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Abstract:  We study the effects of positive steady-state inflation in New Keynesian 
models subject to the zero bound on interest rates.  We derive the utility-based 
welfare loss function taking into account the effects of positive steady-state inflation 
and solve for the optimal level of inflation in the model. For plausible calibrations 
with costly but infrequent episodes at the zero-lower bound, the optimal inflation rate 
is low, less than two percent, even after considering a variety of extensions, including 
optimal stabilization policy, price indexation, endogenous and state-dependent price 
stickiness, capital formation, model-uncertainty, and downward nominal wage 
rigidities. On the normative side, price level targeting delivers large welfare gains 
and a very low optimal inflation rate consistent with price stability. These results 
suggest that raising the inflation target is too blunt an instrument to efficiently reduce 
the severe costs of zero-bound episodes.  
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“The crisis has shown that interest rates can actually hit the zero level, and when this happens it is a severe 
constraint on monetary policy that ties your hands during times of trouble. As a matter of logic, higher average 
inflation and thus higher average nominal interest rates before the crisis would have given more room for 
monetary policy to be eased during the crisis and would have resulted in less deterioration of fiscal positions. 
What we need to think about now is whether this could justify setting a higher inflation target in the future.” 

Olivier Blanchard, February 12th, 2010 

I Introduction 

One of the defining features of the current economic crisis has been the zero bound on nominal interest rates.  

With standard monetary policy running out of ammunition in the midst of one of the sharpest downturns in 

post-World War II economic history, some have suggested that central banks should consider allowing for 

higher target inflation rates than would have been considered reasonable just a few years ago.  We contribute to 

this question by explicitly incorporating positive steady-state (or “trend”) inflation in a New Keynesian model 

as well as the zero lower bound (ZLB) on nominal interest rates.  We derive the effects of non-zero steady-state 

inflation on the loss function, thereby laying the groundwork for welfare analysis.  While hitting the ZLB is 

very costly in the model, our baseline finding is that the optimal rate of inflation is low, less than two percent a 

year, even when we allow for a variety of features that would tend to lower the costs or to raise the benefits of 

positive steady-state inflation. 

Despite the importance of quantifying the optimal inflation rate for policy-makers, modern monetary 

models of the business cycle, namely the New Keynesian framework, have been strikingly ill-suited to address 

this question because of their near exclusive reliance on the assumption of zero steady-state inflation, 

particularly in welfare analysis.1  Our first contribution is to address the implications of positive steady-state 

inflation for welfare analysis by solving for the micro-founded loss function in an otherwise standard New 

Keynesian model with labor as the only factor of production.   We identify three distinct costs of positive trend 

inflation.  The first is the steady-state effect: with staggered price setting, higher inflation leads to greater price 

dispersion which causes an inefficient allocation of resources among firms, thereby lowering aggregate 

welfare. The second is that positive steady-state inflation raises the welfare cost of a given amount of inflation 

volatility.  This cost reflects the fact that inflation variations create distortions in relative prices given staggered 

price setting. Since positive trend inflation already generates some inefficient price dispersion, the additional 

distortion in relative prices from an inflation shock becomes more costly as firms have to compensate workers 

                                                      
1 Most papers incorporating positive steady-state inflation into the New Keynesian framework have focused on the 
implications for dynamics and determinacy issues.  For example, Cogley and Sbordone (2008) show that accounting 
for positive steady-state inflation significantly improves the fit of the New Keynesian Phillips Curve.  Kiley (2007) 
and Ascari and Ropele (2009) show that the Taylor principle is not sufficient to guarantee a unique rational 
expectations equilibrium in New Keynesian models for even moderate levels of inflation.  Coibion and 
Gorodnichenko (2011) show that once this feature of New Keynesian models is incorporated into historical monetary 
policy analysis, the pre-Volcker monetary policy rule ensured the presence of self-fulfilling expectational fluctuations 
despite likely satisfying the Taylor principle, a reflection of the high target rate of inflation over this time period.   
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for the increasingly high marginal disutility of sector-specific labor. Thus, the increased distortion in relative 

prices due to an inflation shock becomes costlier as we increase the initial price dispersion which makes the 

variance of inflation costlier for welfare as the steady-state level of inflation rises. In addition to the two costs 

from relative price dispersion, a third cost of inflation in our model comes from the dynamic effect of positive 

inflation on pricing decisions.  Greater steady-state inflation induces more forward-looking behavior when 

sticky-price firms are able to reset their prices because the gradual depreciation of the relative reset price can 

lead to larger losses than under zero inflation.  As a result, inflation becomes more volatile which lowers 

aggregate welfare.  This cost of inflation arising from the positive relationship between the level and volatility 

of inflation has been well-documented empirically but is commonly ignored in quantitative analyses because of 

questions as to the source of the relationship.2  As with the price-dispersion costs of inflation, this cost arises 

endogenously in the New Keynesian model when one incorporates positive steady-state inflation.   

The key benefit of positive inflation in our model is a reduced frequency of hitting the zero bound on 

nominal interest rates.  As emphasized in Christiano et al. (2009), hitting the zero bound induces a deflationary 

mechanism which leads to increased volatility and hence large welfare costs.  Because a higher steady-state 

level of inflation implies a higher level of nominal interest rates, raising the inflation target can reduce the 

incidence of zero-bound episodes, as suggested by Blanchard in the opening quote.  Our approach for modeling 

the zero bound follows Bodenstein et al. (2009) by solving for the duration of the zero bound endogenously, 

unlike in Christiano et al. (2009) or Eggertsson and Woodford (2004).  This is important because the welfare 

costs of inflation are a function of the variance of inflation and output, which themselves depend on the 

frequency at which the zero bound is reached as well as the duration of zero bound episodes.   

After calibrating the model to broadly match the historical incidence of hitting the zero lower bound in 

the U.S., we then solve for the rate of inflation that maximizes welfare.  We show numerically that the welfare 

loss function is generally concave with respect to steady-state inflation, such that the optimal rate of inflation is 

positive as a result of the zero bound.  However, for plausible calibrations of the structural parameters of the 

model and the properties of the shocks driving the economy, the optimal inflation rate is quite low: less than 

two percent per year.  This result is remarkably robust to changes in parameter values, as long as these do not 

dramatically increase the implied frequency of being at the zero lower bound. In addition, we show that our 

results are robust if the central bank follows optimal stabilization policy, rather than the baseline Taylor rule. In 

particular, if the central bank cannot commit to a policy rule, then the optimal inflation rate is of similar 

magnitude as in our baseline calibration.  Furthermore, we show that all three costs of inflation—the steady 

state effect, the increasing cost of inflation volatility, and the positive link between the level and volatility of 

                                                      
2 For example, Mankiw’s (2007) undergraduate Macroeconomics textbook notes that “in thinking about the costs of 
inflation, it is important to note a widely documented but little understood fact: high inflation is variable inflation.”  
Similar statements can be found in other prominent texts. 
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inflation—are quantitatively important: each cost is individually large enough to bring the optimal inflation rate 

down to 2.7% or lower when the ZLB is present.   

The key intuition behind the low optimal inflation rate is that the unconditional cost of the zero lower 

bound is small even though each individual ZLB event is quite costly. In our baseline calibration an 8-quarter 

ZLB event at 2% trend inflation has a cost equivalent to a 9% permanent reduction in consumption, above 

and beyond the usual business cycle cost. This is, for example, significantly higher than Williams’ (2009) 

estimate of the costs of hitting the ZLB during the current recession. However, in the model such an event is 

also rare, occurring about once every 20 years assuming that ZLB events always last 8 quarters, so that the 

unconditional cost of the ZLB at 2% trend inflation is equivalent to 0.13% permanent reduction in 

consumption. This leaves little room for further improvements in welfare by raising the long-run inflation 

rate. Thus, even modest costs of trend inflation, which must be borne every period, will imply an optimal 

inflation rate below 2%, despite reasonable values for both the frequency and cost of the ZLB. This explains 

why our results are robust to a variety of settings that we further discuss below, and suggests that our results 

are not particular to the New Keynesian model. 

Furthermore, while the New Keynesian model implies that the optimal weight on the variance of the 

output gap in the welfare loss function is small, we show that pushing the optimal inflation rate above the 

typical inflation targets of central banks would require this coefficient to be more than ten times larger than the 

weight on the annualized inflation variance.  Such weights would imply a welfare cost of being at the ZLB for 

8 quarters roughly equal to a permanent decline in consumption of 56% ($5.6 trillion per year), a magnitude 

which strikes us as too large to be plausible.  Thus, it is unlikely that augmenting the baseline model with 

mechanisms which could raise the welfare cost of output fluctuations (such as unemployment or income 

disparities across agents) would significantly raise the optimal target rate of inflation.  Finally, while we use 

historical U.S. data to calibrate the frequency of hitting the ZLB, an approach which can be problematic when 

applied to rare events, we show in robustness analysis that even a tripling of the frequency of being at the ZLB 

(such that the economy would spend 15% of the time at the ZLB for an inflation rate of 3%) would raise the 

optimal inflation rate only to 2.7%, just below the upper bound of most central banks’ inflation targets.  

To further investigate the robustness of this result, we extend our baseline model to consider several 

mechanisms which might raise the optimal rate of inflation.  For example, in the presence of uncertainty about 

the true parameter values, policy-makers might want to choose a higher target inflation rate as a buffer against 

the possibility that the true parameters imply more frequent and costly incidence of the zero bound.  We 

address this possibility in two ways.  First, we calculate the optimal inflation rate taking into account the 

uncertainty about parameter values and find that this raises the optimal inflation rate only modestly, from 1.3% 

to 1.6% per year.  Second, we repeatedly draw from the distribution of parameters and calculate the optimal 
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inflation rate for each draw.  We find that the 90% confidence interval of optimal inflation rates ranges from 

0.3% to 2.5% a year, which closely mirrors the target range for inflation of most modern central banks.   

Similarly, one might be concerned that our findings hinge on modeling price stickiness as in Calvo 

(1983).  First, because this approach implies that some firms do not change prices for extended periods of time, 

it could overstate the cost of price dispersion and therefore understate the optimal inflation rate.  To address this 

possibility, we reproduce our analysis using Taylor (1977) staggered price setting of fixed durations.  The latter 

reduces price dispersion relative to the Calvo assumption but has no significant impact on the optimal inflation 

rate.  Second, the degree of price rigidity in both Calvo and Taylor pricing is commonly treated as a structural 

parameter, yet it is unlikely that the frequency of price setting is completely independent of the inflation rate, 

even for low inflation rates like those experienced in the U.S.  As a result, we go beyond existing treatments of 

the optimal inflation rate and consider two modifications that allow for price flexibility to vary with the trend 

rate of inflation. In the first specification, we let the degree of price rigidity vary systematically with the trend 

level of inflation but find that this modification also does not qualitatively change the optimal inflation rate.  In 

the second specification, we employ the Dotsey, King and Wolman (1999) model of state-dependent pricing, 

which allows the degree of price stickiness to vary endogenously both in the short-run and in the long-run, and 

thus we address one of the major criticisms of the previous literature on the optimal inflation rate. However, 

even in this setting we continue to find an optimal inflation rate of less than two percent per year.   

Tobin (1972) suggests downward nominal wage rigidity as an additional factor which might push the 

optimal inflation rate higher.  By facilitating the downward adjustment of real wages in the presence of 

downward nominal wage rigidity, positive inflation can be beneficial.  We incorporate this “greasing the 

wheels” effect by constraining changes in the aggregate nominal wage index to be non-negative.  Strikingly, 

this addition significantly lowers the optimal inflation rate.  The intuition for this somewhat surprising finding 

is that downward wage rigidity lowers the volatility of marginal costs and hence of inflation.  In addition, in the 

face of a negative demand shock, marginal costs decline by less in the presence of downward-wage rigidity, 

leading to a smaller decline in inflation and thus a smaller change of interest rates.  Hence, the ZLB binds less 

frequently, particularly at low levels of inflation, which further reduces the benefits of positive inflation.  

Our analysis abstracts from several other factors which might affect the optimal inflation rate.  For 

example, Friedman (1969) argued that the optimal rate of inflation must be negative to equalize the marginal 

cost and benefit of holding money.  Because our model is that of a cashless economy, this cost of inflation is 

absent, but would tend to lower the optimal rate of inflation even further, as emphasized by Khan et al. (2003), 

Schmitt-Grohe and Uribe (2007, 2010) and Aruoba and Schorfheide (2011).  Similarly, a long literature has 

studied the costs and benefits of the seigniorage revenue to policymakers associated with positive inflation, a 

feature which we also abstract from since seigniorage revenues for countries like the U.S. are quite small, as 
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are the deadweight losses associated with it.3  Feldstein (1997) emphasizes an additional cost of inflation 

arising from fixed nominal tax brackets, which would again lower the optimal inflation rate.  Furthermore, 

while our model includes an inflation cost arising from the positive link between the level and the volatility of 

inflation, it is likely that we still understate this cost of inflation because we abstract from the possibility that 

higher inflation volatility will raise risk premiums due to the increased risk of redistribution among borrowers 

and lenders.  In addition, the relationship between the level and the volatility of inflation could be even stronger 

than in our model because higher steady-state inflation moves the economy closer to the indeterminacy region 

where sunspot shocks would further raise inflation volatility.  Finally, because we do not model the possibility 

of endogenous countercyclical fiscal policy nor do we incorporate the possibility of nonstandard monetary 

policy actions during ZLB episodes, it is likely that we overstate the costs of hitting the ZLB and therefore 

again overstate the optimal rate of inflation.  Nevertheless, our finding that the threat of the ZLB coupled with 

limited commitment on the part of the central bank implies positive but low optimal inflation rates, goes some 

way in resolving the “puzzle” pointed out by Schmitt-Grohe and Uribe (2010), that existing monetary theories 

routinely imply negative optimal inflation rates, and thus cannot explain the size of observed inflation targets. 

This paper is closely related to recent work that has also emphasized the effects of the zero bound on 

interest rates for the optimal inflation rate, such as Walsh (2009), Billi (2009), and Williams (2009).  A key 

difference between the approach taken in this paper and such previous work is that we explicitly model the 

effects of positive trend inflation on the steady-state, dynamics, and loss function of the model.  Billi (2009) 

and Walsh (2009), for example, use a New Keynesian model log-linearized around zero steady-state inflation 

and therefore do not explicitly incorporate the positive relationship between the level and volatility of inflation, 

while Williams (2009) relies on a non-microfounded model.  In addition, these papers do not take into account 

the effects of positive steady-state inflation on the approximation to the utility function and thus do not fully 

incorporate the costs of inflation arising from price dispersion.4  Schmitt-Grohe and Uribe (2010) provide an 

authoritative treatment of many of the costs and benefits of trend inflation in the context of New Keynesian 

models.  However, their calibration implies that the chance of hitting the ZLB is practically zero and therefore 

does not quantitatively affect the optimal rate of inflation, whereas we focus on a setting where costly ZLB 

events occur at their historic frequency.  Furthermore, none of these papers consider the endogenous nature of 

price rigidity with respect to trend inflation. 

An advantage of working with a micro-founded model and its implied welfare function is the ability to 

engage in normative analysis.  In our baseline model, the endogenous response of monetary policy-makers to 

macroeconomic conditions is captured by a Taylor rule.  Thus, we are also able to study the welfare effects of 

                                                      
3 See for example Cooley and Hansen (1991) and Summers (1991). 
4 Fuchi et al. (2008) study the optimal inflation rate for Japan allowing for the zero-lower bound on interest rates, 
price stickiness, nominal wage rigidity and the opportunity cost of holding money and find a range between 0.5% and 
2%.  Yet, they also do not explicitly take into account the effects of positive steady-state inflation on the dynamics of 
the model or on the utility function approximation. 
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altering the systematic response of policy-makers to endogenous fluctuations (i.e. the coefficients of the Taylor 

rule) and determine the new optimal steady-state rate of inflation. The most striking finding from this analysis 

is that even modest price-level targeting would raise welfare by non-trivial amounts for any steady-state 

inflation rate  and come close to the Ramsey-optimal policy, consistent with the finding of Eggertsson and 

Woodford (2003) and Wolman (2005).  In short, the optimal policy rule for the model can be closely 

characterized by the name of “price stability” as typically stated in the legal mandates of most central banks.  

Given our results, we conclude that raising the target rate of inflation is likely too blunt an instrument 

to reduce the incidence and severity of zero-bound episodes.  In all of the New Keynesian models we 

consider, even the small costs associated with higher trend inflation rates, which must be borne every period,  

more than offset the welfare benefits of fewer and less severe ZLB events.  Instead, changes in the policy rule, 

such as PLT, may be more effective both in avoiding and minimizing the costs associated with these crises.  

In the absence of such changes to the interest rate rule, our results suggest that addressing the large welfare 

losses associated with the ZLB is likely to best be pursued through policies targeted specifically to these 

episodes, such as countercyclical fiscal policy or the use of non-standard monetary policy tools. 

 Section 2 presents the baseline New Keynesian model and derivations when allowing for positive 

steady-state inflation, including the associated loss function.  Section 3 includes our calibration of the model as 

well as the results for the optimal rate of inflation while section 4 investigates the robustness of our results to 

parameter values.  Section 5 then considers extensions of the baseline model which could potentially lead to 

higher estimates of the optimal inflation target.  Section 6 considers additional normative implications of the 

model, including optimal stabilization policy and price level targeting.  Section 7 concludes. 

II A New Keynesian Model with Positive Steady-State Inflation 

We consider a standard New Keynesian model with a representative consumer, a continuum of 

monopolistic producers of intermediate goods, a fiscal authority and a central bank. 

2.1 Model 

The representative consumer aims to maximize the present discounted value of the utility stream from 

consumption and leisure  

max ௧ܧ ∑ ߚ ቄlog ௧ାܥ െ ആ
ആశభ  ௧ܰାሺ݅ሻଵାଵ/ఎ݀݅

ଵ
 ቅஶ

ୀ   (1) 

where C is consumption of the final good, N(i) is labor supplied to individual industry i, η is the Frisch 

labor supply elasticity and β is the discount factor.  The budget constraint each period t is given by  

:௧ߦ ௧ܥ  ܵ௧/ ௧ܲ   ሺ ௧ܰሺ݅ሻ ௧ܹሺ݅ሻ/ ௧ܲሻ݀݅
ଵ

  ܵ௧ିଵݍ௧ିଵܴ௧ିଵ/ ௧ܲ  ௧ܶ  (2) 

where S is the stock of one-period bonds held by the consumer, R is the gross nominal interest rate, P is the 

price of the final good, W(i) is the nominal wage earned from labor in industry i, T is real transfers and 
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profits from ownership of firms, q is a risk premium shock, and  is the shadow value of wealth.5  The first 

order conditions from this utility-maximization problem are then: 

௧ܥ
ିଵ ൌ  ௧,  (3)ߦ

௧ܰሺ݅ሻଵ/ఎ ൌ ௧ߦ ௧ܹሺ݅ሻ/ ௧ܲ,  (4) 
/௧ߦ ௧ܲ ൌ /௧ܴ௧ݍ௧ାଵߦ௧ሾܧߚ ௧ܲାଵሿ. (5) 

Production of the final good is done by a perfectly competitive sector which combines a continuum of 

intermediate goods into a final good per the following aggregator 

௧ܻ ൌ ቂ ௧ܻሺ݅ሻሺఏିଵሻ/ఏ݀݅
ଵ

 ቃ
ఏ/ሺఏିଵሻ

   (6) 

where Y is the final good and Y(i) is intermediate good i, while θ denotes the elasticity of substitution 

across intermediate goods, yielding the following demand curve for goods of intermediate sector i 

௧ܻሺ݅ሻ ൌ ௧ܻሺ ௧ܲሺ݅ሻ/ ௧ܲሻିఏ (7) 

and the following expression for the aggregate price level 

௧ܲ ൌ ቂ ௧ܲሺ݅ሻሺଵିఏሻ݀݅
ଵ

 ቃ
ଵ/ሺଵିఏሻ

.  (8) 

The production of each intermediate good is done by a monopolist facing a production function linear in labor  

௧ܻሺ݅ሻ ൌ ௧ܣ ௧ܰሺ݅ሻ (9) 

where A denotes the level of technology, common across firms.  Each intermediate good producer has 

sticky prices, modeled as in Calvo (1983) where 1 െ  is the probability that each firm will be able to ߣ

reoptimize its price each period.  We allow for indexation of prices to steady-state inflation by firms who 

do not reoptimize their prices each period, with ω representing the degree of indexation (0 for no 

indexation to 1 for full indexation).  Denoting the optimal reset price of firm i by B(i), re-optimizing firms 

solve the following profit-maximization problem  

max ௧ܧ ∑ ܳ௧,௧ାൣߣ ௧ܻାሺ݅ሻܤ௧ሺ݅ሻΠഥ ఠ െ ௧ܹାሺ݅ሻ ௧ܰାሺ݅ሻ൧ஶ
ୀ    (10) 

where Q is the stochastic discount factor and Πഥ is the gross steady-state level of inflation.   The optimal 

relative reset price is then given by 

ሺሻ


ൌ

ఏ

ఏିଵ

ா ∑ ఒೕொ,శೕశೕሺశೕ/ሻഇశభஈഥషೕഘഇሺெሺሻశೕ/శೕሻಮ
ೕసబ

ா ∑ ఒೕொ,శೕశೕሺశೕ/ሻഇஈഥషೕഘሺഇషభሻಮ
ೕసబ

 (11) 

where firm-specific marginal costs can be related to aggregate variables using 

ಾశೕሺሻ

ುశೕ
ൌ ቀ

శೕ
ಲశೕ

ቁ ቀ
ೊశೕ
ಲశೕ

ቁ
ଵ/ఎ

ቀಳሺሻ
ು

ቁ
ିఏ/ఎ

ቀ
ುశೕ

ಀഥೕഘು
ቁ

ఏ/ఎ
. (12) 

Given these price-setting assumptions, the dynamics of the price level are governed by 

                                                      
5 As discussed in Smets and Wouters (2007), a positive shock to q, which is the wedge between the interest rate 
controlled by the central bank and the return on assets held by the households, increases the required return on assets 
and reduces current consumption. The shock q has similar effects as net-worth shocks in models with financial 
accelerators (see Bernanke et al. 1999 for a survey).  Amano and Shukayev (2010) document that shocks like q are 
essential for generating a binding zero lower bound.  
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௧ܲ
ଵିఏ ൌ ሺ1 െ ௧ܤሻߣ

ଵିఏ  ߣ ௧ܲିଵ
ଵିఏΠഥఠሺଵିఏሻ. (13) 

We allow for government consumption of final goods (ܩ), so the goods market clearing condition for the 

economy is  

௧ܻ ൌ ௧ܥ   ௧.  (14)ܩ

We define the aggregate labor input as 

௧ܰ ൌ ቂ ௧ܰሺ݅ሻሺఏିଵሻ/ఏ݀݅
ଵ

 ቃ
ఏ/ሺఏିଵሻ

.  (15) 

2.2 Steady-state and log-linearization 

Following Coibion and Gorodnichenko (2011), we log-linearize the model around the steady-state in which 

inflation need not be zero. Since positive trend inflation may imply that the steady state and the flexible 

price level of output differ, we adopt the following notational convention. Variables with a bar denote 

steady state values, e.g. തܻ௧ is the steady state level of output. We assume that technology is a random walk 

and hence we normalize all non-stationary real variables by the level of technology. Lower-case letters 

denote the log of a variable, e.g.  ݕ௧ ൌ log ௧ܻ is the log of current output. We let hats on lower case letters 

denote deviations from steady state, e.g. ݕො௧ ൌ ௧ݕ െ  ത௧ is the approximate percentage deviation of outputݕ

from steady state. Since we define the steady state as embodying the current level of technology, deviations 

from the steady state are stationary. Finally, we denote deviations from the flexible price level steady state 

with a tilde, e.g. ݕ௧ ൌ ௧ݕ െ ത௧ݕ
ி is the approximate percentage deviation of output from its flexible price 

steady state, where the superscript F denotes a flexible price level quantity. Define the net steady-state level 

of inflation as ߨത ൌ log ሺΠഥሻ. The log-linearized consumption Euler equation is  

െܿ̂௧ ൌ ௧ሾെܿ̂௧ାଵܧ  ௧ݎ̂ െ ො௧ାଵߨ   ො௧ሿ (16)ݍ

and the goods market clearing condition becomes 

ො௧ݕ ൌ ܿҧ௬ܿ̂௧  ҧ݃௬ ො݃௧  (17) 

where ܿҧ௬ and ҧ݃௬ are the steady-state ratios of consumption and government to output respectively.  Also, 

integrating over firm-specific production functions and log-linearizing yields  

ො௧ݕ ൌ ො݊௧. (18) 

Allowing for positive steady-state inflation (i.e., ߨത  0) primarily affects the steady-state and price-setting 

components of the model.  For example, the steady-state level of the output gap (which is defined as the 

deviation of steady state output from its flexible price level counterpart തܺ௧ ൌ തܻ௧/ തܻ௧
ி) is given by 

തܺሺఎାଵሻ ఎ⁄ ൌ
ଵିఒఉషభஈഥሺభషഘሻഇሺആశభሻ/ആ

ଵିఒఉషభஈഥሺభషഘሻሺഇషభሻ ቀ ଵିఒ

ଵିఒஈഥሺభషಡሻሺഇషభሻቁ
ሺఎାఏሻ/ሺఎሺఏିଵሻሻ

.  (19) 

Note that the steady-state level of the gap is equal to one when steady-state inflation is zero (i.e., Πഥ ൌ 1) or 

when the degree of price indexation is exactly equal to one.  As emphasized by Ascari and Ropele (2007), 

there is a non-linear relationship between the steady-state levels of inflation and output.  For very low but 
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positive trend inflation, തܺ is increasing in trend inflation but the sign is quickly reversed so that തܺ is falling 

with trend inflation for most positive levels of trend inflation.   

Secondly, positive steady-state inflation affects the relationship between aggregate inflation and the 

re-optimizing price. Specifically, the relationship between the two in the steady state is now given by 

ሺܤ/ܲሻതതതതതതതത ൌ ቀ ଵିఒ

ଵିఒஈഥሺభషಡሻሺഇషభሻቁ
ଵ/ሺఏିଵሻ

  (20) 

and the log-linearized equation is described by 

ො௧ߨ ൌ ൬ଵିఒஈഥሺభషಡሻሺಐషభሻ

ఒஈഥሺభషಡሻሺಐషభሻ ൰ ܾ
௧   ֜   ܾ

௧ ൌ  ො௧     (21)ߨܯ

so that inflation is less sensitive to changes in the re-optimizing price as steady-state inflation rises.  This 

effect reflects the fact that, with positive steady-state inflation, firms which reset prices have higher prices 

than others and receive a smaller share of expenditures, thereby reducing the sensitivity of inflation to these 

price changes.  Indexation of prices works to offset this effect however, with full-indexation completely 

restoring the usual relationship between reset prices and inflation. 

 

Similarly, positive steady-state inflation has important effects on the log-linearized optimal reset 

price equation, which is given by 

ቀ1  ഇ
ആ
ቁ ܾ

௧ ൌ ሺ1 െ ଶሻߛ ∑ ଶߛ
 ቀభ

ആ
ො௧ାݕ௧ܧ  ௧ܿ̂௧ାቁஶܧ

ୀ  ௧ܧ ∑ ൫ߛଶ
 െ ଵߛ

൯൫݃ݕෞ௧ା  ௧ାିଵ൯ஶݎ̂
ୀଵ   

 ∑ ቂߛଶ
 ቀ1  ഇሺആశభሻ

ആ
ቁ െ ଵߛ

ߠቃ ො௧ାߨ௧ܧ
ஶ
ୀଵ  ෝ݉௧ (22) 

where ෝ݉௧ is a cost-push shock, ߛଵ ൌ ଶߛ ഥሺଵିఠሻሺఏିଵሻ  andߎߚߣ ൌ  ഥሺଵିఠሻሺଵାఏ/ఎሻ so that without steady-stateߎଵߛ

inflation or full indexation we have ߛଵ ൌ  ത increases the coefficients on futureߨ ଶ.  When ω < 1, a higherߛ

output and inflation but also leads to the inclusion of a new term composed of future differences between 

output growth and interest rates.  Each of these effects makes price-setting decisions more forward-looking.6 

The increased coefficient on expectations of future inflation, which reflects the expected future depreciation 

of the reset price and the losses associated with it, plays a particularly important role.  In response to an 

inflationary shock, a firm which can reset its price will expect higher inflation today and in the future as other 

firms update their prices in response to the shock.  Given this expectation, the more forward looking a firm is 

(the higher ߨത), the greater the optimal reset price must be in anticipation of other firms raising their prices in 

the future.  Thus, reset prices become more responsive to current shocks with higher ߨത. We confirm 

numerically that this effect dominates the reduced sensitivity of inflation to the reset price in equation (21), 

thereby endogenously generating a positive relationship between the level and the volatility of inflation.   

To close the model, we assume that the log deviation of the desired gross interest rate from its 

steady state value (ݎො௧
  follows a Taylor rule (כ

௧ݎ̂
כ ൌ ௧ିଵݎଵ̂ߩ

כ  ௧ିଶݎଶ̂ߩ
כ  ሺ1 െ ଵߩ െ ௧ߨଶሻൣ߶గሺߩ െ ሻכߨ  ߶௬ሺݕ௧ െ ሻכݕ  ߶௬ሺ݃ݕ௧ െ ሻכݕ݃  ߶ሺ௧ െ ௧

ሻ൧כ  ௧ߝ
  

                                                      
6 See Coibion and Gorodnichenko (2011) for a discussion of each of these effects. 
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where ߶గ, ߶௬, ߶௬, ߶ capture the strength of the policy response to deviations of inflation, the output gap, 

the output growth rate and the price level from their respective targets, parameters ߩଵ and ߩଶ reflect interest 

rate smoothing, while ߝ௧
 is a policy shock. We set כߨ ൌ ,തߨ ௧

כ ൌ ݐכߨ ൌ ,ݐതߨ כݕ ൌ כݕ݃ ത  andݕ ൌ  തതതത  so that theݕ݃

central bank has no inflationary or output bias. The growth rate of output is related to the output gap by  

ෞ௧ݕ݃ ൌ ො௧ݕ െ ො௧ିଵݕ  ሺܽ௧ െ ܽ௧ିଵ െ  ሻ  (23)ߤ

where ܽ௧ is the log level of technology and ߤ its trend growth rate. Since the actual level of the net interest 

rate is bounded by zero, the log deviation of the gross interest rate is bounded by ̂ݎ௧ ൌ logሺܴ௧ሻ െ logሺ തܴሻ 

െ logሺ തܴሻ ൌ െݎҧ  and the dynamics of the actual interest rate are given by  

௧ݎ̂ ൌ max ሼ̂ݎ௧
,כ െݎҧሽ. (24) 

We consider the Taylor rule a reasonable benchmark, because it is likely to be the closest description 

of the current policy process, and because suggestions to raise the optimal inflation rate are not commonly 

associated with simultaneous changes in the way that stabilization policy is conducted. However, in section 

6.1, we also derive the optimal ߨത given optimal stabilization policy under discretion and commitment. 

2.3 Shocks 

We assume that technology follows a random walk process with drift: 
 ܽ௧ ൌ ܽ௧ିଵ  ߤ  ௧ߝ

.  (25) 
Each of the risk premium, government, and Phillips Curve shocks follow AR(1) processes 

ො௧ݍ ൌ ො௧ିଵݍߩ  ௧ߝ
, (26) 

ො݃௧ ൌ ߩ ො݃௧ିଵ  ௧ߝ
, (27) 

ෝ݉௧ ൌ ߩ ෝ݉௧ିଵ  ௧ߝ
.  (28) 

We assume that ߝ௧
, ௧ߝ

, ௧ߝ
, ௧ߝ

, ௧ߝ
 are mutually and serially uncorrelated.  

2.4 Welfare function 

To quantify welfare for different levels of steady-state inflation, we use a second-order approximation to 

the household utility function as in Woodford (2003).7  We show our main results in a series of lemmas 

culminating in Proposition 1. All proofs are in Appendix A.  

First of all, we decompose utility described in equation (1) into utility due to consumption and 

(dis)utility due to labor supply. Lemmas 1 and 2 provide second order approximations for each component.  

Lemma 1. Utility from consumption in equation (1) is given by  
௧ሻܥሺݑ ൌ ܿݐ  .ݐ ݅. . ݄. .  (29) .ݐ

where ܿ̃௧ ൌ log ሺܥ௧/ܥ௧
ிሻ is the percent deviation of consumption from its flexible-price level t.i.p. stands for 

terms independent from policy,  and h.o.t. means higher order terms.  

                                                      
7 In our welfare calculations, we use the 2nd order approximation to the consumer utility function while the structural 
relationships in the economy are approximated to first order. As discussed in Woodford (2010), this approach is valid if 
distortions to the steady state are small so that the first order terms in the utility approximation are premultiplied by 
coefficients that can also be treated as first order terms.  Since given our parameterization the distortions from imperfect 
competition and inflation are small (as in Woodford 2003), this condition is satisfied in our analysis. Furthermore, we 
show in Appendix F that the log-linear solution closely approximates the nonlinear solution, which implies that second 
order effects on the moments of inflation and output are small and can be ignored in the welfare calculations. 
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Lemma 2. Using production function (9), define ߭ሺ ௧ܻሺ݅ሻሻ ؠ ߭ሺ ௧ܰሺ݅ሻሻ ؠ ௧ܰሺ݅ሻଵାଵ/ఎ. Then  
߭൫ ௧ܻሺ݅ሻ൯ ൎ  തܻ௧

ி ߭ത
ಷ

ᇱ ൛ݕ௧ሺ݅ሻ  భ
మ
ሺ1  ௧ݕଵሻିߟ

ଶሺ݅ሻൟ  .ݐ ݅. . ݄. .  (30) .ݐ

where ݕ௧ሺ݅ሻ ൌ log ሺ ௧ܻሺ݅ሻ/ തܻ௧
ிሻ is the deviation of firm i’s output from the flexible-price level of output തܻ௧

ி. 
Correspondingly, the total disutility from labor supply is  

 ߭൫ܻݐሺ݅ሻ൯݀݅
ଵ

 ൌ തܻݐ
ݐ߭Ԣതܻܨ

ܨ ቄݕ݅ܧݐ
ሺ݅ሻ  1

2
ሺ1  െ1ሻߟ  ݐݕ

2ሺ݅ሻ݀݅
1

0
ቅ  .ݐ ݅. . ݄. .  (31) .ݐ

Proof: See Proposition 6.3 in Woodford (2003).  
 

The key insight from Lemmas 1 and 2 is that welfare is diminished when consumption is low relative to its 

flexible-price level and when the cross-sectional dispersion of output is large. To understand and assess the 

implications of cross-sectional output dispersion, we need to examine the cross-sectional dispersion of prices.  

Denote the cross-sectional dispersion of prices at time t with ∆௧ൌ varሺlog ሺ ௧ܲሺ݅ሻሻሻ and let ∆ത be the 

cross-sectional dispersion of prices in the non-stochastic steady state. It is straightforward to show that 

∆തൌ തߨ ଶഊሺభషഘሻమ

ሺభషഊሻమ  where ∆ത is increasing in price stickiness ߣ and steady-state inflation ߨത and decreasing in the 

degree of indexation ߱.  Define തܲ௧ ൌ logܧ ௧ܲሺ݅ሻ as the average (across firms) log price of goods.  

Lemma 3. The difference between the log price index Pt and the average log price across firms തܲ௧ is given by  
log ௧ܲ െ തܲ௧ ൌ ܳ

  భషഇ
మ

ܳ
ଵሺ∆௧ െ Δഥሻ  ݄. .  (32) .ݐ

where ܳ
 ൌ భషഇ

మ
Δഥ ሾ1  భ

మ
ሺଵିఏሻమΔഥሿଶൗ   and ܳ

ଵ ൌ ሾ1 െ భ
మ

ሺଵିఏሻమΔഥሿ ሾ1  భ
మ

ሺଵିఏሻమΔഥሿଷൗ .  
 

Lemma 3 is a manifestation of Jensen’s inequality. Note that since ∆ത is quadratic in ߨത, the 

dispersion of prices ∆ത is approximately zero when ߨത ൎ 0 and therefore ܳ
 ൎ 0, ܳ

ଵ ൎ 1 so that log ௧ܲ െ

തܲ௧ ൎ భషഇ
మ

∆௧, which is the standard result. Again, since ∆ത is quadratic in ߨത, one can show that ߲ܳ
/߲ߨത ൎ 0, 

߲ܳ
ଵ/߲ߨത ൎ 0 when ߨത ൎ 0.      

Using Lemma 3, we describe the dynamic properties of the price dispersion in Lemma 4.  

Lemma 4. Let Ξ୲ ൌ Δ୲ െ Δഥ be the deviation of cross-section price dispersion from its non-stochastic 
steady state level ∆ത. Then  

Ξ௧ ൌ ሺߨ௧ െ തሻଶΓߨ ቄሺ1 െ ଶܯሻߣ  ߣ  ሺభషഇሻమ

ర
ൣܳ

ଵ൧
ଶ

Γଶ
ଶ  ሺ1 െ ሻሺ1ߣ െ ܳܯሻߠ

ଵΓଶ െ ሺ1ߣ െ ሻܳߠ
ଵΓଶቅ    

Γଶሺߨ௧ െ തሻߨ  ΓଵΞ௧ିଵߣ  ݄. . .ݐ

 

(33) 
where 

Γ ൌ ൛1  ሺߠ െ 1ሻܳ
ଵൣሺ1 െ ሻ൫തܾߣ  ܳ

൯ െ ሺ1ߣ െ ߱ሻߨത൧ൟ
ିଵ

,  
Γଵ ൌ ൛1 െ ሺߠ െ 1ሻሺ1 െ ߱ሻߨതܳ

ଵൟΓ,  
Γଶ ൌ 2൛ሺ1 െ ൫തܾܯሻߣ  ܳ

൯  ሺ1ߣ െ ߱ሻߨതൟΓ,  
തܾ is the log of the optimal reset price in the non-stochastic steady state.  

This lemma shows that the cross-sectional price dispersion is a function of its past values as well as the 

deviation of inflation from its steady state level. In the vicinity of ߨത ൌ 0, Γ ൎ 1, Γଵ ൎ 1, Γଶ ൎ 0 and thus 

cross-sectional price dispersion varies very little over time since it is only a function of the variance of 
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inflation.  This is the standard result for welfare calculations in a zero steady state inflation environment (see 

e.g. Proposition 6.3 in Woodford (2003)). However, ߲Γ/߲ߨത  0, ߲Γଵ/߲ߨത ൏ 0, ߲Γଶ/߲ߨത  0 locally at ߨത ൎ

0. Hence, deviations of inflation from its steady state level have an increasingly strong effect on the cross-

sectional price dispersion as ߨത rises and, as a result, the dynamics of price dispersion can become first-order 

when ߨത is sufficiently high.  However, given our parameter values and for the levels of trend inflation that we 

consider, Γଶ remains tiny so that price dispersion effectively remains of second order as in Woodford (2003) 

and thus we can use a linear approximation of the structural relationships in the economy and a second order 

approximation of consumer utility for welfare calculations.8  Henceforth, we will treat Γଶ as negligibly small.  

Using the demand condition (7), we can link the cross-sectional dispersion of output to the cross-

sectional dispersion of prices:  

௧ሺ݅ሻݕ ൌ log ௧ܻሺ݅ሻ െ log തܻ௧
ி ൌ log ௧ܻ െ log തܻ௧

ி െ ሼlogߠ ௧ܲሺ݅ሻ െ log ௧ܲሽ  (34) 

and hence 

Υ௧ ؠ varݕො௧ሺ݅ሻ ൌ varݕ௧ሺ݅ሻ ൌ ଶvar൫log൫ߠ ௧ܲሺ݅ሻ൯൯ ൌ  ଶΔ௧. (35)ߠ

Let Υഥ be the cross-sectional dispersion of output in the non-stochastic steady state. The remaining piece in 

the second-order approximation of household’s utility is ܧݕ௧ሺ݅ሻ, which is the average deviation of output 

from flexible price level at the firm level. Using the insight of Lemma 3, we can relate ܧݕ௧ሺ݅ሻ
 to the 

deviation of output from its flexible-price level at the aggregate level.  

Lemma 5. If the deviation of output from its flexible-price level at the aggregate level is defined as 
௧ݕ ൌ log ሺ ௧ܻ/ തܻ௧

ிሻ, then  
௧ሺ݅ሻݕܧ ൌ ௧ݕ െ ܳ௬

 െ ഇషభ
మഇ

ܳ௬
ଵሺΥ௧ െ Υഥሻ  ݄. .  (36)  .ݐ

where ܳ௬
 ൌ ഇషభ

మഇ
Υഥ ሾ1  భ

మ
ቀభషഇ

ഇ ቁ
మ
Υഥሿଶൗ   and ܳ௬

ଵ ൌ ሾ1 െ భ
మ

ቀభషഇ
ഇ ቁ

మ
Υഥሿ ሾ1  భ

మ
ቀభషഇ

ഇ ቁ
మ
Υഥሿଷൗ .  

Similar to the cross-sectional price dispersion, one can show that, since Υഥ is quadratic in ߨത, ܳ௬
 ൎ 0, ܳ௬

ଵ ൎ 1 

and ߲ܳ௬
/߲ߨത ൎ 0,  ߲ܳ௬

ଵ/߲ߨത ൎ 0 when ߨത ൎ 0.  

The central result can be summarized with the following proposition. 

Proposition 1. Given Lemmas 1-5, the 2nd order approximation to expected per period utility in eq. (1) is9  
Θ  Θଵvarሺݕො௧ሻ  Θଶvarሺߨො௧ሻ  (37) 

where parameters Θ, ݅ ൌ ሼ0,1,2ሽ  depend on the steady state inflation ߨത and are given by  

Θ ൌ ቂ1 െ ሺభషಅሻ
൫భషഥ൯

൫1 െ ሺ1  ηିଵሻܳ௬
൯ቃ log തܺ  

െ ሺభషಅሻ
൫భషഥ൯

 ቄሺ1  ηିଵሻൣܳ௬
൧

ଶ
െ ܳ௬

  ഇషభ
ഇ

ܳ௬
ଵൣభ

మ
െ ሺ1  ηିଵሻܳ௬

൧Υഥቅ  

                                                      
8 In our baseline calibration the highest value for Γଶ  is 0.044 which is reached at 6% annual inflation.  
9 The complete approximation also contains two linear terms, the expected output gap and expected inflation. Since 
the distortions to the steady state are small for the levels of trend inflation we consider, the coefficients that multiply 
these terms can be considered as  first order so we can evaluate these terms using the first order approximation to the 
laws of motion as in Woodford (2003). We confirmed in numeric simulations that they can be ignored. Furthermore, 
second order effects on the expected output gap and expected inflation are likely to be quantitatively small since the 
linear solution closely approximates the nonlinear solution to the model (see Appendix F). 
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െሺభషಅሻ൫భశಏషభ൯
మ൫భషഥ൯

ሾlog തܺሿଶ െ ഇమሺభషಅሻ
మ൫భషഥ൯

ൣܳ௬
ଵሺିߠଵ െ 1ሻ  ሺ1  ηିଵሻ൫1  ഇషభ

ഇ
ܳ௬

ܳ௬
ଵ൯൧Δഥ,    

Θଵ ൌ െభ
మ
ሺ1  ηିଵሻ/ሺ1 െ ҧ݃௬ሻ,  

Θଶ ൌ െ ഇమ

మሺభషഥሻ
Γଷ൛ൣܳ௬

ଵሺିߠଵ െ 1ሻ  ሺ1  ଵሻ൫1ିߟ  ഇషభ
ഇ

ܳ௬
ܳ௬

ଵ൯൧ െ 2ሺ1  ଵሻഇషభିߟ
ഇ

ܳ௬
ଵ log തܺ ൟ,   

Γଷ ൌ బ
భషഊభ

ሼሺ1 െ ଶܯሻߣ    ,ሽߣ

Φ ൌ െ logሺഇషభ
ഇ

ሻ. 

This approximation of the household utility places no restrictions on the path of nominal interest rates and 

thus is invariant to stabilization policies chosen by the central bank.   

The loss function in Proposition 1 illustrates the three mechanisms via which trend inflation affects 

welfare: the steady-state effects, the effects on the coefficients of the utility-function approximation, and the 

dynamics of the economy via the second moments of macroeconomic variables.10  First, the term Θ captures 

the steady-state effects from positive trend inflation, which hinge on the increase in the cross-sectional steady-

state dispersion in prices (and therefore in inefficient allocations of resources across sectors) associated with 

positive trend inflation.11 Note that as ߨത approaches zero, Θ converges to zero. As shown by Ascari and 

Ropele (2009), when ߨത ൌ 0, ߲Θ/߲ߨത  0, but the sign of the slope quickly reverses at marginally positive 

inflation rates. In our baseline calibration, Θ is strictly negative and ߲Θ/߲ߨത ൏ 0 when trend inflation 

exceeds 0.04% per annum.  Thus for quantitatively relevant inflation rates, the welfare loss from steady-state 

effects is increasing in the steady-state level of inflation. This is intuitive since, except for very small levels of 

inflation, the steady state level of output declines with higher ߨത because the steady state cross-sectional price 

dispersion rises.  The steady-state cost of inflation from price dispersion is one of the best-known costs of 

inflation and arises naturally from the integration of positive trend inflation into the New Keynesian model.  

Consistent with this effect being driven by the increase in dispersion, one can show that the steady-state effect 

is eliminated with full indexation of prices and mitigated with partial indexation.  

Second, the coefficient on the variance of output around its steady state Θଵ ൏ 0 does not depend on 

trend inflation. This term is directly related to the increasing disutility of labor supply. With a convex cost 

of labor supply, the expected disutility rises with the variance of output around its steady state.  However, 

even though Θଵ is independent of ߨത, this does not imply that a positive ߨത does not impose any output cost. 

Rather, trend inflation reduces the steady state level of output, which is already captured by Θ. Once this is 

taken into account, then log utility implies that a given level of output variance around the (new) steady 

state is as costly as it was before. Furthermore, the variance of output around its steady state depends on the 

dynamic properties of the model which are affected by the level of trend inflation.   

                                                      
10 When ߨത ൌ 0, equation (41) reduces to the standard second-order approximation of the utility function as in 
Proposition 6.4 of Woodford (2003). There is a slight difference between our approximation and the approximation in 
Woodford (2003) since we focus on the per-period utility while Woodford calculated the present value.  
11 The parameter Ф measures the deviation of the flexible-price level of output from the flexible-price perfect-
competition level of output. See Woodford (2003) for derivation. 
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The coefficient on the variance of inflation Θଶ ൏ 0 captures the sensitivity of the welfare loss due 

to the cross-sectional dispersion of prices. One can also show analytically that for ߨത ൎ 0, ߲Θଶ/߲ߨത ൏ 0 so 

that  the cross-sectional dispersion of prices becomes ceteris paribus costlier in terms of welfare. Recall 

that an inflationary shock creates distortions in relative prices. Given that positive trend inflation already 

generates some price dispersion and hence an inefficient allocation of resources, firms operating at an 

inefficient level have to compensate workers for the increasingly high marginal disutility of sector-specific 

labor. Because of this rising marginal disutility, the increased distortion in relative prices due to an inflation 

shock becomes costlier as we increase the initial price dispersion which makes the variance of inflation 

costlier for welfare as the trend level of inflation rises. Thus, this is a second, and to the best of our 

knowledge previously unidentified, channel through which the price dispersion arising from staggered price 

setting under positive inflation reduces welfare.  Finally, Θଶ increases in the Frisch labor supply elasticity 

and decreases in the elasticity of substitution across goods ߠ and the Calvo parameter ߣ. 

III Calibration and Optimal Inflation 

Having derived the approximation to the utility function, we now turn to solving for the optimal inflation 

rate.  Because utility depends on the volatility of macroeconomic variables, this will be a function of the 

structural parameters and shock processes.  Therefore, we first discuss our parameter selection and then 

consider the implications for the optimal inflation rate in the model.  We investigate the robustness of our 

results to parameter values in subsequent sections. 

3.1 Parameters 

Our baseline parameter values are illustrated in Table 1.  For the utility function, we set η, the Frisch labor 

supply elasticity, equal to one.  The steady-state discount factor β is set to 0.998 to match the real rate of 

2.3% per year on 6-month commercial paper or assets with similar short-term maturities given that we set 

the steady-state growth rate of real GDP per capita to be 1.5% per year (ܻܩതതതത ൌ 1.015.ଶହ), as in Coibion and 

Gorodnichenko (2011).  We set the elasticity of substitution across intermediate goods ߠ to 10, so that 

steady-state markups are equal to 11%. This size of the markup is consistent with estimates presented in 

Burnside (1996) and Basu and Fernald (1997).  The degree of price stickiness (ߣ) is set to 0.55, which 

amounts to firms resetting prices approximately every 7 months on average.  This is midway between the 

micro estimates of Bils and Klenow (2004), who find that firms change prices every 4 to 5 months, and 

those of Nakamura and Steinsson (2008), who find that firms change prices every 9 to 11 months.   

The degree of price indexation is assumed to be zero in the baseline for three reasons.  First, the 

workhorse New Keynesian model is based only on price stickiness, making this the most natural 

benchmark (Clarida et al. 1999, Woodford 2003).  Second, any price indexation implies that firms are 

constantly changing prices, a feature strongly at odds with the empirical findings of Bils and Klenow 
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(2004) and more recently Nakamura and Steinsson (2008), among many others.  Third, while indexation is 

often included to replicate the apparent role for lagged inflation in empirical estimates of the New 

Keynesian Phillips Curve (NKPC; see Gali and Gertler 1999), Cogley and Sbordone (2008) show that once 

one controls for steady-state inflation, estimates of the NKPC reject the presence of indexation in price 

setting decisions.  However, we relax the assumption of no indexation in the robustness checks. 

 The coefficients for the Taylor rule are taken from Coibion and Gorodnichenko (2011).  These 

estimates point to strong long-run responses by the central bank to inflation and output growth (2.5 and 1.5 

respectively) and a moderate response to the output gap (0.43).12  The steady-state share of consumption is set 

to 0.80 so that the share of government spending is twenty percent.  The calibration of the shocks is primarily 

taken from the estimated DSGE model of Smets and Wouters (2007) with the exception of the persistence of 

the risk premium shocks for which we consider a larger value calibrated at 0.947 to match the historical 

frequency of hitting the ZLB and the routinely high persistence of risk premia in financial time series.13   

 In our baseline model, positive trend inflation is costly because it leads to more price dispersion and 

therefore less efficient allocations, more volatile inflation, and a greater welfare cost for a given amount of 

inflation volatility.  On the other hand, positive trend inflation gives policy-makers more room to avoid the 

ZLB on interest rates.  Therefore, a key determinant of the tradeoff between the two depends on how 

frequently the ZLB is binding for different levels of trend inflation.  To illustrate the implications of our 

parameter calibration for how often we hit the ZLB, Figure 1 plots the fraction of time spent at the ZLB from 

simulating our model for different steady-state levels of the inflation rate.  In addition, we plot the steady-state 

level of the nominal interest rate associated with each inflation rate, where the steady-state nominal rate in the 

model is determined by തܴ ൌ ഥߎ ·  ҧ.  Our calibration implies that with a steady-state inflation rate ofߚ/തതതതܻܩ

approximately 3.5%, the average rate for the U.S. since the early 1950’s, the economy should be at the ZLB 

approximately 5 percent of the time.  This is consistent with the post-WWII experience of the U.S.: with U.S. 

interest rates at the ZLB since late 2008 and expected to remain so until the end of 2011, this yields a 

historical frequency of being at the ZLB of 5 percent (i.e. around 3 years out of 60).14   

 In addition, this calibration agrees with the historical changes in interest rates associated with post-

WWII U.S. recessions.  For example, starting with the 1958 recession and excluding the current recession, the 

                                                      
12 Because empirical Taylor rules are estimated using annualized rates while the Taylor rule in the model is expressed 
at quarterly rates, we rescale the coefficient on the output gap in the model such that ߶௬ = 0.43/4 = 0.11. 
13 This calibration is, e.g., consistent with the persistence of the spread between Baa and Aaa bonds which we estimate 
to be 0.945 between 1920:1 and 2009:2 and 0.941 between 1950:1 and 2009:2 at the quarterly frequency. 
14 Of possible concern may be that this calculation includes the high-inflation environment from 1970-85. Excluding 
those years generates a historical frequency at the ZLB of 3/45=6.66% but now at a lower trend inflation rate of 3% 
per year. Our baseline calibration generates precisely that frequency at 3% trend inflation. 
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average decline in the Federal Funds Rate during a recession has been 4.76 percentage points.15  The model 

predicts that the average nominal interest rate with 3.5% steady-state inflation is around 6%, so the ZLB would 

not have been binding during the average recession, consistent with the historical experience.  Only the 1981-

82 recession led to a decline in nominal interest rates that would have been sufficiently large to reach the ZLB 

(8.66% drop in interest rates), but did not because nominal interest rates and estimates of trend inflation over 

this period were much higher than their average values.  Thus, with 3-3.5% inflation, our calibration (dotted 

line in Figure 1) implies that it would take unusually large recessions for the ZLB to become binding.  In 

addition, our calibration indicates that at much lower levels of trend inflation ߨത, the ZLB would be binding 

much more frequently.  For example, at a zero steady-state inflation rate, the ZLB would be binding 27% of the 

time.  Given the historical experience of the U.S., this seems conservative, as it exceeds the historical frequency 

of recessions.  The model predicts a steady-state level of interest rates of less than 2.5% when ߨത ൌ 0, and six 

out the last eight recessions (again excluding the current episode) were associated with decreases in interest 

rates that exceeded this value (specifically the 1969, 1973, 1980, 1981, 1990 and 2001 recessions).  Our 

calibration is also largely in line with the frequency of the ZLB we would have observed given historical 

declines in nominal interest rates during recessions and counterfactual levels of trend inflation (broken line in 

Figure 1).  Thus, we interpret our parameterization as providing a reasonable representation of the likelihood of 

hitting the ZLB for different inflation rates given the historical experience of the U.S. 

3.2 Optimal Inflation 

Having derived the dynamics of the model, parameterized the shocks, and obtained the second-order 

approximation to the utility function, we now simulate the model for different levels of trend inflation ߨത and 

compute the expected utility for each ߨത.  We use the Bodenstein et al. (2009) algorithm to solve the non-linear 

model and verify in Appendix F that this algorithm has very high accuracy, even after large shocks leading to 

a binding ZLB.  The results taking into account the ZLB and in the case when we ignore the ZLB are plotted 

in Panel A of Figure 2.  When the ZLB is not taken into account, the optimal rate of inflation is zero because 

there are only costs to inflation and no benefits.16  Figure 2 also plots the other extreme when we include the 

ZLB but do not take into account the effects of positive steady-state inflation on the loss function or the 

dynamics of the model.  In this case, there are no costs to inflation so utility is strictly increasing as steady-

state inflation rises and the frequency of the ZLB diminishes.  Our key result is the specification which 

incorporates both the costs and benefits of inflation.  As a result of the ZLB constraint, we find that utility is 

increasing at very low levels of inflation so that zero inflation is not optimal when the zero bound is present.  

                                                      
15 This magnitude is calculated by taking the average level of the Federal Funds rate (FFR) over the last 6 months 
prior to the start of each recession as defined by the NBER and subtracting the minimum level of the FFR reached in 
the aftermath of that recession. 
16 We determine optimal inflation in a grid-space with a width of 0.04% per year. It is therefore possible, although 
quantitatively not important, that the optimal inflation rate without the ZLB is positive but less than 0.04% per year. 
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Second, the peak level of utility is reached when the inflation rate is 1.3% at an annualized rate.  This is at the 

bottom end of the target range of most central banks, which are commonly between 1% and 3%.  Thus, our 

baseline results imply that taking into account the zero bound on interest rates raises the optimal level of 

inflation, but with no additional benefits to inflation included in the model, the optimal inflation rate is within 

the standard range of inflation targets.  Third, inflation rates above the optimal level monotonically lower 

utility.  Fourth, the costs of even moderate inflation can be nontrivial.  For example, a 4% annualized inflation 

rate would lower utility by nearly 2% relative to the optimal level, which given log utility in consumption is 

equivalent to a permanent 2% decrease in the level of consumption.  As we show later, the magnitude of the 

welfare costs of inflation varies with the calibration and price setting assumptions, but the optimal rate of 

inflation is remarkably insensitive to these modifications.   

Panel B of Figure 2 quantifies the importance of each of the three costs of inflation – the steady 

state effect, the increasing cost of inflation volatility, and the positive link between the level and volatility 

of inflation – by calculating the optimal inflation rate subject to the zero lower bound when only one of 

these costs, in turn, is included.  The first finding to note is that allowing for any of the three inflation costs 

is sufficient to bring the optimal inflation rate to 2.7% or below.  Thus, all three inflation costs incorporated 

in the model are individually large enough to prevent the ZLB from pushing the optimal inflation rate 

above the current target range of most central banks.  Second, the steady-state cost of price dispersion is the 

largest cost of inflation out of the three, bringing the optimal inflation rate down to 1.5% by itself.   

To get a sense of which factors drive these results, the top row of Figure 3 plots the coefficients of 

the second-order approximation to the utility function from Proposition 1.  In short, the results confirm the 

analytical derivations in section 2.4.  First, rising inflation has important negative steady-state effects on 

utility, as the increasing price dispersion inefficiently lowers the steady-state level of production and 

consumption.  Second, the coefficient on the variance of output around its steady state is independent of ߨത 

even though the new steady state level of output is lower. This reflects our assumption of log-utility in 

consumption.  Third, the coefficient on inflation variance is decreasing in ߨത, i.e., holding the inflation 

variance constant, higher ߨത raises the utility cost of the variance in inflation.  This reflects the fact that 

when the steady state level of price dispersion is already high then a temporary increase in price dispersion 

due to an inflation shock is even more costly. Moving from zero inflation to six percent inflation raises the 

coefficient on the inflation variance by over 40% in absolute value.  Thus, as ߨത rises, policy-makers should 

place an increasing weight on the variance of inflation relative to the variance of the output gap.     

The middle row of Figure 3 plots the effects of ߨത on the variance of inflation and the output gap, 

i.e. the dynamic effects of steady-state inflation and the ZLB.  In addition, we plot the corresponding 

moments in the absence of the zero-bound on interest rates to characterize the contribution of the zero-

bound on macroeconomic dynamics.  A notable feature of the figure is that output volatility rises much 
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more rapidly as ߨത falls when the ZLB is present. Intuitively, the ZLB is hit more often at a low ߨത. With the 

nominal rate fixed at zero, the central bank cannot stabilize the economy by cutting interest rates further 

and thus macroeconomic volatility increases. As we increase ߨത, macroeconomic volatility (especially for 

output) diminishes.  This is the benefit of higher ߨത in the model. 

The effect of changes in ߨത, however, is non-linear for the variance of inflation when we take into 

account the zero-bound on interest rates. At low levels of inflation, increasing ߨത reduces the volatility of 

inflation for the same reason as for output: the reduced frequency of hitting the zero bound. On the other 

hand, higher ߨത also tends to make price-setting decisions more forward-looking, so that, absent the zero 

bound, inflation volatility is consistently rising with ߨത, a feature emphasized in Kiley (2007) and consistent 

with a long literature documenting a positive relationship between the level and variance of inflation (Okun 

1971, Taylor 1981 and Kiley 2000). When ߨത rises past a specific value, the latter effect starts to dominate 

and the variance of inflation begins to rise with ߨത. Given our baseline values, this switch occurs at an 

annualized trend inflation rate of approximately 2.5%. These results show the importance of modeling both 

the zero-bound and the effects of ߨത on the dynamics of the model.  

The bottom row of Figure 3 then plots the contribution of these different effects on the welfare 

costs of inflation, i.e. each of the terms in Proposition 1.  These include the steady-state effects of ߨത as well 

as the interaction of the effects of ߨത on the coefficients of the utility function approximation and the 

dynamics of the economy.  The most striking result is that the welfare costs and benefits of positive ߨത are 

essentially driven by only two components: the steady-state effect and the contribution of inflation variance 

to utility.  In particular, the U-shape pattern of the inflation variance combined with decreasing Θଶ plays the 

key role in delivering a positive level of the optimal inflation rate, while the effects of the ZLB on the 

contribution of the output gap variability are an order of magnitude smaller and therefore play a limited role 

in determining the optimal inflation rate.  

3.3 Are the costs of business cycles and the ZLB too small in the model? 

The minor contribution of output gap volatility to the optimal inflation rate might be interpreted as an 

indication that the model understates the costs of business cycles in general and the ZLB in particular.  For the 

former, the implied welfare costs of business cycles in our model are approximately 2% of steady-state 

consumption at the historical trend inflation rate, in line with DeLong and Summers (1988), Barlevy (2004), 

and much larger than in Lucas (1987).  To assess the cost of hitting the ZLB, we compute the average welfare 

loss net of steady-state effects from simulating the model under different inflation rates both with and without 

the zero bound.  The difference between the two provides a measure of the additional welfare cost of business 

cycles due to the presence of the ZLB.  We can then divide this cost by the average frequency of being at the 

zero bound from our simulations, for each level of steady-state inflation, to get a per-quarter average welfare 

loss measure conditional on being at the ZLB which is plotted in Figure 4.  With a steady-state inflation rate of 
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one percent, the average cost of a quarter spent at the ZLB is nearly equivalent to a permanent 2.5% reduction 

in consumption.  As steady-state inflation rises, this per-period cost declines because the average duration of 

ZLB episodes gets shorter and the output losses during the ZLB are increasing non-linearly with the duration of 

the ZLB (see Christiano et al. 2009).  At a steady-state inflation rate of 3.5%, the average per-quarter cost of 

the ZLB is approximately equal to a permanent 0.5% reduction in consumption.  This implies that the 

additional cost of being restrained by the zero bound for 8 quarters exceeds that of a permanent 4% reduction 

in consumption, or $400 billion per year based on 2008 consumption data.17,18  For comparison, Williams 

(2009) uses the Federal Reserve’s FRB/US model to estimate that the ZLB between 2009 and 2010 cost $1.8 

trillion in lost output over four years, or roughly $300 billion per year in lost consumption over four years if 

one assumes that the decline in consumption was proportional to the decline in output.  Thus, the costs of both 

business cycles and the ZLB in the model cannot be described as being uncharacteristically small. 

However, while the conditional costs of long ZLB events are quite large, they also occur relatively 

infrequently. For example, if we assume that all ZLB episodes are 8 quarters long, then at 3.5% trend inflation 

an 8-quarter episode at the ZLB occurs with probability 0.007 each quarter, or about 3 times every 100 years. 

This implies that the expected cost of the ZLB is a 0.028% permanent reduction of consumption. Similar 

calculations for 2% trend inflation reveal that while the conditional cost of an 8-quarter ZLB event is about a 

9% permanent reduction of consumption, the unconditional cost of the ZLB is only a 0.13% permanent 

reduction in consumption. Thus, while the model implies that a higher inflation target can significantly reduce 

the cost of a given ZLB event, as suggested by Blanchard, taken over a long horizon the expected gain in 

mitigating the ZLB from such a policy is small.  As a result, even modest costs of inflation, because they must 

be borne every period, are sufficient to push the optimal inflation rate below 2%. 

3.4 How does optimal inflation depend on the coefficient on the variance of the output gap? 

Even though the costs of business cycles are significant and ZLB episodes are both very costly and 

occurring with reasonable probability, one may be concerned that these costs are incorrectly measured due 

to the small relative weight assigned to output gap fluctuations in the utility function.  At ߨത ൌ 0, the 

coefficient on the output gap variance in the loss function is less than one-hundredth that on the quarterly 

inflation variance (or one-tenth for the annualized inflation variance), and this difference becomes even 

more pronounced as ߨത rises.  The low optimal weight on output gap volatility is standard in New Keynesian 

models (see Woodford 2003) and could reflect the lack of involuntary unemployment, which inflicts 

substantial hardship to a small fraction of the population and whose welfare effects may therefore be poorly 

                                                      
17 In this calculation, we treat as negligible the fact that in our model the presence of the ZLB can reduce the average 
level of output because the product of the average reduction in output, the frequency of hitting the ZLB and the utility 
weight on the first order term corresponding to the output gap is small. However, conditional on hitting the ZLB, the 
reduction in output could be substantial. For example, the average per-quarter reduction in output when the ZLB is 
binding at three percent trend inflation is about one percent. Assuming the binding ZLB lasts for eight quarters, the 
fall in output is then worth $1.2 trillion dollars over 2 years, or 33% more than Williams’ (2009) estimate.  
18 In our baseline calibration, the 90% confidence interval for the duration of ZLB episodes is (2,16) at 3.5% inflation. 
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approximated by changes in aggregate consumption and employment, or the absence of distributional 

considerations, since business cycles disproportionately affect low income/wealth individuals who are 

likely to have higher marginal utilities of consumption than the average consumer.19 

 To assess how sensitive the optimal inflation rate is to the coefficient on the output gap variance, 

we increase this coefficient by a factor ranging from 1 to 100 and reproduce our results for the optimal 

inflation rate for each factor (see Panel B of Figure 4).  As expected, raising the coefficient on the variance 

of the output gap pushes the optimal inflation rate higher.  However, the coefficient on the output gap 

variance needs to be strikingly large to qualitatively affect our findings.  For example, much of the 

traditional literature on optimal monetary policy assumed an equal weight on output and annualized 

inflation variances in the loss function.  With inflation being measured at an annualized rate, this equal 

weighting obtains at zero steady-state inflation when Θ1 is multiplied by a factor of approximately 10.  Yet 

this weighting would push the optimal inflation rate up only modestly, to less than 1.6% per year.   

Raising the optimal inflation rate substantially above 3% would require increasing the coefficient 

on output gap variance in the loss function by around 100, thereby making the weight placed on output 

volatility approximately ten times as large as that on annualized inflation volatility, a weighting scheme 

which seems difficult to justify.  Furthermore, such a loss function would imply that the costs of business 

cycles are equivalent to a permanent drop in consumption of 10% when evaluated at the optimal inflation 

rate, which is much larger than commonly found in the literature. Finally, placing such weight on output 

volatility would also substantially increase the per-quarter cost of having the ZLB bind.  Evaluated at the 

optimal inflation rate, each quarter with a binding ZLB would lower utility by an average amount 

equivalent to a 7% permanent reduction in consumption, such that an episode of 8 consecutive quarters at 

the ZLB would deliver welfare losses equivalent to roughly 56% of steady-state consumption, above and 

beyond the costs of the shock in the absence of the ZLB.  Thus, while one can mechanically raise the 

optimal inflation rate by appealing to larger weights on output fluctuations than implied by the model, 

weighting schemes which meaningfully raise the optimal inflation rate will point to welfare costs of 

business cycles, and particularly episodes at the ZLB, that depart from the conventional wisdom.  

IV Robustness of the Optimal Inflation Rate to Alternative Parameter Values 

In this section, we investigate the robustness of the optimal inflation rate to our parameterization of the 

model.  We focus particularly on pricing parameters, the discount factor, and the risk premium shock.20   

4.1 Pricing Parameters 

                                                      
19 Christiano et al. (2010) introduce involuntary unemployment into a New Keynesian model and find that this does 
not significantly raise the cost of business cycles. 
20 We also investigated the sensitivity of our results to the Frisch labor supply elasticity and other parameters.  These 
had minor quantitative effects on our results; we omit them from the text in the interest of space.  We also added habit 
formation to the model and found that this had little effect on the optimal inflation rate.   
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Figure 5 plots the utility-approximation for different levels of ߨത for alternative pricing parameters, as well 

as the optimal inflation rates associated with these parameter values.  First, we consider the role of the 

elasticity of substitution θ.  Note that the welfare costs of inflation are larger when θ is high.  This result 

captures the fact that a higher elasticity of substitution generates more real rigidity and therefore more 

persistence in fluctuations, thereby raising the welfare cost of fluctuations for any ߨത.  However, the effects 

of this parameter on the optimal ߨത are relatively small: using a value of θ = 5, half of our baseline and an 

upper bound on how big markups are in the economy, raises the optimal ߨത to about 1.9% from our baseline 

of 1.3%.  This is well within the range of inflation targets employed by modern central banks. 

 We also investigate the role of price indexation.  In our baseline, we assumed ω = 0, based on the 

fact that firms do not change prices every period in the data, as documented by Bils and Klenow (2004) and 

Nakamura and Steinsson (2008), as well as the results of Cogley and Sbordone (2008) who argue that once 

one controls for time-varying trend inflation, we cannot reject the null that ω = 0 for the US.  However, 

because price-indexation is such a common component of New Keynesian models, we consider the effects 

of price indexation on our results. Figure 5 indicates that higher levels of indexation lead to higher optimal 

rates of inflation because indexation reduces the dispersion of prices. Yet with ω = 0.5, which is most likely 

an upper bound for an empirically plausible degree of indexation in low-inflation economies like the U.S., 

the optimal ߨത remains less than 2%.21 

 Third, we investigate the effects of price stickiness.  Our baseline calibration, λ = 0.55, is midway 

between the findings of Bils and Klenow (2004) of median price durations of 4-5 months and those of 

Nakamura and Steinsson (2008) of median price durations of 9-11 months.  We now consider values of λ 

ranging from 0.50 to 0.65.  There is little impact on welfare for very low levels of inflation, but as the 

steady state inflation rate rises past 3%, higher degrees of price stickiness are associated with much larger 

welfare losses than the baseline.22  This reflects the fact that with more price stickiness, price dispersion is 

greater, and this effect is amplified at higher levels of steady-state inflation, thereby generating much larger 

welfare losses.  Nonetheless, this has only minor effects on the optimal inflation rate. 

4.2 Discount Factor and Risk Premium Shocks 

We also consider the sensitivity of our results to the discount factor and the parameters governing the risk 

premium shocks.  First, we reproduce our baseline welfare figure for different levels of the persistence to 

risk premium shocks.  The results are quite sensitive to this parameter, which reflects the fact that these 

shocks play a crucial role in hitting the zero lower bound.  For example, Figure 6 illustrates that when we 

raise the persistence of the shock from 0.947 to 0.96, the optimal inflation rate rises from 1.3% to 2.6% 

                                                      
21 Standard estimates of the Phillips Curve without trend inflation (e.g., Gali and Gertler 1999 and Levin et al. 2005) 
suggest that the fraction of indexing firms is at most 0.5 and more likely between 0.25-0.35.   
22 In fact, if we increase λ above 0.65 the model starts to run into indeterminacy regions which are potentially 
associated with unbounded volatility.  
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because this increase in the persistence of the shock has a large effect on the frequency and duration of 

being at the ZLB.  At 3.5% inflation, this frequency more than doubles relative to our baseline scenario, 

thereby raising the benefit of higher steady-state inflation.  The reverse occurs with lower persistence of 

risk premium shocks: the frequency of being at the ZLB declines sharply as does the optimal inflation rate. 

Second, similar results obtain when we vary the volatility of the risk premium shock.  When we increase 

the standard deviation of these shocks to 0.0035 from our baseline of 0.0024, the optimal inflation rate 

again rises to slightly over 2.5 percent.  As with the persistence of the shocks, this is driven by a higher 

frequency of being at the ZLB: at 3.5% inflation, this alternative shock volatility implies the economy 

would be at the ZLB three times as often as under our baseline calibration. 

 Third, we consider the sensitivity of our results to the steady-state level of the discount factor β.  

This parameter is also important in determining the frequency at which the economy is at the ZLB since it 

affects the steady-state level of nominal interest rates.  As with the risk premium shock variables, a higher 

value of β is associated with a lower steady-state level of nominal interest rates, so that the ZLB will be 

binding more frequently.  For example, with β=0.9999 (which corresponds to a real rate of 1.54% per year), 

the ZLB is binding approximately 7% of the time when steady-state inflation is 3.5%.  At the maximum, 

however, the optimal ߨത is only 0.5% higher than implied by our baseline results.   

These robustness checks clearly illustrate how important the frequency at which the economy hits the 

ZLB is for our results.  Naturally, parameter changes which make the ZLB binding more often raise the 

optimal rate of inflation because a higher ߨത lowers the frequency of hitting the ZLB.  Thus, the key point is not 

the specific values chosen for these parameters but rather having a combination of them that closely reproduces 

the historical frequency of hitting the ZLB for the U.S.  Nonetheless, even if we consider parameter values that 

double or even triple the frequency of hitting the ZLB at the historical average rate of inflation for the U.S., the 

optimal inflation rate rises only to about 2.5%, which is still well within the target range of most central banks.  

This suggests that the evidence for an inflation target in the neighborhood of 2% is robust to a wide range of 

plausible calibrations of hitting the ZLB.

 
V What Could Raise the Optimal Inflation Rate? 

While our baseline model emphasizes the tradeoff between higher ߨത to insure against the zero-bound on 

nominal interest rates versus the utility costs associated with higher trend inflation, previous research has 

identified additional factors beyond the lower-bound on nominal interest rates which might lead to higher 

levels of optimal inflation.  In this section, we extend our analysis to assess their quantitative importance.  

First, we include capital formation in the model.  Second, we allow for uncertainty about parameter values 

on the part of policy-makers. Third, we consider the possibility that the degree of price stickiness varies 

with ߨത.  Fourth, we explore whether our results are sensitive to using Taylor pricing. Fifth, we integrate 

downward nominal wage rigidity, i.e. “greasing the wheels,” into the model. 
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5.1 Capital 

First, we consider how sensitive our results are to the introduction of capital. We present a detailed model 

in Appendix B and only provide a verbal description in this section. In this model, firms produce output 

with a Cobb-Douglas technology (capital share ߙ ൌ 0.33). All capital goods are homogeneous and can be 

equally well employed by all firms. Capital is accumulated by the representative consumer subject to a 

quadratic adjustment cost to capital (߰ ൌ 3 as in Woodford 2003) and rented out in a perfectly competitive 

rental market. The aggregate capital stock depreciates at rate ߜ ൌ 0.02 per quarter.  We calculate the new 

steady state level of output relative to the flexible price level output and derive the analogue of Proposition 

1 in Appendix B with proofs in Appendix C. 

By allowing capital to freely move between firms we reduce the steady state welfare cost from 

trend inflation. Firms that have a relatively low price can now hire additional capital rather than sector-

specific workers to boost their output. Thus the disutility of labor does not increase by as much as it did in 

the labor-only model and this will be a force to raise the optimal inflation level. However, capital also 

increases the likelihood of hitting the ZLB. Unlike the labor-only model, including capital permits 

disinvesment when agents prefer storing wealth in safe bonds rather than capital, and so we are more likely 

to be in a situation where an increase in qt pushes interest rates to zero. This channel will also raise the 

optimal inflation rate in the capital model relative to the labor-only model. We isolate the first channel by 

setting ߩ ൌ 0.943 to match the historical frequency at the ZLB.  As shown in Figure 7, utility peaks at a 

trend inflation rate of 1.8% per annum suggesting that capital does not lower the cost of inflation 

substantially, yielding only a small net increase in the optimal inflation rate.23  

5.2 Model Uncertainty 

An additional feature that could potentially lead to higher rates of optimal inflation is uncertainty about the 

model on the part of policy-makers.  If some plausible parameter values lead to much higher frequencies of 

hitting the ZLB or raise the output costs of being at the ZLB, then policy-makers might want to insure 

against these outcomes by allowing for a higher ߨത.  To quantify this notion, we consider two exercises.  

First, we identify ߨത that maximizes expected utility taking into account parameter uncertainty.  Second, we 

generate a distribution of optimal ߨത from the distribution of parameters. 

Our starting point for both exercises is uncertainty about the parameters of the model.  We 

characterize this uncertainty via the variance-covariance matrix of the estimated parameters from Smets 

and Wouters (2007). We place an upper bound on parameter values to eliminate draws where the ZLB 

binds unrealistically often, in excess of 10% at 6% annual trend inflation.  To assess the optimal inflation 

                                                      
23 We also consider a second extension, where risk premium shocks increase both the demand for bonds and capital. 
In this model capital lowers the frequency of hitting the ZLB, so we set ߩ ൌ 0.965 to match its historical frequency. 
The optimal inflation rate in this model is 2.3%, which is again within the range of central bank inflation targets.  
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rate given uncertainty about parameter values, we compute the expected utility associated with each level 

of steady-state inflation by repeatedly drawing from the distribution of parameter values.24  Figure 8 (Panel 

A) plots the implied levels of expected utility associated with each steady-state level of inflation.  

Maximum utility is achieved with an inflation rate of 1.6% per year.  As expected, this is higher than our 

baseline result, which reflects the fact that some parameter draws lead to much larger costs of being at the 

zero-bound, a feature which also leads to a much more pronounced inverted U-shape of the welfare losses 

from steady-state inflation.  Nonetheless, this optimal rate of inflation remains well within the bounds of 

current inflation targets of modern central banks. 

Secondly, for each draw from the parameter space, we solve for the optimal inflation rate, thereby 

allowing us to characterize the uncertainty associated with our baseline results.  Figure 8 (Panel B) plots the 

distribution function of these inflation rates.  The 90% confidence interval of optimal inflation rates ranges 

from 0.3% to 2.5% per year, which again is very close to the target range for inflation of most central 

banks.  In short, incorporating model uncertainty confirms our baseline finding that, even after taking into 

account the ZLB, the optimal inflation rate is low and close to current targeted levels. 

5.3 Taylor pricing 

Our baseline model relies on the Calvo (1983) price-setting framework.  While analytically convenient, this 

approach suffers from several drawbacks that could affect our estimates of the optimal inflation rate.  One 

such factor is that with exogenous probabilities of changing prices each period, there is always a fraction of 

firms using very outdated prices.  With positive steady-state inflation, these prices will be very low in relative 

terms, leading to high estimates of the cost of price dispersion even at moderate inflation rates.  To assess how 

important this factor is for the optimal rate of inflation, we consider an alternative approach to Calvo pricing, 

namely the staggered contracts approach of Taylor (1977), in which firms set prices for a pre-determined 

duration of time. With fixed durations of price stickiness, price dispersion should be smaller than under Calvo 

pricing for sufficiently high inflation rates.  The derivation of the utility approximation as well as the 

structural log-linearized equations of the model is similar to Calvo pricing (Appendix D contains details for 

the utility approximation when the duration of price spells is equal to three quarters). 

Figure 9 compares the results under Taylor pricing (using durations of price contracts equal to 3 and 4 

quarters) with the results from Calvo pricing. The optimal inflation rates for the Taylor model are 1.77 and 

1.44 percent per year for price durations of 3 and 4 quarters respectively, which is close to the 1.3 percent per 

year found for the baseline Calvo model. Note also that the volatility of inflation and the output gap (Panels C 

and D) as well as the frequency of hitting ZLB (Panel B) are approximately the same in all models. Thus, the 

use of this alternative price-setting model does not qualitatively alter the optimal inflation rate.  One 

                                                      
24 Note that some parameter draws yield an indeterminate solution.  In this case, we solve for the dynamics using the 
“continuous” solution as in Lubik and Schorfheide (2003). 
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difference of note is that the Taylor model has smaller welfare losses as ߨത increases above 2 percent per year. 

For example, the welfare loss at the steady state inflation of 6 percent per year relative to the minimum loss is 

about 4 percent in the Calvo model but only about 1-2 percent in the Taylor model (Panel A). The key source 

of this difference is that the Taylor model assigns smaller steady state effects (Panel E) and a lower weight on 

inflation variability (Panel F) than the Calvo model does.  Intuitively, since firms under Calvo pricing may be 

stuck with a suboptimal price for a long time, the cost of positive steady state inflation is larger than in the 

Taylor model where firms are guaranteed to change prices in a fixed number of periods. In summary, 

although both the Taylor and Calvo models yield similar optimal inflation rates, these models provide 

different estimates of welfare gains from low steady state inflation.
 

5.4 Endogenous and State-Dependent Price Stickiness 

Another limitation of the Calvo price-setting assumption is that it treats the degree of price rigidity as a 

structural parameter.  However, theory implies that the cost to firms of not changing prices should increase 

as ߨത rises (Romer 1990).  Higher levels of inflation should therefore be associated with lower levels of 

price stickiness, which would tend to lower the welfare costs of positive trend inflation.  Thus, by ignoring 

this endogeneity, we might be overstating the costs of positive inflation and thereby underestimating the 

optimal rate of inflation.  On the other hand, the empirical evidence on the sensitivity of price rigidity to the 

inflation rate is mixed.  Gagnon (2009), for example, finds a statistically significant relationship between 

the inflation rate and the frequency of price changes for Mexico, but only when the inflation rate exceeds 

10% per year.  Dhyne et al. (2005) find a positive relationship between the two for a cross-section of 

European countries, but the relationship is not statistically significantly different from zero once they 

control for a variety of other factors.  Nakamura and Steinsson (2008) similarly estimate the relationship 

between annual inflation and the frequency of price changes using micro-level US data and find only mixed 

evidence in favor of a statistically significant link between the two.   

Despite the absence of a strong empirical link between price stickiness and the steady state level of 

inflation (at least for plausible U.S. levels of inflation), we consider the sensitivity of our baseline results to a 

possible systematic link between the two.  As a first step, we follow Nakamura and Steinsson’s empirical 

approach and posit a linear relationship between the (monthly) frequency of price changes and the steady state 

annual rate of inflation, with the coefficient on inflation denoted by βπ.  The average estimate of Nakamura 

and Steinsson across price measures and time periods is approximately βπ = 0.5, and the upper bound of their 

confidence intervals is approximately βπ = 1.  We reproduce our analysis using these values, as well as our 

baseline assumption of βπ = 0, and plot the results in Figure 10.25  In each case, we calibrate the degree of 

price rigidity such that λ=0.55 (our baseline value) at a steady-state level of annual inflation of 3.5%. 

                                                      
25 To be clear, we allow the degree of price stickiness to vary with the steady-state rate of inflation, but not with 
fluctuations in the inflation rate around its steady-state value. 
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Panel A shows the implied variation in the degree of price stickiness.  For the mean estimated degree 

of endogeneity from Nakamura and Steinsson (2008), the average duration between price changes varies from 

eight months to six months, while the upper bound on endogeneity of price stickiness yields durations ranging 

from nine months to five and a half months.  The frequency of hitting the ZLB varies little across 

specifications: for a given inflation rate, a higher frequency of price changes is associated with larger 

movements in inflation (and therefore hitting the ZLB more frequently) but these changes are less persistent 

(so the economy exits the ZLB more rapidly), leaving the overall frequency of being at the ZLB largely 

unchanged across specifications.  Panels B and C demonstrate the effects of endogeneity on the optimal 

inflation rate and the utility associated with different levels of steady-state inflation.  First, the optimal 

inflation rate is remarkably insensitive to endogenous price stickiness, falling only to slightly less than 1.3% 

at the maximum sensitivity of price stickiness to steady-state inflation.  The fact that the optimal inflation rate 

declines when the sensitivity of price stickiness to inflation rises may seem counterintuitive: higher inflation 

should lead to faster updating of prices and therefore less price dispersion.  But the endogenous rate of price 

stickiness also implies that inflation volatility rises more rapidly with average inflation than in the baseline 

case which raises the cost of inflation.  Given our parameter values and the range of inflation rates that we 

consider, the latter effect dominates the former at low levels of inflation so endogenous price stickiness 

actually leads to slightly lower optimal inflation rates than the standard Calvo model.  Second, the welfare 

costs of inflation at the optimal rate are rising with endogenous price setting.  This reflects the fact that, given 

the same low optimal rate of inflation, more endogeneity is associated with higher degrees of price stickiness 

and therefore a higher cost of inflation when ߨത ൏ 3.5%.  Third, despite the fact that the optimal rate of 

inflation varies little with endogenous price stickiness, the costs of much higher ߨത are significantly lower 

relative to our baseline, because higher inflation leads to more frequent price changes and therefore price 

dispersion rises less rapidly with steady state inflation than under constant price stickiness.   

As a second step, we consider state-dependent pricing in the spirit of Dotsey et al. (1999).  Using the 

same model as in section II, we replace the exogenous probability of changing prices with an explicit 

optimizing decision based on comparison of menu costs and the gains from price adjustment.  Specifically, 

we assume that each period, firms draw from a uniform distribution of costs to changing prices and, 

conditional on their draw, decide whether or not to reset their price.  Because all firms are identical, every 

firm that chooses to reset its price picks the same price.  As in the Taylor (1977) staggered contracts model, 

the distribution of prices in the economy depends only on past reset prices and the share of firms which 

changed their price in previous quarters, but, in contrast to time-dependent models, these shares are time-

varying.  Derivations of the model and the associated welfare loss function are provided in Appendix E.   

Using the same parameter values as the baseline model, we calibrate the average size of menu costs 

to yield the same degree of price stickiness at a steady-state inflation rate of 3.5% as in the baseline case.  
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Panel D of Figure 10 plots the resulting variation in the average duration of price spells for different 

inflation rates.  At zero inflation, the average price duration would be nearly a year while at six percent 

inflation, average price spells would last approximately five months.  The implied sensitivity of price 

stickiness to steady-state inflation therefore slightly exceeds that found using the upper bound of the 

Nakamura and Steinsson empirical results.  In addition, the frequency of hitting ZLB in the model with 

state-dependent pricing is similar to the frequency of hitting ZLB in the baseline model.  Panel E plots the 

utility associated with different inflation rates: the optimal inflation rate in the baseline calibration is just 

under one percent per year.26   As was the case with endogenous Calvo rates, allowing for state-dependent 

pricing lowers the optimal inflation rate relative to our baseline model as well as the welfare losses from 

higher inflation rates, with the latter reflecting the reduced sensitivity of price dispersion to inflation due to 

endogenous pricing decisions, as in Burstein and Hellwig (2008).   

Our baseline calibration implies strong strategic complementarity in price setting and thus large 

menu costs (approximately 7% of output) are necessary to match the duration of price spells in the data. 

Although the size of the menu costs is consistent with the costs of price adjustment reported in Zbaracki et 

al. (2004) (e.g. 6% of operating expenses), we quantify the sensitivity of our results to this 

parameterization.  In particular, we vary the elasticity of substitution across intermediate goods (and 

therefore the amount of real rigidity in the model) from ߠ ൌ 10 to ߠ ൌ 5, while simultaneously varying the 

size of the menu costs from 7% of output to 3% of output in order to maintain the same average price 

duration at 3.5% inflation as in our baseline calibration. Panel F illustrates how the optimal inflation rate 

and the associated level of welfare vary with the elasticity of substitution θ and hence the size of menu 

costs.  Reducing the size of menu costs raises the optimal inflation rate, but the effects are quantitatively 

small.  In short, the state-dependent model confirms the results reached using the endogenous Calvo price 

durations: allowing for price stickiness to fall with inflation lowers the optimal inflation rate relative our 

baseline model, even as the costs of higher inflation are substantially reduced.   

5.5 Downward Wage Rigidity 

A common motivation for positive trend inflation, aside from the zero-lower bound, is the “greasing the 

wheels” effect raised by Tobin (1972).  If wages are downwardly rigid, as usually found in the data (e.g., 

Dickens et al. 2007), then positive trend inflation will facilitate the downward-adjustment of real wages 

required to adjust to negative shocks.  To quantify the effects of downward nominal wage rigidity in our 

model, we integrate it in a manner analogous to the zero-bound on interest rates by imposing that changes 

in the aggregate nominal wage index be above a minimum bound ∆ݓෝ௧ ൌ max ሼ∆ݓෝ௧
, ෝ௧ݓ∆

௧ݓ∆ ሽ whereכ
 is כ

the change in wages that would occur in the absence of the zero-bound on nominal wages and ∆ݓෝ௧
 is the 

                                                      
26 For easier comparison with the other models, we present welfare results net of menu costs.  Including the menu 
costs pushes the optimal inflation rate down by approximately 0.2%-0.5% per year.   



28 
 

lower-bound on nominal wage changes.  Note that even with zero steady-state inflation, steady-state 

nominal wages grow at the rate of technological progress.  Thus, we set ∆ݓෝ௧
  to be equal to minus the sum 

of the growth rate of technology and the steady state rate of inflation.   

Figure 11 presents the utility associated with different steady-state inflation rates under both the 

zero-bound on interest rates and downward-wage rigidity.  The result is striking: the optimal inflation rate 

falls to zero with downward wage rigidity.  The reason for this counterintuitive finding is illustrated in 

Panel B of Figure 11.  With downward wage rigidity, marginal costs are much less volatile, so the variance 

of inflation is substantially reduced relative to the case with flexible wages.  In addition, the fact that 

marginal costs are downwardly rigid means that, in the face of a negative demand shock, inflation will 

decline by less and therefore interest rates will fall less, reducing the frequency of the ZLB.  With ߨത ൌ 0, 

the ZLB binds approximately 10 percent of the time with downward wage rigidity but over 25 percent of 

the time with flexible wages.  This decrease in the frequency of binding ZLB at low ߨത reduces the benefit 

of higher trend inflation and leads to lower estimates of the optimal inflation rate.27

 

VI Normative Implications 

We have so far been treating the question of the optimal inflation rate independently of the systematic response 

of the central bank to macroeconomic fluctuations.  In this section, we investigate the implications of optimal 

stabilization policy, both under commitment and discretion, for the optimal rate of inflation.  We then consider 

whether altering the parameters of the Taylor rule can lead to outcomes that approach those achieved using 

optimal stabilization policy with commitment. 

6.1 Optimal Stabilization Policy 

In the baseline model, stabilization policy follows a Taylor rule calibrated to match the historical behavior of 

the Federal Reserve. Following Giannoni and Woodford (2010) and Woodford (2010), we derive the optimal 

policy rules under commitment and discretion, and simulate the model with our baseline parameter values.28,29 

Panel A of Figure 12 plots expected utility under both policies. When the central bank can commit to a 

particular policy rule then the optimal inflation rate is 0.03%, that is practically zero, and the cost of the ZLB is 

negligible. This occurs because in the event of a large shock, the central bank will promise to keep interest rates 

low for an extended period, which significantly reduces the impact of the shock and thus the cost of the ZLB. 

                                                      
27 Kim and Ruge-Murcia (2009) similarly find that downward wage rigidity, by itself, has little positive effect on the 
optimal inflation rate in an estimated DSGE model.   
28 We assume that the central bank can always commit to a long-run inflation target, even if it cannot commit to a 
particular stabilization policy rule. Therefore, there is no inflation bias under this policy. 
29 For the discretionary policy maker the optimal inflation rate will also be a function of the initial conditions and 
could possibly be very sensitive to the first set of shocks. We thus simulate the model 500 times starting at the steady 
state and compute the average loss, so that the inflation rate we report is optimal given expected shocks.  The Ramsey 
problem under commitment seeks the welfare maximizing policy subject to pre-commitment constraints and structural 
relationships in the economy. 
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Indeed, as we show in Panel B of Figure 12, the central bank makes so much use of its commitment power that 

it spends more time at zero interest rates than a central bank that follows our baseline Taylor rule. Nonetheless, 

perfect commitment implies costs of the ZLB that are implausibly small as we show in Panel C of Figure 12. 

For example, an 8 quarter episode at the ZLB has a cost equivalent to a 1% permanent reduction in 

consumption when ߨത ൌ 0. With more realistic descriptions of the policy process, such as the Taylor rule in our 

baseline model, the costs of the ZLB are much larger and the optimal inflation rate significantly above zero. 

 Under discretionary policy the central bank can no longer promise to keep interest rates low after 

the ZLB constraint ceases to bind, so that the cost of the ZLB are much larger than in the commitment case. 

Indeed, Figure 12 shows that the utility loss is particularly large at low levels of inflation. For example at 

zero trend inflation, the unconditional loss from the ZLB is a 23% permanent reduction in consumption. 

Nevertheless, these losses quickly decline as trend inflation rises so that the optimal inflation rate is 2%, 

which is only slightly above the optimal inflation rate in our baseline calibration and within the target range 

of most central banks today. Thus, a positive but low optimal inflation rate does not hinge on the 

assumption that the central bank follows a Taylor rule, but also obtains with optimal policy under 

discretion.  The commitment case, while likely of limited practical relevance, suggests that an improved 

monetary policy design could deliver potentially important welfare gains by reducing the costs of the ZLB 

when it occurs without necessarily trying to avoid these episodes.   

6.2 Taylor Rule Parameters 

Given the size of the welfare differential between optimal policy with discretion/Taylor rule versus optimal 

policy with commitment, we investigate to what extent alternative monetary policy rules can improve 

outcomes in the face of the ZLB.  Our baseline Taylor rule parameters are taken from Coibion and 

Gorodnichenko (2011) based on the post-1982 era.  However, as has been emphasized in the empirical 

literature on central banks’ reaction functions, there is robust evidence of time-variation in the Federal 

Reserve’s systematic response to economic fluctuations.30  In addition, like the steady-state inflation rate, the 

reaction function is under the control of policymakers so we are interested in studying the interaction of these 

policy variables on welfare.  Thus, we consider the implications of alternative parameter values in the Taylor 

rule, illustrated in Figure 13.  First, we vary long-run responses to inflation by the central bank from 2 to 5.  

The effects on welfare are unambiguous: stronger long-run responses to inflation raise welfare in the model 

for all inflation rates.  Intuitively, this stronger systematic response reduces inflation and output volatility, 

thereby leading to a lower frequency of being at the ZLB and higher utility.  However, this has little effect on 

the optimal inflation rate, which ranges from 1.4% when ߶గ ൌ 2 to 1.1% when ߶గ ൌ 5. 

We also investigate the sensitivity to the central bank’s response to the real side of the economy via 

output growth or the output gap.  We find that stronger responses to output growth generally lower welfare 

                                                      
30 See Clarida et al. (2000), Orphanides (2003), Boivin (2006), and Coibion and Gorodnichenko (2011) for examples. 
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while higher responses to the output gap are welfare-improving.  This finding is interesting for two reasons.  

First, Orphanides (2003) and Coibion and Gorodnichenko (2011) emphasize that one of the primary changes in 

U.S. monetary policy around the time of the Volcker disinflation was the switch from responding aggressively 

to the gap toward responding more aggressively to the growth rate of output.  One advantage of the latter is that 

output growth is readily observable whereas the output gap is likely to be subject to much more real-time 

measurement error, as documented in Orphanides and van Nordern (2002).  However, our results indicate that 

responding strongly to output growth actually reduces welfare in a New Keynesian model.  Second, Coibion 

and Gorodnichenko (2011) show that responding to the output gap can be destabilizing in New Keynesian 

models under positive steady-state inflation because it can lead to indeterminacy.  Responding to output 

growth, on the other hand, helps achieve determinacy for smaller responses to inflation when steady-state 

inflation is positive. Figure 13 indicates that conditional on staying in the determinacy region the welfare 

results go in the other direction.  Hence, there is a tradeoff between the two measures in terms of stabilization: 

responding to the (properly measured) gap is welfare improving as long as the economy remains in the 

determinacy region, but increases the likelihood of switching to an indeterminate equilibrium with the 

possibility of sunspot fluctuations.  Responding to the growth rate of output moves the economy away from the 

indeterminacy region but leads to lower welfare within the indeterminacy region.  However, in terms of the 

optimal inflation rate, the distinction is minor and neither measure has much quantitative importance in 

determining the optimal inflation rate within the determinacy region of the parameter space.  

6.3 Price-Level Targeting, the Zero Bound, and the Optimal Inflation Rate 

While our baseline specification of the Taylor rule restricts the endogenous response of the central bank to 

inflation and the real side of the economy, an additional factor sometimes considered is price-level 

targeting (PLT).  While the evidence for central banks actually following PLT remains scarce, PLT has 

nonetheless received substantial attention in the literature for several reasons.  First, as emphasized in 

Woodford (2003), PLT guarantees determinacy under zero trend inflation for any positive response to the 

price level gap.  Second, Coibion and Gorodnichenko (2011) show that PLT ensures determinacy for 

positive steady-state inflation rates as well, and is not subject to the deterioration of the Taylor principle as 

a result of positive trend inflation which occurs when the central bank responds only to inflation.  Third, 

Gorodnichenko and Shapiro (2007) show that PLT robustly helps stabilize inflation expectations, thereby 

yielding smaller inflation and output volatility than would occur in inflation-targeting regimes. 

We extend our baseline model to include PLT in the central bank’s reaction function (߶  0).  

Figure 14 shows the effects of PLT on welfare for different ߨത as well as its implications for the optimal rate 

of inflation.  First, PLT strictly increases welfare for any ߨത.  Second, PLT leads to much lower levels of 
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optimal inflation than inflation-targeting regimes.31  Even for moderate responses to the price level gap, the 

optimal level of inflation is less than 0.3 percent per year, which is close to the zero optimal inflation rate in 

the Ramsey problem under commitment. This magnitude practically implies price level stability (rather 

than inflation stability) which is, in fact, the mandated objective for most central banks.  

The intuition for why PLT delivers such a small optimal inflation rate is straightforward.  First, as 

observed in Gorodnichenko and Shapiro (2007), PLT stabilizes expectations and has a profound effect on 

output and inflation volatility.  In our simulations, the reduction in inflation and output volatility is so 

substantial that the welfare costs of inflation are almost exclusively driven by the steady-state effects. As a 

result of reduced volatility, the ZLB binds less frequently.  For example, with ߶ ൌ 0.3, the ZLB binds less 

than two percent of the time at a steady-state level of inflation of 3.5%.  Second, even if the nominal rate 

hits zero, the policy rule remains a potent factor in stimulating the economy despite the ZLB because 

agents know that the deflationary pressures during the ZLB will have to be offset by above-average 

inflation in the future.  This limits the downward movement in inflationary expectations and therefore the 

associated increase in real interest rates.  In short, PLT limits the extent of deflationary spirals so that the 

exit from a ZLB episode occurs more rapidly and the welfare costs of the ZLB are substantially reduced. 

To give a sense of the magnitude of the associated welfare change, we note that by increasing ߶ from zero 

to 0.25 (combined with the appropriate change in the optimal rate of inflation), a policymaker could raise 

welfare by the equivalent to a permanent increase in consumption of 1.5 percent and approach the welfare 

gains for the optimal policy in the Ramsey problem under commitment (see Figure 14). Thus, these results 

provide a new justification for the consideration of PLT by monetary policymakers. 

VII Concluding remarks 

If nothing else, the Great Recession has taught monetary

 

economists

 

one lesson: the zero lower bound (ZLB) 

is not a theoretical curiosity of interest only to historians of the Great Depression or as a precautionary tale 

against overly cautious policy-makers such as the Japanese monetary and fiscal authorities in the early 1990s.  

Instead, the pervasiveness of the zero bound constraint among major industrial countries has demonstrated the 

necessity of incorporating this issue into modern macroeconomic models.  Indeed, the recent interest in 

raising the inflation targets of central banks has resurrected a basic question for macroeconomists: what is the 

optimal inflation rate?  Strikingly, New Keynesian models, with their pervasive reliance on the assumption of 

zero steady-state inflation, have been ill-equipped to answer this key question for central bankers.

 

 

We provide an integrated treatment of the effects of non-zero steady-state inflation in New Keynesian 

models.  Most importantly, we derive an approximation to the utility function of the representative agent 

which incorporates the various dimensions along which steady-state inflation matters: the steady-state, the 

                                                      
31 We find similar qualitative results when varying the degree of interest smoothing: greater policy inertia reduces the 
incidence and severity of ZLB episodes and therefore lowers the optimal target rate of inflation. 
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dynamics of the model, and the coefficients of the utility-function approximation.  This allows us to study the 

optimal rate of inflation using a welfare criterion derived explicitly from the microfoundations of the model.  

Combining this with the zero-bound on nominal interest rates, we are then able to study the costs and benefits 

of steady-state inflation and quantify the optimal rate of inflation in models with time and state-dependent 

pricing.  Our baseline result is that this optimal rate of inflation is fairly low: less than two percent a year.  We 

show that this result is robust to a variety of parameter specifications and modifications of the model.

 Given that most central banks are targeting inflation rates between 1% and 3% a year, our results can be 

interpreted as supporting the current regimes, while providing little evidence in favor of raising these targets to 

provide additional insurance against the zero-bound constraint on interest rates.  Furthermore, our results go 

some way in resolving the apparent disconnect between observed inflation targets and prescriptions from 

standard monetary models. From a normative point of view, we also show that welfare could be substantially 

improved by introducing price-level targeting.  The latter helps to stabilize economic fluctuations and reduces 

the probability of hitting the zero-lower bound.  As a result, the optimal inflation rate under a price level 

targeting regime would be close to zero.  In other words, optimal monetary policy, characterized as a 

combination of a low inflation target and a systematic response of nominal interest rates to deviations of the 

price-level from its target, can be interpreted as being very close to the “price stability” enshrined in the legal 

mandates of most central banks. 

In the absence of such a change in the interest rate rule, our results suggest that higher inflation 

targets are likely too blunt an instrument to address the ZLB in a way that significantly increases aggregate 

welfare.  This is not because ZLB episodes are not costly, but rather because the perpetual costs of higher 

inflation outweigh the benefits of more infrequent ZLB episodes.  Addressing the very large costs associated 

with ZLB episodes is therefore likely to require alternative policies more explicitly focused on these specific 

episodes, such as countercyclical fiscal policies or the use of non-standard monetary policy tools.  The lack of 

consensus on the efficacy of these policy tools, however, suggests that they should be high on the research 

agenda of macroeconomists.
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Table 1:  Baseline Parameter Values 
 

  
Parameters of Utility Function Steady-State Values 

      η: Frisch Labor Elasticity 1.00       ݃ݕതതതത: Growth Rate of RGDP/cap 1.5% p.a. 
      β: Discount factor 0.998       ܿ௬തതത: Consumption Share of GDP 0.80 
        ݃௬തതതത: Government Share of GDP 0.20 

Pricing Parameters Shock Persistence 
      θ: Elasticity of substitution  10       ρg: Government Spending Shocks 0.97 
      λ: Degree of Price Stickiness 0.55       ρm: Cost-Push Shocks 0.90 
      ω: Price indexation 0.00       ρq: Risk Premium Shocks 0.947 

Taylor Rule Parameters Shock Volatility 
      ߶గ: Long run response to inflation 2.50       σg: Government Spending Shocks 0.0052 
      ߶௬: Long run response to output growth 1.50       σm: Cost-Push Shocks 0.0024 
      ߶௫: Long run response to output gap 0.11       σq: Risk Premium Shocks 0.0024 
      ρ1: Interest smoothing  1.05       σa: Technology Shocks 0.0090 
      ρ2: Interest smoothing -0.13       σr: Monetary Policy Shocks 0.0043 
    
 
 
Note: The table presents the baseline parameter values assigned to the model in section 3.1 and used for solving for 
the optimal inflation rate in section 3.2.  “p.a.” means per annum.  
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Figure 1. Frequency of being in the Zero Lower Bound and Steady-State Nominal Interest Rate 

 
Note: The figure plots the steady-state level of the annualized nominal interest rate (right axis) implied by the 
baseline model of section 3 for different steady-state inflation rates.  In addition, the figure plots the frequency of 
hitting the zero bound on nominal interest rates (left axis) from simulating the baseline model at different steady-
state inflation rates as well as historical frequencies of ZLB for the U.S. for counterfactual inflation rates.  See 
section 3.1 for details. 
 

Figure 2. Utility at Different Levels of Steady-State Inflation 
 Panel A: Effect of ZLB  Panel B: Effects of positive trend inflation 

 
Note: The figures plot the approximation to the utility function in Proposition 1 from simulating the model for 
different levels of steady-state inflation.  Panel A includes results for the baseline model, the baseline model without 
the ZLB, as well as the model with the ZLB but omitting the three cost channels of inflation: steady-state effects, the 
changing coefficient on inflation variance in utility and the dynamic effects.  Panel B reproduces our baseline with 
ZLB, then presents results when we restrict the model to include only one cost of inflation and the ZLB.  “Dynamic 
cost only” includes only the dynamic effects of positive inflation and keeps the rest of the model being 
approximated around zero trend inflation, “Steady-state cost only” includes only the steady-state cost of inflation 
and keeps the rest of the model being approximated around zero trend inflation, while “Changing inflation weight 
only” includes only the changing coefficients on inflation variance in the loss function and keeps the rest of the 
model being approximated around zero trend inflation.  See section 3.2 for details. 
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Figure 3. The Sources of Utility Costs of Inflation 

 
Note: The first row of the figure plots the coefficients of the approximation to the utility function from Proposition 1 for different levels of trend inflation.  The 
second row plots the variance of macroeconomic variables that enter the approximation to the utility function in Proposition 1 from simulating the model subject 
to the zero bound on nominal interest rates for different levels of steady-state inflation using the baseline parameter values of the model.  The dashed black lines 
are the corresponding moments without the zero-bound on nominal interest rates, while the dotted lines correspond to the moments of the model when the 
dynamics are approximated at zero trend inflation.  The third row plots the contribution of the different components of the approximation to the utility function in 
Proposition 1. See section 3.2 for details. 
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Figure 4. The Costs of Business Cycles 

 

Panel A: The costs of the ZLB 

 
Panel B: Changing the weight on output gap volatility in the loss function 

 
Note: The top panel plots the average duration of ZLB episodes in the baseline calibration and the implied average welfare cost per quarter of being at the ZLB 
for different levels of trend inflation.  The bottom panel plots the effects of changing the coefficient on the variance of the output gap in the utility function 
approximation of Proposition 1 on the optimal inflation rate (left graph), the welfare costs of business cycle fluctuations (middle graph), and the average welfare 
costs of hitting the ZLB (right graph).  The latter two are measured using Proposition 1 net of the steady-state effects of trend inflation.  See sections 3.3 and 3.4 
for details.  
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Figure 5. Robustness: Price Setting Parameters. 

 

 

 
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of structural 
parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right column plot the optimal 
level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of a structural 
parameter.  
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Figure 6. Robustness: Risk Premium Shocks and the Discount Factor. 

  

 

 
  

Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of structural 
parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the middle column plot the 
optimal level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of a 
structural parameter. Figures in the right column plot the frequency of hitting the ZLB for different parameter values. 
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Figure 7. Sensitivity Analysis: Capital  

 
Note: The figure plots the approximation to the utility function in Proposition 2 from simulating the model subject to 
the zero bound on nominal interest rates for different levels of steady-state inflation using the baseline parameter 
values of the model with capital.  See section 5.1 for details.  
 

Figure 8.  Model Uncertainty 
 Panel A: Optimal Inflation Rate Panel B: Distribution of Optimal Inflation Rates 

 
   

Note: Panel A plots the expected utility for different steady-state inflation rates under baseline parameter values as 
well as under model-uncertainty.   Panel B plots the distribution of optimal inflation rates associated with different 
draws from the distribution of parameter values.  See section 5.2 for details.  
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Figure 9. Sensitivity Analysis: Taylor pricing 

 
 
Note: The figures plot the implications of Calvo vs. Taylor price setting for welfare and optimal inflation.  Taylor, X quarters 
corresponds to the duration of price contracts equal to X quarters.  See section 5.3 for details.  
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Figure 10. Sensitivity Analysis: Endogenous and State-Dependent Price Stickiness 
 Endogenous Calvo Parameter  State-Dependent Pricing (Dotsey et al. 1999) 

 
Note: The figures plot the implications of endogenous and state-dependent price stickiness on the model. ߚగ is the 
effect of steady state inflation on the frequency of price changes 1 െ  βπ = 0 is our baseline case of exogenous  .ߣ
price stickiness. See section 5.4 for details. 
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Figure 11.  Downward Wage Rigidity 
 

Panel A: Optimal Inflation Rate 

  
 

Panel B: Effects of Downward-Wage Rigidity 

 
 

 
Note: Panel A plots the utility associated with different steady-state inflation rates under the baseline model as well 
as the model with downward nominal wage rigidity.  Panel B figures plot the variance of inflation and the frequency 
of hitting the zero-bound on interest rates for different steady-state inflation rates using our baseline model and the 
model with downward nominal wage rigidity.  See section 5.5 for details.  
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Figure 12. Positive Implications: Optimal policy. 
Panel A: Welfare         Panel B: Frequency of hitting ZLB 

  
 

Panel C: Welfare costs per quarter at the ZLB 

 
 
Note: Each panel plots outcomes for three scenarios: optimal policy with commitment (Ramsey); optimal policy without 
commitment (discretion); the baseline Taylor rule described in section 3.1. Optimal policies with and without discretion are 
described in section 6.1.  
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Figure 13. Positive Implication: Parameters in the Taylor Rule. 

 

 

 
Note: Figures in the left column plot the welfare loss as a function of steady state inflation for alternative values of the 
monetary policy rule parameters. The solid thick back line corresponds to the baseline parameterization. Figures in the right 
column plot the optimal level of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a 
function of the monetary policy rule parameters.  ߶గ is the long-run response of interest rates to inflation, ߶ is the response to 
output growth, and ߶௬  is the response to the output gap.  See section 6.2 for details. 
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Figure 14. Positive Implications: Price Level Targeting and Interest Rate Smoothing. 

  
 

Note: The figure on the left plots the welfare loss as a function of steady state inflation for alternative degrees of price-level 
targeting. The solid thick back line corresponds to the baseline parameterization. The figure on the right plots the optimal level 
of steady-state inflation and the welfare loss at the optimal steady state level of inflation as a function of the monetary policy 
rule parameters.  ߶ is the response to the price-level gap. See section 6.3 for details. 
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Appendix A. Proofs for section 2.4.  
 
Lemma 1. 
The expansion of the utility derived from consumption around flexible price steady state is  
௧ሻܥሺݑ ൌ ҧ௧ܥሺݑ
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where σ is the intertemporal elasticity of substitution for consumption,  and ܥҧ௧
ிis the flexible price level of 

consumption in the steady state. Tildes denote percent deviations from the flexible price level, tip stands 
for terms independent from policy, hot means higher order terms. We assume that utility is logarithmic, 
௧ሻܥሺݑ ൌ log ҧ௧ܥ ,௧ܥ

ிݑҧ
ಷ

ᇱ ൌ 1 and σ =1 so that the expression becomes ݑሺܥ௧ሻ ൌ ܿ̃௧  ݐ݄   ■ .݅ݐ

 
Lemma 3. 
Note that  

log ௧ܲ ൌ
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ଵିఏ
log ቀ ௧ܲ
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ቀ log ௧ܲ

ଵିఏሺ݅ሻ݀݅
ଵ

 ቁ 
ଵ

ଶ

ଵ

ଵିఏ

ଵ

ൣா
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ݎܽݒ ቀ ௧ܲ
ଵିఏሺ݅ሻቁ   (A.1)   ݐ݄

By the delta method, we have  

var ቀ ௧ܲ
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Now observe that  
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Hence it follows that  
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Lemma 5. 
Consider the term ݕܧො௧ሺiሻ.  From the Dixit-Stiglitz aggregator we have  
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Note that  
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Using the delta method, we have  
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Also observe that  
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Combine (A.7) and (A.8) to re-write (A.6) as follows 
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Lemma 4. 
Recall that ܾ௧ ൌ logሺܤ௧/ ௧ܲሻ (note that in our notation ܾ௧ is the price relative to current price level) and 
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From Lemma 3 we have  
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Also from equation (21) in the paper we have that  
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We use a guess and verify procedure to determine the dispersion of prices. In particular, we posit that if 
the deviation of cross-sectional price dispersion from its non-stochastic steady state level Δഥ is Ξ௧ ൌ ሺΔ௧ െ
Δഥሻ then 

Ξ௧ ൌ ௧ߨொሺܭ െ തሻߨ  ܼଵ,ொሺߨ௧ െ തሻଶߨ   ொΞ௧ିଵ  (A.13)ܨ
where we assume that ܭொ is of the same order as the shock processes, so that the first term is of second 
order. Assuming that the initial degree of price dispersion is also of second order then the degree of price 
dispersion is of second order at all times. 
Plug (A.12) and (A.11) into (A.10) and using the guess (A.13) yields, 
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The non-stochastic steady state value is given by 

Δഥ ൌ ሺ1 െ ሻതܾଶߣ  2ሺ1 െ ሻതܾܳߣ
  ሺ1 െ ሻ൫ܳߣ

൯
ଶ

 Δഥߣ  ሺ1ߣ െ ߱ሻଶߨത ଶ ൌ ൫തܾ  ܳ
൯

ଶ


ఒሺଵିఠሻమ

ሺଵିఒሻ
തߨ ଶ  (A.14) 

We can solve for deviations from steady state dispersion Ξ௧ ൌ ሺΔ௧ െ Δഥሻ   
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Note that the form of (A.15) is the same as the form of our guess in (A.13). Let Γ ൌ ൛1  ሺߠ െ
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which completes the proof. ■ 
 
Proposition 1.  
From  Lemma 5, we have ܧݕ௧ሺ݅ሻ ൌ ௧ݕ െ ܳ௬
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As Woodford (2003) shows, ߭ത
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from the intra-temporal condition for labor supply. As in Lemma 1, ܥҧ௧
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As in Lemma 1, ܥҧ௧

ிݑҧ
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ᇱ ൌ 1. We also have ܥҧ௧
ி ൌ ሺ1 െ ҧ݃௬ሻ തܻ௧

ி. Using equation (35) from the derivations 

in the paper and Lemma 4, we replace the cross-section dispersion of output in (A.17) with the cross-
sectional dispersion of prices.  

Given the low levels of inflation we consider in our analysis, Γଶ is close to zero and Γଶሺߨ௧ െ  തሻߨ
has (in expectation) negligible effects on Ξ௧ so that 
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Note that from the definition of Ξ௧, we have  
ሺΔ௧ሻܧ ൌ ሺΞ௧ሻܧ  Δഥ.  (A.20) 
Since all variables are stationary and ݕො௧ ൌ ௧ݕ െ logሺ തܺሻ and using (A.18) and (A.20), we can 

compute the expected per period utility as follows 
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Appendix B: Model with Capital 
In this modification of model, we introduce homogenous capital owned by households. The model is 
otherwise identical to the baseline model and thus we focus only on elements which are novel. The budget 
constraint each period is now given by  
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 ௧ܶ (B.21) 

Where, in addition to standard variables, K is capital owned by the representative consumer and Rk is the 
nominal rental rate on capital,. The fourth term on the left hand side is a quadratic adjustment cost to the 
stock of capital held by the consumer, where  measures the strength of the adjustment cost.  is the rate 
of depreciation on capital.  Capital can be accumulated according to the law of motion 

:௧ߤ ௧ܭ ൌ ሺ1 െ ௧ିଵܭሻߜ   ௧  (B.22)ܫ
The additional first order conditions from this utility-maximization problem are: 
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where ߣ௧/ߤ௧  is Tobin’s q and ෨ܴ௧
 ൌ ܴ௧

/ ௧ܲ is the real rental rate of capital. 
The production of each intermediate good is done by a monopolist facing a Cobb-Douglas 

production function with capital share  
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.  (B.25) 
We assume that capital is perfectly mobile across firms 

௧ܭ ൌ  ௧ሺ݅ሻ݀݅ܭ
ଵ

 .  (B.26) 
Each intermediate good producer has sticky prices, modeled as in Calvo (1983) where 1-λ is the 
probability that each firm will be able to reoptimize its price each period.  We allow for indexation of 
prices to steady-state inflation by firms who do not reoptimize their prices each period, with ω 
representing the degree of indexation (0 for no indexation to 1 for full indexation).  Denoting the optimal 
reset price of firm i by B(i), re-optimizing firms solve the following profit-maximization problem  
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ୀ    (B.27) 
where Q is the stochastic discount factor and Πതതത is the gross steady-state level of inflation.   The optimal 
relative reset price is given by equation (11) with firm-specific marginal costs  
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   (B.28) 

Firm-specific marginal cost remain a function of aggregate variables and the reset price only because full 
capital mobility implies that all firms have the same (adjusted) capital labor ratio. The first order 
condition for the firms’ input usage is ഀ

భషഀ
ሺ ௧ܰሺ݅ሻ/ܭ௧ିଵሺ݅ሻሻ ൌ ܴ௧

/ ௧ܹሺ݅ሻ which we combine with the first 

order condition for labor supply to get ഀ
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/ ௧ܲሺ݅ሻ . Since the right hand side 

consists of aggregate variables only, the left hand side must be identical across firms. 
The goods market clearing condition for the economy is ௧ܻ ൌ ௧ܥ  ௧ܩ   ௧. We define theܫ

aggregate labor input as ௧ܰ ൌ ሾ ௧ܰሺ݅ሻଵାଵ/ఎ݀݅
ଵ

  ሿఎ/ሺଵାఎሻ. Note that this definition of labor input differs 
from the labor-only model. We make different assumptions to simplify our aggregation problems. 
 

Log-linearization 
In the model with capital the goods market clearing condition becomes ݕො௧ ൌ ܿҧ௬ܿ̂௧  ҧ݃௬ ො݃௧  ଓҧ௬ଓ௧̂ where 
ܿҧ௬, ҧ݃௬, ଓҧ௬ 

are the steady-state ratios of consumption, government and investment to output respectively.  
 
Lemma 6. Let ܿҧ௬, ҧ݃௬, ଓҧ௬ be the steady-state ratios of consumption, government and investment to output 
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..   

Proof: See Appendix C. 
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Corollary 1. Sinceܿҧ௬, ҧ݃௬, ଓҧ௬are independent of the degree of price stickiness ߣ, they are equal to their 
flexible price level counterparts, ܿҧ௬ ൌ ܿҧ௬ி, ҧ݃௬ ൌ ҧ݃௬ி, ଓҧ௬ ൌ ଓҧ௬ி. 
 

Also, integrating over firm-specific production functions and log-linearizing yields the aggregate 
production function: 
 

Lemma 7. Let lower case letters denote the deviations from steady state values. Then the aggregate 
production function up to a first order approximation is given by ݕො௧ ൌ ߙ ݇

௧ିଵ  ሺ1 െ ሻߙ ො݊௧. 
Proof: See Appendix C. 
 

Allowing for capital also changes the steady state effects of positive trend inflation.  For example, the 
steady-state level of the output gap (which is defined as the deviation of output from its flexible price 

level counterpart) is given by ഥܺ
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ሺߟߙሻሺߠെ1ሻ . Note that the 

steady-state level of the gap is again equal to one when steady-state inflation is zero (i.e., Πഥ ൌ 1) or when 
the degree of price indexation is exactly equal to one.   
 

Lemma 8. The expansion of the utility part that corresponds to disutility from labor supply in the capital 
model is given by 
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Υഥ is the steady state dispersion of labor supply. 
Proof: See Appendix C. 
 

Lemma 9. The cross sectional variations in labor input is var ො݊ݐሺ݅ሻ ൌ ሺ ߠ
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Proof: See Appendix C. 
 

This implies that the steady state dispersion of labor supply is given by Υഥ ൌ ሺ ߠ
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Before we proceed with Proposition 2 we write the inter-temporal condition for labor supply as 
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Proposition 2. In the model for capital, the second order approximation to utility (1) is Ω 
Ωଵvarሺො݊ݐሻ  Ωvarሺߨොݐሻ where parameters Ω, ݅ ൌ 1,2,3 depend on the steady state inflation ߨത and are 
given by  

Ω ൌ log തܺ െ భ
మ
ሺ1 െ Φሻሺ1 െ ሻሺܿҧ௬ிሻିଵሾ2ሺ1ߙ  െ1ሻሺܳߟ

ሻ2  െ 2ܳ
  ሺ1  െ1ሻሺ1ߟ െ ൫1ߟെ1൯ܳ

ܳ
ଵሻΥഥሿ,  

Ωଵ ൌ െభ
మ
ሺ1 െ ሻሺܿҧ௬ிሻିଵሺ1ߙ    ,െ1ሻߟ

Ωଶ ൌ െభ
మ
ሺ1 െ ሻሺܿҧ௬ிሻିଵሺ1ߙ  െ1ሻሾ1 െߟ ܳ

ଵ  ሺ1  െ1ሻܳߟ
ଵܳ

ሿሺ ߠ
1ߙ ⁄ߟ ሻ2Γ3. 

and Γଷ is a defined in Proposition 1.  
Proof: See Appendix C. 
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Appendix C: Proofs for model with capital 
 
Lemma 6 
From the first order condition for the use of capital we know that capital for a firm that reset its price at 
time t  evolves as follows 
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where R
tk  is the optimal reset stock of capital at time t . Due to Calvo pricing the aggregate capital stock 

today is an aggregate of an infinite sum of past capital stocks, adjusted for their growth rate in the interim  
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Thus, the ratio of capital to output ത݇௬. From the capital accumulation equation we know that in the steady 
state the share of output going to investment is equal to 
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The conclusion for ܿҧ௬ then follows directly from the resource constraint. ■ 
 
Lemma 7 
We first rewrite the individual production function as 
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From the first order condition for labor supply and the optimal capital labor ratio, we know that the term 
in parentheses is the same across firms. Integrating this equation then yields, 
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We then take logs of this expression and consider a first order approximation to the integral, 
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where the last line follows from price dispersion being of second order (Lemma 4, Appendix A). ■ 
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Lemma 8 
Note that 
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where ො݊௧ሺ݅ሻ ൌ logሺ݊௧ሺ݅ሻ/ ഥܰ௧
ிሻ is the deviation of firm i’s labor input from flexible price level of labor 

input ഥܰ௧
ி and η is the Frisch elasticity of labor supply. Because of our definition of labor input in the 

capital model the flexible price steady state labor input and the Calvo-pricing steady state labor input are 
the same, ഥܰ௧ ൌ ഥܰ௧

ி ֜ ො݊௧ ൌ ݊௧. Compute the average across firms 
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Note that  
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Using the delta method, we have  
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Combine (C.11) and (C.12) to re-write (C.10) as follows 
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We use Taylor series expansion of the second term 10 11
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It then follows from (C.14), 
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which implies that the first order term in (C.8) is equal to 
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Now consider the second term in (C.8): 
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Using (C.16), we can re-write (C.17) as follows 
1 12 0 1 21

20

1 12 2 1 2 11
4

10 2 0 0 1

( ) var ( ) [ (var ( ) )]

var ( ) ( ) [ (var ( ) )] (var ( ) )

[ ] 2 (va

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ r ( ) )ˆ

t i t n n i t

i t t n i t n i t

n n n n i

t

t

tt

i di i Q Q i

i Q

n n n n

n in n n n

n

Q i

Q Q Q Q in




 
 






 



     

        

    


 (C.18) 

Now we combine (C.18) and (C.16) to finally get the part which corresponds to the second-order 
approximation of utility due to the disutility of labor supply (C.8): 
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Lemma 9 
We first note that var ( ( )) var (ln ( ) ln ) var (ln ( )ˆ )i

F
t it tit i n in N n i   . To replace variability of log labor 

with variability of log prices we will use the market firms’ first order conditions for inputs and combine it 
with the agents first order condition for labor supply, 
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This implies that the idiosyncrasy in the capital-labor ratio is proportional to log labor input across firms, 
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This then allows us to calculate the cross sectional variation in output, 
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Finally, using the demand curve for each variety, we have 
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and it follows that the cross-sectional variation in labor input is proportional to the cross-sectional 
variation in prices. 
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Proposition 2.  
Combine Lemmas 8-9 and Corollary 1  with Lemma 1 and Lemma 4 to get 
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Appendix D: Taylor-pricing model with 3-quarter length contracts 
 
In the Taylor-pricing model with 3-quarter length contracts, in each period one third of all firms can 
change their price. This price will then have to last for 3 quarters before it can be reset. The model is 
otherwise identical to the baseline model. 

The firms maximization problem is now given by 
max ௧ܧ ∑ ܳ௧,௧ାൣ ௧ܻାሺ݅ሻܤ௧ሺ݅ሻΠഥ ఠ െ ௧ܹାሺ݅ሻ ௧ܰାሺ݅ሻ൧ଶ

ୀ    (D.1) 
since the price is only fixed for 3 quarters. The first order condition from this optimization problem is 
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Given these price-setting assumptions, the dynamics of the price level are governed by 
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The remaining equations are as in the baseline model. 
 
Steady State: 
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In the steady state, the cross sectional mean of prices is given by 
 1 2

1
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Hence, the cross sectional variance of prices in the steady state is equal to 22
3(lva )ogr ( ) .i tP i    

Dynamic Equations: 
With staggered pricing the log-linearized equations are now as follows. For equation (D.3), 
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Where ߛଵ ൌ ଶߛ ഥሺଵିఠሻሺఏିଵሻ  andߎଵିߚߣ ൌ ഥሺଵିఠሻሺଵାఏ/ఎሻ, and 2ߎଵߛ 2

2 2 2 1 1 1 1 ,  1G G         . 
 

Lemma 4 in Taylor model: 
In the baseline model, we derived the cross-sectional price dispersion up to a second order approximation. 
Because, the pricing contracts are different in the Taylor model, this section derives an equivalent Lemma 
for the Taylor model. 
 

Lemma 4 (Taylor): 
Let Ξ௧ ൌ Δ௧ െ Δഥ  be the deviation of cross-section price dispersion from its non-stochastic steady state 
level Δഥ. Then 
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where Γଵ ൌ ൣ1  ሺߠ െ 1ሻܳ
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Proof: 
At any given time the cross sectional dispersion is given by 
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Using ݔො௧ ൌ ௧ݔ െ   ■ .ҧ, subtracting Δഥ from both sides, and rearraging terms, we arrive at the QEDݔ
 
Proposition 2 (Taylor) in the Taylor model 
Given Lemmas 1-5 for the Taylor model, the second order approximation to utility is  
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where parameters , 0,...,6i i   depend on the steady state inflation   and are given by  
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Proof:  

Using  Lemma 5 and  Lemma 2 as in Proposition 1, we rewrite the expression for  ߭൫ ௧ܻሺ݅ሻ൯݀݅
ଵ

 . Using 
equation (42) and Lemma 4 (Taylor) we replace the cross-section dispersion of output in (A.17) with the 
cross-sectional dispersion of prices. Using ܧሺߨ௧ െ തሻߨ ൌ 0, we compute the expected value of Ξ௧: 

1

4 2

2

2

31 3 13

2 2( ) (ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) { ) ) (( ) ( )]t t t t t t tt tE E b b bE E E E hot               (D.10) 

where Γଵ ൌ ൣ1  ሺߠ െ 1ሻܳ
ଵ൫തܾ െ തߨ  ܳ

൯൧
ିଵ

. Using ܧሺΔ௧ሻ ൌ ሺΞ௧ሻܧ  Δഥ, ݕො௧ ൌ ௧ݕ െ logሺ തܺሻ, (A.18) and 
(A.20) and collecting terms, one arrives at equation (D.9).■ 
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Appendix E: A model with state dependent pricing  
 
The state dependent pricing model follows the model developed in Dotsey et al. (1999). In the beginning 
of each period, every firm draws a cost of price adjustment. The draws are independent across firms and 
time. The drawn cost is a fraction of labor costs. Objective functions and constraints are the same as in the 
baseline model unless specified otherwise.  

Let ߞ௧ be the fraction of firms at the beginning of time t with price spell equal to j periods. The 
end of period share of firms at time t with price spell equal to j periods is denoted with ߱௧. Define ߙ௧ as 
the probability of resetting price for firms with price spells equal to j periods. We assume, as in Dotsey et 
al. (1999), that the maximum duration of price spells is ܬ periods and all firms must adjust prices after  ܬ 
periods. Given these definitions, we have ߱௧ ൌ ൫1 െ ݆   ,௧ߞ௧൯ߙ ൌ 1, … , ܬ െ 1. 

The expected cost of price adjustment (after normalization by the level of technology) for firms 

with price spells equal to j periods is then equal to Ξ௧ ൌ ௧ݓ  ݔሻ݀ݔሺ݃ݔ
ீషభሺఈೕሻ

  where ܩ and ݃ are the 
c.d.f. and p.d.f. of the random cost of price adjustment and ݓ௧ is the wage rate paid by firms with price 
spells equal to j periods.  

Similar to derivations for the Taylor model, the optimal reset price ܤ is given by  

ቀ


ቁ

ଵା
ഇ
ആ ൌ

ఏ

ఏିଵ

ா ∑ ቂ∏ ோశ
షభ ீశశభஈశ

భశഇశഇ/ആೕ
సభ ൫ଵିఈ,శ൯ቃቆ

శೕ
ಲశೕ

ቇቆ
ೊశೕ
ಲశೕ

ቇ
భ/ആ

షభ
ೕసబ

ா ∑ ቂ∏ ோశ
షభ ீశశభஈశ

ഇೕ
సభ ൫ଵିఈ,శ൯ቃషభ

ೕసబ

  

where ܴ is the gross nominal interest rate, Π is the gross rate of inflation, ܻܩ is the gross rate of output 
growth, ܥ is consumption, ܻ is output, and  ܣ is the level of technology.  

The value of a firm at time t with price spell equal to ݆ ൌ 0, … , ܬ െ 1 periods is given by 
௧ݒ ൌ ௧ݐ݂݅ݎ  ௧ܴ௧ܧ

ିଵΠ௧ାଵܣܩ௧ାଵൣ൫1 െ ାଵ,௧ାଵݒ,௧ାଵ൯ߙ  ,௧ାଵݒ,௧ାଵߙ െ Ξାଵ,௧ାଵ൧, 

௧ݐ݂݅ݎ ൌ ௧ܥ ൬
షೕ

షೕ
൛∏ Π௧ି

ିଵିଵ
ୀ ൟ൰

ଵିఏ
െ ቀ


ቁ ቀ


ቁ

ଵ/ఎ
൬

షೕ

షೕ
൛∏ Π௧ି

ିଵିଵ
ୀ ൟ൰

ିఏሺଵା
భ
ആ

ሻ
൩.    

For firms with price spell equal to ܬ െ 1 the value is given by  
ିଵݒ ൌ ିଵ,௧ݐ݂݅ݎ  ௧ܴ௧ܧ

ିଵΠ௧ାଵܣܩ௧ାଵൣݒ,௧ାଵ െ Ξ൧ 
Firms adjust prices if the drawn cost of changing prices is smaller than the gain in the value of the firm. 
Hence the probability of price adjustment is ߙ௧ ൌ ,௧ݒሺሾܩ െ  ௧ሻ. Given that firms have to pay theݓ/௧ሿݒ

cost of changing prices, the resource constraint is now given by ௧ܻ ൌ ௧ܥ  ௧ܩ  ∑ Ξ௧

ୀଵ . The price level 

ܲ is given by a weighted sum of current and past reset prices ௧ܲ
ଵିఏ ൌ ∑ ߱௧ܤ௧ି

ଵିఏିଵ
ୀ  .  

 
Steady state 
The new elements in the steady of the system are given by:  

Reset price: ቀ



ቁ

തതതതത
ൌ ൣ∑ ഥ߱Πഥ ሺఏିଵሻିଵ

ୀ ൧
ଵ/ሺఏିଵሻ

 , തܾ ൌ log ቀ


ቁ

തതതതത
  

Average price: തܲ ൌ ሺlog൫ܧ ௧ܲሺ݅ሻ൯ ൌ തܾ  log ௧ܲ െ തߨ ∑ ഥ݆߱ିଵ
ୀ  . 

Price dispersion: 

Δഥ ൌ varሺlog ሺ ௧ܲሺ݅ሻሻ ൌ  ሾlogሺ ௧ܲሺ݅ሻሻ െ തܲ௧ሿଶ݀݅
ଵ

 ൌ ∑ ഥ߱ൣതܾ  log ௧ܲି െ തܲ௧൧
ଶିଵ

ୀ   

ൌ ∑ ഥ߱ൣതܾ  log ௧ܲ െ തߨ݆ െ തܲ௧൧
ଶିଵ

ୀ ൌ തߨ ଶ ቄ∑ ഥ݆߱ଶିଵ
ୀ െ ൣ∑ ഥ݆߱ିଵ

ୀ ൧
ଶ

ቅ.  

Output is determined from ቀ



ቁ

തതതതതଵାఏ ఎ⁄

ൌ ቈሺ1 െ ݃ሻ െ
∑ ஆഥ


ೕసభ

ത
 തܻଵାଵ/ఎ ఏ

ఏିଵ

∑ ቂ∏ ோതషభீതതതതஈഥభశഇశഇ/ആೕ
సభ ሺଵିఈഥሻቃషభ

ೕసబ

ா ∑ ቂ∏ ோതషభீതതതതஈഥഇೕ
సభ ሺଵିఈഥሻቃషభ

ೕసబ

  

while potential output (flexible prices) is given by തܻכ ൌ ቀ ఏିଵ

ఏሺଵିሻ
ቁ

ఎ/ሺఎାଵሻ
 so that output gap in the steady 

state is തܺ ൌ തܻ/ തܻכ. 
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Linearized system of equations 
After solving for the steady state values of the variables (which we denote with a bar above a given 
variable) and utilizing previous results, we log-linearize the new elements in the system as follows:  
Reset price: 

ቀ1  ഇ
ആ
ቁ ܾ

௧ ൌ ∑ ଶ,ߜ ቀܿ̂௧ା  భ
ആ
ො௧ାቁିଵݕ

ୀ  ∑ ቂ൫∑ ଶ,ߜ
ିଵ
ୀ ൯ ቀ1  ߠ  ഇ

ആ
ቁ െ ൫∑ ଵ,ߜ

ିଵ
ୀ ൯ߠቃ ො௧ାߨ

ିଵ
ୀଵ 

∑ ቂ൫∑ ଵ,ߜ
ିଵ
ୀ ൯ ቀ݃ݕෞ௧ା െ ௧ାିଵݎ̂ െ

ഥഀೕ
భషഥഀೕ

ො,௧ାቁߙ ቃିଵߠ
ୀଵ   

where ߜଶ, ൌ ଶ,ߛ ∑ ଶ,ߛ
ିଵ
ୀ⁄ ଵ,ߜ  , ൌ ଵ,ߛ ∑ ଵ,ߛ

ିଵ
ୀ⁄ ଶ,ߛ , ൌ തܴିܻܩതതതതΠሺଵାఏାఏ/ఎሻ ∏ ሺ1 െ തሻߙ

ୀଵ , and 

ଶ,ߛ ൌ തܴିܻܩതതതതΠఏ ∏ ሺ1 െ തሻߙ
ୀଵ .   

 
Price level:  

0 ൌ ∑ ഥ߱ ቀ


ቁ

തതതതതଵିఏ
Πഥ

ିሺଵିఏሻ ܾ
௧ି

ିଵ
ୀ െ ∑ ቈ∑ ഥ߱ ቀ


ቁ

തതതതതଵିఏ
Πഥ

ିሺଵିఏሻିଵ
ୀ  ො௧ିାଵߨ

ିଵ
ୀଵ   

 భ
భషഇ

∑ ቈఠഥ ೕቀ
ಳ
ು

ቁ
തതതതതభషഇ

Πഥ
షೕሺభషഇሻ

ఠෝ ೕ
షభ
ೕసబ       

 
Distribution:  
መାଵ,௧ାଵߞ ൌ െ

ഥഀೕ
భషഥഀೕ

ො௧ߙ  ݆   ,መ௧ߞ ൌ 1, … , ܬ െ 1 and ∑ መ௧ߞҧߞ
ିଵ
ୀ ൌ 0 

ෝ߱௧ ൌ െ
ഥഀೕ

భషഥഀೕ
ො௧ߙ  ݆   ,መ௧ߞ ൌ 1, … , ܬ െ 1  and ∑ ഥ߱ ෝ߱௧

ିଵ
ୀ ൌ 0.  

 

Reset probabilities: ߙො௧ ൌ ݃ ൬
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ఏ
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ܾ
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Value functions: 
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ݐଓ݂ݎ
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ො௧ାଵߨ௧ሾܧ െ ௧ݎ̂  ݃ෞܽ ௧ାଵሿ      

 
Profits: 
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Resource constraint: ݕො௧ ൌ ݏܿ̂௧ݏ ො݃௧  ∑ Ξ,ݏ

ୀଵ Ξ௧ . 

 
Approximation to utility 
Lemmas 1, 2, 3 and 5 derived for the baseline model apply to the current setup. Modified Lemma 4 is 
given below.  
Lemma 4E. Let Ξ୲ ൌ Δ୲ െ Δഥ be the deviation of cross-section price dispersion from its non-stochastic 
steady state level ∆ത. Then  

Γଵ
ିଵሺΔ௧ െ Δഥሻ ൌ ∑ ഥ߱

ܾ
௧ି
ଶିଵ

ୀ  ∑ ഥ߱ൣ∑ ො௧ିߨ
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௧ି

ିଵ
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௧ି
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ିଵ
ୀ ൧ିଵ

ୀ  2ܳ
 ∑ ഥ߱ ෝ߱௧

ܾ
௧ି

ିଵ
ୀ െ  

2ܳ
 ∑ ഥ߱ ෝ߱௧ൣ∑ ො௧ିߨ
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 ∑ ഥ߱൫തܾ െ ത൯ߨ݆ ෝ߱௧

ିଵ
ୀ  , 

where  Γଵ ൌ ቄ1  ሺߠ െ 1ሻܳ
ଵൣܳ

  ∑ ߱൫തܾ െ ത൯ିଵߨ݆
ୀ ൧ቅ

ିଵ
.  

 
Proof:  

Δ௧ ؠ varሺlog൫ ௧ܲሺ݅ሻ൯ ൌ ∑ ߱௧ൣܾ௧ି  log ௧ܲି െ തܲ௧൧
ଶିଵ

ୀ ൌ ∑ ߱௧ൣܾ௧ି  ሺlog ௧ܲ െ തܲ௧ሻ െ ∑ ௧ିߨ
ିଵ
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ଶିଵ
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ൌ ∑ ߱௧ൣܾ௧ି െ ∑ ௧ିߨ
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ୀ ൧ሺlog ௧ܲ െ തܲ௧ሻିଵ
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ൌ ∑ ߱௧ൣܾ௧ି െ ∑ ௧ିߨ
ିଵ
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ଶିଵ
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ሻଶ  ሺ1 െ ሻܳߠ
ܳ
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ଵ ∑ ߱௧ൣܾ௧ି െ ∑ ௧ିߨ
ିଵ
ୀ ൧ିଵ

ୀ ሺΔ௧ െ Δഥሻ  ݐ݄    ݅ݐ
Consider each term in turn. The first term is 
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ିଵ
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ଶିଵ
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௧ି
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The second to last term is  
∑ ߱௧ൣܾ௧ି െ ∑ ௧ିߨ
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ୀ ൧ିଵ
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∑ ഥ߱ሺതܾ െ തሻߨ݆ ෝ߱௧
ିଵ
ୀ  . 

The last term is  
∑ ߱௧ൣܾ௧ି െ ∑ ௧ିߨ

ିଵ
ୀ ൧ିଵ

ୀ ሺΔ௧ െ Δഥሻ ൌ ∑ ሺ ߱௧ െ ഥ߱  ഥ߱ሻൣ൫ܾ௧ି െ തܾ൯  ሺതܾ െ തሻߨ݆ െିଵ
ୀ

∑ ሺߨ௧ି െ തሻ ିଵߨ
ୀ ൧ ሺΔ௧ െ Δഥሻ  

ൌ ∑ ൫ ߱௧ െ ഥ߱൯൫ܾ௧ି െ തܾ൯ሺΔ௧ െ Δഥሻିଵ
ୀ  ∑ ൫ ߱௧ െ ഥ߱൯ሺതܾ െ തሻሺΔ௧ߨ݆ െ Δഥሻିଵ

ୀ െ

∑ ∑ ሺߨ௧ି െ തሻ൫ߨ ߱௧ െ ഥ߱൯ሺΔ௧ െ Δഥሻ ିଵ
ୀ

ିଵ
ୀ  ∑ ഥ߱ൣ൫ܾ௧ି െ തܾ൯  ሺതܾ െ തሻߨ݆ െିଵ

ୀ

∑ ሺߨ௧ି െ തሻ ିଵߨ
ୀ ൧ ሺΔ௧ െ Δഥሻ  

ൌ ∑ ഥ߱ ෝ߱௧ሺ തܾ െ തሻሺΔ௧ߨ݆ െ Δഥሻିଵ
ୀ  ∑ ഥ߱ൣ ܾ

௧ି  ሺതܾ െ തሻߨ݆ െ ∑ ො௧ି ିଵߨ
ୀ ൧ିଵ

ୀ ሺΔ௧ െ Δഥሻ  ݐ݄    ݅ݐ

ൌ ሺΔ௧ െ Δഥሻ ∑ ഥ߱ሺ തܾ െ തሻିଵߨ݆
ୀ  ݐ݄    ݅ݐ

Regroup terms and take ሺΔ௧ െ Δഥሻ to get the expression in the lemma. ז  
Similar to the derivations for the Taylor and Calvo models, we consider low levels of trend inflation so 
that ሺതܾ െ  തሻ is close to zero. Note that as j increases, the sum of steady state levels of inflation increasesߨ݆
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but this increase in the sum is discounted more heavily since ഥ߱ is decreasing in j. Hence, terms which are 

linear in ܾ
௧ି and  ߨො௧ି can be ignored. The new terms relative to the Taylor model capture the 

covariance between shares of firms resetting prices and the size of the reset price or inflation. 
 
Using Lemma 4E, we can also find 
Γଵ

ିଵܧሺΞ௧ሻ ൌ Γଵ
ିଵEሺΔ௧ െ Δഥሻ ൌ

varሺ ܾ
௧ିሻ  ∑ ഥ߱ ∑ ∑ covሺߨො௧ି, ො௧ି௦ሻିଵߨ

௦ୀ
ିଵ
ୀ

ିଵ
ୀ െ 2 ∑ ഥ߱ൣ∑ covሺ ܾ

௧ି, ො௧ିߨ
ିଵ
ୀ ሻ൧ିଵ

ୀ   

2 ∑ ഥ߱൫തܾ െ ത൯covሺߨ݆ ෝ߱௧,ܾ ௧ିሻିଵ
ୀ െ 2 ∑ ഥ߱൫തܾ െ ∑ത൯ൣߨ݆ covሺ ෝ߱௧, ො௧ିሻିଵߨ

ୀ ൧ିଵ
ୀ 

2ܳ
 ∑ ഥ߱covሺ ෝ߱௧, ܾ

௧ିሻିଵ
ୀ െ 2ܳ

 ∑ ഥ߱ൣ∑ covሺ ෝ߱௧, ො௧ିሻିଵߨ
ୀ ൧ିଵ

ୀ  . 
 
Proposition 1E. Given Lemmas 1, 2, 3, 4E and 5, the second order approximation to per period utility in 
eq. (1) is  

ܧ ௧ܷ ൎ logሼሺ1 െ ሻ/ሺ1ݏ െ ݃ሻሽ  ሼ1 െ ሺ1 െ ݃ሻିଵሺ1 െ Φሻ൫1 െ ሺ1  ଵሻܳ௬ିߟ
ൟ log തܺ

െ
1
2

ሺ1 െ ݃ሻିଵሺ1 െ Φሻሺ1  ଵሻሺlogିߟ തܺሻଶ

െ ଵ
ଶ
ሺ1 െ ݃ሻିଵ ቂܳ௬

ଵିߠଵ െ ܳ௬
ଵ  ሺ1  ଵሻିߟ ቀ1  ఏିଵ

ఏ
ܳ௬

ଵܳ௬
ቁቃ ଶΔഥߠ

െ ሺ1 െ ݃ሻିଵሺ1 െ Φሻ ൜ሺ1  ଵሻ൫ܳ௬ିߟ
൯

ଶ
െ ܳ௬

  ఏିଵ
ఏ

ܳ௬
ଵ 

1
2

െ ሺ1  ଵሻܳ௬ିߟ
൨ Υഥൠ

െ ଵ
ଶ
ሺ1 െ ݃ሻିଵሺ1 െ Φሻሺ1  ො௧ሻݕଵሻvarሺିߟ

െ ଵ
ଶ
ሺ1 െ ݃ሻିଵߠଶ ቄቂܳ௬

ଵିߠଵ െ ܳ௬
ଵ  ሺ1  ଵሻିߟ ቀ1  ఏିଵ

ఏ
ܳ௬

ଵܳ௬
ቁቃ

െ ఏିଵ
ఏ

ሺ1  ଵሻܳ௬ିߟ
ଵ log തܺቅ ሺΞ௧ሻܧ  ݐ݄   ݅ݐ

Proof: 
The derivation of the dispersion term follows the derivation in Proposition 1. Note that because costs of 
changing prices enter the resource constraint, we use ݕො௧ ൌ ௧ݕ െ logሺ തܺሻ to express the deviation of 
consumption from its flexible prices level as follows:  
ܿ̃௧ ൌ ܿ௧ െ ܿ௧

ி ൌ ሺܿ௧ െ ܿҧ௧ሻ  ሺܿҧ௧ െ ܿ௧
ிሻ ൌ ܿ̂௧  logሼሺ1 െ ሻݏ തܻ௧ሽ െ logሼሺ1 െ ݃ሻ ௧ܻ

ிሽ  
ൌ ܿ̂௧  logሼሺ1 െ ሻ/ሺ1ݏ െ ݃ሻሽ െ logሺ തܺሻ  

Following the steps in Proposition 1, we derive the expected value of the per period utility. ז 
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Appendix F: Non-linear solution to the baseline model  
In the log-linearized model, the unconditional variances of output and inflation can also be calculated 
from the moving average representation. Since this moving average representation is equivalent to the 
impulse response function (IRF), we check the accuracy of our solution by comparing the IRF of the 
approximated model with the IRF from a non-linear solution method.  
First, we rewrite the system of nonlinear equations so that the price setting equations of the baseline 

model are in recursive form as in Woodford (2010): 
ଵିఒஈ

ഇషభ

ଵିఒ
ൌ ቀ

ு
ቁ

ഇషభ
భశഇആషభ

௧ܭ ,  ൌ
ఏ

ఏିଵ ௧ܻ
ଵାଵ/ఎ 

௧Π௧ାଵܧߣߚ
ఏሺଵାଵ/ఎሻܭ௧ାଵ, ܪ௧ ൌ




 ௧൫Π௧ାଵܧߣߚ

ఏିଵܪ௧ାଵ൯ where K and H are the numerator and denominator in 

equation (11). 
Since computing a solution to the nonlinear model is computationally costly, we focus only on 

the worst case scenario: zero trend inflation and a large shock which leads to binding zero lower bound. 
In particular, we consider a 3 standard deviation shock to the risk premium q, which will cause the ZLB 
to bind in the log-linearized baseline model. We use the shooting algorithm from Fair and Taylor (1983) 
to solve for the IRF of the non-linear model in the following steps: 

1. Initialize the algorithm by fixing the end point ்ܻ  at T=20. 
2. Use the linear solution as an initial guess for future expectations. 
3. With these future expectations, calculate a new path for the endogenous variables ሼ ௧ܻ

ଵሽ௧ୀ
்  (Type I 

iteration). 
4. Use this new path as future expectations and keep iterating until the solution converges on a path 

ሼ ௧ܻ
ሽ௧ୀ

்  (Type II iteration). 
5. After convergence is achieved increase T by 1 period until the change in the IRF from increasing 

T falls below a critical value (Type III iteration). 
We achieved convergence after T=31 periods (total runtime was one hour while the run time for the log-
linearized model is a tiny fraction of a second). The IRF from the linear and non-linear solution are 
plotted in the figure below. We calculate the distance between the two IRFs by summing the absolute 
value of their differences and dividing by the absolute sum of the IRF coefficients of the nonlinear 
solution. This metric yields errors for output and inflation of approximately 1.5%. Since it is only the 
moments of output and inflation that are of interest to us, this result suggests that the linear approximation 
introduces only small errors, which will not quantitatively affect our results.  
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