 𝜔ᇱ)ଶ𝜅చ
ିଵ + (1 − 𝜔)ଶ(𝜙௫𝛿)ଶ(𝛿ଶ − 1)𝜅௫

ିଵ.  

But in any case, the model is capable of reproducing fact 4. In a similar spirit, the model is capable of reproducing fact 3.  

To derive the slope for the regression of higher-order expectations on first-order expectations, we use equation 

(D.19) and (D.21):  

𝑏෠ை௅ௌ =
𝑐𝑜𝑣(𝐸௜[𝑝̅], 𝐸௜ൣ𝐸ത[𝑝̅]൧

𝑣𝑎𝑟(𝐸௜[𝑝̅])

=
(𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)൫(𝜔 + (1 − 𝜔)𝜃)𝜔ᇱ൯𝜅ఓ

ିଵ + ൫(1 − 𝜔)𝜃(𝜔 + (1 − 𝜔)𝜃)(1 − 𝜔ᇱ)ଶ൯𝜅చ
ିଵ + (1 − 𝜔)ଶ(𝜙௫

ଶ𝛿ଷ)𝜅௫
ିଵ

(𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)ଶ𝜅ఓ
ିଵ + ൫(1 − 𝜔)𝜃(1 − 𝜔ᇱ)൯

ଶ
𝜅చ

ିଵ + (1 − 𝜔)ଶ(𝜙௫𝛿)ଶ𝜅௫
ିଵ

 

One can then show that  

𝑏෠ை௅ௌ − 1 =

ቈ
(𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)൫(𝜔 + (1 − 𝜔)𝜃)𝜔ᇱ − 1൯𝜅ఓ

ିଵ + (1 − 𝜔ᇱ)ଶ(1 − 𝜔)𝜃൫(𝜔 + (1 − 𝜔)𝜃) − 1൯𝜅చ
ିଵ

+(1 − 𝜔)ଶ(𝜙௫
ଶ𝛿ଶ)(𝛿 − 1)𝜅௫

ିଵ
቉

(𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)ଶ𝜅ఓ
ିଵ + ൫(1 − 𝜔)𝜃(1 − 𝜔ᇱ)൯

ଶ
𝜅చ

ିଵ + (1 − 𝜔)ଶ(𝜙௫𝛿)ଶ𝜅௫
ିଵ

< 0 

because 𝜔, 𝜔ᇱ, 𝜃, 𝛿 ∈ [0,1]. Hence, the slope of the regression is less than one, which is consistent with the data.  

 

B. Response to information.   

The introduction of priors extends the state space to include 𝜇̅.  Managers form expectations in the following way: 

𝐸௜ ൤
𝑝̅

𝐸ത[𝑝̅]
൨ = ቂ

𝜔
0

ቃ 𝜇௜ + ൤
(1 − 𝜔)𝜃 (1 − 𝜔)𝜙௫

𝜔 + (1 − 𝜔)𝜃 (1 − 𝜔)𝜙௫𝛿
൨ 𝐸௜ ቂ

𝜇̅
𝑚

ቃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦   (D.28) 
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Denote  

Υ ≡ ቂ
𝜐ଵ 𝜐ଶ

𝜐ଷ 𝜐ସ
ቃ ≡ ൤

(1 − 𝜔)𝜃 (1 − 𝜔)𝜙௫

𝜔 + (1 − 𝜔)𝜃 (1 − 𝜔)𝜙௫𝛿
൨. (D.29)  

The prior expectations of the state space are: 

𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ = ቂ
𝜔′ (1 − 𝜔′)
0 0

ቃ ቂ
𝜇௜

𝜍௜
ቃ + ൤

0 0
𝛿 (1 − 𝛿)

൨ ቂ
𝑥௜

𝑦 ቃ  (D.30) 

The prior uncertainty about the state variables is given by: 

Ψ ≡ 𝐸 ൜൤
(𝐸௜[𝜇̅] − 𝜇̅)

(𝐸௜[𝑚] − 𝑚)
൨ [(𝐸௜[𝜇̅] − 𝜇̅) (𝐸௜[𝑚] − 𝑚)]ൠ ≡ ൤

𝜓ଵ 0
0 𝜓ସ

൨  

= ൤
(1 − 𝜔′)ଶ𝜅చ

ିଵ 0

0 𝛿ଶ𝜅ିଵ
൨  (D.31) 

Signals come of the form: 

𝑠 = 𝐻 ቂ
𝜇̅
𝑚

ቃ + 𝐵𝑦 + 𝜉 (D.32)  

Because 𝑦 is observed by the manager, he can subtract 𝐵𝑦 to form the equivalent signal: 

𝑠̃ = 𝐻 ቂ
𝜇̅
𝑚

ቃ + 𝜉  (D.33) 

Using this signal, he forms a posterior estimate of the state space. 

𝐸௜
௉௢௦௧ ቂ

𝜇̅
𝑚

ቃ = [𝐼 − 𝑃𝐻]𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃  (D.34) 

where 𝑃 is the gain from the Kalman filter and is of the form 𝑃 = Ψ𝐻ᇱ൫𝛫క + 𝐻Ψ𝐻ᇱ൯
ିଵ

, 𝛫క is the variance-covariance 

matrix of the vector of noise terms  𝜉. 

We can substitute the prior and posterior expectations into the equation above to get prior and posterior estimates 

of first- and higher-order inflation expectations: 

𝐸௜
௉௢௦௧ ൤

𝑝̅

𝐸ത[𝑝̅]
൨ = ቂ

𝜔
0

ቃ 𝜇௜ + Υ𝐸௜
௉௢௦௧ ቂ

𝜇̅
𝑚

ቃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦  

= ቂ
𝜔
0

ቃ 𝜇௜ + Υ ቀ[𝐼 − 𝑃𝐻]𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠ቁ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦  (D.35) 

 

C. Econometric specification  

To better understand the structure of equation (D.35) and its econometric implementation, consider the case of one signal 

in 𝑠. In this case, 𝐻 is a 1 × 2 matrix: 𝐻 = [ℎଵ ℎଶ].26 The Kalman gain is a 2 × 1 vector and the variance-covariance 

matrix is a single variance term 𝛫క = 𝜅௦
ିଵ. Hence, 

𝑃 = ቂ
𝑝ଵ

𝑝ଵ
ቃ =

ஏுᇱ

఑ೞ
షభାுஏுᇱ

=
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

൤
ℎଵ𝜓ଵ

ℎଶ𝜓ସ
൨  (D.36) 

We can write posteriors are follows:  

𝐸௜
௉௢௦௧ ൤

𝑝̅

𝐸ത[𝑝̅]
൨ = ቂ

𝜔
0

ቃ 𝜇௜ + Υ ൤
1 − 𝑝ଵℎଵ −𝑝ଵℎଶ

−𝑝ଶℎଵ 1 − 𝑝ଶℎଶ
൨ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ + Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦  

                                                 
26 Below we show later what value 𝐻 take in our signals.  
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= ቂ
𝜔
0

ቃ 𝜇௜ +
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

Υ ቈ
𝜅௦

ିଵ + ℎଶ
ଶ𝜓ସ −ℎଵℎଶ𝜓ଵ

−ℎଵℎଶ𝜓ସ 𝜅௦
ିଵ + ℎଵ

ଶ𝜓ଵ

቉ 𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ  

+Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦  

= ቂ
𝜔
0

ቃ 𝜇௜  

+
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቈ
𝜐ଵ𝜅௦

ିଵ + 𝜐ଵℎଶ
ଶ𝜓ସ − 𝜐ଶℎଵℎଶ𝜓ସ −𝜐ଵℎଵℎଶ𝜓ଵ + 𝜐ଶ𝜅௦

ିଵ + 𝜐ଶℎଵ
ଶ𝜓ଵ  

𝜐ଷ𝜅௦
ିଵ + 𝜐ଷℎଶ

ଶ𝜓ସ − 𝜐ସℎଵℎଶ𝜓ସ −𝜐ଷℎଵℎଶ𝜓ଵ + 𝜐ସ𝜅௦
ିଵ + 𝜐ସℎଵ

ଶ𝜓ଵ

቉ 𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ  

+Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦  

= ቂ
𝜔
0

ቃ 𝜇௜  

+
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቈ
(𝜐ଵ𝜅௦

ିଵ + 𝜐ଵℎଶ
ଶ𝜓ସ − 𝜐ଶℎଵℎଶ𝜓ସ)𝐸௜

௉௥௘[𝜇̅] + (−𝜐ଵℎଵℎଶ𝜓ଵ + 𝜐ଶ𝜅௦
ିଵ + 𝜐ଶℎଵ

ଶ𝜓ଵ)𝐸௜
௉௥௘[𝑚] 

(𝜐ଷ𝜅௦
ିଵ + 𝜐ଷℎଶ

ଶ𝜓ସ − 𝜐ସℎଵℎଶ𝜓ସ)𝐸௜
௉௥௘[𝜇̅] + (−𝜐ଵℎଵℎଶ𝜓ଵ + 𝜐ସ𝜅௦

ିଵ + 𝜐ଶℎଵ
ଶ𝜓ଵ)𝐸௜

௉௥௘[𝑚]
቉  

+Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦   

= ቂ
𝜔
0

ቃ 𝜇௜  

+
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቆ𝜅௦
ିଵ ቂ

𝜐ଵ 𝜐ଶ

𝜐ଷ 𝜐ସ
ቃ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ + ቈ
𝜓ସ(𝜐ଵℎଶ

ଶ − 𝜐ଶℎଵℎଶ) 𝜓ଵ(𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ)

𝜓ସ(𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ) 𝜓ଵ(𝜐ସℎଵ

ଶ − 𝜐ଷℎଵℎଶ)
቉ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃቇ  

+Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦   

= ቂ
𝜔
0

ቃ 𝜇௜  

+
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቆ𝜅௦
ିଵΥ𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ + ቈ
𝜓ସ(𝜐ଵℎଶ

ଶ − 𝜐ଶℎଵℎଶ) 𝜓ଵ(𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ)

𝜓ସ(𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ) 𝜓ଵ(𝜐ସℎଵ

ଶ − 𝜐ଷℎଵℎଶ)
቉ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃቇ  

+Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦   

= ቂ
𝜔
0

ቃ 𝜇௜  

+
఑ೞ

షభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቀΥ𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃቁ  

+
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቈ
𝜓ସ(𝜐ଵℎଶ

ଶ − 𝜐ଶℎଵℎଶ) 𝜓ଵ(𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ)

𝜓ସ(𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ) 𝜓ଵ(𝜐ସℎଵ

ଶ − 𝜐ଷℎଵℎଶ)
቉ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ  

+Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦   

= ቂ
𝜔
0

ቃ 𝜇௜  

+
఑ೞ

షభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

൬Υ𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + ቂ
𝜔
0

ቃ 𝜇௜ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦 − ቂ

𝜔
0

ቃ 𝜇௜ −

൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦൰  

+
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቈ
𝜓ସ(𝜐ଵℎଶ

ଶ − 𝜐ଶℎଵℎଶ) 𝜓ଵ(𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ)

𝜓ସ(𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ) 𝜓ଵ(𝜐ସℎଵ

ଶ − 𝜐ଷℎଵℎଶ)
቉ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ  
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+Υ𝑃𝑠̃ + ൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦   

=
௛భ

మటభା௛మ
మటర

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቂ
𝜔
0

ቃ 𝜇௜ + ቀ
఑ೞ

షభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቁ 𝐸௜
௉௥௘ ൤

𝑝̅

𝐸ത[𝑝̅]
൨  

+
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቈ
𝜓ସ(𝜐ଵℎଶ

ଶ − 𝜐ଶℎଵℎଶ) 𝜓ଵ(𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ)

𝜓ସ(𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ) 𝜓ଵ(𝜐ସℎଵ

ଶ − 𝜐ଷℎଵℎଶ)
቉ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ  

+Υ𝑃𝑠̃ +
௛భ

మటభା௛మ
మటర

఑ೞ
షభା௛భ

మటభା௛మ
మటర

൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦  

= ቀ
఑ೞ

షభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቁ 𝐸௜
௉௥௘ ൤

𝑝̅

𝐸ത[𝑝̅]
൨  

௛భ
మటభା௛మ

మటర

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቂ
𝜔
0

ቃ 𝜇௜ +
ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

ቈ
𝜓ସ(𝜐ଵℎଶ

ଶ − 𝜐ଶℎଵℎଶ) 𝜓ଵ(𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ)

𝜓ସ(𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ) 𝜓ଵ(𝜐ସℎଵ

ଶ − 𝜐ଷℎଵℎଶ)
቉ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ  

+Υ𝑃𝑠̃ +
௛భ

మటభା௛మ
మటర

఑ೞ
షభା௛భ

మటభା௛మ
మటర

൤
(1 − 𝜔)(1 − 𝜙௫ − 𝜃)

(1 − 𝜔)(1 − 𝜙௫𝛿 − 𝜃)
൨ 𝑦  (D.37) 

Similar to equation (23) for the basic noisy-information model, equation (D.37) relates posterior beliefs on 𝑝̅ to 

prior beliefs on 𝑝̅, public signal 𝑦 and the new information in the signal provided in a treatment (𝑠̃). The coefficient on the 

prior beliefs is governed by the gain of the Kalman filter. At the same time, equation (D.37) features new terms that depend 

on the “long-run” prior 𝜇௜ and pre-treatment beliefs on fundamentals  𝐸௜
௉௥௘[𝜇̅] and 𝐸௜

௉௥௘[𝑚]. Because we do not observe 

these terms and 𝐸௜
௉௥௘[𝜇̅], 𝐸௜

௉௥௘[𝑚], 𝜇௜ are all correlated with 𝐸௜
௉௥௘[𝑝̅] and 𝐸௜

௉௥௘ൣ𝐸ത[𝑝̅]൧, we may have biased estimates of the 

slope coefficient on prior beliefs about 𝑝̅ when we regress posterior beliefs on prior beliefs and a constant (equation (1) in 

the paper).  

In what follows, we sign and quantify these potential biases. We consider first signal B (that is, we provide firms 

with information on 𝐸௜
௉௥௘[𝑝̅]) and then we consider signal C (that is, we provide firms with information on 𝐸௜

௉௢௦௧ൣ𝐸ത[𝑝̅]൧).  

 

Signal B 

Given equation (D.20), one can show that in this case ℎଵ = 𝜔 + (1 − 𝜔)𝜃 and ℎଶ = (1 − 𝜔)(𝜙௫𝛿). Given expressions for 

𝜐ଵ, … , 𝜐ସ in equation (D.29), one can find that  

𝐵ଶଵ ≡ 𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ = (𝜔 + (1 − 𝜔)𝜃)(1 − 𝜔)ଶ(𝜙௫𝛿)ଶ − (1 − 𝜔)ଶ𝜙௫

ଶ𝛿ଶ(𝜔 + (1 − 𝜔)𝜃) = 0  (D.38) 

𝐵ଶଶ ≡ 𝜐ସℎଵ
ଶ − 𝜐ଷℎଵℎଶ = (1 − 𝜔)𝜙௫𝛿[𝜔 + (1 − 𝜔)𝜃]ଶ − (𝜔 + (1 − 𝜔)𝜃)ଶ(1 − 𝜔)(𝜙௫𝛿) = 0  (D.39) 

Hence, the relationship between 𝐸௜
௉௢௦௧ൣ𝐸ത[𝑝̅]൧ and 𝐸௜

௉௥௘ൣ𝐸ത[𝑝̅]൧ in equation (D.37) is not influenced by 

𝐸௜
௉௥௘[𝜇̅], 𝐸௜

௉௥௘[𝑚], 𝜇௜ (the coefficient on 𝜇௜ is equal to zero) and the estimated slope is not biased.   

 One can also show that  

𝐵ଵଵ ≡ 𝜐ଵℎଶ
ଶ − 𝜐ଶℎଵℎଶ = −(1 − 𝜔)ଶ𝜙௫

ଶ𝛿[𝜃(1 − 𝛿)(1 − 𝜔) + 𝜔] ≤ 0  (D.40) 

𝐵ଵଶ ≡ 𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ = (1 − 𝜔)𝜙௫(𝜔 + (1 − 𝜔)𝜃)[𝜔 + (1 − 𝜔)𝜃(1 − 𝛿)] ≥ 0  (D.41) 

Because 𝐸௜
௉௥௘[𝑝̅] is positively correlated with 𝐸௜

௉௥௘[𝜇̅] and 𝐸௜
௉௥௘[𝑚] (see equation (D.19)), the sign of the bias depends on 

the relative strength of two opposing forces: omitted 𝐸௜
௉௥௘[𝜇̅] biases the estimated slope down, while omitted 𝐸௜

௉௥௘[𝑚] 

biases the estimated slope up. Also notice that 𝜇௜ is positively correlated with 𝐸௜
௉௥௘[𝑝̅] (thus biasing the estimated slope up) 
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and 𝐸௜
௉௥௘[𝜇̅] (see equation (D.9)), which makes signing the bias a more challenging (in terms of algebra) task. If 𝜔 = 0,  

𝜐ଵℎଶ
ଶ − 𝜐ଶℎଵℎଶ = 0 and 𝜐ଶℎଵ

ଶ − 𝜐ଵℎଵℎଶ = 0 and the coefficient on 𝜇௜ is zero so that the estimated slope is unbiased in this 

case.  

Because signals 𝜍௜ and 𝑥௜ and “long-run” prior 𝜇௜ are uncorrelated, we can separate the bias-signing exercise into 

two parts: one due to 𝜍௜ and  𝜇௜ and one due to 𝑥௜. Using equation (D.9), one can find that the omitted term due to 𝜍௜ and  𝜇௜ 

in equation (D.37) is  

𝑂௜
(஻ଵ;ிை)

≡ ቂ
௛భ

మటభା௛మ
మటర

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝜔 +
టర஻భభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝜔ᇱቃ 𝜇௜ +
టర஻భభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

(1 − 𝜔ᇱ)𝜍௜  (D.42) 

From equation (D.19), we know that  𝐸௜[𝑝̅] loads on 𝜍௜ and  𝜇௜ with weights (1 − 𝜔)𝜃(1 − 𝜔ᇱ) and (𝜔 + (1 − 𝜔)𝜃𝜔ᇱ) 

respectively. Hence, the covariance of 𝐸௜[𝑝̅] and 𝑂௜
(஻ଵ;ிை) is  

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘[𝑝̅], 𝑂௜

(஻ଵ;ிை)
ቁ = ቂ

௛భ
మటభା௛మ

మటర

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝜔 +
టర஻భభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝜔ᇱቃ (𝜔 + (1 − 𝜔)𝜃𝜔ᇱ)𝜅ఓ
ିଵ    

+
టర஻భభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

(1 − 𝜔ᇱ)ଶ(1 − 𝜔)𝜃𝜅చ
ିଵ  (D.43) 

Given that 𝐸௜[𝑚] loads on 𝑥௜ with weight 𝛿,27 the omitted term due to 𝐸௜[𝑚] is  

𝑂௜
(஻ଶ;ிை)

≡
టభ஻భమఋ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝑥௜  (D.44) 

We also know from equation (D.19), that 𝐸௜
௉௥௘[𝑝̅] loads on 𝑥௜ with weight (1 − 𝜔)𝜙௫𝛿. The covariance of 𝑂௜

(஻ଶ:ிை) and 

𝐸௜
௉௥௘[𝑝̅] is then  

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘[𝑝̅], 𝑂௜

(஻ଶ;ிை)
ቁ =

టభ஻భమ(ଵିఠ)థೣఋమ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝜅௫
ିଵ > 0 (D.45) 

We use equation (D.19) to compute the cross-sectional variance of 𝐸௜
௉௥௘[𝑝̅]. By combining equations (D.19) and (D.43), 

we compute the bias due to “long-run” priors via 𝜇௜ and 𝜍௜ 

𝑏𝑖𝑎𝑠ଵ
(஻:ிை)

≡
஼௢௩ቀா೔

ುೝ೐[௣̅],ை೔
(ಳభ;ಷೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

≶ 0  (D.46) 

By combining equations (D.19) and (D.45), we compute the bias due to long-run priors via 𝑥௜: 

𝑏𝑖𝑎𝑠ଶ
(஻:ிை)

≡
஼௢௩ቀா೔

ುೝ೐[௣̅],ை೔
(ಳమ;ಷೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐[௣̅]൯

> 0  (D.47) 

Equations (D.46) and (D.47) demonstrate that the sign of the bias depends on parameter values.  

 Importantly, this analysis suggests that the estimated slope coefficient on the priors in specification (1) for first-

order expectations do not have a one-to-one mapping to the gain of the Kalman filter. Instead, it is the gain plus a bias:  

𝑠𝑙𝑜𝑝𝑒஻
ிை = ቀ

఑ಳ
షభ

఑ಳ
షభା௛భ

మటభା௛మ
మటర

ቁ + 𝑏𝑖𝑎𝑠ଵ
(஻:ிை)

+ 𝑏𝑖𝑎𝑠ଶ
(஻:ிை), (D.48) 

which potentially provides with another moment to match. In contrast, the estimated slope coefficient on the priors in 

specification (1) for higher-order expectations continues to have a one-to-one mapping to the gain of the Kalman filter: 

𝑠𝑙𝑜𝑝𝑒஻
ுை = ቀ

఑ಳ
షభ

఑ಳ
షభା௛భ

మటభା௛మ
మటర

ቁ.  (D.49) 

 

                                                 
27 Recall that we do not use 𝑦 in this context because 𝑦 is a common signal and so it does not generate cross-sectional variation. 
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Signal C 

Using equation (D.21), one can show that in this case ℎଵ = 𝜔 + (1 − 𝜔)𝜃 and ℎଶ = (1 − 𝜔)(𝜙௫𝛿ଶ). Given the logic of the 

previous subsection, one can find that  

𝐵ଶଵ ≡ 𝜐ଷℎଶ
ଶ − 𝜐ସℎଵℎଶ = (𝜔 + (1 − 𝜔)𝜃)(1 − 𝜔)ଶ(𝜙௫𝛿ଶ)ଶ − (1 − 𝜔)ଶ𝜙௫

ଶ𝛿ଷ(𝜔 + (1 − 𝜔)𝜃)  

= −(1 − 𝜔)ଶ𝜙௫
ଶ𝛿ଷ(𝜔 + (1 − 𝜔)𝜃)(1 − 𝛿) ≤ 0  (D.50) 

𝐵ଶଶ ≡ 𝜐ସℎଵ
ଶ − 𝜐ଷℎଵℎଶ = (1 − 𝜔)𝜙௫𝛿[𝜔 + (1 − 𝜔)𝜃]ଶ − (𝜔 + (1 − 𝜔)𝜃)ଶ(1 − 𝜔)(𝜙௫𝛿ଶ)  

= (1 − 𝜔)𝜙௫𝛿[𝜔 + (1 − 𝜔)𝜃]ଶ(1 − 𝛿) ≥ 0  (D.51) 

These results suggest that in contrast to the case of signal B, estimated slope in regression (1) using higher-order expectations 

may be biased.  

Following the logic of our derivations for signal B, we find that  

𝐵ଵଵ ≡ 𝜐ଵℎଶ
ଶ − 𝜐ଶℎଵℎଶ = −(1 − 𝜔)ଶ𝜙௫

ଶ𝛿ଶ[𝜃(1 − 𝛿ଶ)(1 − 𝜔) + 𝜔] ≤ 0  (D.52) 

𝐵ଵଶ ≡ 𝜐ଶℎଵ
ଶ − 𝜐ଵℎଵℎଶ = (1 − 𝜔)𝜙௫(𝜔 + (1 − 𝜔)𝜃)[𝜔 + (1 − 𝜔)𝜃(1 − 𝛿ଶ)] ≥ 0  (D.53) 

These results suggest that, for the slope of regression (1) using first-order beliefs, the signs of the biases for signal C are 

similar to the signs of the biases for signal B. Again, if 𝜔 = 0,  𝐵ଵଵ = 0, 𝐵ଵଶ = 0, 𝐵ଶଵ = 0 and 𝐵ଶଶ = 0 and the coefficient 

on 𝜇௜ is zero so that the estimated slope is unbiased in regression (1) using either first-order beliefs or higher-order beliefs.  

Note that, for first-order beliefs, the structure of updating for signal C is identical to the structure of updating for 

signal B and the differences are only the precision of the signal and slightly different expressions for 𝐵ଵଵ and 𝐵ଵଶ. Hence, 

the expression for 𝑏𝑖𝑎𝑠(஼:ிை) (i.e., the bias in the regression (1) for signal C using first-order beliefs) is similar to the 

expression for 𝑏𝑖𝑎𝑠(஻:ிை) but we plug in different values of 𝐵ଵଵ, 𝐵ଵଶ, 𝜅௦. As a result, we can’t sign the 𝑏𝑖𝑎𝑠(஼:ிை) without 

specifying the parameters. 

For the higher-order beliefs, we need to derive new expressions to quantify the bias. One can see that the omitted 

term for to 𝜍௜ and  𝜇௜ in equation (D.37) for signal C is  

𝑂௜
(஼ଵ;ுை)

≡
టర஻మభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝜔ᇱ𝜇௜ +
టర஻మభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

(1 − 𝜔ᇱ)𝜍௜  (D.54) 

From equation (D.21), we know that 𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧ loads on 𝜍௜ and  𝜇௜ with weights (𝜔 + (1 − 𝜔)𝜃)(1 − 𝜔ᇱ) and 

(𝜔 + (1 − 𝜔)𝜃)𝜔ᇱ. Hence, the covariance of 𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧ and 𝑂௜

(஼ଵ;ுை) is  

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧, 𝑂௜

(஼ଵ;ுை)
ቁ =

టర஻మభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

(𝜔ᇱ)ଶ(𝜔 + (1 − 𝜔)𝜃)𝜅ఓ
ିଵ  

+
టర஻మభ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

(1 − 𝜔ᇱ)ଶ(𝜔 + (1 − 𝜔)𝜃)𝜅చ
ିଵ < 0  (D.55) 

Given that 𝐸௜[𝑚] loads on 𝑥௜ with weight 𝛿, the omitted term due to 𝐸௜[𝑚] is  

𝑂௜
(஼ଶ;ுை)

≡
టభ஻మమఋ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝑥௜  (D.56) 

We also know from equation (D.21), that 𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧ loads on 𝑥௜ with weight (1 − 𝜔)𝜙௫𝛿ଶ. The covariance of 𝑂௜

(஼ଶ;ுை) 

and 𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧ is then  

𝐶𝑜𝑣 ቀ𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧, 𝑂௜

(஻ଶ;ிை)
ቁ =

టభ஻మమ(ଵିఠ)థೣఋయ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

𝜅௫
ିଵ > 0 (D.57) 
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We use equation (D.21) to compute the cross-sectional variance of 𝐸௜
௉௥௘ൣ𝐸ത[𝑝̅]൧. By combining equations (D.55) and 

(D.21), we compute the bias due to long-run priors via 𝜇௜ and 𝜍௜ 

𝑏𝑖𝑎𝑠ଵ
(஼:ுை)

≡
஼௢௩ቀா೔

ುೝ೐ൣாത[௣̅]൧,ை೔
(಴భ;ಹೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐ൣாത[௣̅]൧൯

< 0  (D.58) 

By combining equations (D.55) and (D.56), we compute the bias due to long-run priors via 𝑥௜: 

𝑏𝑖𝑎𝑠ଶ
(஼:ுை)

≡
஼௢௩ቀா೔

ುೝ೐ൣாത[௣̅]൧,ை೔
(಴మ;ಹೀ)

ቁ

௏௔௥൫ா೔
ುೝ೐ൣாത[௣̅]൧൯

> 0  (D.59) 

Hence,  

𝑏𝑖𝑎𝑠(஼:ுை) = 𝑏𝑖𝑎𝑠ଵ
(஼:ுை)

+ 𝑏𝑖𝑎𝑠ଶ
(஼:ுை)

≶ 0  (D.60) 

While the bias 𝑏𝑖𝑎𝑠(஼:ுை) is ambiguous, one can show that the expression for the bias can be simplified to  

𝑏𝑖𝑎𝑠(஼:ுை) =
(1 − 𝜔)ଶ𝜙௫

ଶ𝛿ଷ(𝜔 + (1 − 𝜔)𝜃)ଶ(1 − 𝛿)

𝜅஼
ିଵ + ℎଵ

ଶ𝜓ଵ + ℎଶ
ଶ𝜓ସ

𝜅ିଵൣ(1 − 𝜔ᇱ)ଶ(1 − 𝛿ଶ)𝜅చ
ିଵ − 𝛿ଶ(𝜔ᇱ)ଶ𝜅ఓ

ିଵ൧ 

and hence the bias is negative if (𝜔ᇱ)ଶ𝛿ଶ𝜅ఓ
ିଵ > (1 − 𝜔ᇱ)ଶ(1 − 𝛿ଶ)𝜅చ

ିଵ, that is, the dispersion of the long-run priors (𝜅ఓ
ିଵ, 

“disagreement”) has to be sufficiently large relative to the dispersion in private signals (𝜅చ
ିଵ, also equal to uncertainty) about 

the average value of the  about the average value of the long-run bias 𝜇̅.  

In summary, we know that the estimated slopes for treatment C are biased: 

𝑠𝑙𝑜𝑝𝑒஼
ிை = ൬

఑಴
షభ

఑಴
షభା௛భ

మటభା௛మ
మటర

൰ + 𝑏𝑖𝑎𝑠ଵ
(஼:ிை)

+ 𝑏𝑖𝑎𝑠ଶ
(஼:ிை), (D.61) 

𝑠𝑙𝑜𝑝𝑒஼
ுை = ൬

఑಴
షభ

఑಴
షభା௛భ

మటభା௛మ
మటర

൰ + 𝑏𝑖𝑎𝑠ଵ
(஼:ுை)

+ 𝑏𝑖𝑎𝑠(஼:ுை).  (D.62) 

 

Analysis of biases in the estimated slopes 

This section is aimed to better understand the nature of the biases. To keep the discussion focused, we will omit terms that 

are not central to the main points. For example, we can “simplify” equation (D.28) to  

𝐸௜ ൤
𝑝̅

𝐸ത[𝑝̅]
൨ = ቂ

𝜐ଵ 𝜐ଶ

𝜐ଷ 𝜐ସ
ቃ 𝐸௜ ቂ

𝜇̅
𝑚

ቃ + {𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠}   (D.63) 

where as in (D.29) we have  

Υ ≡ ቂ
𝜐ଵ 𝜐ଶ

𝜐ଷ 𝜐ସ
ቃ ≡ ൤

(1 − 𝜔)𝜃 (1 − 𝜔)𝜙௫

𝜔 + (1 − 𝜔)𝜃 (1 − 𝜔)𝜙௫𝛿
൨  

We can also write signals B and C as  

𝑠̃஻ = 𝐸ത[𝑝̅] + 𝑛𝑜𝑖𝑠𝑒 = ℎଵ
஻𝜇̅ + ℎଶ

஻𝑚 + 𝑛𝑜𝑖𝑠𝑒 = {𝜔 + (1 − 𝜔)𝜃}𝜇̅ + {(1 − 𝜔)𝜙௫𝛿}𝑚 + 𝑛𝑜𝑖𝑠𝑒 (D.64) 

𝑠̃஼ = 𝐸തଶ[𝑝̅] + 𝑛𝑜𝑖𝑠𝑒 = ℎଵ
஼𝜇̅ + ℎଶ

஼𝑚 + 𝑛𝑜𝑖𝑠𝑒 = {𝜔 + (1 − 𝜔)𝜃}𝜇̅ + {(1 − 𝜔)𝜙௫𝛿ଶ}𝑚 + 𝑛𝑜𝑖𝑠𝑒  (D.65) 

Note that, by taking an average of first-order expectations, signal B effectively aggregates first-order expectations of 

managers into a second-order expectation. In a similar spirit, signal C effectively aggregates second-order expectations of 

managers into a third-order expectation. 

 We can also focus on the “bias” terms in equation (D.37):  

ଵ

఑ೞ
షభା௛భ

మటభା௛మ
మటర

൤
𝜓ସℎଶ(𝜐ଵℎଶ − 𝜐ଶℎଵ) 𝜓ଵℎଵ(𝜐ଶℎଵ − 𝜐ଵℎଶ)

𝜓ସℎଶ(𝜐ଷℎଶ − 𝜐ସℎଵ) 𝜓ଵℎଵ(𝜐ସℎଵ − 𝜐ଷℎଶ)
൨ 𝐸௜

௉௥௘ ቂ
𝜇̅
𝑚

ቃ  (D.66) 



85 
 

Given that 𝜐ଶℎଵ ≥ 𝜐ଵℎଶ and 𝜐ସℎଵ ≥ 𝜐ଷℎଶ, we know that the first column of the matrix multiplying 𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ is (weakly) 

negative and the second column of the matrix is (weakly) positive. Furthermore, from our discussion above, we know that 

𝜐ସℎଵ
஻ = 𝜐ଷℎଶ

஻ for the response of higher-order expectations to signal B. For all other expectations and signals we have strict 

inequalities. Inequalities 𝜐ଶℎଵ ≥ 𝜐ଵℎଶ and 𝜐ସℎଵ ≥ 𝜐ଷℎଶ can be rearranged as 
జమ

జభ
≥

௛మ

௛భ
 and 

జర

జయ
≥

௛మ

௛భ
 , or in words 

௪௘௜௚  ௢௙ ௠ ௜௡ ிை(ுை) ௘௫௣௘௖௧௔௧௜௢௡ ௣̅

௪௘௜௚௛௧ ௢௙ ఓഥ ௜௡ ிை(ுை) ௘௫௣௘௖௧௔௧௜௢௡ ௣̅
≥

௪௘௜௚௛௧ ௢௙ ௠ ௜௡ ௦௜௚௡௔௟ ௦

௪௘௜௚௛  ௢௙ ఓഥ ௜௡ ௦௜௚௡௔௟ ௦
  (D.67) 

and this weak inequality turns into equality only for the response of higher-order expectations to signal B. More specifically, 

equation (D.63) shows that expectations of the price level 𝑝̅ are linear combinations of two “fundamentals” 𝜇̅ and 𝑚 with 

the corresponding weights  𝜐ଵ and 𝜐ଶ for first-order (FO) expectations and 𝜐ଷ and 𝜐ସ for higher-order (HO) expectations. 

The signals in (D.64)-(D.65) are also linear combinations of these two “fundamentals” but the weights on the 

“fundamentals” are different. The relative weight on 𝑚 in expectations of the price level 𝑝̅ is weakly greater than the relative 

weight on 𝑚 in the signals. We have the equality of the relative weights only when we have the response of second-order 

expectations in response to signal B. To appreciate the significance of this equality, we let 𝐾 be the factor of proportionality 

for the weights (i.e., [𝜐ଷ 𝜐ସ] = 𝐾[ℎଵ
஻ ℎଶ

஻]) and examine whether we can express observed posterior second-order 

expectations of 𝑝̅  as a function of observed prior second-order expectations of 𝑝̅ and signal B: 

𝐸௜
௣௢௦௧

ൣ𝐸ത[𝑝̅]൧ = [𝜐ଷ 𝜐ସ]𝐸௜
௉௢௦௧ ቂ

𝜇̅
𝑚

ቃ + {𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠}  

= 𝐾[ℎଵ
஻ ℎଶ

஻] ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ + {𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠}  

= 𝐾𝐻 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃቅ + 𝐾𝐻𝑃𝑠̃஻  

= 𝐾𝐻(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝐾𝐻𝑃𝑠̃஻  

= 𝐾(𝐻 − 𝐻𝑃𝐻)𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝐾𝐻𝑃𝑠̃஻  

= 𝐾(𝐼ଵ×ଵ − 𝐻𝑃)𝐻𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝐾𝐻𝑃𝑠̃஻   

= (𝐼ଵ×ଵ − 𝐻𝑃)𝐾𝐻𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝐾𝐻𝑃𝑠̃஻   

= (𝐼ଵ×ଵ − 𝐻𝑃)[𝜐ଷ 𝜐ସ]𝐸௜
௉௥௘ ቂ

𝜇̅
𝑚

ቃ + 𝐾𝐻𝑃𝑠̃஻   

= (𝐼ଵ×ଵ − 𝐻𝑃)𝐸௜
௣௥௜௢௥

ൣ𝐸ത[𝑝̅]൧ + 𝐾𝐻𝑃𝑠̃஻  (D.68) 

This derivation shows that because the observable 𝐸௜ൣ𝐸ത[𝑝̅]൧ has the same relative weights on 𝐸௜ ቂ
𝜇̅
𝑚

ቃ as the signal B on ቂ
𝜇̅
𝑚

ቃ, 

we can reduce the two-dimensional state-space of 𝐸௜ ቂ
𝜇̅
𝑚

ቃ  to one dimension; that is, it is “as if” we can construct a synthetic 

state for 𝐸௜ൣ𝐸ത[𝑝̅]൧ that collapses two state variables in one. Notice that this case applies only when we feed a second-order 

expectations (signal B) to second-order expectations. In other cases, we feed a higher-order expectation to measure the 

reaction in terms of a lower-order expectations. For example, signal C feeds a third-order expectation to measure the reaction 

of first-order expectations 𝐸௜[𝑝̅] or second-order expectations 𝐸௜ൣ𝐸ത[𝑝̅]൧. In a similar spirit, we have a discrepancy in relative 

weights when we feed a second-order expectation (signal B) to measure the response of first-order expectations 𝐸௜[𝑝̅]. 
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 What are the consequences of such a discrepancy? Consider e.g. the response of higher-order expectations for signal 

C. Given 
జర

జయ
>

௛మ

௛భ
, we express  [𝜐ଷ 𝜐ସ] = 𝐾[ℎଵ

஼ ℎଶ
஼] + [0 𝑅] = 𝐾[ℎଵ

஼ ℎଶ
஼] + 𝑹 = 𝐾𝐻 + 𝑹 and 𝑅 > 0 where as before 

𝐾 is a factor of proportionality. Then we can express the posterior second-order expectation for observable 𝐸௜ൣ𝐸ത[𝑝̅]൧ as: 

 𝐸௜
௣௢௦௧

ൣ𝐸ത[𝑝̅]൧ = [𝜐ଷ 𝜐ସ]𝐸௜
௉௢௦௧ ቂ

𝜇̅
𝑚

ቃ + {𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠} 

= {𝐾[ℎଵ
஼ ℎଶ

஼] + 𝑹} ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஼ቅ  

= 𝐾[ℎଵ
஼ ℎଶ

஼] ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஼ቅ + 𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= 𝐾 ቄ𝐻(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝐻𝑃𝑠̃஼ቅ + 𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= 𝐾 ቄ(𝐼ଵ×ଵ − 𝐻𝑃)𝐻𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝐻𝑃𝑠̃஼ቅ + 𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= ቄ(𝐼ଵ×ଵ − 𝐻𝑃)𝐾𝐻𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝐻𝑃𝑠̃஼ቅ + 𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= ቄ(𝐼ଵ×ଵ − 𝐻𝑃)(𝐾𝐻 + 𝑹 − 𝑹)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝐻𝑃𝑠̃஼ቅ + 𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= ቄ(𝐼ଵ×ଵ − 𝐻𝑃)([𝜐ଷ 𝜐ସ] − 𝑹)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝐻𝑃𝑠̃஼ቅ + 𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= ቄ(𝐼ଵ×ଵ − 𝐻𝑃)[𝜐ଷ 𝜐ସ]𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ − (𝐼ଵ×ଵ − 𝑃𝐻)𝑹𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝐻𝑃𝑠̃஼ቅ  

+𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= ቄ(𝐼ଵ×ଵ − 𝐻𝑃)𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ − (𝐼ଵ×ଵ − 𝑃𝐻)𝑹𝐸௜

௉௥௜௢௥ ቂ
𝜇̅
𝑚

ቃ + 𝐻𝑃𝑠̃஼ቅ + 𝑹 ቄ(𝐼ଶ×ଶ − 𝑃𝐻)𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ + 𝑃𝑠̃஻ቅ  

= (𝐼ଵ×ଵ − 𝐻𝑃)𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ + {𝐾𝐻𝑃 + 𝑹𝑃}𝑠̃஼ + {𝑹(𝐼ଶ×ଶ − 𝑃𝐻) − (𝐼ଵ×ଵ − 𝑃𝐻)𝑹}𝐸௜

௉௥௜௢௥ ቂ
𝜇̅
𝑚

ቃ  

= (𝐼ଵ×ଵ − 𝐻𝑃)𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ + {𝐾𝐻 + 𝑹}𝑃𝑠̃஼ + {𝑹(𝐼ଶ×ଶ − 𝑃𝐻) − (𝐼ଵ×ଵ − 𝑃𝐻)𝑹}𝐸௜

௉௥௜௢௥ ቂ
𝜇̅
𝑚

ቃ  

= (𝐼ଵ×ଵ − 𝐻𝑃)𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ + {𝐾𝐻 + 𝑹}𝑃𝑠̃஼  

+ ቊ[0 𝑅] ቈ
1 − 𝑝ଵℎଵ

஼ −𝑝ଵℎଶ
஼

−𝑝ଶℎଵ
஼ 1 − 𝑝ଶℎଶ

஼቉ − ൫1 − 𝑝ଵℎଵ
஼ − 𝑝ଶℎଶ

஼൯[0 𝑅]ቋ 𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ   

= (𝐼ଵ×ଵ − 𝐻𝑃)𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ + {𝐾𝐻 + 𝑹}𝑃𝑠̃஼  

+ൣ𝑅൫−𝑝ଵℎଶ
஼൯ 𝑅൫1 − 𝑝ଶℎଶ

஼൯ − 𝑅(1 − 𝑝ଵℎଵ
஼ − 𝑝ଶℎଶ

஼)൧𝐸௜
௉௥௜௢௥ ቂ

𝜇̅
𝑚

ቃ  

= (𝐼ଵ×ଵ − 𝐻𝑃)𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ + {𝐾𝐻 + 𝑹}𝑃𝑠̃஼ − 𝑅𝑝ଵℎଶ

஼𝐸௜
௉௥௜௢௥[𝜇̅] + 𝑅𝑝ଵℎଵ

஼𝐸௜
௉௥௜௢௥[𝑚]  (D.69) 

Intuitively, we study the reaction of lower-order expectations (which have a relatively high weight on 𝑚) to a signal about 

higher-order expectations (which have a lower relative weight on 𝑚). Because of these differences in the weights, the 

posterior observable 𝐸௜
௣௢௦௧

ൣ𝐸ത[𝑝̅]൧ cannot be expressed only as a function of the prior observable 𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ and signal 𝑠̃஼ 

and so regression 𝐸௜
௣௢௦௧

ൣ𝐸ത[𝑝̅]൧ on 𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ and 𝑠̃஼ is misspecified. Because 𝜌൫𝐸௜

௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧, 𝐸௜
௉௥௜௢௥[𝜇̅]൯ > 0 and 

𝜌൫𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧, 𝐸௜

௉௥௜௢௥[𝑚]൯ > 0, it follows that the regressor 𝐸௜
௉௥௜௢௥ൣ𝐸ത[𝑝̅]൧ is negatively correlated with omitted term 

൛−𝑅𝑝ଵℎଶ
஼𝐸௜

௉௥௜௢௥[𝜇̅]ൟ thus creating a negative bias and positively correlated with omitted term ൛𝑅𝑝ଵℎଵ
஼𝐸௜

௉௥௜௢௥[𝑚]ൟ thus 
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creating a positive bias. Equation (D.69) makes clear that to have a large negative bias in the estimated slope of specification 

(1), one needs large variation in long-run priors 𝜇௜ and/or a large value of 𝑅𝑝ଵℎଶ
஼.  This sign pattern of biases also holds for 

the response of first-order expectations to signals B and C.  

 Intuitively, as we increase the order of expectations, the weight on 𝑚 is shrinking because, while thinking about the 

expectations of others, managers put increasingly more weight on the common public signal 𝑦. On the other hand, the 

weight on 𝜇̅ does not shrink because there is no common public signal about the average prior 𝜇̅. Hence, as we increase the 

order of expectations in signals, signals are increasingly skewed (in relative terms) toward 𝜇̅. As a result, when we 

extrapolate the posterior beliefs for a given order of expectations from the prior beliefs for that order in response to a signal 

that measures a higher order of expectations, this extrapolation overstate the contribution due to 𝜇̅ and understate the 

contribution due to 𝑚.  

   

 

D. Identification and estimation of structural parameters 

We have six structural parameters in the model with long-run priors: 𝜅௫, 𝜅௬, 𝜅ఓ, 𝜅చ, 𝜔, 𝜔′. In addition, there is strategic 

complementarity parameter 𝛼 that we identify using external data (as in Afrouzi (2018)).  

On the other hand, we have four independent moments from the data (equations (D.24)-(D.27)) that we used before 

in calibrating the basic noisy-information model: two moments on disagreement 𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ and 𝑉𝑎𝑟 ቂ𝐸௜ൣ𝐸ത[𝑝̅]൧ቃ; two 

moments on uncertainty Ω{ா೔[௣̅]|௬} and Ω{ா೔ൣாത[௣̅]൧|௬}.
28 In addition, we have now more information in slope coefficients 

estimated in specification (1) for signals B and C: additional moments given by (D.48), (D.49), (D.61), (D.62). At the same 

time, we note that using the estimated slopes potentially “consumes” two degrees of freedom since we now need to calibrate 

𝜅஼ and 𝜅஻. We can impose a restriction that 𝜅஻ = 𝜅஼ . Also note that equation (D.49) does not bring in an independent 

moment in general because it can be expressed as a function of other moments (i.e., we have over-identification here) as 

long as there is no bias.  

The system is still under-identified (the order condition is not satisfied) and so we need to introduce external 

information (more moments) and/or impose additional constraints. For example, we make the following assumption (A1): 

𝛾 = 𝛾′. Additionally, we use data from CGK (another survey), we can identify 𝜔 from regressing short-term (one-year-

ahead) inflation expectations on long-run (5-year-ahead) inflation expectations, which proxies long-run priors 𝜇௜. This 

regression corresponds to equation (41) in the paper. This regression is valid under the assumption that long-run priors are 

not affected by short-run (“business cycle”) fluctuations. This assumption corresponds to the assumption in the model that 

long-run priors 𝜇௜ are uncorrelated with other shocks in the model. We find that 𝜔ෝ = 0.79. If we had long-run and short-

run higher-order expectations for inflation, we would have been able to recover 𝜔′ from the slope coefficient in a similar 

regression using higher-order expectations, thus giving us another moment. 

                                                 
28 𝐶𝑜𝑣൫𝐸௜[𝑝̅], 𝐸௜ൣ𝐸ത[𝑝̅]൧൯ is not an independent moment because this covariance may be expressed as a product of 𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ − Ω{ா೔[௣̅]|௬} 

and 𝑉𝑎𝑟 ቂ𝐸௜ൣ𝐸ത[𝑝̅]൧ቃ − Ω{ா೔ൣாത[௣̅]൧|௬}.  
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Since we do not have enough information to identify all structural parameters, we are interested in whether the 

noisy-information model with long-run priors can in principle reproduce the patterns observed in the data. Specifically, we 

do a moment matching exercises where empirical moments are 𝑉𝑎𝑟ൣ𝐸ప[𝑝̅]൧෣  , 𝑉𝑎𝑟 ቂ𝐸పൣ𝐸ത[𝑝̅]൧ቃ
෣

, Ω෡{ா೔[௣̅]|௬}, Ω෡{ா೔ൣாത[௣̅]൧|௬}, 

𝑠𝑙𝑜𝑝𝑒෣
஻
ிை  , 𝑠𝑙𝑜𝑝𝑒෣

஻
ுை, 𝑠𝑙𝑜𝑝𝑒෣

஼
ிை, 𝑠𝑙𝑜𝑝𝑒෣

஼
ிை and the theoretical predictions for these moments are given by (D.23)-(D.27) and 

(D.48), (D.49), (D.61), (D.62). We find that if 𝜅஻ = 𝜅஼ , the noisy-information model with long-run can qualitatively 

reproduce facts 1 through 6 but it will struggle with matching the difference between 𝑠𝑙𝑜𝑝𝑒෣
஻
ிை ≈ 𝑠𝑙𝑜𝑝𝑒෣

஻
ுை ≈ 0.5 and 

𝑠𝑙𝑜𝑝𝑒෣
஼
ிை ≈ 𝑠𝑙𝑜𝑝𝑒෣

஼
ிை ≈ 0.1. In other words, the model can generate 𝑠𝑙𝑜𝑝𝑒஻

ிை ≈ 𝑠𝑙𝑜𝑝𝑒஻
ுை > 𝑠𝑙𝑜𝑝𝑒஼

ிை ≈ 𝑠𝑙𝑜𝑝𝑒஼
ிை but the 

difference between  𝑠𝑙𝑜𝑝𝑒஻
ிை and 𝑠𝑙𝑜𝑝𝑒஼

ிை would be smaller than the difference between 𝑠𝑙𝑜𝑝𝑒෣
஻
ிை and 𝑠𝑙𝑜𝑝𝑒෣

஼
ிை. This issue 

can be fixed if we allow for small difference in the precision of signals B and C, that is, 𝜅஼ ≠ 𝜅஻. For example, if 𝜅஼ = 2𝜅஻ 

(and we keep assumption (A1)), the model can hit 𝑠𝑙𝑜𝑝𝑒෣
஻
ிை ≈ 𝑠𝑙𝑜𝑝𝑒෣

஻
ுை ≈ 0.5 and 𝑠𝑙𝑜𝑝𝑒෣

஼
ிை ≈ 𝑠𝑙𝑜𝑝𝑒෣

஼
ிை ≈ 0.1. Note that 

allowing 𝜅஼ ≠ 𝜅஻ can also help the basic noisy-information model to match 𝑠𝑙𝑜𝑝𝑒෣
஻
ிை ≈ 𝑠𝑙𝑜𝑝𝑒෣

஻
ுை ≈ 0.5 and 𝑠𝑙𝑜𝑝𝑒෣

஼
ிை ≈

𝑠𝑙𝑜𝑝𝑒෣
஼
ிை ≈ 0.1, but in this case 𝜅஼ must be an order of magnitude larger than 𝜅஻. Thus, relative to the basic noisy-

information model, the noisy-information model with long-run priors can match the data with modest (rather than radical) 

variation in the precision of signals in treatments B and C.   
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Appendix E:  
Extension of the basic noisy-

information model:  
Overconfidence 
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In this extension, we allow managers to hold beliefs about signal precision that differ from the truth.  In order to generate the 

same patterns seen in the data, managers must overestimate the precision of the private signal, 𝜅௫, as in Daniel, Hirshleifer and 

Subrahmanyam (1998). 

Specifically, managers continue to receive public and private signals: 

𝑥௜ = 𝑚 + 𝜈௜,ଵ  (E.1) 

𝑦 = 𝑚 + 𝜀  (E.2) 

where 𝜈௜,ଵ ∼ 𝑁(0, 𝜅௫
ିଵ), and 𝜀 ∼ 𝑁൫0, 𝜅௬

ିଵ൯.  However, we allow them to overestimate the precision of the private signal 

such that 𝐸௜[𝜅௫] > 𝜅௫.  The manager now overestimates the relative precision of the private signal: 𝛿ሚ =
ா[఑ೣ]

఑೤ାா[఑ೣ]
>

఑ೣ

఑೤ା఑ೣ
=

𝛿.  His expectation of 𝑚 is formed as follows: 

𝐸௜[𝑚] = 𝛿ሚ𝑥௜ + ൫1 − 𝛿ሚ൯𝑦   (E.3) 

so the agent’s perceived level of the fundamental is overly sensitive to the private signal but insufficiently sensitive to the 

public signal. The pricing strategies follow from the over-precise value of 𝛿: 𝜙෨௫ =
(ଵିఈ)ఋ෩

(ଵିఈ)ఋ෩ା൫ଵିఋ෩൯
 and 𝜙෨௬ =

ଵିఋ෩

(ଵିఈ)ఋ෩ା൫ଵିఋ෩൯
.  

The aggregate price level is therefore 

𝑝  ≡ ∫ 𝑝௝𝑑𝑗
ே

଴
= 𝜙෨௬𝑦 + 𝜙෨௫𝑚.  (E.4) 

Expectations follow in the same manner as in the basic model: 

𝐸௜[𝑝] = 𝜙෨௫𝛿ሚ𝑥௜ + ൫1 − 𝜙෨௫𝛿ሚ൯𝑦   (E.5)  

except that the price response to the private (public) signal is higher (lower) than in the basic noisy-informational model since 

𝜙෨௫𝛿ሚ > 𝜙௫𝛿. Following the logic of Section 3.1, an individual manager’s higher-order expectation is: 

𝐸௜ ቂ𝐸[𝑝]ቃ = 𝜙෨௫𝛿ሚଶ𝑥௜ + ൫1 − 𝜙෨௫𝛿ሚଶ൯𝑦. (E.6)  

The cross-sectional disagreement in first-order and higher-order expectations depend on the true value of 𝜅௫ since this 

determines the actual distribution of private signals: 

𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ = ൫𝜙෨௫𝛿ሚ൯
ଶ

𝜅௫
ିଵ,  (E.7) 

𝑉𝑎𝑟 ቂ𝐸௜ൣ𝐸ത[𝑝̅]൧ቃ = ൫𝜙෨௫𝛿ሚଶ൯
ଶ

𝜅௫
ିଵ. (E.8) 

We assume that managers know their own prior with certainty and do not consider the dispersion of priors around the mean.  

Thus, their first-order and higher-order uncertainty about the price level takes the form: 

Ω{ா೔[௣̅]|௬} = ൫𝜙෨௫𝛿ሚ൯
ଶ

𝐸௜[𝜅௫]ିଵ,  (E.9) 

Ω{ா೔ൣாത[௣̅]൧|௬} = ൫𝜙෨௫𝛿ሚଶ൯
ଶ

𝐸௜[𝜅௫]ିଵ.  (E.10) 

When agents perceive the private signal as being more precise than the public signal, it follows that 𝑉𝑎𝑟ൣ𝐸௜[𝑝̅]൧ > Ω{ா೔[௣̅]|௬} 

and 𝑉𝑎𝑟 ቂ𝐸௜ൣ𝐸ത[𝑝̅]൧ቃ > Ω{ா೔ൣாത[௣̅]൧|௬}: the uncertainty in beliefs about the price level must be lower than the cross-sectional 

dispersion in beliefs as seen in the data.   

 With respect to information treatments, managers in the basic model should respond to signals according to equation 

(23) where prior beliefs are multiplied by (1 − 𝑃𝐻) with 𝑃 being the gain of the filter and 𝐻 being a coefficient mapping the 
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state 𝑚 into the signal 𝑠.  As Signals B and C are constructed from aggregate expectations, 𝐻஻ and 𝐻஼ correspond to the 

relative weight that managers assign to their private signal, 𝑥௜, in forming their first-order and second-order expectations, 

respectively. The coefficient (1 − 𝑃𝐻) =
఑ೞ

షభ

఑ೞ
షభାுమఋ఑షభ differs across signals. The structure of the basic model is preserved in 

this setting, but with perceived signal precisions (and associated response parameters) in lieu of actual signal precisions. 

This continues to yield 𝐻஻ > 𝐻஼, such that managers should respond more strongly to Signal B (first-order treatment) than 

Signal C (higher-order treatment) which is counterfactual.  

However, if one is willing to consider models of overconfidence in which managers mis-ascertain the precisions of 

the signals they receive, one might also consider it reasonable for agents to potentially be overconfident about the quality of 

the signals introduced in the information experiment. Suppose for example that managers assign more weight to the signal 

than the signal fundamentals merit such that the posterior expectations are formed according to: 

𝐸௜
௉௢௦௧ ቈ

𝑝

𝐸[𝑝]
቉ = 𝑃𝐻 ቈ

𝜙௬

𝜙௬ + 𝜙௫(1 − 𝛿)
቉ 𝑦 + (1 − (1 + Θ)𝑃𝐻)𝐸௜

௉௥௘ ቈ
𝑝

𝐸[𝑝]
቉ + ൤

𝜙௫

𝛿𝜙௫
൨ 𝑃𝑠̃  (E.10) 

where Θ > 0 indicates the overweighting of new information towards representative states.  If we hold the signal noise 𝜅௦
ିଵ 

constant and allow Θ to vary across signals, we can match the pattern in our data if Θ஼ > Θ஻, or if managers distort their beliefs 

towards representative states more after observing Signal C than after observing Signal B. This would be broadly consistent 

with the diagnostic expectations of Bordalo et al. (2020).  

To reconcile the data, this approach requires managers to have differential over-confidence in signals B and C and 

thus it resembles the basic noisy-information model in requiring differential precisions for signals B and C, that is, both models 

require an extra degree of freedom to rationalize the observed reactions to signals. Data collected in the survey do not permit 

us to establish whether varying over-confidence or varying precision is behind the smaller weight on the prior in response to 

signal C relative to signal B. Also note that over-confidence alone continues to predict perfect correlation between higher-

order and first-order beliefs because 𝑥௜ continues to be the only source of cross-sectional variation as in the basic noisy-

information model. Consequently, one should introduce a semi-public signal or another device to create an addition source of 

cross-sectional variation in beliefs. 
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Appendix Table F.1: Number of Firms by Sector and Size in NZ, 2016 
 Number of Firms 
 6-9 Workers 10-19 Workers 20-49 Workers 50-99 Workers 100+ Workers ˃ 6 Workers 
Manufacturing 1737 1791 1248 420 312 5508 
Rental, Hiring and Real Estate 528 330 153 15 36 1062 
Professional, Technical, Scientific Services & 
Administrative Support Services 2595 2016 1188 357 336 6492 
Financial and Insurance Services 267 159 96 42 69 633 
Construction 2487 1821 837 204 93 5442 
Wholesale Trade 1284 1107 657 222 120 3390 
Retail Trade 2172 1704 678 258 315 5127 
Accommodation and Food Services 2601 2511 1230 201 108 6651 
Transport, Postal, Warehousing & Information 
Media 744 681 438 171 156 2190 
Total 14415 12120 6525 1890 1545 36495 

Source: Statistics New Zealand 
 
 
Appendix Table F.2: Percentage of Firms by Sector and Size in NZ, 2016 

 Percentage of Firms 
 6-9 Workers 

(%) 
10-19 Workers 

(%) 
20-49 Workers 

(%) 
50-99 Workers 

(%) 
100+ Workers 

(%) 
˃ 6 Workers 

(%) 
Manufacturing 31.54 32.52 22.66 7.63 5.66 100 
Rental, Hiring and Real Estate 49.72 31.07 14.41 1.41 3.39 100 
Professional, Technical, Scientific Services & 
Administrative Support Services 39.97 31.05 18.30 5.50 5.18 100 
Financial and Insurance Services 42.18 25.12 15.17 6.64 10.90 100 
Construction 45.70 33.46 15.38 3.75 1.71 100 
Wholesale Trade 37.88 32.65 19.38 6.55 3.54 100 
Retail Trade 42.36 33.24 13.22 5.03 6.14 100 
Accommodation and Food Services 39.11 37.75 18.49 3.02 1.62 100 
Transport, Postal, Warehousing & Information 
Media 33.97 31.10 20.00 7.81 7.12 100 

Source: Statistics New Zealand 
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Appendix Table F.3: Number of Firms by Sector and Size in the Population of our Survey, 2017 
 Number of Firms 
 6-9 Workers 10-19 Workers 20-49 Workers 50-99 Workers 100+ Workers ˃ 6 Workers 
Manufacturing 946 975 680 420 312 3333 
Rental, Hiring and Real Estate 200 125 58 15 36 433 
Professional, Technical, Scientific Services & 
Administrative Support Services 868 674 397 357 336 2633 
Financial and Insurance Services 80 47 29 42 69 267 
Construction 241 177 81 204 93 796 
Wholesale Trade 65 56 33 222 120 496 
Retail Trade 84 66 26 258 315 750 
Accommodation and Food Services 272 263 129 201 108 973 
Transport, Postal, Warehousing & Information 
Media 20 32 48 164 156 420 
Total 2776 2415 1481 1883 1545 10100 

 
 
Appendix Table F.4: Percentage of Firms by Sector and Size in the Population of our Survey, 2017 

 Percentage of Firms 
 6-9 Workers 

(%) 
10-19 Workers 

(%) 
20-49 Workers 

(%) 
50-99 Workers 

(%) 
100+ Workers 

(%) 
˃ 6 Workers 

(%) 
Manufacturing 28 29 20 13 9 100 
Rental, Hiring and Real Estate 46 29 13 3 8 100 
Professional, Technical, Scientific Services & 
Administrative Support Services 33 26 15 14 13 100 
Financial and Insurance Services 30 18 11 16 26 100 
Construction 30 22 10 26 12 100 
Wholesale Trade 13 11 7 45 24 100 
Retail Trade 11 9 4 34 42 100 
Accommodation and Food Services 28 27 13 21 11 100 
Transport, Postal, Warehousing & Information 
Media 5 8 11 39 37 100 
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Appendix Table F.5: Survey Framework of Main Wave, Number of Firms According to Employment Size Group 

 6-9 Workers 10-19 Workers 20-49 Workers 50-99 Workers 100+ Workers 
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Manufacturing 1737 946 73 1791 975 94 1248 680 83 420 420 44 312 312 25 
Rental, Hiring and Real Estate 528 200 14 330 125 13 153 58 13 15 15 9 36 36 0 
Professional, Technical, 
Scientific Services & 
Administrative Support 
Services 2595 868 41 2016 674 46 1188 397 66 357 357 36 336 336 5 
Financial and Insurance 
Services 267 80 21 159 47 17 96 29 29 42 42 10 69 69 4 
Construction 2487 241 18 1821 177 19 837 81 24 204 204 16 93 93 3 
Wholesale Trade 1284 65 12 1107 56 14 657 33 17 222 222 11 120 120 2 
Retail Trade 2172 84 32 1704 66 27 678 26 35 258 258 14 315 315 15 
Accommodation and Food 
Services 2601 272 9 2511 263 12 1230 129 14 201 201 5 108 108 1 
Transport, Postal, 
Warehousing & Information 
Media 744 20 13 681 32 23 438 48 33 171 164 12 156 156 8 
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Appendix Table F.6: Survey Framework of Main Wave, Percentage of Firms According to Employment Size Group 
 6-9 Workers 10-19 Workers 20-49 Workers 50-99 Workers 100+ Workers 
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Manufacturing 32 28 23 33 29 29 23 20 26 8 13 14 6 9 8 
Rental, Hiring and Real Estate 50 46 29 31 29 27 14 13 27 1 3 18 3 8 0 
Professional, Technical, 
Scientific Services & 
Administrative Support 
Services 40 33 21 31 26 24 18 15 34 5 14 19 5 13 3 
Financial and Insurance 
Services 42 30 26 25 18 21 15 11 36 7 16 12 11 26 5 
Construction 46 30 23 33 22 24 15 10 30 4 26 20 2 12 4 
Wholesale Trade 38 13 21 33 11 25 19 7 30 7 45 20 4 24 4 
Retail Trade 42 11 26 33 9 22 13 4 28 5 34 11 6 42 12 
Accommodation and Food 
Services 39 28 22 38 27 29 18 13 34 3 21 12 2 11 2 
Transport, Postal, 
Warehousing & Information 
Media 34 5 15 31 8 26 20 11 37 8 39 13 7 37 9 

 
 
Appendix Table F.7: Survey Framework of Main Wave, Total Firms 

 Number of Firms Percentage of Firms 
 

St
at

s 
N

Z
 

R
ec

or
ds

 (
#)

 

Fi
rm

s 
A

pp
ro

ac
he

d 
(#

) 

R
es

po
ns

e 
(#

) 

St
at

s 
N

Z
 

R
ec

or
ds

 (
%

) 

Fi
rm

s 
A

pp
ro

ac
he

d 
(%

) 

R
es

po
ns

e 
(%

) 

Manufacturing 5508 3333 319 100 61 10 
Rental, Hiring and Real Estate 1062 433 49 100 41 11 
Professional, Technical, Scientific Services & Administrative Support Services 6492 2633 194 100 41 7 
Financial and Insurance Services 633 267 81 100 42 30 
Construction 5442 796 80 100 15 10 
Wholesale Trade 3390 496 56 100 15 11 
Retail Trade 5127 750 123 100 15 16 
Accommodation and Food Services 6651 973 41 100 15 4 
Transport, Postal, Warehousing & Information Media 2190 420 89 100 19 21 
Total 36495 10100 1032 100 27.64 10.22 
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Appendix Table F.8: Survey Framework of Follow-up Wave, Number of Firms  
 6-9 Workers 10-19 Workers 20-49 Workers 50-99 Workers 100+ Workers Totals 
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Manufacturing 73 36 94 43 83 42 44 26 25 10 319 157 
Rental, Hiring and Real Estate 14 6 13 8 13 4 9 2 0 0 49 20 
Professional, Technical, Scientific 
Services & Administrative Support 
Services 41 22 46 22 66 38 36 17 5 0 194 99 
Financial and Insurance Services 21 10 17 10 29 15 10 4 4 2 81 41 
Construction 18 6 19 11 24 13 16 7 3 2 80 39 
Wholesale Trade 12 7 14 6 17 9 11 3 2 1 56 26 
Retail Trade 32 15 27 14 35 14 14 11 15 10 123 64 
Accommodation and Food Services 9 5 12 6 14 8 5 2 1 0 41 21 
Transport, Postal, Warehousing & 
Information Media 13 6 23 13 33 18 12 6 8 5 89 48 
Total 233 113 265 133 314 161 157 78 63 30 1032 515 

 
 
 
Appendix Table F.9: Survey Framework of Follow-up Wave, Response Rates 

 6-9 Workers 10-19 Workers 20-49 Workers 50-99 Workers 100+ Workers 
 Response Rates Response Rates Response Rates Response Rates Response Rates 
Manufacturing 49 46 51 59 40 
Rental, Hiring and Real Estate 43 62 31 22 0 
Professional, Technical, Scientific Services & Administrative 
Support Services 54 48 58 47 0 
Financial and Insurance Services 48 59 52 40 50 
Construction 33 58 54 44 67 
Wholesale Trade 58 43 53 27 50 
Retail Trade 47 52 40 79 67 
Accommodation and Food Services 56 50 57 40 0 
Transport, Postal, Warehousing & Information Media 46 57 55 50 63 
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Appendix G:  
The effects of expectations on 

firm decisions 
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CGK and Coibion, Gorodnichenko and Ropele (2020) document that information treatments lead not only to 

revisions of inflation expectations but also to changes in firms’ behavior. Armantier et al. (2015) provide some 

evidence of this type for households. Treatments in these earlier studies provide firms with information about 

the inflation target of the central bank, professional forecasts, or past inflation. Little is known about how firms 

react to treatments that involve information about higher-order beliefs. While we find that revisions of beliefs 

are similar for first- and higher-order inflation expectations, a priori one may observe considerable 

heterogeneity in employment/investment/etc. responses across these information treatments. In this appendix, 

we try to establish that firms act upon their self-reported expectations.  

To estimate the effect of changes in inflation expectations on the choices of firms, our approach follows 

CGK. Specifically, before firms were treated in the first wave, they were asked about their three-month-ahead 

plans for future employment, investment, wages, and prices.  Three months after the initial wave, we surveyed 

firms again and asked them to report changes in these four variables over the preceding three months. Using this 

information, we compute forecast error for each variable. The key advantage of using forecast errors is that they 

effectively difference out firm-fixed effects and thus reduce the size of idiosyncratic variation in the data.  

In the next step, we regress forecast errors on changes in inflation expectations: 

𝐹𝐸௜(𝑋) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑏 × ቀ𝐸௜
௣௢௦௧௘௥௜௢௥(𝜋) − 𝐸௜

௣௥௜௢௥(𝜋)ቁ + 𝑒𝑟𝑟𝑜𝑟௜  (G.1) 

where 𝐹𝐸௜(𝑋) is the forecast error for variable 𝑋, 𝐸௜
௣௥௜௢௥(𝜋) is the pre-treatment expected inflation, 

𝐸௜
௣௢௦௧௘௥௜௢௥(𝜋) is the post-treatment expected inflation. For 𝐸௜

௣௢௦௧௘௥௜௢௥(𝜋), we use beliefs of firms measured 

immediately after the treatment. The revision in expectations following an information treatment 

ቀ𝐸௜
௣௢௦௧௘௥௜௢௥(𝜋) − 𝐸௜

௣௥௜௢௥(𝜋)ቁ should be proportional to the difference between the signal and the expected 

value of the signal, that is, the surprise induced by a treatment (see section 4.3 for a formal derivation). Because 

we know pre-treatment values of 𝐸௜(𝜋), 𝐸௜൫𝐸ത(𝜋)൯ and 𝐸௜(𝜋௧ିଵ), we calculate the surprise and use it as an 

instrument for ቀ𝐸௜
௣௢௦௧௘௥௜௢௥(𝜋) − 𝐸௜

௣௥௜௢௥(𝜋)ቁ as in Coibion, Gorodnichenko and Ropele (2020) and Coibion et 

al. (2019). Note that for the control group the surprise is zero because firms in this group are not provided with 

any information. For Group D, which receives both the first- and higher-order expectations, we construct the 

average surprise in expectations. This instrumental variable approach ensures that estimated 𝑏 has a causal 

interpretation. This is important because we observe mean reversion in reported beliefs in the control group 

and therefore some variation in the difference between posteriors and priors is potentially endogenous. When 

we estimate specification (G.1), we do it on data combining the control group and a given treatment group.  

Appendix Table G1 reports estimates of 𝑏 for various treatments using the revisions in first-order 

inflation expectations on the right-hand side of equation (G.1). While treatments vary in their ability to move 

inflation expectations, the results in Appendix Table G1 suggest that, conditional on moving inflation 

expectations a given amount, the reaction of firms to a given change in expectations is largely similar across 

treatments. Consistent with CGK, we find that raising inflation expectations by one percentage point generates 

an approximately 0.4 percentage point increase in employment (column 1), an approximately 0.2 percentage 
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point increase in fixed assets (column 2), and no effect on firms’ prices (column 3) or wages (column 4) over 

the three months following the treatment. The IV estimates of the effects are approximately double the OLS 

estimates (Appendix Table G4).  We also find similar results when we replace first-order inflation expectations 

as the regressor in equation (G.1) with higher-order inflation expectations (Appendix Table G5). 

The survey also collects information about 6-month-ahead plans for firm-specific outcomes in the 

initial survey and 3-month-ahead plans for the same outcomes in the follow-up survey. This design allows us 

to also study the response of revisions in plans to information treatments (that is, the outcome variable in 

specification (G.1) is 3-month-ahead plan in the follow-up wave minus the 6-month-ahead plan in the initial 

wave). We find that while information treatments tend to increase planned investment, these treatments have 

no statistically significant effect on plans for employment, prices, and wages (see Appendix Table G3).   

Note that these causal estimates measure the “total” effects of the information treatment, that is, the 

combined influence of a treatment on both first- and higher-order inflation expectations as well as other 

expectations. Since Treatments B, C, and E have only one signal, we cannot separately identify the contribution 

of first- and higher-order beliefs on firms’ actions. Treatment D contains two signals (two instruments) and 

thus offers us an opportunity to run a horserace regression with first- and higher-order expectations included 

in specification (G.1). We find (Appendix Table G2) that none of the expectations systematically dominates 

the other and, more generally, few estimates are statistically significantly different from zero. These 

inconclusive results likely reflect the strong correlation in revisions of first- and higher-order expectations, 

which limits our ability to identify the independent effects of various orders of expectations. 
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Appendix Table G1. Effect of Information Treatment on Actions. 

 Percent change in: 
Treatment effect  
(relative to control group) 

Workers Fixed Assets 
Price of Main 

Product 
Wages 

 (1) (2) (3) (4) 
 
Treatment B, 𝐸[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.407*** 0.342*** 0.141 0.003 
(0.152) (0.125) (0.132) (0.015) 

Observations  245 245 245 245 
R2 -0.038 -0.050 0.028 0.001 
1st stage F-stat 149.6 149.6 149.6 149.6 

 

Treatment C, 𝐸
ଶ

[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.493* 0.141** -0.078 0.043* 
(0.260) (0.063) (0.072) (0.024) 

Observations  252 252 252 252 
R2 -0.097 0.103 -0.043 -0.198 
1st stage F-stat 15.47 15.47 15.47 15.47 

 

Treatment D, 𝐸[𝜋௧] and 𝐸
ଶ

[𝜋௧]  

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ -0.264 0.214*** 0.019 0.016 
(0.184) (0.060) (0.062) (0.018) 

Observations  253 253 253 253 
R2 0.004 0.066 0.002 0.010 
1st stage F-stat 318.8 318.8 318.8 318.8 

 
Treatment E, 𝜋௧ିଵ 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.352*** 0.251*** 0.096 0.021 
(0.095) (0.096) (0.094) (0.013) 

Observations  251 251 251 251 
R2 0.049 -0.028 -0.005 -0.000 
1st stage F-stat 49.19 49.19 49.19 49.19 

 
Memorandum: Pooled treatment 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.146* 0.229*** 0.045 0.016** 
(0.085) (0.043) (0.046) (0.008) 

Observations  515 515 515 515 
R2 0.007 0.101 0.007 0.005 
1st stage F-stat 221.1 221.1 221.1 221.1 

 
Notes: The table reports the coefficient on the revision of a firm’s first-order inflation expectation in specification (G.1). 
The regressand in each column is the forecast error for a given firm-specific outcome indicated in the second row of the 
table. The regressor is instrumented with surprise component in the provided signal, that is, the difference between 
information provided in a treatment and pre-treatment expectation for the variable provided in the treatment. 1st stage F-
stat reports the first-stage F-statistic. The last panel (pooled treatment) uses surprises pooled across treatments as an 
instrument for the revision of beliefs. Robust standard errors are reported in parentheses. ***, **, and * indicate 
significance at the 0.01, 0.05 and 0.10 percent levels, respectively. 
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Appendix Table G2. Horserace regressions. 

 Panel A. Second-stage regression 
Dependent variable: percent change in: 

Regressors Workers Fixed Assets 
Price of Main 

Product 
Wages 

 (1) (2) (3) (4) 

𝐸௜
௣௢௦௧௘௥௜௢௥

𝜋 − 𝐸௜
௣௥௜௢௥

𝜋 -0.086 0.168** 0.036 0.028 
(0.222) (0.083) (0.053) (0.021) 

𝐸௜
௣௢௦௧௘௥௜௢௥[𝐸ത(𝜋)] − 𝐸௜

௣௥௜௢௥[𝐸ത(𝜋)] -0.239 0.062 -0.023 -0.016 
(0.206) (0.071) (0.077) (0.016) 

Observations 253 253 253 253 
R2 0.002 0.100 -0.001 0.005 
     
 Panel B. First-stage regression 

Dependent variable: 
 𝐸௜

௣௢௦௧௘௥௜௢௥
𝜋 − 𝐸௜

௣௥௜௢௥
𝜋 𝐸௜

௣௢௦௧௘௥௜௢௥[𝐸ത(𝜋)] − 𝐸௜
௣௥௜௢௥[𝐸ത(𝜋)] 

 (1) (2) 

𝑠஻ − 𝐸௜
௣௥௜௢௥

𝜋 0.906*** -0.044** 
(0.037) (0.019) 

𝑠஼ − 𝐸௜
௣௥௜௢௥[𝐸ത(𝜋)] -0.034 0.953*** 

(0.030) (0.027) 
Observations 253 253 
R2 0.656 0.679 
1st stage F-stat 501.9 655.4 
 
Notes: Panel A of the table reports the coefficient on the revision firms’ first-order inflation expectations and the revision 
of their higher-order inflation expectation in specification (G.1). The regressand in each column is the forecast error for 
a given firm-specific outcome indicated in the second row of the table. The regressors are instrumented with surprise 
component in the provided signals, that is, the difference between information provided in a treatment and pre-treatment 
expectation for the variable provided in the treatment. The first-stage regression is reported in Panel B. 1st stage F-stat 
reports the first-stage F-statistic. Robust standard errors are reported in parentheses. ***, **, and * indicate significance 
at the 0.01, 0.05 and 0.10 percent levels, respectively. 
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Appendix Table G3. Effect of Information Treatment on Future Plans. 

 Percent change in: 
Treatment effect  
(relative to control group) 

Workers Fixed Assets 
Price of Main 

Product 
Wages 

 (1) (2) (3) (4) 
 
Treatment B, 𝐸[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.004 0.491** 0.396* -0.015 
(0.338) (0.250) (0.218) (0.036) 

Observations  245 245 245 245 
R2 -0.000 -0.011 0.016 -0.001 
1st stage F-stat 149.6 149.6 149.6 149.6 

 

Treatment C, 𝐸
ଶ

[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.017 0.027 -0.140 0.098 
(0.367) (0.138) (0.231) (0.083) 

Observations  252 252 252 252 
R2 -0.000 0.005 -0.033 -0.021 
1st stage F-stat 15.47 15.47 15.47 15.47 

 

Treatment D, 𝐸[𝜋௧] and 𝐸
ଶ

[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ -0.220 0.219** 0.106 0.036 
(0.187) (0.093) (0.125) (0.055) 

Observations  253 253 253 253 
R2 0.008 0.006 0.002 0.009 
1st stage F-stat 318.8 318.8 318.8 318.8 

 
Treatment E, 𝜋௧ିଵ 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.109 0.098 -0.202 -0.012 
(0.204) (0.121) (0.148) (0.030) 

Observations  251 251 251 251 
R2 0.001 0.007 -0.024 -0.004 
1st stage F-stat 49.19 49.19 49.19 49.19 

 
Memorandum: Pooled treatment 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ -0.051 0.200*** 0.060 0.019 
(0.133) (0.071) (0.085) (0.024) 

Observations  515 515 515 515 
R2 -0.001 0.010 0.005 0.004 
1st stage F-stat 221.1 221.1 221.1 221.1 

 
Notes: The table reports the coefficient on revision of own inflation expectations in specification (G.1). The regressand 
in each column is revision in plans for a given firm-specific outcome indicated in the second row of the table; that is, the 
outcome variable in specification (2) is 3-month-ahead plan in the follow-up wave minus the 6-month-ahead plan in the 
initial wave. The regressor is instrumented with surprise component in the provided signal, that is, the difference between 
information provided in a treatment and pre-treatment expectation for the variable provided in the treatment. 1st stage F-
stat reports the first-stage F-statistic. The last panel (pooled treatment) uses surprises pooled across treatments as an 
instrument for the revision of beliefs.  Robust standard errors are reported in parentheses. ***, **, and * indicate 
significance at the 0.01, 0.05 and 0.10 percent levels, respectively. 
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Appendix Table G4. Effect of Information Treatment on Actions, OLS. 

 Percent change in: 
Treatment effect  
(relative to control group) 

Workers Fixed Assets 
Price of Main 

Product 
Wages 

 (1) (2) (3) (4) 
 
Treatment B, 𝐸[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.169** 0.145** 0.146** 0.003 

 (0.072) (0.057) (0.074) (0.005) 
Observations  245 245 245 245 
R2 0.038 0.061 0.028 0.001 

 

Treatment C, 𝐸
ଶ

[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.155* 0.127*** 0.010 0.008 
(0.089) (0.046) (0.029) (0.005) 

Observations  252 252 252 252 
R2 0.025 0.105 0.001 0.013 

 

Treatment D, 𝐸[𝜋௧] and 𝐸
ଶ

[𝜋௧] 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ -0.149 0.134*** 0.023 0.013 
(0.129) (0.047) (0.036) (0.011) 

Observations  253 253 253 253 
R2 0.010 0.103 0.002 0.010 

 
Treatment E, 𝜋௧ିଵ 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.207*** 0.117*** 0.042 0.010** 
(0.066) (0.036) (0.030) (0.005) 

Observations  251 251 251 251 
R2 0.096 0.093 0.009 0.024 

 
Memorandum: Pooled treatment 

    

൫𝐸௜
௣௢௦௧௘௥௜௢௥

(𝜋) − 𝐸௜
௣௥௜௢௥

(𝜋)൯ 0.106* 0.163*** 0.046* 0.010** 
(0.062) (0.029) (0.025) (0.005) 

Observations  515 515 515 515 
R2 0.009 0.121 0.007 0.010 

 
Notes: The table reports the OLS coefficient on revision of own inflation expectations in specification (G.1). The 
regressand in each column is forecast error for a given firm-specific outcome indicated in the second row of the table. 
Robust standard errors are reported in parentheses. ***, **, and * indicate significance at the 0.01, 0.05 and 0.10 percent 
levels, respectively. 
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Appendix Table G5. Effect of Information Treatment on Actions, higher-order expectations on the RHS. 

 Percent change in: 
Treatment effect  
(relative to control group) 

Workers Fixed Assets 
Price of Main 

Product 
Wages 

 (1) (2) (3) (4) 
 
Treatment B, 𝐸[𝜋௧] 

    

𝐸௜
௣௢௦௧௘௥௜௢௥[𝐸ത(𝜋)] − 𝐸௜

௣௥௜௢௥[𝐸ത(𝜋)] 0.644*** 0.540*** 0.223 0.005 
(0.245) (0.205) (0.215) (0.023) 

Observations  245 245 245 245 
R2 -0.144 -0.294 -0.028 -0.003 
1st stage F-stat 60.64 60.64 60.64 60.64 

 

Treatment C, 𝐸
ଶ

[𝜋௧] 

    

𝐸௜
௣௢௦௧௘௥௜௢௥[𝐸ത(𝜋)] − 𝐸௜

௣௥௜௢௥[𝐸ത(𝜋)] 0.326** 0.093** -0.052 0.028** 
(0.162) (0.043) (0.046) (0.014) 

Observations  252 252 252 252 
R2 0.039 0.022 -0.009 0.047 
1st stage F-stat 561.8 561.8 561.8 561.8 

 

Treatment D, 𝐸[𝜋௧] and 𝐸
ଶ

[𝜋௧] 

    

𝐸௜
௣௢௦௧௘௥௜௢௥[𝐸ത(𝜋)] − 𝐸௜

௣௥௜௢௥[𝐸ത(𝜋)] -0.355 0.288*** 0.026 0.021 
(0.244) (0.084) (0.084) (0.024) 

Observations  253 253 253 253 
R2 -0.010 -0.010 0.003 -0.016 
1st stage F-stat 182.9 182.9 182.9 182.9 

 
Treatment E, 𝜋௧ିଵ 

    

𝐸௜
௣௢௦௧௘௥௜௢௥[𝐸ത(𝜋)] − 𝐸௜

௣௥௜௢௥[𝐸ത(𝜋)] 0.311*** 0.222** 0.085 0.018 
(0.095) (0.089) (0.085) (0.012) 

Observations  251 251 251 251 
R2 0.035 0.033 -0.012 0.000 
1st stage F-stat 83.65 83.65 83.65 83.65 

 
Memorandum: Pooled treatment 

    

𝐸௜
௣௢௦௧௘௥௜௢௥[𝐸ത(𝜋)] − 𝐸௜

௣௥௜௢௥[𝐸ത(𝜋)] 0.153* 0.240*** 0.048 0.017** 
(0.089) (0.048) (0.049) (0.008) 

Observations  515 515 515 515 
R2 0.005 0.012 -0.005 -0.001 
1st stage F-stat 365.6 365.6 365.6 365.6 

 
Notes: The table reports the coefficient on revision of higher-order inflation expectations in specification (G.1). The 
regressand in each column is forecast error for a given firm-specific outcome indicated in the second row of the table. 
The regressor is instrumented with surprise component in the provided signal, that is, the difference between information 
provided in a treatment and pre-treatment expectation for the variable provided in the treatment. 1st stage F-stat reports 
the first-stage F-statistic. The last panel (pooled treatment) uses surprises pooled across treatments as an instrument for 
the revision of beliefs.  Robust standard errors are reported in parentheses. ***, **, and * indicate significance at the 0.01, 
0.05 and 0.10 percent levels, respectively. 
 
 
 
 


