
 

 

FORECAST ERROR VARIANCE DECOMPOSITIONS            

WITH LOCAL PROJECTIONS 

 

Yuriy Gorodnichenko Byoungchan Lee 

University of California – Berkeley  

and NBER 

University of California – Berkeley 

 

March 15, 2019 

Abstract: We propose and study properties of an estimator of the 
forecast error variance decomposition in the local projections 
framework. We find for empirically relevant sample sizes that, after 
being bias-corrected with bootstrap, our estimator performs well in 
simulations. We also illustrate the workings of our estimator 
empirically for monetary policy and productivity shocks.   

 

 

JEL: E37, E47, C53 

Key words: local projections, forecast error variance decomposition.  

 

 

 

We thank our editor Todd Clark, an anonymous referee, and an associate editor for helpful 
comments and suggestions. We also are grateful to Oscar Jordà, Mikkel Plagborg-Møller, and 
Christian Wolf for comments on an earlier version of the paper.   



1 
 

1. Introduction 
Macroeconomists have been long interested in estimating dynamic responses of output, inflation, 

and other aggregates to structural shocks. While many analyses use vector autoregressions (VARs) 

or dynamic stochastic general equilibrium (DSGE) models to construct estimated responses, an 

increasing number of researchers focus on a single structural shock and employ single-equation 

methods to study the dynamic responses. This approach allows concentrating on well-identified 

shocks and leaving other sources of variation unspecified. In addition, these approaches often 

impose no restrictions on the shape of the impulse response function. As a result, the local 

projections (LP) method (Jordà 2005, Stock and Watson 2007) has gained prominence in applied 

macroeconomic research.  

The properties of impulse responses estimated with these methods are well studied (see, 

e.g., Coibion 2012, Kilian and Kim 2011), but little is known about how one can reliably estimate 

the quantitative significance of shocks in the single-equation framework. While some methods for 

constructing the forecast error variance decompositions (FEVDs) have been suggested, it usually 

has been done without investigation of their econometric properties, especially for empirically 

relevant sample sizes.1 As a result, the vast majority of studies using single-equation approaches 

do not report the FEVD for the variable of interest, and hence one does not know if a given shock 

accounts for a large share of variation for the variable.2 This practice contrasts sharply with the 

nearly universal convention to report FEVDs in VARs and DSGE models. In this paper, we 

propose and study finite-sample and asymptotic properties of a method to construct forecast error 

variance decompositions in the local projections framework.   

We show that local projections lead to a simple and intuitive way to assess the contribution 

of identified shocks to the variation of forecast errors at different horizons. While there are several 

options to implement this insight, we mostly focus on an estimator based on the coefficient of 

determination, or 𝑅ଶ. To illustrate the properties of this method, we use several data generating 

processes (DPGs), including the Smets and Wouters (2007) model. These DGPs cover main profiles 

                                                            
1 For example, Jordà (2005) suggests an estimator close in spirit to LP-A and LP-B estimators that we cover in Section 
3.1 and Appendix B. Our baseline estimator of FEVDs performs better than these estimators for empirically relevant 
sample sizes. Another method is to compute FEVDs by using VARs that directly include a structural shock (Plagborg-
Møller and Wolf 2018). While this method identifies the same population FEVDs, it requires a large number of lags 
(Baek and Lee 2019), a feature that may be too costly in practice given the curse of dimensionality in VARs and the 
noise generated by many estimated parameters.   
2 Coibion et al. (2017) is among the very few papers reporting FEVDs based on the local projection method.  
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of FEVDs documented in previous works. We show that estimated contributions to the variation of 

forecast errors may be biased in small samples and one should use bootstrap to correct for possible 

biases in the FEVDs estimated by local projections. We also show that, in simulations, our estimator 

performs better than alternative approaches based on sums of squared estimates of impulse 

responses. We further illustrate the performance of our method with actual data and commonly used 

identified shocks. In short, our contribution is to develop a new estimator of FEVDs and to assess 

finite-sample properties of our estimator and alternative estimators.  

We assume in this paper that the researcher has a series of identified shocks. However, these 

shocks may be measured with error in practice because, e.g., they are estimated rather than directly 

observed. We show that our estimator of FEVDs is downward biased when the shocks are 

imperfectly observed. Thus, our point estimates are conservative and likely provide a lower bound. 

In a concurrent and complementary work, Plagborg-Møller and Wolf (2017) provide set-identified 

FEVDs given measurement errors in the local projections framework. Their partially identified 

untestable bounds could be useful tools for the researcher who is interested in upper bounds of the 

FEVDs. 

The rest of the paper is structured as follows. Section 2 lays out a basic setting to derive 

the estimator. Section 3 introduces our estimator and illustrates its econometric properties. Section 

4 presents simulation results for bivariate and multivariate settings. Section 5 applies our method 

to measuring the contribution of monetary policy and productivity shocks to the forecast error 

variance of output and inflation in the local projections framework. Section 6 concludes.  

 

2. Basics of the forecast error variance decomposition  
Consider a generic setup encountered in studies using local projections. Let 𝑦௧ be an endogenous 

variable of interest. An identified white-noise shocks series ሼ𝑧௧ሽ has mean zero and variance 𝜎௭
ଶ. 

We assume that variation in 𝑦  due to 𝑧  is represented by 𝜓௭ሺ𝐿ሻ𝑧௧ ൌ ∑ 𝜓௭,௜𝑧௧ି௜
ஶ
௜ୀ଴ , where 

coefficients ൛𝜓௭,௜ൟ provide us with the impulse response function of 𝑦 to 𝑧.  

The forecast error for the h-period ahead value of the endogenous variable is given by 

𝑓௧ା௛|௧ିଵ ≡ ሺ𝑦௧ା௛ െ 𝑦௧ିଵሻ െ 𝑃ሾ𝑦௧ା௛ െ 𝑦௧ିଵ|Ω௧ିଵሿ,                                  ሺ1ሻ   

where 𝑃ሾ𝑦௧ା௛ െ 𝑦௧ିଵ|Ω௧ିଵሿ  is the projection of 𝑦௧ା௛ െ 𝑦௧ିଵ  on the information set Ω௧ିଵ ≡

ሼΔ𝑦௧ିଵ, 𝑧௧ିଵ, Δ𝑦௧ିଶ, 𝑧௧ିଶ, … ሽ. To keep the exposition as simple as possible, we focus only on a 
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single shock and a single endogenous variable for now, but in Section 3.6 we consider the case 

where the information set includes other (“control”) variables. We can decompose the forecast 

errors due to innovations in 𝑧 and other sources of variation as follows:  

𝑓௧ା௛|௧ିଵ ൌ 𝜓௭,଴𝑧௧ା௛ ൅ ⋯ ൅ 𝜓௭,௛𝑧௧ ൅ 𝑣௧ା௛|௧ିଵ,                                                          ሺ2ሻ 

where 𝑣௧ା௛|௧ିଵ is the error term due to innovations orthogonal to ሼ𝑧௧, 𝑧௧ାଵ, … , 𝑧௧ା௛ሽ and Ω௧ିଵ.  

Following Sims (1980), we can define the population share of the variances explained by 

the contemporaneous and future innovations in 𝑧௧ to the total variations in 𝑓௧ା௛|௧ିଵ: 

𝑠௛ ൌ
𝑉𝑎𝑟൫𝜓௭,଴𝑧௧ା௛ ൅ ⋯ ൅ 𝜓௭,௛𝑧௧൯

𝑉𝑎𝑟൫𝑓௧ା௛|௧ିଵ൯
.                                                                            ሺ3ሻ 

In what follows, we propose and evaluate a method to estimate 𝑠௛ based on equation (3).  

Note that, if we use definitions of Plagborg-Møller and Wolf (2017), the object of our 

analysis is the forecast variance ratio. Although this definition of 𝑠௛ seems natural, one should bear 

in mind several caveats. First, 𝑠௛  depends on Ω௧ : adding more control variables changes the 

population parameter 𝑠௛ (see Section 3.6). Second, the forecast error variance decomposition for 

a structural VAR model or a DSGE model is usually defined given an information set which 

includes all structural shocks, while 𝑠௛  above is purely based on the observables. These two 

definitions might not coincide if two information sets differ. For example, if a data generating 

process is not invertible for structural shocks (the shocks are not recoverable from the history of 

observable variables), forecast variance ratio is different from variance decomposition (see 

Plagborg-Møller and Wolf (2017) for details on this point).  

 

3. Estimator 
In this section, we introduce our estimator of FEVDs using the coefficient of determination, or 𝑅ଶ 

of local projections. We discuss asymptotic properties of our estimator and address issues that may 

be encountered in practice. Those issues include measurement errors in 𝑧௧ , small-sample 

refinements with a focus on biases, and other control variables in the information set. 

 

3.1. 𝑅ଶ method  
Let 𝑍௧

௛ ൌ ሺ𝑧௧ା௛, … , 𝑧௧ሻ′. It can be shown with some algebra that equation (3) can be written as 
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𝑠௛ ൌ
𝑪𝒐𝒗൫𝑓௧ା௛|௧ିଵ, 𝑍௧

௛൯ൣ𝑽𝒂𝒓൫𝑍௧
௛൯൧

ିଵ
𝑪𝒐𝒗ሺ𝑍௧

௛, 𝑓௧ା௛|௧ିଵሻ

𝑉𝑎𝑟ሺ𝑓௧ା௛|௧ିଵሻ 
.                                      ሺ4ሻ 

In the numerator, the first 𝑪𝒐𝒗 term is a row vector, the 𝑽𝒂𝒓 in the middle is a matrix, and the last 

𝑪𝒐𝒗 is a column vector. This quantity can be understood as an 𝑅ଶ of the population projection of 

𝑓௧ା௛|௧ିଵ  on 𝑍௧
௛ , or the probability limit of sample 𝑅ଶ ’s. This observation suggests a natural 

estimator of 𝑠௛. First, the forecast errors for each horizon ℎ are estimated using local projections. 

Second, the estimated forecast errors for the horizon ℎ at time 𝑡 are regressed on shocks that 

happen between 𝑡 and 𝑡 ൅ ℎ. The 𝑅ଶ in this regression is an estimate of 𝑠௛.  

More precisely, the estimated forecast error 𝑓መ௧ା௛|௧ିଵ  is the residual of the following 

regression: 

 𝑦௧ା௛ െ 𝑦௧ିଵ ൌ 𝑐௛ ൅ ∑ 𝛾௜
௛௅೤

௜ୀଵ Δ𝑦௧ି௜ ൅ ∑ 𝛽௜
௛௅೥

௜ୀଵ 𝑧௧ି௜ ൅ 𝑓௧ା௛|௧ିଵ,                            ሺ5ሻ 

which is an approximation to 𝑦௧ା௛ െ 𝑦௧ିଵ ൌ 𝑐௛ ൅ ∑ 𝛾௜
௛ஶ

௜ୀଵ Δ𝑦௧ି௜ ൅ ∑ 𝛽௜
௛ஶ

௜ୀଵ 𝑧௧ି௜ ൅ 𝑓௧ା௛|௧ିଵ  in 

population. Then we run the following regression and calculate its 𝑅ଶ: 

𝑓መ௧ା௛|௧ିଵ ൌ 𝛼௭,଴𝑧௧ା௛ ൅ ⋯ ൅ 𝛼௭,௛𝑧௧ ൅ 𝑣෤௧ା௛|௧ିଵ.                                                         ሺ6ሻ 

Thus, our estimator 𝑠̂௛
ோଶ is 𝑅ଶ of equation (6) which, by construction, is between 0 and 1. Note that 

𝛼௭,௜  in equation (6) corresponds to the impulse response coefficient 𝜓௭,௜ . Because 𝑓መ௧ା௛|௧ିଵ in 

equation (6) is a residual of an OLS regression with an intercept in equation (5) and the mean of 

𝑧௧ is zero, an intercept term in equation (6) is not required. Moreover, the population mean of both 

𝑓௧ା௛|௧ିଵ  and 𝑍௧
௛  are zeros, and so both centered and non-centered 𝑅ଶ ’s are the same in the 

population. We report results for the non-centered 𝑅ଶ below, but properties are similar when we 

use the centered 𝑅ଶ. 

 Note that one may implement this estimator by augmenting equation (5) with shocks 

𝑧௧, … , 𝑧௧ା௛ and calculating the partial 𝑅ଶ. This modification ensures that any predictable variation 

in 𝑧௧, … , 𝑧௧ା௛ is removed. In practice, this step likely makes little difference since 𝑧௧ is typically 

constructed in a way such that 𝑧௧ is not predictable by lags of macroeconomic variables. 

 

LP-A and LP-B estimators of 𝒔𝒉.  While we concentrate on the 𝑅ଶ estimator, there are other 

options for estimating 𝑠௛. For example, note that 𝑠௛ admits the following representations: 

𝑠௛ ൌ
൫∑ 𝜓௭,௜

ଶ௛
௜ୀ଴ ൯𝜎௭

ଶ

𝑉𝑎𝑟൫𝑓௧ା௛|௧ିଵ൯
                                                                                                       ሺ7ሻ 
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ൌ
൫∑ 𝜓௭,௜

ଶ௛
௜ୀ଴ ൯𝜎௭

ଶ

൫∑ 𝜓௭,௜
ଶ௛

௜ୀ଴ ൯𝜎௭
ଶ ൅ 𝑉𝑎𝑟൫𝑣௧ା௛|௧ିଵ൯

.                                                                      ሺ7′ሻ 

Thus, one may estimate 𝑠௛ by plugging estimates of 𝜓௭,௜’s, 𝜎௭
ଶ, 𝑉𝑎𝑟൫𝑓௧ା௛|௧ିଵ൯, or 𝑉𝑎𝑟൫𝑣௧ା௛|௧ିଵ൯ 

into either (7) or (7’).  

 We estimate 𝜓௭,௛ with local projections by running the following regression: 

 𝑦௧ା௛ െ 𝑦௧ିଵ ൌ 𝑐௛
୐୔ ൅ ∑ 𝛾௜

௛,௅௉௅೤

௜ୀଵ Δ𝑦௧ି௜ ൅ ∑ 𝛽௜
௛,௅௉௅೥

௜ୀ଴ 𝑧௧ି௜ ൅ 𝑟௧ା௛|௧ିଵ,                ሺ8ሻ 

where 𝛽መ଴
௛,௅௉ is an estimator of  𝜓௭,௛ (Jordà 2005). Note that, in contrast to equation (5), equation 

(8) includes the current value of 𝑧௧. Since we can estimate 𝜎௭
ଶ directly from the time series of 𝑧, 

we can estimate ൫∑ 𝜓௭,௜
ଶ௛

௜ୀ଴ ൯𝜎௭
ଶ in equation (7) or (7’). For the denominator in equation (7), we note 

that the residual in equation (8) can be related to the forecast error 𝑓௧ା௛|௧ିଵ in equation (5). By 

comparing equations (5) and (8), it becomes clear that 𝑓௧ା௛|௧ିଵ ൌ 𝛽଴
௛,௅௉𝑧௧ ൅ 𝑟௧ା௛|௧ିଵ for each ℎ. 

Therefore, we can construct estimates of the forecast errors, denoted by 𝑓መ௧ା௛|௧ିଵ
௅௉ , by adding 

𝛽መ଴
௛,௅௉𝑧௧ to 𝑟̂௧ା௛|௧ିଵ. Then we can compute 𝑉𝑎𝑟෢ ሺ𝑓መ௧ା௛|௧ିଵ

௅௉ ሻ that is an estimate of the denominator in 

equation (7), where 𝑉𝑎𝑟෢ ሺ⋅ሻ denotes a sample variance. We now define a local projection estimator 

of FEVDs, which we call “LP-A” estimators, as  

 𝑠̂௛
௅௉஺ ൌ

൬∑ ቄఉ෡బ
೔,ಽುቅ

మ೓
೔సబ ൰ఙෝ೥

మ

௏௔௥෢ ቀఉ෡బ
೓,ಽು௭೟ା௥̂೟శ೓|೟షభቁ

,                                                                                        ሺ9ሻ  

where 𝜎ො௭
ଶ ≡ 𝑉𝑎𝑟෢ ሺ𝑧௧ሻ. 

 Although simple, the LP-A estimator does not guarantee that the estimated 𝑠௛ is between 

0 and 1. A simple solution to this issue is to split the denominator into variation due to 𝑧 and due 

to 𝑣 so that ൫∑ 𝜓௭,௜
ଶ௛

௜ୀ଴ ൯𝜎௭
ଶ appears in both the numerator and the denominator as in equation (7’). 

Note that  

𝑣ො௧ା௛|௧ିଵ ൌ  𝑓መ௧ା௛|௧ିଵ
௅௉ െ 𝛽መ଴

௛,௅௉𝑧௧ െ 𝛽መ଴
௛ିଵ,௅௉𝑧௧ାଵ െ ⋯ െ 𝛽መ଴

଴,௅௉𝑧௧ା௛ 

ൌ  𝑟̂௧ା௛|௧ିଵ െ 𝛽መ଴
௛ିଵ,௅௉𝑧௧ାଵ െ ⋯ െ 𝛽መ଴

଴,௅௉𝑧௧ା௛,  

and that 𝑉𝑎𝑟෢ ൫𝑟̂௧ା௛|௧ିଵ െ 𝛽መ଴
௛ିଵ,௅௉𝑧௧ାଵ െ ⋯ െ 𝛽መ଴

଴,௅௉𝑧௧ା௛ ൯ is an estimate of 𝑉𝑎𝑟൫𝑣௧ା௛|௧ିଵ൯. We use 

this quantity to define another local projection estimator of FEVDs, or “LP-B”:  

 𝑠̂௛
௅௉஻ ൌ

൬∑ ቄఉ෡బ
೔,ಽುቅ

మ೓
೔సబ ൰ఙෝ೥

మ

൬∑ ቄఉ෡బ
೔,ಽುቅ

మ೓
೔సబ ൰ఙෝ೥

మା௏௔௥෢ ቀ௥̂೟శ೓|೟షభିఉ෡బ
೓షభ,ಽು௭೟శభି⋯ିఉ෡బ

బ,ಽು௭೟శ೓ ቁ
.                              ሺ10ሻ 
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 The LP-A and LP-B estimators are based on a single regression (8) for each horizon, while 

the R2 estimator requires two regressions (5) and (6). While the LP-A and the LP-B are in some 

sense simpler (they estimate only one equation and they correspond more closely to the 

conventional way to compute FEVD, that is, use squares of estimated impulse responses to 

compute variance contributions), we find that the R2 estimator has weakly better finite-sample 

performances. To preserve space, we focus on the R2 estimator in the rest of the paper and relegate 

the details for the LP-A and LP-B estimators to Appendix B. 

 

3.2. Asymptotics 
To derive the asymptotic properties of our R2 estimator, we begin with the case where the forecast 

errors are observable, not generated. Then we show that using the estimated forecast errors does 

not alter the asymptotic distribution. Readers more interested in the implementation of the 

estimator may want to skip to the next subsection. 

 For now, we suppose that 𝑓௛ ൌ ൫𝑓 |்ି௛ିଵ, 𝑓 ିଵ|்ି௛ିଶ, … , 𝑓௅೘ೌೣା௛ାଵ |௅೘ೌೣ ൯
ᇱ
 is observable 

for any ℎ ൒ 0 , where 𝐿௠௔௫ ൌ max൛𝐿௭, 𝐿௬ൟ . We write 𝑍௧
௛ ൌ ሺ𝑧௧ା௛, … , 𝑧௧ሻᇱ  for all 𝑡  and ℎ  and 

define a matrix 𝒁௛ ൌ ൫𝑍்ି௛
௛ , 𝑍்ିଵ

௛ , … , 𝑍௅೘ೌೣାଵ
௛ ൯

ᇱ
. The (non-centered) 𝑅ଶ  of the regression of 

𝑓௧ା௛|௧ିଵ on 𝑍௧
௛ is given by ൫𝑓௛

ᇱ𝑃𝒁𝒉
𝑓௛൯/ሺ𝑓௛

ᇱ𝑓௛ሻ, where 𝑃𝒁೓
ൌ 𝒁௛ሺ𝒁௛

ᇱ 𝒁௛ሻିଵ𝒁௛
ᇱ .  

 Let 𝜃଴ ൌ ൫𝜃ଵ,଴
ᇱ , 𝜃ଶ,଴

ᇱ , 𝜃ଷ,଴
ᇱ ൯′ , where 𝜃ଵ,଴ ൌ ൫𝐸ሾ𝑍௧

௛𝑍௧
௛′ሿ൯

ିଵ
൫𝐸ൣ𝑍௧

௛𝑓௧ା௛|௧ିଵ൧൯ ൌ

൫𝜓௭,଴, 𝜓௭,ଵ, … , 𝜓௭,௛൯
ᇱ
, 𝜃ଶ,଴ ൌ 𝐸ൣ𝑍௧

௛𝑓௧ା௛|௧ିଵ൧ ൌ 𝜃ଵ,଴𝜎௭
ଶ , and 𝜃ଷ,଴ ൌ 𝐸ൣ𝑓௧ା௛|௧ିଵ

ଶ ൧ ≡ 𝜎௙,௛
ଶ . A method 

of moments estimator 𝜃෠ ൌ ൫𝜃෠ଵ
ᇱ , 𝜃෠ଶ

ᇱ , 𝜃෠ଷ
ᇱ ൯

ᇱ
 is as follows: 𝜃෠ଵ ൌ ሺ𝒁௛

ᇱ 𝒁௛ሻିଵሺ𝒁௛
ᇱ 𝑓௛ሻ, 𝜃෠ଶ ൌ 𝒁೓

ᇲ ௙೓

்೓
, 𝜃෠ଷ ൌ

௙೓
ᇲ௙೓

்೓
, where 𝑇௛ ൌ 𝑇 െ ሺ𝐿௠௔௫ ൅ ℎሻ . For 𝜉ሺ𝜃ሻ ൌ 𝜉ሺ𝜃ଵ, 𝜃ଶ, 𝜃ଷሻ ൌ ఏమ

ᇲఏభ

ఏయ
, we have 𝑠௛ ൌ 𝜉ሺ𝜃଴ሻ  and 

௙೓
ᇲ௉𝒁೓௙೓

௙೓
ᇲ௙೓

ൌ 𝜉൫𝜃෠൯. Therefore, we first derive the asymptotic distribution of √𝑇൫𝜃෠ െ 𝜃଴൯ and then 

apply the delta method to obtain the asymptotic distribution of √𝑇 ቀ𝜉൫𝜃෠൯ െ 𝜉ሺ𝜃଴ሻቁ ൌ

√𝑇 ൬
௙೓

ᇲ௉𝑿೓௙೓

௙೓
ᇲ௙೓

െ 𝑠௛൰. 

 The moment conditions above can be summarized as 𝐸ሾ𝑔௧ା௛ሺ𝜃ሻሿ ൌ 0, where 
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 𝑔௧ା௛ሺ𝜃ሻ ≡ 𝑔൫𝑓௧ା௛|௧ିଵ, 𝑍௧
௛, 𝜃൯ ൌ ൮

𝑍௧
௛ ቀ𝑓௧ା௛|௧ିଵ െ ൫𝑍௧

௛൯
ᇱ
𝜃ଵቁ

𝑍௧
௛𝑓௧ା௛|௧ିଵ െ 𝜃ଶ

𝑓௧ା௛|௧ିଵ
ଶ െ 𝜃ଷ

൲.                      ሺ11ሻ 

It is clear that the conditions are satisfied only when 𝜃 ൌ 𝜃଴ and the system is just-identified. 

Therefore, √𝑇൫𝜃෠ െ 𝜃଴൯  
ௗ
→  𝒩 ቀ0, ൫𝐺௛,ோమ൯

ିଵ
Ω௛,ோమ൫𝐺௛,ோమ

ᇱ ൯
ିଵ

ቁ, where ‘
ௗ
→’ denotes convergence in 

distribution, 𝐺௛,ோమ ൌ 𝐸ሾ∇஘𝑔௧ା௛ሺ𝜃଴ሻሿ , Ω௛,ோమ ൌ ∑ Γሺ𝑙ሻஶ
௟ୀିஶ ,  and Γሺ𝑙ሻ  is the autocovariance of 

𝑔௧ା௛ሺ𝜃଴ሻ  at lag 𝑙  (Hansen 1982). With some algebra, we can further show that 𝐺௛,ோమ ൌ

െ𝑑𝑖𝑎𝑔ሺ𝜎௭
ଶ𝐼௛ାଵ, 𝐼௛ାଶሻ where 𝑑𝑖𝑎𝑔ሺ𝐴, 𝐵ሻ is the block diagonal matrix whose diagonal components 

are 𝐴 and 𝐵 in order, and 𝐼௛ is the ℎ-dimensional identity matrix . 

 Now we define Δ௛,ோమ as 
డకሺఏబሻ

డఏᇲ ൌ ଵ

ఏయ,బ
൫𝜃ଶ,଴

ᇱ , 𝜃ଵ,଴
ᇱ , െ𝑠௛൯. By combining the above derivations, 

we derive the asymptotic distribution of 
௙೓

ᇲ௉𝒁೓௙೓

௙೓
ᇲ௙೓

.  

Proposition 1. Let 𝑓௛ ൌ ൫𝑓 |்ି௛ିଵ, 𝑓 ିଵ|்ି௛ିଶ, … , 𝑓௅೘ೌೣା௛ାଵ |௅೘ೌೣ ൯
ᇱ

 and 𝒁௛ ൌ

൫𝑍்ି௛
௛ , 𝑍்ିଵ

௛ , … , 𝑍௅೘ೌೣାଵ
௛ ൯

ᇱ
 for all ℎ ൒ 0, where 𝐿௠௔௫ ൌ max൛𝐿௭, 𝐿௬ൟ. The 𝑅ଶ of the regression of 

𝑓௧ା௛|௧ିଵ  on 𝑍௧
௛  is given by  ൫𝑓௛

ᇱ𝑃𝒁೓
𝑓௛൯/ሺ𝑓௛

ᇱ𝑓௛ሻ, where 𝑃𝒁೓
ൌ 𝒁௛ሺ𝒁௛

ᇱ 𝒁௛ሻିଵ𝒁௛
ᇱ . Furthermore, the 

following holds: 

 √𝑇 ൬
௙೓

ᇲ௉𝒁೓௙೓

௙೓
ᇲ௙೓

െ 𝑠௛൰  
ௗ
→  𝒩 ቀ0,     Δ௛,ோమ൫𝐺௛,ோమ൯

ିଵ
Ω௛,ோమ൫𝐺௛,ோమ

ᇱ ൯
ିଵ

Δ௛,ோమ
ᇱ ቁ,            ሺ12ሻ 

where Δ௛,ோమ ൌ ଵ

ఙ೑,೓
మ ൫𝜓௭,଴𝜎௭

ଶ, … , 𝜓௭,௛𝜎௭
ଶ, 𝜓௭,଴, … , 𝜓௭,௛, െ𝑠௛൯ , 𝐺௛,ோమ ൌ െ𝑑𝑖𝑎𝑔ሺ𝜎௭

ଶ𝐼௛ାଵ, 𝐼௛ାଶሻ , and 

Ω௛,ோమ is the long-run variance of 𝑔௧ା௛ሺ𝜃଴ሻ in equation (11). We denote the variance in equation 

(12) by 𝑉௛,ோమ ൌ Δ௛,ோమ൫𝐺௛,ோమ൯
ିଵ

Ω௛,ோమ൫𝐺௛,ோమ
ᇱ ൯

ିଵ
Δ௛,ோమ

ᇱ . 

 However, 𝑓௛ is not directly observable in practice. We use its estimate 𝑓መ௛ instead, which is 

based on equation (5). Next, we show that the feasible estimator 
௙መ೓

ᇲ௉𝒁೓௙መ೓

௙መ೓
ᇲ௙መ೓

 has the same asymptotic 

variance 𝑉௛,ோమ in Proposition 1. 

 To separate issues from truncation and estimation of the forecast errors, we now assume 

that 𝐿௬ and 𝐿௭ are large enough, and the population residual of equation (5) is the true forecast 



8 
 

error. In other words, we assume that ሺ𝑧௧, Δ𝑦௧ሻᇱ follows a finite-order Markov process and focus 

on the variability in 𝑓መ௛ due to the estimation of the forecast errors. 

 For a simple notation, we rewrite equation (5) as 𝑦௧ା௛ െ 𝑦௧ିଵ ൌ 𝑊௧ିଵ
ᇱ 𝜙 ൅ 𝑓௧ା௛|௧ିଵ, where 

𝑊௧ିଵ ≡ ቀ1, Δ𝑦௧ିଵ, … , Δ𝑦௧ି௅೤
, 𝑧௧ିଵ, … , 𝑧௧ି௅೥

ቁ
ᇱ
 and 𝜙 ≡ ቀ𝑐௛, 𝛾ଵ

௛, … , 𝛾௅೤
௛ , 𝛽ଵ

௛, … , 𝛽௅೥
௛ ቁ

ᇱ
. For 𝜙෠ being 

the OLS estimator of 𝜙 , we have 𝑓መ௧ା௛|௧ିଵ ൌ 𝑓௧ା௛|௧ିଵ െ 𝑊௧ିଵ
ᇱ ൫𝜙෠ െ 𝜙൯ . By stacking up and 

defining 𝑾 matrix accordingly, we obtain 𝑓መ௛ ൌ 𝑓௛ െ 𝑾൫𝜙෠ െ 𝜙൯. 

 A feasible estimator 𝜃෨ of 𝜃଴ based on 𝑓መ௛  is given by 𝜃෨ଵ ൌ ሺ𝒁௛
ᇱ 𝒁௛ሻିଵ൫𝒁௛

ᇱ 𝑓௛
෡ ൯, 𝜃෨ଶ ൌ 𝒁೓

ᇲ ௙መ೓

்೓
, 

and 𝜃෨ଷ ൌ ௙መ೓
ᇲ௙መ೓

்೓
. We will show that 𝜃෨ ൌ 𝜃෠ ൅ 𝑂௣ ቀ ଵ

்೓
ቁ , and therefore the feasible estimator 𝜃෨ 

converges to the infeasible estimator 𝜃෠ fast enough not to change the asymptotic distribution of 

√𝑇൫𝜃෨ െ 𝜃൯, and more specifically, the asymptotic variance. Note that 𝜃෨ଵ ൌ ቀ𝒁೓
ᇲ 𝒁೓

்
ቁ

ିଵ
ቀ𝒁೓

ᇲ ௙መ೓

்
ቁ ൌ

𝜃෠ଵ െ ቀ𝒁೓
ᇲ 𝒁೓

்
ቁ

ିଵ
ቀ𝒁೓

ᇲ 𝑾

்
ቁ ൫𝜙෠ െ 𝜙൯ ൌ 𝜃෠ଵ െ 𝑂௣ሺ1ሻ ൬𝐸ሾ𝑍௧

௛𝑊௧ିଵ
ᇱ ሿ ൅ 𝑂௣ ቀ ଵ

√்
ቁ൰ 𝑂௣ ቀ ଵ

√்
ቁ , which follows 

from the law of large numbers, the central limit theorem, and standard asymptotics of OLS 

estimators. Because 𝑊௧ିଵ ∈ Ω௧ିଵ ¸𝑍௧
௛ ൌ ሺ𝑧௧ା௛, … , 𝑧௧ሻ′  is orthogonal to 𝑊௧ିଵ . In other words, 

𝐸ሾ𝑍௧
௛𝑊௧ିଵ

ᇱ ሿ ൌ 0. Thus, 𝜃෨ଵ ൌ 𝜃෠ଵ െ 𝑂௣ሺ1ሻ𝑂௣ ቀ ଵ

√்
ቁ 𝑂௣ ቀ ଵ

√்
ቁ ൌ 𝜃෠ଵ ൅ 𝑂௣ ቀଵ

்
ቁ. One can similarly show 

that 𝜃෨ଶ ൌ 𝜃෠ଶ ൅ 𝑂௣ ቀଵ

்
ቁ  and 𝜃෨ଷ ൌ 𝜃෠ଷ ൅ 𝑂௣ ቀଵ

்
ቁ  using 𝐸ሾ𝑍௧

௛𝑊௧ିଵ
ᇱ ሿ ൌ 0  and 𝐸ൣ𝑓௧ା௛|௧ିଵ𝑊௧ିଵ

ᇱ ൧ ൌ 0 . 

We summarize these results in the following proposition. 

Proposition 2. Suppose that ሺ𝑧௧, Δ𝑦௧ሻᇱ follows a finite-order Markov process, and therefore the 

true residual in equation (5) coincides with the population forecast error for large enough 𝐿௬ and 

𝐿௭. In this case, the feasible 𝑅ଶ estimator has the same asymptotic distribution as the infeasible 

estimator in Proposition 1. That is, 

 √𝑇 ൬
௙መ೓

ᇲ௉𝒁೓௙መ೓

௙መ೓
ᇲ௙መ೓

െ 𝑠௛൰ ൌ √𝑇 ൬
௙೓

ᇲ௉𝒁೓௙೓

௙೓
ᇲ௙೓

െ 𝑠௛൰ ൅ 𝑜௣ሺ1ሻ  
ௗ
→  𝒩൫0,     𝑉௛,ோమ൯,              ሺ13ሻ 

where 𝑉௛,ோమ ൌ Δ௛,ோమ൫𝐺௛,ோమ൯
ିଵ

Ω௛,ோమ൫𝐺௛,ோమ
ᇱ ൯

ିଵ
Δ௛,ோమ

ᇱ  is the asymptotic variance in Proposition 1. 
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3.3. Measurement errors 
Empirically identified shocks 𝑧௧ could be measured with errors since e.g., these shocks are often 

estimates rather than direct observations. One may handle this issue by considering noisy measures 

of underlying structural shocks as external instruments as is the case in Plagborg-Møller and Wolf 

(2017) who derive partial-identification results and set-identified 𝑠௛. 

Our approach is different. Given measurement errors, we show in Appendix D that 

asymptotic biases of our estimators are negative. Therefore, our methods underestimate the true 𝑠௛ 

without further refinements to tackle measurement errors. Furthermore, although shocks are often 

estimated and thus are generated regressors, the researcher is often interested in testing the null of 

no responses (i.e., 𝑠௛ ൌ 0), and there is no need to adjust inference for this exercise (Pagan 1984). 

 Specifically, we can decompose the true shock into two parts as 𝑧௧ ൌ 𝑧௧
௢ ൅ 𝑧௧

௨, where 

superscripts 𝑜 and 𝑢 denote observable and unobservable components, respectively. We assume 

that ሼሺ𝑧௧
௢, 𝑧௧

௨ሻᇱሽ  is a white noise process with 𝜎௢
ଶ ൌ 𝑉𝑎𝑟ሺ𝑧௧

௢ሻ,   𝜎௨
ଶ ൌ 𝑉𝑎𝑟ሺ𝑧௧

௨ሻ , and 𝜌௢,௨ ൌ

𝑐𝑜𝑟𝑟ሺ𝑧௧
௢, 𝑧௧

௨ሻ. For example, a measurement error 𝑚௧ can be modelled as 𝑧௧
௢ ൌ 𝑧௧ ൅ 𝑚௧ and 𝑧௧

௨ ൌ

െ𝑚௧, and so 𝜌௢,௨ ൏ 0. Denote the full information set with Ω௧ିଵ ൌ ሼ𝑧௧ିଵ
௢ , 𝑧௧ିଵ

௨ , Δ𝑦௧ିଵ, … ሽ for now 

and the econometrician’s information set with Ω௧ିଵ
௘ ≡ ሼ𝑧௧ିଵ

௢ , Δ𝑦௧ିଵ, … ሽ. The econometrician’s 

forecast error 𝑓௧ା௛|௧ିଵ
௘  is given by 𝑓௧ା௛|௧ିଵ

௘ ൌ 𝑦௧ା௛ െ 𝑦௧ିଵ  െ   𝑃ሾ𝑦௧ା௛ െ 𝑦௧ିଵ|Ω௧ିଵ
௘ ሿ. Note that we 

project 𝑦௧ା௛ െ 𝑦௧ିଵ on Ω௧ିଵ
௘ , while the full-information forecast error 𝑓௧ା௛|௧ିଵ is based on Ω௧ିଵ. 

Finally, the econometrician’s regressor is denoted by 𝑍௧
௛,௘ ൌ ሺ𝑧௧ା௛

௢ , … , 𝑧௧
௢ሻᇱ. 

Proposition 3. Given the assumptions above, the followings hold for any ห𝜌௢,௨ห ൑ 1. 

(a) 𝑉𝑎𝑟൫𝑓௧ା௛|௧ିଵ
௘ ൯ ൒ 𝑉𝑎𝑟൫𝑓௧ା௛|௧ିଵ൯. 

(b) 𝑉𝑎𝑟൫𝜓௭,଴𝑧௧ା௛ ൅ ⋯ ൅ 𝜓௭,௛𝑧௧൯ 

 ൌ 𝑪𝒐𝒗൫𝑓௧ା௛|௧ିଵ
௘ , 𝑍௧

௛,௘൯ൣ𝑽𝒂𝒓൫𝑍௧
௛,௘൯൧

ିଵ
𝑪𝒐𝒗ሺ𝑍௧

௛,௘, 𝑓௧ା௛|௧ିଵ
ୣ ሻ ൅ ∑ 𝜓௭,௜

ଶ௛
௜ୀ଴  ൫1 െ 𝜌௢,௨

ଶ ൯𝜎௨
ଶ

. 

(c) 𝑠௛ ൌ
௏௔௥൫ట೥,బ௭೟శ೓ା⋯ାట೥,೓୸౪൯

௏௔௥൫௙೟శ೓|೟షభ൯
൒

𝑪𝒐𝒗ቀ௙೟శ೓|೟షభ
೐ ,௓೟

೓,೐ቁቂ𝑽𝒂𝒓ቀ௓೟
೓,೐ቁቃ

షభ
𝑪𝒐𝒗ቀ௓೟

೓,೐,௙೟శ೓|೟షభ
౛ ቁ

௏௔௥ቀ௙೟శ೓|೟షభ
೐ ቁ

. 

For a formal proof, please see Appendix D. Proposition 3(a) covers the forecast error variance, 

which is the denominator of 𝑠௛  in equation (4). The result implies that the econometrician’s 

forecast error variance is greater than that based on the full information set. Furthermore, one can 

show that the equality holds only for (uninteresting) special cases such as 𝜓௭ሺ𝐿ሻ ൌ 0, 𝜌௢,௨ ൌ േ1, 
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and 𝜎௨
ଶ ൌ 0. We discuss the numerator of 𝑠௛ in Proposition 3(b). When estimated without taking 

𝑧௧
௨ into consideration, the econometrician’s numerator in equation (4) is less than that under the 

full information set by ∑ 𝜓௭,௜
ଶ௛

௜ୀ଴  ൫1 െ 𝜌௢,௨
ଶ ൯𝜎௨

ଶ. Similarly, the difference reduces when  𝜓௭,௜’s are 

close to 0, when the observable component and the unobservable component are highly correlated, 

and when the variance of the unobservable component 𝜎௨
ଶ is small. Because the econometrician’s 

denominator is greater and the numerator is less than those based on the full information set, the 

econometrician’s FEVDs are downward biased to zero as illustrated in Proposition 3(c). In other 

words, our point estimate is conservative in favor of the hypothesis 𝑠௛ ൌ 0.  

 

3.4. Small-sample refinements 
While 𝑠̂௛

ோଶ is asymptotically unbiased as illustrated in Proposition 1 and 2, there may exist substantial 

finite-sample biases. Note that the OLS estimator in equation (6) is obtained by maximizing the sum 

of explained variation, or 𝑅ଶ, which may lead to an upward bias in 𝑠̂௛
ோଶ (Cramer 1987).  

 To correct for potential small-sample biases in the estimates of 𝑠௛ and to enhance coverage 

rates for confidence bands, we employ a VAR-based bootstrap, where the VAR includes two 

variables ሺ𝑧௧, Δ𝑦௧ሻᇱ . We use a VAR-based bootstrap to address challenges associated with 

bootstrapping highly persistent data but researches may utilize alternative approaches.3,4  

 We now discuss the details of the bootstrap procedure. First, we need to choose the order 

of the VAR model 𝐿௏஺ோ. In simulations below, we rely on the Hannan-Quinn information criterion 

(HQIC) for the purpose. We simulate the estimated 𝑉𝐴𝑅ሺ𝐿௏஺ோሻ model 𝑌௧ ൌ 𝜇̂ ൅ Φ෡ଵ𝑌௧ିଵ ൅ ⋯ ൅

Φ෡ ௅ೇಲೃ
𝑌௧ି௅ೇಲೃ

൅ 𝜖௧ to generate artificial time series 𝐵 times, where 𝑌௧ ≡ ሺ𝑧௧, Δ𝑦௧ሻᇱ. And we use 

this model to compute 𝑠௛
∗ , the true contribution of 𝑧 to the forecast error variance of 𝑦 at the horizon 

ℎ for this data generating process. For each 𝑏 ൑ 𝐵, we randomly choose 𝑡 between 1 ൅ 𝐿௏஺ோ and 

𝑇 to initiate the simulation. Then ሺ𝑧௧, Δ𝑦௧ሻᇱ, … , ൫𝑧௧ି௅ೇಲೃ
, Δ𝑦௧ି௅ೇಲೃ

൯
ᇱ
 are used as 𝑌଴

ሺ௕ሻ, … , 𝑌 ௅ೇಲೃ

ሺ௕ሻ . 

Given the initial condition, we randomly draw ቄ𝜖௧
ሺ௕ሻቅ from the estimated reduced form residuals 

                                                            
3 One may use alternative implementations of bootstrap to refine asymptotic inference. We tried the block bootstrap for 
local projections following Kilian and Kim (2011). However, this block bootstrap method performs worse than the 
VAR-based bootstrap in simulations. Results are in Appendix E1. 
4  Our bootstrap procedure implicitly assumes homoscedasticity of shocks. If a researcher suspects important 
heteroskedasticity in shocks, one should use alternative bootstrap methods (e.g. Gonçalves and Kilian 2004). An extensive 
discussion of practical considerations for various bootstrap methods is in Kilian and Lütkepohl (2017, Ch. 12). 
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ሼ𝜖௧̂ሽ with replacement. Using the estimated model with the above initial conditions and the shuffled 

residuals, we obtain the simulated series ቄቀ𝑧௧
ሺ௕ሻ, Δ𝑦௧

ሺ௕ሻቁ
ᇱ
ቅ , where the first 𝑇஻௨௥௡ூ௡  number of 

observations are discarded as burn-in. We apply our estimator to ቄቀ𝑧௧
ሺ௕ሻ, Δ𝑦௧

ሺ௕ሻቁ
ᇱ
ቅ and obtain the 

bootstrap estimate 𝑠̂௛
ோଶ,ሺ௕ሻ  for each 𝑏 . Then we estimate the bias in 𝑠̂௛

ோଶ  with 𝑏𝑖𝑎𝑠௛ ≡

ଵ

஻
∑ 𝑠̂௛

ோଶ,ሺ௕ሻ஻
௕ୀଵ െ 𝑠௛

∗  and compute bias-corrected estimates 𝑠̂௛
ோଶ,஻஼ ≡ 𝑠̂௛

ோଶ െ 𝑏𝑖𝑎𝑠௛. The procedure is 

similar for VARs.  

 

3.5. Standard errors and confidence intervals 
We have several options to construct standard errors and confidence intervals. For example, one 

may directly estimate 𝑉௛,ோమ in equations (12) and (13) and derive a symmetric confidence interval 

based on the estimated 𝑉௛,ோమ  (see Appendix A for details including implementation of pre-

whitening following Andrews and Monahan 1992). While this works asymptotically, its finite-

sample performance is not better than bootstrap confidence intervals as discussed in Appendix E3. 

Furthermore, the estimated standard errors are often spiky across ℎ’s, which induce non-smooth 

and erratic confidence bands.  

 Therefore, we employ a different approach for the simulations and the application in this 

paper. To study finite-sample properties of our estimator, we rely on the distribution of the 

bootstrap estimates 𝑠̂௛
ோଶ,ሺ௕ሻ.  The standard error can be easily obtained from a standard deviation of 

𝑠̂௛
ோଶ,ሺ௕ሻ across 𝐵 replications. Constructing a symmetric confidence interval is also straightforward. 

On the other hand, one may want to take the shape of the bootstrap distribution into consideration 

when constructing confidence intervals. Let 𝑞ො௛,ఈ/ଶ
ோଶ  and 𝑞ො௛,ଵିఈ/ଶ

ோଶ  refer to the 
ఈ

ଶ
 and 1 െ ఈ

ଶ
 quantiles 

of the distribution of 𝑠̂௛
ோଶ,ሺ௕ሻ െ ଵ

஻
∑ 𝑠̂௛

ோଶ,ሺ௕ሻ஻
௕ୀଵ . Then the 100ሺ1 െ 𝛼ሻ% confidence interval is given 

by ൣ𝑞ො௛,ఈ/ଶ
ோଶ ൅ 𝑠̂௛

ோଶ,஻஼,   𝑞ො௛,ଵିఈ/ଶ
ோଶ ൅ 𝑠̂௛

ோଶ,஻஼൧  . Note that we consider the distribution of 𝑠̂௛
ோଶ,ሺ௕ሻ െ

ଵ

஻
∑ 𝑠̂௛

ோଶ,ሺ௕ሻ஻
௕ୀଵ  to make the confidence interval centered around the estimated FEVD with bias-

correction.  
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3.6. Extension  
While our analysis has focused on the bivariate case, this framework can be readily generalized to 

include more controls in equation (5):  

𝑦௧ା௛ െ 𝑦௧ିଵ ൌ ෍ 𝛽௜
௛

௅೥

௜ୀଵ

𝑧௧ି௜ ൅ ෍ 𝐶௧ି௜
ᇱ 𝛤௜

௛

௅಴

௜ୀଵ

൅ 𝑓௧ା௛|௧ିଵ,                                            ሺ14ሻ 

where 𝐶௧  is the vector of control variables which may include lags of additional variables and 

structural shocks other than 𝑧௧. In the base case, 𝐶௧ consists only of Δ𝑦௧. Note that for VAR-based 

bootstraps, one has to include 𝑧௧ and all variables in 𝐶௧ to simulate data.5  

One should bear in mind that, although including or excluding 𝐶௧  or changing the 

composition of variables in 𝐶௧ should make little difference of impulse responses estimated with 

local projections (provided 𝑧௧ is uncorrelated with other shocks), what goes in 𝐶௧ is potentially 

important for FEVDs. Intuitively, by including more controls in 𝐶௧ (that is, information set Ω௧ 

expands), we (weakly) reduce the size of the forecast error, and hence the amount of variation to 

be explained shrinks. In other words, the regressand in equation (6) and therefore 𝑠௛ change with 

the list of variables in 𝐶௧. Thus, one should not be surprised to observe that the share of variation 

explained by shocks ሼ𝑧௧, … , 𝑧௧ା௛ሽ may be sensitive to 𝐶௧.  

Similar to the simple case considered in Section 3.1, for equation (6), one may want to use 

residuals from projecting 𝑧௧  on lags of 𝑧௧  and 𝐶௧  rather than the “raw” shock 𝑧௧ . For example, 

when the Cholesky orderings are an identifying assumption, such a procedure is essential to 

guarantee that forecastable movements in 𝑧௧, … , 𝑧௧ା௛  are not used to account for variation in 

𝑓መ௧ା௛|௧ିଵ. In practice, however, shocks 𝑧௧ are constructed in ways to ensure that 𝑧௧ is not predictable 

by current values and lags of macroeconomic variables. As a result, we find in our simulations and 

applications that purifying structural shocks in this manner makes little difference. 

 

                                                            
5 As the number of variables in 𝐶௧ increases, the number of parameters in the VAR increases rapidly. When 𝐶௧ is a large 
vector, or when a VAR is not a good representation of the DGP for control variables, VAR-based bootstrap might not be 
an appealing option. In this case, one may consider other forms of bootstrap (e.g., block bootstrap). Alternatively, one may 
correct for biases by simulating asymptotic distributions of primitive quantities in equations (3), (7), and (7’) such as 
𝜓෠௭,௜, 𝜎ො௭

ଶ, and  𝑉𝑎𝑟෢ ൫𝑣ො௧ା௛|௧ିଵ൯.  By considering 𝑠௛ as a non-linear function of those parameters, such simulations would 
detect biases due to the non-linearity. See Appendices A and B for implementation and F and G for the results.   
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3.7. Taking stock: A cookbook for FEVDs 
To summarize our discussion so far, we suggest that the researcher should take the following steps 

to estimate FEVDs: 

Step 1:  Estimate the forecast errors for the horizon ℎ from local projections (5) or (14) 

depending on the information set. 

Step 2:  Regress the estimated forecast errors on the shocks from 𝑡 to 𝑡 ൅ ℎ as in equation 

(6). The 𝑅ଶ of this regression measures the share of the forecast error variance 

explained by the shock at the horizon ℎ.   

Step 3: To improve the small-sample performance of the estimator, a bias-correction step 

is recommended for empirically relevant sample sizes. One may rely on a VAR-

based bootstrap to do so, where the lag order can be selected via an information 

criterion.  

Step 4: For inference, we can calculate the standard error from either the analytical 

expression for the asymptotic variance in equation (12) or the distribution of the 

bootstrap estimates in Step 3. Similarly, we may construct the confidence 

interval by using either the standard error or the quantiles of the bootstrap 

distribution. We recommend using bootstrap to construct confidence bands, but 

one may choose a different approach depending on the data generating process 

and the sample size. 

 

4. Simulations 
This section presents two sets of simulations. The first set shows results for the baseline bivariate 

case and studies the performances of R2 methods and VARs for various profiles of the contribution 

of 𝑧 to the forecast error variance of 𝑦 at different horizons. The second set uses the estimated 

Smets and Wouters (2007) model to investigate the performance in a setting with many control 

variables.  

For each data generating process (DGP), we simulate data 2,000 times. When we employ 

bootstrap to correct for biases, the number of bootstrap replications is set to B=2,000 and 

𝑇஻௨௥௡ூ௡ ൌ 100. As a benchmark, we also report results based on a corresponding VAR. This 

benchmark corresponds to the practice of including shocks into VARs directly (e.g., Basu et al. 

2006, Ramey 2011, Barakchian and Crowe 2013, Romer and Romer 2004, 2010). For the 
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simulations below, we order 𝑧௧ as the first variable in VARs as is the case in Section 3.4. We 

choose the Hannan-Quinn information criterion (HQIC) as our benchmark criterion to determine 

the number of lags in VAR. To make VAR and LP models comparable, we use HQIC number of 

lags in the VAR for 𝐿௭ and 𝐿௬ (Plagborg-Møller and Wolf 2018). Results are similar when we use 

higher-order VARs, where the lag order is selected by Akaike information criterion instead of 

HQIC (Appendix E2). 

The sample size for simulated data is 𝑇 ൌ 160 , which is common in applied 

macroeconomic analyses. Results for other sample sizes are reported in Appendices F and G. The 

coverage rates are calculated as Pr൫𝑞ො௛,ఈ/ଶ
ோଶ ൅ 𝑠̂௛

ோଶ,஻஼ ൑ 𝑠௛ ൑  𝑞ො௛,ଵିఈ/ଶ
ோଶ ൅ 𝑠̂௛

ோଶ,஻஼൯ where 𝛼 ൌ 0.1, 

and therefore the nominal coverage rate is 90%.6  

 

4.1. Bivariate Data Generating Processes 
We study three data generating processes (DGPs) to cover different shapes of 𝑠௛ . The basic 

structure is as follows:  

𝑦௧ ൌ 𝜓௭ሺ𝐿ሻ𝑧௧ ൅ 𝑢௧,        
𝑢௧ ൌ 𝑝௧ ൅ 𝑎௧, 
൫Δ𝑝௧ െ 𝑔௬൯ ൌ 𝜌௣൫Δ𝑝௧ିଵ െ 𝑔௬൯ ൅ 𝑒௧

௣, 𝑒௧
௣ ~ 𝑖𝑖𝑑 𝑁൫0, 𝜎௣

ଶ൯, 
𝑎௧ ൌ 𝜌௔𝑎௧ିଵ ൅ 𝑒௧

௔,         𝑒௧
௔ ~ 𝑖𝑖𝑑 𝑁ሺ0, 𝜎௔

ଶሻ, 
𝑧௧ ~ 𝑖𝑖𝑑 𝑁ሺ0, 𝜎௭

ଶሻ, 

where 𝑧, 𝑒௣ and 𝑒௔ are mutually independent. 𝑝 and 𝑎 are permanent and transitory components 

of 𝑢. To find the value of 𝑠௛ based on Ω௧ିଵ ൌ ሼΔ𝑦௧ିଵ, 𝑧௧ିଵ, Δ𝑦௧ିଶ, 𝑧௧ିଶ, … ሽ, we need to find the 

population 𝑀𝐴ሺ∞ሻ representation of Δ𝑢௧ ൌ 𝑔௬ ൅ ∑ 𝜓௘,௜𝑒௧ି௜
ஶ
௜ୀ଴ , where ሼ𝑒௧ሽ is a zero mean white-

noise series with variance 𝜎௘
ଶ, ∑ 𝜓௘,௜

ଶஶ
௜ୀ଴ ൏ ∞, and 𝑒௧ ∈ Ω௧. We assume that 𝜓௘,଴ ൌ 1 without loss 

of generality, and the Wold Decomposition implies that such representation exists uniquely. 

Because 𝑧௧ and 𝑒௧ are uncorrelated at all leads and lags, we can write 𝑠௛ in equation (3) in terms 

of ൛𝜓௭,௜ൟ, ൛𝜓௘,௜ൟ, 𝜎௭
ଶ, and 𝜎௘

ଶ. Appendix C discusses how one can use a Kalman filter to derive 

൛𝜓௘,௜ൟ and 𝜎௘
ଶ from 𝜌௣, 𝜌௔, 𝜎௣

ଶ, and 𝜎௔
ଶ. 

                                                            
6 We also considered percentile-t bootstrap and found similar results.  
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DGP1 is characterized by hump-shaped 𝜓௭ and 𝑠௛. We assume that ሼ𝜓௭ሺ𝐿ሻ𝑧௧ሽ follows an 

𝑀𝐴ሺ100ሻ process with the maximum response of 3 after 8 periods.7 The resulting profile of 𝑠௛ is 

consistent with e.g., predictions about how monetary shocks contribute to variation in output: there 

is little to no response of output in the short-run due to various rigidities, then the response is strong 

in the medium-run, and the long-run response is zero due to nominal neutrality (e.g., Christiano et 

al. 2005). DGP2 has a strong response of 𝑦 to 𝑧 only in the short-run, and thus the shape of 𝑠௛ is 

downward-sloping. This profile is consistent with e.g., how temporary fiscal shocks influence 

output: the effect of a government spending increase or a tax cut is large on impact but then the 

effect gradually wears out (e.g., Smets and Wouters 2007). Finally, DGP3 assumes lim
௛→ஶ

𝜓௭,௛ ൐ 0, 

so that 𝑧  has persistent effects on 𝑦  and the shape of 𝑠௛  is upward-sloping. This profile is 

consistent with e.g., models emphasizing that technology shocks are a key (or even exclusive) 

source of variation in output at long horizons (e.g., Blanchard and Quah 1989). Table 1 reports 

parameter values for each DGP. Figure 1 plots true impulse responses of 𝑦 to 𝑧 (Panel A) and the 

contribution of 𝑧 to forecast error variances of 𝑦 at different horizons (Panel B).  

For DGP1, we find (Table 2) that local projections capture the hump-shaped impulse 

response correctly but 𝑠̂௛
ோଶ without bias-correction fails to match the hump-share dynamics of 𝑠௛: 

𝑠̂௛
ோଶ tends to monotonically increase with the horizon. When we use a VAR to estimate impulse 

responses and FEVDs, the VAR misses the hump both in the impulse response and FEVDs as 

HQIC selects too few lags (on average the number of lags is 1.24).  Confidence bands yield poor 

coverage rates. This performance reflects the fact that, by construction, 𝑧 contributes little to the 

forecast error variation in 𝑦 for this DGP at short horizons with ℎ ൑ 4. Since 𝑠௛ is between zero 

and one, we effectively have estimates close to the boundary, and therefore standard methods are 

likely to fail. While bootstrap appears to provide some improvement (e.g., the bias at long horizons 

as ℎ ൒ 12 when 𝑧 accounts for a larger share of the forecast error variance in 𝑦 is corrected), 8 it 

does not perform consistently better in terms of the coverage rates because the parameter is at the 

boundary. When we allow 𝑧 to explain 5 percent or more of the forecast error variance in 𝑦 at short 

horizons, bootstrap brings coverage rates close to nominal (results are available upon request). 

                                                            
7 This value and pattern are motivated by a 3 percent response of real GDP to a 100bp monetary policy shock estimated 
in Coibion (2012).  
8 The bias can be further reduced by using higher values of 𝐿௭  and 𝐿௬  by reducing errors in 𝑓መ௧ା௛|௧ିଵ  due to the 
truncation.  
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Note that, although the VAR estimators ሺ𝑠̂௛
௏஺ோሻ are strongly biased, they tend to have smaller 

variances so that the root mean squared error (RMSE) is similar in magnitude to that of the 𝑠̂ோଶ 

estimator. The large RMSEs underscore difficulties in estimating 𝑅ଶ (Cramer 1987) and hence 𝑠௛.  

Because DGP2 permits an exact, finite-order VAR representation, 9  𝑠̂௛
௏஺ோ has good 

properties in terms of bias, RMSE, and coverage rates (Table 3). The local projections recover the 

impulse responses properly, but the estimates of FEVDs again overstate the contribution of 𝑧 to 

the unforecasted variation in 𝑦 at long horizons as ℎ ൒ 12. Note that bootstrap can correct for this 

bias. Given that the VAR nests the DGP and that the VAR is more parsimonious than local 

projections, the VAR has a better performance than the 𝑠̂ோଶ estimators. 

In the case of DGP3, 𝑧  has long-lasting effects on 𝑦  and the VAR underestimates the 

responses at long horizons as ℎ ൒ 16 in small samples. Impulse responses estimated with local 

projections perform better but also exhibit a downward bias at long horizons. In a similar spirit, 𝑠̂௛
௏஺ோ 

shows a strong downward bias and 𝑠̂௛
ோଶ  is downward biased by a smaller, but still considerable 

amount (this is the case even after we use bootstrap to correct for possible biases). This performance 

reflects the fact that HQIC chooses a low number of lags (1.29 lags on average across simulations). 

As a result, VARs used to simulate bootstrap samples fail to capture the degree of persistence in the 

data. To demonstrate the importance of the lag order, we report results (Table 4) when we use 

VAR(5) and VAR(10) for bootstrap. As the number of lags increases, we observe some improvement 

(e.g., the remaining bias in the bias-corrected 𝑠̂௛
ோଶ is smaller for VAR(10) than VAR(5)), but these 

enhancements are achieved at the price of higher variances in the estimates (e.g., the RMSEs of the 

bias-corrected 𝑠̂௛
ோଶ are similar for both VARs used for bootstrap). These results suggest that one may 

want to overfit VAR for persistent processes at the bootstrap stage.  

In summary, we find for small samples that estimating 𝑠௛  precisely is not easy. 

Nonetheless, we also note that the 𝑠̂௛
ோଶ estimator performs reasonably well across the DGPs and 

that bootstrap helps to improve the estimator’s properties. In contrast, VARs that include structural 

shocks 𝑧௧ tend to perform poorly when a DGP is not nested in a small-order VAR.   

 

                                                            
9 Given the parameter values in Table 1, Δ𝑦௧ ൌ 𝑔௬ ൅ ሺ1 െ 𝐿ሻሺ1 െ 0.9𝐿ሻିଵ𝑧௧ ൅ ሺ1 െ 0.9𝐿ሻିଵ𝑒௧

௣. By pre-multiplying 
ሺ1 െ 0.9𝐿ሻ, we have Δ𝑦௧ ൌ 0.1𝑔௬ ൅ 0.9Δ𝑦௧ିଵ െ 𝑧௧ିଵ ൅ 𝑧௧ ൅ 𝑒௧

௣. 
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4.2. Smets-Wouters model 
While the bivariate DGPs provide important insights on how the 𝑅ଶ  estimator performs, 

researchers face potentially more complex DGPs and often have more information in practice. In 

this section, we use the Smets and Wouters (2007) model to study the performance of our estimator 

in an environment with multiple shocks and many control variables.  

As discussed above, different information sets determine different population 𝑠௛. In the 

simulations, we assume that the researcher is interested in explaining variation in output and that 

the researcher observes output growth rate, inflation, federal funds rate, and monetary policy 

shocks.10 This choice of variables is motivated by the popularity of small VARs which include 

output, inflation, and a policy rate to study the effects of monetary policies on the economy. In this 

exercise, the shock is ordered first because the Smets-Wouters model allows contemporaneous 

responses of macroeconomic variables to policy shocks. When estimating impulse responses using 

local projections, we augment equation (14) with 𝜓௭,௛𝑧௧ on the right-hand side.  

We find (Figure 2) that local projections correctly recover the responses of output to 

monetary policy shocks, while a low order VAR (lag length is chosen with HQIC) fails to capture 

the transitory effect of monetary shocks on output. Consistent with our bivariate analysis, 𝑠̂௛
ோଶ 

increase with the horizon while the true 𝑠௛  exhibits hump-shaped dynamics. 𝑠௛  estimated with a 

VAR also fails to capture the true dynamics as 𝑠̂௛
ோଶ flattens out after about ℎ ൌ 5. Similar to our 

results in the previous section, we find that bias correction helps 𝑠̂௛
ோଶ to recover the true hump-shaped 

profile of 𝑠௛ . Coverage rates are close to nominal at all horizons after bias-correction. Again, 

although the VAR estimator of 𝑠௛ is strongly biased, the variance of the estimator is low so that 

RMSEs are broadly similar across methods. We conclude that our proposed methods to estimate 

FEVDs work reasonably well in more complex settings.  

 

                                                            
10 For this information set, we construct the true FEVD using a stationary Kalman filter similar to the method in 
Appendix C. We also tried various combinations of shocks and endogenous variables in the information set and found 
similar results. Figures for inflation and results with large samples are in Appendix G. Note that monetary policy 
shocks are nearly invertible in the Smets-Wouters model (see Wolf 2017 for more details). While this may be a 
problem if we use shocks identified and recovered from a DSGE model, the spirit of our exercise is to assume that we 
have access to other information (as in e.g. Romer and Romer 2004) so that we can observe monetary policy shocks 
directly.   
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5. Application 
To illustrate the properties of our estimators, we use two structural shocks identified in the 

literature. The first shock is the monetary policy (MP) innovation identified as in Romer and 

Romer (2004) and extended in Coibion et al. (2017). The second shock is the total factor 

productivity (TFP) change identified as in Fernald (2014).11 The sample autocorrelations and the 

sample partial autocorrelations at non-zero lags are close to zero for both shocks, that is, the shocks 

are white noises. The correlation between the shocks is -0.059. Our objective is to quantify the 

contribution of these shocks to the variation of output and inflation. The sample covers 1969Q1-

2008Q4 which excludes the period of binding zero lower bound. The set of variables for local 

projections includes inflation (annualized growth rate of GDP deflator, i.e., 400Δln ሺ𝑃௧ሻ), annual 

GDP growth rate (400Δ lnሺ𝑌௧ሻ), federal funds rate, and both identified shocks. We set 𝐿஼ ൌ 𝐿௭ ൌ

4 in equation (14) and add control variables similarly when estimating impulse responses. In the 

benchmark VAR, we have all five variables and allow four lags.12  

Consistent with previous studies, we find (Figures 3 and 4) that a contractionary monetary 

policy shock lowers output and prices, and that a positive TFP shock raises output and lowers prices. 

Impulse responses estimated with a VAR and local projections are similar at horizons ℎ ൑ 𝐿௏஺ோ ൌ

4. However, the estimated impulse responses differ at longer horizons, and therefore the peak effects 

and the overall shapes are different. The VAR estimates of the FEVDs suggest that TFP (MP) shocks 

account for approximately 10 (3.5) percent of the forecast error variances of output at horizons longer 

than 2 years. For inflation, MP shocks contribute up to 19 percent of the variation in the forecast error 

of inflation at the 5-year horizon and little variation at shorter horizons while the contribution of TFP 

shocks is generally small. Bias-correction makes no material difference for the forecast error variance 

decomposition estimates for all cases but one: the bias-corrected estimate of the contribution of MP 

shocks to the variation in the forecast error of inflation at the 5-year horizon increases to 32 percent.  

The local projections estimates of the contribution of the two shocks to the forecast error 

variances of output are much larger than the VAR estimates. Moreover, bias-correction tends to 

generate lower contributions, consistent with simulations. For example, monetary policy shocks 

account for 18 percent of the forecast error variance of output according to the R2 estimate (28 

                                                            
11 Appendix H presents results for military spending shocks constructed in Ramey and Zubairy (2018).  
12 The ordering of variables in the VAR is TFP measure (from Fernald 2014), output growth rate, inflation, monetary policy 
innovations (from Coibion et al. 2017), and fed funds rate. For the VAR-based analysis, we follow the practice and compute 
FEVDs using shocks in these variables where shocks are identified recursively from reduced-form residuals.  
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percent without bias-correction) and only 3.5 percent according to the VAR estimate at the 5-year 

horizon. Similarly, the VAR estimate of the contribution of MP shocks to inflation at the 5-year 

horizon is less than 20 percent, which is a surprising result given Milton Friedman’s “inflation is 

always and everywhere a monetary phenomenon.” In contrast, the R2 estimate of the same FEVD 

with bias-correction amounts to 44 percent. Also, while the profile of 𝑠̂௛
௏஺ோ for output is generally 

flat after ℎ ൌ 5, 𝑠̂௛
ோଶ has richer dynamics. This is consistent with what we find in our simulations 

for DGP1: when the true 𝑠௛ is close to zero for small ℎ’s, 𝑠̂௛
௏஺ோ fails to match the shape, while 𝑠̂௛

ோଶ 

is much more successful. The profiles of 𝑠̂௛
ோଶ and 𝑠̂௛

௏஺ோ for output also differ remarkably for TFP 

shocks. While 𝑠̂௛
ோଶ  increases in ℎ, 𝑠̂௛

௏஺ோ  flattens around 10 percent after ℎ ൌ 10. At the 5-year 

horizon, TFP shocks contribute to 28 percent of the forecast error variance of output based on the 

R2 estimate after bias-correction, where the VAR estimate without bias-correction is only 11 

percent. 

6. Concluding remarks 
Single-equation methods can offer flexibility and parsimony that many economists seek. The 

increasing popularity of these methods, specifically the local projections, calls for further 

development of these tools. An important limitation for practitioners using this framework has 

been a lack of simple tools with well-known econometric properties especially in small samples 

to assess quantitative significance of a given set of shocks, that is, the contribution of the shocks 

to the forecast error variance of the variable of interest. We propose a method to provide such a 

metric. In a series of simulation exercises, we document that our method has good small-sample 

properties. We also show that conventional approaches to assess the quantitative significance of 

two popular structural shocks (monetary policy shocks and total factor productivity shocks) could 

have understated the importance of these two shocks.   
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Table 1. Parameter values for data generating processes (DGPs) used in simulations.  

 𝜓௭ሺ𝐿ሻ 𝜎௭ 𝑔௬ 𝜌௣ 𝜎௣ 𝜌௔ 𝜎௔ 

DGP1 Hump-shaped 1 0.5 0.9 0.5 0.9 3 

DGP2 ሺ1 െ 0.9Lሻିଵ 3 0.5 0.9 1.5 - - 

DGP3 ሺ1 െ Lሻିଵሺ1 െ 0.9Lሻିଵ 1 0.5 0.5 2 0.9 3 
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Table 2. Simulation results for DGP 1. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 0.00 1.39 3.00 2.06 0.88 0.29 
Local projections 0.00 1.39 3.00 2.05 0.87 0.29 
VAR(HQIC) 0.00 0.18 0.24 0.25 0.25 0.25 

       
Forecast Error Variance Decomposition       

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.01 0.06 0.20 0.25 0.26 0.27 
VAR(HQIC) 0.01 0.02 0.02 0.02 0.03 0.03 

       
Root mean squared error       

R2 0.01 0.05 0.11 0.15 0.19 0.22 
VAR(HQIC) 0.01 0.03 0.17 0.20 0.16 0.13 

       
Coverage (90 % level, asymptotic)       

R2 0.99 0.81 0.69 0.65 0.63 0.61 
VAR(HQIC) 0.99 0.75 0.06 0.06 0.07 0.10 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC))    

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.00 0.02 0.13 0.16 0.13 0.11 
VAR(HQIC) 0.00 0.00 0.01 0.01 0.01 0.01 

       
Root mean squared error       

R2 0.01 0.05 0.12 0.16 0.17 0.18 
VAR(HQIC) 0.01 0.04 0.19 0.21 0.17 0.14 

       
Coverage (90 % level, asymptotic)       

R2 0.99 0.95 0.64 0.64 0.72 0.81 
VAR(HQIC) 1.00 0.53 0.06 0.05 0.07 0.09 
       

Notes: The table reports the performance of estimators introduced in Section 3 for DGP1. The sample size is 𝑇 ൌ 160, and the number 
of simulations is 2,000. R2 and VAR stand for 𝑠̂௛

ோଶ and 𝑠̂௛
௏஺ோ estimators of forecast error variance decompositions. The lag order is 

selected by the Hannan-Quinn information criterion (HQIC). Confidence intervals for the bias-corrected R2 estimator are given by 
ൣ𝑞ො௛,ఈ/ଶ

ோଶ ൅ 𝑠̂௛
ோଶ,஻஼,   𝑞ො௛,ଵିఈ/ଶ

ோଶ ൅ 𝑠̂௛
ோଶ,஻஼൧ as discussed in Section 3.5, where 𝛼 ൌ 0.1. Confidence intervals for the other estimators are 

constructed similarly. 
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Table 3. Simulation results for DGP 2. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 3.00 1.97 1.29 0.85 0.56 0.36 
Local projections 2.99 1.83 1.07 0.57 0.22 0.06 
VAR(HQIC) 2.96 1.93 1.33 0.95 0.71 0.56 

       
Forecast Error Variance Decomposition       

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.79 0.26 0.15 0.14 0.15 0.19 
VAR(HQIC) 0.80 0.27 0.12 0.08 0.06 0.05 

       
Root mean squared error       

R2 0.03 0.11 0.12 0.14 0.17 0.21 
VAR(HQIC) 0.03 0.08 0.06 0.06 0.05 0.05 

       
Coverage (90 % level, asymptotic)       

R2 0.90 0.89 0.89 0.82 0.73 0.67 
VAR(HQIC) 0.88 0.90 0.92 0.96 0.97 0.98 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC))    

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.81 0.24 0.09 0.03 0.01 0.00 
VAR(HQIC) 0.80 0.25 0.10 0.05 0.03 0.02 

       
Root mean squared error       

R2 0.03 0.10 0.09 0.09 0.10 0.12 
VAR(HQIC) 0.03 0.07 0.06 0.05 0.04 0.04 

       
Coverage (90 % level, asymptotic)       

R2 0.92 0.90 0.97 0.97 0.95 0.94 
VAR(HQIC) 0.88 0.89 0.91 0.96 0.99 0.99 
       

Notes: The table reports the performance of estimators introduced in Section 3 for DGP2. The sample size is 𝑇 ൌ 160, and the number 
of simulations is 2,000. R2 and VAR stand for 𝑠̂௛

ோଶ and 𝑠̂௛
௏஺ோ estimators of forecast error variance decompositions. The lag order is 

selected by the Hannan-Quinn information criterion (HQIC). Confidence intervals for the bias-corrected R2 estimator are given by 
ൣ𝑞ො௛,ఈ/ଶ

ோଶ ൅ 𝑠̂௛
ோଶ,஻஼,   𝑞ො௛,ଵିఈ/ଶ

ோଶ ൅ 𝑠̂௛
ோଶ,஻஼൧ as discussed in Section 3.5, where 𝛼 ൌ 0.1. Confidence intervals for the other estimators are 

constructed similarly. 
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Table 4. Simulation results for DGP 3 with alternative lag orders in VARs. 

 Horizon ℎ 
 0 4 8 12 16 20 
       
Impulse Response       

True 1.00 4.10 6.13 7.46 8.33 8.91 
Local projections 0.98 3.93 5.75 6.86 7.46 7.70 
VAR(5) 0.93 3.71 4.70 4.94 5.04 5.08 
VAR(10) 0.91 3.65 5.33 6.05 6.17 6.27 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(5))     

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.06 0.26 0.41 0.49 0.55 0.57 
VAR(5) 0.06 0.24 0.32 0.36 0.37 0.38 

       
Root mean squared error       

R2 0.04 0.12 0.16 0.19 0.21 0.23 
VAR(5) 0.04 0.12 0.20 0.27 0.32 0.35 

       
Coverage (90 % level, asymptotic)       

R2 0.81 0.82 0.82 0.84 0.83 0.83 
VAR(5) 0.87 0.81 0.66 0.50 0.38 0.32 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(10))     

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.07 0.29 0.46 0.56 0.62 0.65 
VAR(10) 0.06 0.27 0.41 0.49 0.53 0.55 

       
Root mean squared error       

R2 0.05 0.12 0.16 0.19 0.21 0.23 
VAR(10) 0.04 0.11 0.16 0.19 0.22 0.24 

       
Coverage (90 % level, asymptotic)       

R2 0.74 0.78 0.79 0.80 0.82 0.82 
VAR(10) 0.87 0.85 0.83 0.81 0.78 0.75 
       

Notes: The table reports the performance of estimators introduced in Section 3 for DGP3. The sample size is 𝑇 ൌ 160, and the number 
of simulations is 2,000. R2 and VAR stand for 𝑠̂௛

ோଶ and 𝑠̂௛
௏஺ோ estimators of forecast error variance decompositions. 𝐿௭ and 𝐿௬ are selected 

by the Hannan-Quinn information criterion (HQIC) and 𝐿௏஺ோ is either 5 or 10. Confidence intervals for the bias-corrected R2 estimator 
are given by ൣ𝑞ො௛,ఈ/ଶ

ோଶ ൅ 𝑠̂௛
ோଶ,஻஼,   𝑞ො௛,ଵିఈ/ଶ

ோଶ ൅ 𝑠̂௛
ோଶ,஻஼൧  as discussed in Section 3.5, where 𝛼 ൌ 0.1 . Confidence intervals for the other 

estimators are constructed similarly. 
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Figure 1. Population impulse responses and forecast error variance decompositions for each DGP. 

 

Notes: The left panel shows the impulse response functions for three bivariate data generating processes (DGPs) in Section 
4.1. The right panel shows the contribution of the structural shocks to the forecast error variances of an outcome variable 
for the DGPs.  
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Figure 2. Smets and Wouters (2007) model, real GDP and monetary policy shock, T = 160. 

 

Notes: We simulate the Smets and Wouters (2007) model to evaluate the performance of our estimators as discussed in Section 4.2. The top-left panel covers local 
projections (LP) and VAR estimators of impulse responses where lag lengths are determined with the Hannan-Quinn information criterion (HQIC). The shaded area 
and the dashed lines represent the 5th and 95th percentiles of the simulated LP and VAR estimates, respectively. For forecast error variance decompositions (FEVDs), 
𝐸ൣ𝑠௛

ோଶ൧ and 𝐸ൣ𝑠௛
௏஺ோ൧ with or without bias-correction can be found in the top-right panel. Coverage probabilities of 90% confidence intervals around 𝑠௛

ோଶ and 𝑠௛
௏஺ோ 

with or without bias-correction are shown in the bottom-left panel. We construct the confidence intervals using 
ఈ

ଶ
 and 1 െ

ఈ

ଶ
 percentiles of bootstrapped estimates 

(see Section 3.5). The bottom-right panel illustrates root mean squared errors of the estimators of the FEVDs.
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Figure 3. Real GDP. Sample: 1969:Q1-2008:Q4. 

   

Notes: We estimate impulse responses and forecast error variance decompositions (FEVDs) of real GDP in Section 5. We 
focus on total factor productivity (TFP) shocks identified as in Fernald (2014) and monetary policy (MP) shocks of Romer 
and Romer (2004) extended by Coibion et al. (2017). The first row covers the estimated impulse responses and 90% 
bootstrap confidence intervals in response to a one standard deviation shock to TFP and MP. We depict the results for VARs 
(top-left panel) and local projections (LP, top-right panel). The unit of the y-axis is annualized percent. The second row 
shows 𝑠̂௛

௏஺ோ and 90% bootstrap confidence intervals with and without bias-correction. The last row is for 𝑠̂௛
ோଶ and 90% 

bootstrap confidence intervals with and without bias-correction.  
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Figure 4. Inflation. Sample:1969:Q1-2008:Q4. 

  

Notes: We estimate impulse responses and forecast error variance decompositions (FEVDs) of inflation in Section 5. We 
focus on total factor productivity (TFP) shocks identified as in Fernald (2014) and monetary policy (MP) shocks of Romer 
and Romer (2004) extended by Coibion et al. (2017). The first row covers the estimated impulse responses and 90% 
bootstrap confidence intervals in response to a one standard deviation shock to TFP and MP. We depict the results for VARs 
(top-left panel) and local projections (LP, top-right panel). The unit of the y-axis is annualized percentage points. The second 
row shows 𝑠̂௛

௏஺ோ and 90% bootstrap confidence intervals with and without bias-correction. The last row is for 𝑠̂௛
ோଶ and 90% 

bootstrap confidence intervals with and without bias-correction.  
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