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Appendix A. R2 estimator 
In Section 3.1 and 3.2, we propose and study properties of the R2 estimator of forecast error 

variance decompositions. Here we explain how one can estimate the asymptotic variance 푉 ,  in 

Proposition 1 and 2. Furthermore, we provide details of an alternative method of bias-correction 

briefly illustrated in footnote 5. Those methods would be useful for the researcher who wants to 

do inference without relying on VAR-based bootstraps.   

 

Estimation of 푽풉,푹ퟐ . We want to estimate 푉 , = Δ , 퐺 , Ω , 퐺 , Δ , . Let’s 

begin with Δ , . A practically feasible estimator of 휃 = 휃 , , 휃 , , 휃 , ′ that we use is 휃 =

휃 , 휃 , 휃 , where 

휃 = (풁 풁 ) 풁 푓 , 휃 = 풁 , 휃 = , 푇 = 푇 − (퐿 + ℎ). 

A natural estimator of Δ , = ( ) =
,

휃 , , 휃 , , −푠  is Δ , ≡  = 휃 , 휃 , −푠̂ . 

The last element should be a bias-corrected estimate instead of 휉 휃  because we find that this 

specification performs better in simulations.1  

 We next turn to 퐺 , = 퐸[∇ 푔 (휃 )] = −푑푖푎푔 퐸 푍 푍 , 퐼 . It can be easily 

estimated by 퐺 , = −푑푖푎푔(풁 풁 /푇 , 퐼 ) = −푑푖푎푔 ∑ 푍 푍 /푇 , 퐼 . 

 It remains to estimate Ω , = ∑ Γ(푙), where Γ(푙) is the autocovariance of 푔 (휃 ) in 

equation (11) at lag 푙. Remember that  

푔 (휃) ≡ 푔 푓 | , 푍 , 휃 =
푍 푓 | − 푍 휃

푍 푓 | − 휃
푓 | − 휃

. 

We pre-whiten the data following Andrews and Monahan (1992) to avoid underestimation 

problems of the long-run variance of 푔 (휃 ) . For a simple notation, we define a 2ℎ + 3 

dimensional vector 휋  as follows: 

                                                             
1 Results are available upon request. 
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휋 ≡

⎝

⎛
푍 푓 | − 푍 휃

푍 푓 | − 휃
푓 | − 휃 ⎠

⎞. 

It is worth noting that the sample average of 휋  is a zero vector, i.e. ∑ 휋 = 0 given the 

definition of 휃. To whiten the series, we use a VAR(1) model that 휋 = 퐴휋 + 휂 . The estimated 

autoregressive matrix and the residuals are denoted by 퐴 and 휂̂ . Then we estimate the long-run 

variance of 휂  by applying Newey and West (1987) estimator with the Bartlett kernel to the residuals 

휂̂ , … , 휂̂ . Specifically, the estimated long-run variance is given by 

퐿푅푉(휂̂ ) = Γ , + Γ , + Γ , + ⋯ + Γ , + Γ , , 

where Γ ,  is the estimated autocovariance matrix of 휂̂  at lag 푙. We use a simple rule suggested by 

Stock and Watson (2011) to select the number of autocovariance matrices included. Following the 

rule, 퐿 + 1 is the closest natural number to 0.75푇 / . Finally, Ω ,  is obtained by  

Ω , = 퐼 − 퐴 퐿푅푉(휂̂ ) 퐼 − 퐴 . 

 In sum, the asymptotic standard error of 푠̂  is given by 

[푠. 푒. (푠̂ )] = Δ , 퐺 , Ω , 퐺 , Δ , , 

where   Δ , =
1
휃

휃 , 휃 , −푠̂ , 

퐺 , = −푑푖푎푔
풁 풁

푇 , 퐼 , 

Ω , = 퐼 − 퐴 퐿푅푉(휂̂ ) 퐼 − 퐴 . 

 

An alternative method for estimating biases based on the asymptotic distribution of 휽. We conjecture 

that most of the finite sample bias in 푠̂  is due to the non-linear transformation 휉(⋅), not estimation 

of 휃  itself. Note that 휃  consists of projection coefficients of 푓 |  on 푍 , covariance between 

푓 |  and 푍 , and variance of 푓 | . Estimation of all those quantities are rather standard, and 

significant biases of the corresponding method of moments estimators have not been reported. Below 

we suggest a method to capture biases originating from 휉(⋅) in small samples without relying on VAR-

based bootstrap. 
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Because √푇 휃 − 휃  →  풩 0,     퐺 , Ω , 퐺 , , we can estimate the asymptotic 

variance of the feasible estimator 휃 by 퐺 , Ω , 퐺 , . We simulate 휃( ) for 퐵 times 

from the following normal distribution: 

휃( ) ∼ 풩 휃,
1
푇 퐺 , Ω , 퐺 , . 

We discard cases where 휃( ) ≤ 0 because 휃 = 푉푎푟 푓 | > 0. Finally, the bias due to the 

non-linearity in 휉(⋅)  is captured by ∑ 휉 휃( ) − 휉 휃  and the bias-corrected estimator is 

given by 

푠̂ = 휉 휃 − ∑ 휉 휃( ) − 휉 휃 = 2휉 휃 − ∑ 휉 휃( ) .  
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Appendix B. Other local projections estimators 
As briefly discussed at the end of Section 3.1, it is possible to estimate 푠  by plugging estimates 

of 휓 , ’s, 휎 , 푉푎푟 푓 | , or 푉푎푟 푣 |  into the following representations of 푠 : 

푠 =
∑ 휓 , 휎

푉푎푟 푓 |
 

=
∑ 휓 , 휎

∑ 휓 , 휎 + 푉푎푟 푣 |
. 

We call those estimators the LP-A and LP-B estimators, respectively. Below we derive their 

asymptotic distributions, discuss methods for joint inferences, and show how to estimate the 

asymptotic variances. For their performances in Monte Carlo simulations, see Appendices F and 

G. 

 

Asymptotics of the LP-A and LP-B estimators. Similar to Proposition 1, we begin with the case 

where the population forecast errors are observable, not generated. Also, using the estimated 

forecast errors does not change the asymptotic distributions of the LP-A and LP-B estimators. 

 

Proposition 4. The local projections estimators when 푓 |  is observable have the following 

asymptotic distributions for some 푉 ,  and 푉 , : 

√푇
∑ 훽 , 휎
푉푎푟(푓 | )

− 푠 → 풩 0,   푉 , ,     and 

√푇
∑ 훽 , 휎

∑ 훽 , 휎 + 푉푎푟 푓 | − ∑ 훽 , 푧
− 푠  →  풩 0,     푉 ,  

 

Proof.  

(i) LP-A estimator 

We first derive the joint distribution of 휓 , = 훽 , ’s, 휎 , and 휎 , ≡ 푉푎푟 푓 | . Then we 

will use the delta method to find 푉 , . 

 To begin, we describe the moment conditions for the local projections for 휓 , ’s. We run 

the following OLS regression and take the coefficient on 푧 : 
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푦 − 푦 = 훽 , 푧 + ⋯ + 훽 , 푧 + 훾 , Δ푦 + ⋯ + 훾 , Δ푦 + 푐 + 푟 |  

for all 푖 = 0,1, … , ℎ. In the above representation, 훽 = 휓 , . For a simple notation, we rewrite the 

above equation as  

푝 , = 푞 Β + 푟 | , where    푝 , = 푦 − 푦 ,  

푞 = 푧 , … , 푧 , Δ푦 , … , Δ푦 , 1 ,  

Β = 훽 , , … , 훽 , , 훾 , , … , 훾 , , 푐 . 

Then the OLS estimator Β  becomes the method of moments estimator of the following moment 

conditions: 

퐸 푞 푝 , − 푞 Β = 0. 

Also, 휓 ,  is given by 휄 Β  where 휄  is a 퐿 + 퐿 + 2 dimensional vector whose first element is one 

and the others are zero.  

 To study all parameters required simultaneously, we let 휃 = Β , … , Β , 휎 , 휎 , ′, where 

휎 , ≡ 푉푎푟 푓 | . We use the moment conditions that 퐸[푔 (휃 )] = 0, where 푔 (휃 ) is 

given as follows: 

푔 (휃 ) =

⎝

⎜⎜
⎛

푞 푝 , − 푞 Β
⋮

푞 푝 , − 푞 Β
푧 − 휎

푓 | − 휎 , ⎠

⎟⎟
⎞

. 

We define 푔 (휃) similarly. It is clear that it is a just-identified system. Similar to the proof of 

Proposition 1, we know that 

√푇 휃 − 휃  →  풩(0,     퐺 Ω(퐺 ) ), 

where 퐺 = 퐸[∇ 푔 (휃 )], Ω = ∑ Γ(푙), and Γ(푙) is the autocovariance of 푔 (휃 ) at lag 푙. 

With some algebra, we can show that  

퐺 = −퐸 퐼 ⊗ 푞 푞 0
0 퐼 , 

where ⊗ is the Kronecker product.  

 A transformation 휉 is required to connect 휃 with 푠 . We define 

휉(휃 ) = 푠 =
∑ (휄 Β )  휎

휎 ,
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and 휉(휃) is also defined similarly.  

Regarding the delta method, we need Δ ≡ ( ). We can show that 

Δ =
1

휎 ,

⎝

⎜
⎜
⎜
⎛

2휓 , 휎 휄
⋮

2휓 , 휎 휄

휓 ,

−푠 ⎠

⎟
⎟
⎟
⎞

. 

Combining the above derivations and being explicit about the fact that the moment 

conditions 푔 (⋅)  are for the LP-A approach at the horizon ℎ , we have the asymptotic 

distribution.  

√푇 ∑ ,

|
− 푠  →  풩 0,     푉 , , 

where 푉 , = Δ , 퐺 , Ω , 퐺 , Δ , . 

 

(ii) LP-B estimator 

 The joint distribution of 휓 , ’s is obtained similarly. To study all parameters required 

simultaneously, we let 휃 = Β , … , Β , 휎 , 휎 , ′  where 휎 , ≡ 푉푎푟 푓 | −

∑ 휓 , 푧 . We use the moment conditions that 퐸[푔 (휃 )] = 0, where 푔 (휃 ) is given 

as follows: 

푔 (휃 ) =

⎝

⎜
⎜
⎜
⎜
⎛

푞 푝 , − 푞 Β
⋮

푞 푝 , − 푞 Β
푧 − 휎

푓 | − (휄 Β ) 푧 − 휎 ,
⎠

⎟
⎟
⎟
⎟
⎞

. 

We define 푔 (휃) similarly. It is clear that it is a just-identified system. In such a case, the method 

of moments estimator 휃 can be understood as a two-step estimator. It first finds Β ’s using the OLS 

moment conditions and then plug these estimates into the remaining conditions. Then 휎  and 휎 ,  

are derived given Β ’s. It is worth noting that this is the same procedure we follow when we define 

푠̂ . The only difference is that we are using here 푓 |  instead of its estimate. 
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Similar to the proof of Proposition 1, we know that 

√푇 휃 − 휃  →  풩(0,     퐺 Ω(퐺 ) ) 

where 퐺 = 퐸[∇ 푔 (휃 )], Ω = ∑ Γ(푙), and Γ(푙) is the autocovariance of 푔 (휃 ) at lag 푙. 

With some algebra, we obtain that  

퐺 = −퐸

⎝

⎜
⎜
⎛

퐼 ⊗ 푞 푞

0 ⋯ 0
2푣 | 푧 휄 ⋯ 2푣 | 푧 휄

0

퐼
⎠

⎟
⎟
⎞

, 

where ⊗ is the Kronecker product. For the bottom left part, we use the fact that 휄 Β = 휓 ,  and 

푣 | = 푓 | − ∑ 휓 , 푧 . Because 푣 | = 휓 , 푒 + ⋯ + 휓 , + ⋯ +

휓 , 푒  is orthogonal to {푧 }, where 휓 ,  and {푒 } are defined as is the case in Section 4.1, the 

bottom left block of 퐺 becomes a zero matrix. 

 A transformation 휉 is required to connect 휃 with 푠 . We define 

휉(휃 ) = 푠 =
∑ (휄 Β )  휎

∑ (휄 Β )  휎 + 휎 ,
, 

and 휉(휃) is also defined similarly.  

Regarding the delta method, we need Δ ≡ ( ). For a simple notation, we write 휎 , ≡

푉푎푟 푓 | = ∑ 휓 , 휎 + 휎 , . With some algebra, we can show that 

Δ =
1 − 푠

휎 ,

⎝

⎜
⎜
⎜
⎜
⎛

2휓 , 휎 휄
⋮

2휓 , 휎 휄

휓 ,

−푠 /(1 − 푠 )⎠

⎟
⎟
⎟
⎟
⎞

. 

Combining the above derivations and being explicit about the fact that the moment 

conditions 푔 (⋅) are for the LP-B approach at the horizon ℎ, we have the result: 

√푇
∑ ,

∑ ,
| ∑ ,

− 푠  →  풩 0,     푉 , , 

where 푉 , = Δ , 퐺 , Ω , 퐺 , Δ , .  □ 
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Joint inference. Below we explain how one can estimate a joint distribution of the LP-B estimators 

(푠̂ , 푠̂ , … , 푠̂ ) . Results for the LP-A estimators can be obtained similarly.  

We consider augmented moment conditions 퐸 푔 (휃 ) = 0 , where 휃 =

(Β , … , Β , 휎 , 휎 , , … , 휎 , )′ is a (퐻 + 1) ∗ 퐿 + 퐿 + 3 + 1 dimensional vector, and 

푔 (휃 ) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

푞 푝 , − 푞 Β
⋮

푞 푝 , − 푞 Β
푧 − 휎

푓 | − (휄 Β ) 푧 − 휎 ,

⋮

푓 | − (휄 Β ) 푧 − 휎 ,
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

Then it is straightforward to extend the proof of Proposition 4 to the joint distribution of 

(푠̂ , 푠̂ , … , 푠̂ ) . In practice, both 퐿  and 퐿  should be small not to make (퐻 + 1) ∗

퐿 + 퐿 + 3 + 1 too large relative to 푇.  

 

Estimating 푽풉,푳푷푩 . Next, we explain how one can estimate 푉 , =

Δ , 퐺 , Ω , 퐺 , Δ , . Again, the asymptotic variance for the LP-A estimator 

can be estimated similarly.  

 Let’s begin with G , = −푑푖푎푔(퐼 ⊗ 퐸[푞 푞 ], 퐼 ). It is natural to have 

퐺 , = −푑푖푎푔 퐼 ⊗
1
푇 푞 푞 ′ , 퐼 . 

 The feasible estimator of 휃 is denoted by 휃 ≡ Β , … , Β , 휎 , 휎 , , where 휎 = ∑ 푧  

and 휎 , = ∑ 푓 | − ∑ 휄 Β 푧 . 2  We define (퐻 + 1) ∗ 퐿 + 퐿 + 2 +

2 dimensional vector 휋  as follows: 

                                                             
2 The denominator 푇  might be adjusted according to the degrees of freedom without affecting the asymptotics. 
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휋 ≡

⎝

⎜
⎜
⎜
⎜
⎛

푞 푝 , − 푞 Β
⋮

푞 푝 , − 푞 Β
푧 − 휎

푓 | − 휄 Β 푧 − 휎 ,
⎠

⎟
⎟
⎟
⎟
⎞

. 

Then Ω ,  is obtained by applying the Newey-West estimator to 휋  with pre-whitening 

similar to the case of Ω , .  

 It remains to estimate Δ , . It is straightforward to define 

Δ . = ̂

,

⎝

⎜⎜
⎛

2휓 , 휎 휄
⋮

2휓 , 휎 휄
∑ 휓 ,

−푠̂ /(1 − 푠̂ )⎠

⎟⎟
⎞

, 

where 휎 , = ∑  푓 | . We plug the bias-corrected 푠̂  in the place of 푠 .  

 Combining all the estimators, the standard error of 푠̂  is given by 

[푠. 푒. (푠̂ )]  =
1
푇 Δ , 퐺 , Ω , 퐺 , Δ , . 

 In practice, both 퐿  and 퐿  should be small not to make the number of moment conditions 

(퐻 + 1) ∗ 퐿 + 퐿 + 2 + 2 too large relative to the sample size 푇 . 

 

An alternative method for estimating biases based on the asymptotic distribution of 휽.  Similar to 

the discussion in Appendix A, we conjecture that most of the finite sample bias is due to the non-

linear transformation 휉(⋅). Here, we focus on the LP-B estimator, because one can easily apply the 

same procedure to the LP-A estimator. 

We approximate the asymptotic variance of the feasible estimator 휃  by 

퐺 , Ω , 퐺 , . Then we simulate 휃( )  for 퐵  times from the following normal 

distribution: 

휃( ) ∼ 풩 휃,
1
푇 퐺 , Ω , 퐺 , . 
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 We drop cases where the simulated 휎  and 휎 ,  are negative. Then the bias is estimated by 

∑ 휉 휃( ) − 휉 휃  and the bias-corrected estimator is given by 

푠̂ = 휉 휃 − ∑ 휉 휃( ) − 휉 휃 = 2휉 휃 − ∑ 휉 휃( ) .  

 Note that calculating 퐺 ,  and Ω ,  does not require deriving the bias-corrected 푠̂ . 

Therefore, we can first estimate 퐺 ,  and Ω , , derive the bias-corrected 푠̂  by using the 

above method, and then calculating Δ .  for the (asymptotic) standard error. 
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Appendix C. Finding a MA(∞) representation for a process driven by 

multiple underlying shocks 
Suppose the following data generating process as in Section 4.1. In this section, we explain how 

an infinite-order MA representation driven by a single white noise process is obtained for the 

residual process {Δ푝 + Δ푎 }. 

푦 = 휓 (퐿)푧 + 푢 , 

푢 = 푝 + 푎 , 

Δ푝 − 푔 = 휌 Δ푝 − 푔 + 휎 푒 , 푒  ~ 푖푖푑 푁(0,1), 

푎 = 휌 푎 + 휎 푒 ,         푒  ~ 푖푖푑 푁(0,1), 

푧  ~ 푖푖푑 푁(0, 휎 ),           

{푧 }, 푒 , and {푒 } are mutually independent. 

 We first show why having a representation 푔 + 휓 (퐿)푒  of Δ푝 + Δ푎  is needed. When 

all three shocks are in the information set, the corresponding forecast error with Ω =

{푧 , Δ푦 , 푒 , 푒 , … } is 

푓 | = 푦 − 푦 − P 푦 − 푦 |Ω =  휓 , 푧 + ⋯ + 휓 , 푧  

+휎 푒 + 1 + 휌 휎 푒 + ⋯ + 1 + 휌 + ⋯ + 휌 휎 푒  

+휎 푒 + 휌 휎 푒 + ⋯ + 휌 휎 푒 . 

Thus, the corresponding forecast error variance decomposition becomes 

푠̃ =
∑ 휓 ,  휎

∑ 휓 ,  휎 +  ∑ ∑ 휌 휎 + ∑ 휌 휎
. 

However, what we estimate in the simulations is 푠 , not 푠̃ . 푠  is based only on the 

information set Ω = {Δ푦 , 푧 , … }, not the augmented one, Ω .  Because Ω  is coarser than Ω , 

푠 ≤ 푠̃  as discussed in Section 3.6. To construct the true profile of 푠 , we need 휓 (퐿) and 휎 . 

We use a stationary Kalman filter (Hamilton 1994, pp.391-394) to do so. We cast the above 

process in a state-space representation. 

  



13 
 

State equation:        

푆 = 푭푆 + 푩휅 , 

where         푆 = (훥푝 − 푔 , 훥푎 , 푒 )′,     

휅 = 푒 , 푒 ~(0, 퐼), 

F =
휌 0 0
0 휌 −휎
0 0 0

, 

B =
휎 0
0 휎
0 1

. 

Measurement equation:   Δ푢 = 푔 + 퐻 푆 ,          where 퐻 = (1,1,0) . 

By defining 푄 = 퐵퐼퐵 = 퐵퐵′ and 푅 = 0, the stationary 푃 and 퐾 are obtained from the 

matrix equation (13.5.3) and (13.5.4) in Hamilton (1994). 

푃 = 퐹[푃 − 푃퐻(퐻 푃퐻 + 푅) 퐻 푃]퐹 + 푄, 

퐾 = 퐹푃퐻(퐻 푃퐻 + 푅) . 

The first equation is a discrete time algebraic Riccati equation for 푃  which can be solved 

numerically. Then deriving 퐾 is straightforward from the second equation. Given 퐾, it is known 

that  

Δ푢 = 푔 + (퐼 + 퐻 (퐼 − 퐹퐿) 퐾퐿)푒 ,  푒 ~푊푁(휎 ),        and       휎 = √퐻 푃퐻 + 푅. 

 To convert (퐼 + 퐻 (퐼 − 퐹퐿) 퐾퐿) into 휓 (퐿), we use the identity that (퐼 − 퐹퐿) = 퐼 +

퐹퐿 + 퐹 퐿 + ⋯. Note all three eigenvalues of 퐹, 휌 , 휌  and 0, are less than one in absolute values. 

 Given the MA representation of Δ푢 , we can find 푠  accordingly. 

 In Section 4.2, the Smets and Wouters (2007) model is simulated. We find 푠  under the 

assumed information set in a similar way. 
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Appendix D. Unobservable Shocks and Measurement Errors 
In some cases, an identified structural shock is only a part of the true shock. For example, 

unanticipated innovations in the federal funds rates in Romer and Romer (2004) may be a part of 

the entire change in monetary policy such as verbal communication, forward guidance, members 

of the board of governors, and regime shifts. Similarly, legislative tax changes in Romer and 

Romer (2010) might be a part of the whole fiscal policy shocks affecting the U.S. economy. When 

shocks are generated from narratives as Ramey (2011), measurement errors might be another 

important issue. In this section, we show that our approach can still provide interesting and 

meaningful quantities in such cases, because our estimates are conservative estimates of the ‘true’ 

value available only when all hidden confounding factors are observable.  

 We decompose the true shock into two parts as 푧 = 푧 + 푧 . The superscripts 표 and 푢 

mean observable and unobservable components, respectively. We assume that  

푧
푧 =

휎 0

휌 , 휎 1 − 휌 ,  휎 훿 , 

where 훿  ~ 푤푛(퐼 ), 휎 = 푉푎푟(푧 ),   휎 = 푉푎푟(푧 ), and 휌 ,  is the correlation between 푧  and 

푧 . Also, 훿  and 푒  are uncorrelated at all leads and lags. For example, a measurement error 푚  

can be modelled as 푧 = 푧 + 푚  and 푧 = −푚 , and so 휌 , < 0. We denote the full information 

set with Ω = {푥 , 푥 , Δ푦 , … } in this section and the econometrician’s information set 

with Ω ≡ {푥 , Δ푦 , … } . The econometrician’s forecast error 푓 |  is given by 

푓 | = 푦 − 푦  −   푃[푦 − 푦 |Ω ] . Note that we project 푦 − 푦  on Ω , 

while the full-information forecast error 푓 |  is based on Ω . Finally, the econometrician’s 

regressor is denoted by 푍 , = (푧 , … , 푧 ) . 

 We argue that our estimators have a negative asymptotic bias, regardless of the sign of 

휌 , .3 Note that 푠 =
∑ ,  

( | )
 is a ratio between the amount explained by the innovations in 

{푧 } and the forecast error variance. As pointed out in Proposition 3, there are (a) a positive 

asymptotic bias in the denominator, and (b) a negative asymptotic bias in the numerator when we 

                                                             
3 Because the R2, LP-A, and LP-B estimators share the same probability limit, we here focus on the R2 estimator. 
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apply our methods to {푧 }  and ignore the existence of {푧 } . Therefore, (c) the estimator is 

downward-biased, which is conservative in favor of the null hypothesis of no effects (푠 = 0).  

Proposition 3. Given the assumptions above, the followings hold for any 휌 , ≤ 1. 

(a) 푉푎푟 푓 | ≥ 푉푎푟 푓 | . 

(b) 푉푎푟 휓 , 푧 + ⋯ + 휓 , z  

 = 푪풐풗 푓 | , 푍 , 푽풂풓 푍 , 푪풐풗(푍 , , 푓 | ) + ∑ 휓 ,  1 − 휌 , 휎 . 

(c) 푠 = , ⋯ ,

|
≥

푪풐풗 | , , 푽풂풓 , 푪풐풗 , , |

|
. 

Proof.  

 Let’s begin with (a). With the full information, we can back out the forecast error as  

푓 | = 푦 − 푦 − 푃[푦 − 푦 |Ω ], 

where the last term is the projection of 푦 − 푦  on the closed subspace spanned by Ω . 

However, an econometrician has only Ω = {푧 , 훥푦 , 푧 , 훥푦 , … }. It is evident that Ω ⊂

Ω . We define the closed subspaces spanned by each information set as 

푉 = 푐푙표푠푢푟푒(푠푝푎푛(Ω ) ), 

푉 = 푐푙표푠푢푟푒 푠푝푎푛(Ω ) . 

 Using this notation, 

푓 | = 푦 − 푦  −  푃[푦 − 푦 |푉 ] = 푃[푦 − 푦 |(푉 ) ], 

푓 | = 푦 − 푦  −   푃[푦 − 푦 |푉 ] = 푓 |  + 푟 | , 

where 푉  is the orthogonal subspace of 푉  and 푟 | ≡  푃[푦 − 푦 |푉 ] −

 푃[푦 − 푦 |푉 ]. 

 Note that 푉 ⊂ 푉 , and therefore 푟 | ∈ 푉 . Because 푓 | ∈ (푉 ) , it follows 

that 푓 |  and 푟 |  are orthogonal. 4  Therefore, 푉푎푟 푓 | = 푉푎푟 푓 |  +

푉푎푟 푟 | ≥ 푉푎푟 푓 | . Also, the equality holds only when 푧  and its lagged values have 

no additional power in explaining 푦  given 푉  implying 푃[푦 − 푦 |푉 ] =

                                                             
4 This result is in fact due to a decomposition of the entire vector space V into a direct sum of three mutually orthogonal 
closed subspaces: V = 푉 ⊕ (푉 ∩ (푉 ) ) ⊕ (푉 ∩ (푉 ) ) , where ‘ ⊕ ’ means a direct sum. From the 
decomposition, it directly follows that 푦 − 푦 = 푃[푦 − 푦 |푉] = 푃[푦 − 푦 |푉 ] + 푃[푦 − 푦 |푉 ∩ (푉 ) ] +
푃[푦 − 푦 |푉 ∩ (푉 ) ] = 푃[푦 − 푦 |푉 ] + 푟 | + 푓 | , and the last three terms are mutually orthogonal. 
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푃[푦 − 푦 |푉 ]. This is true only for (uninteresting) special cases such as 휓 (퐿) = 0, 휌 , =

±1, and 휎 = 0. 

 We next turn to (b) and show that the econometrician’s numerator converges in probability 

to a value less than 푉푎푟 휓 , 푧 + ⋯ + 휓 , 푧 = ∑ 휓 , 휎 . As illustrated in Equation (4),  

푉푎푟 휓 , 푧 + ⋯ + 휓 , 푧 = 퐸 푓 | ⋅ 푍 퐸 푍  푍 퐸 푍  ⋅ 푓 |  

= 퐸 푍 푍 퐸 푍  ⋅ 푓 | 퐸 푍  푍 퐸 푍 푍 퐸 푍  ⋅ 푓 | . 

The term inside the last square brackets is a vector of population regression coefficients of 푓 |  

on 푍 , which is Ψ = 휓 , , … , 휓 ,  by construction.  

 Now we investigate the econometrician’s numerator 퐸 푓 | ⋅

푍 , 퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푓 | , where 푍 , = (푧 , … , 푧 ) . Note that elements of 

푍 ,  lies in 푉 , while 푟 | ∈ 푉 . Thus,  

퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푓 |

= 퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푓 | + 퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푟 |

= 퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푓 |  

= 1 +
퐶표푣(푧 , 푧 )

푉푎푟(푧 ) Ψ =
휎 + 휌 , ⋅ 휎

휎 Ψ . 

We used the fact that 푓 | = ∑ 휓 , 푧 + ∑ ∑ (휓 , ) 푒  for the last line.  

 Finally, the econometrician’s numerator becomes  

퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푓 | 퐸 푍 ,  푍 , 퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푓 |  

=
휎 + 휌 , ⋅ 휎

휎 훹 ⋅  휎 퐼 ⋅
휎 + 휌 , ⋅ 휎

휎 훹 = 휓 , 휎 + 휌 , ⋅ 휎 . 

Thus, any asymptotic bias in the numerator is from the differences between 휎  and 

휎 + 휌 , ⋅ 휎 . Because 휎 − 휎 + 휌 , ⋅ 휎 = 1 − 휌 , 휎 ,  

퐸 푓 | ⋅ 푍 퐸 푍  푍 퐸 푍  ⋅ 푓 |  
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= 퐸 푓 | ⋅ 푍 , 퐸 푍 ,  푍 , 퐸 푍 ,  ⋅ 푓 | + 휓 ,  1 − 휌 , 휎 . 

 The econometrician’s numerator and denominator are asymptotically less and greater than 

their full-information counterparts, respectively. Therefore, we have a negative asymptotic bias as 

claimed in (c). Moreover, the biases become small when 휓 , ’s are close to zero, the observed and 

unobserved components are highly correlated, or the variance of the unobserved part is small. In 

such cases, both biases in the denominator 푉푎푟 푟 |  and the numerator ∑ 휓 ,  1 −

휌 , 휎  are small. 

 So far, we assumed that 푧  and 푧  have the same impulse response function 휓 (퐿) for 

simplicity. However, we may consider 휓 (퐿)푧 + 휓 (퐿)푧  instead of 휓 (퐿)푧 . This does not 

change our results and the above derivations admit a straight-forward extension to this general 

case. In this case, the difference between two numerators becomes ∑ 휓 , 1 − 휌 , 휎 .    □ 
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Appendix E. Alternative specifications 
This section discusses the performance of alternative specifications relative to that of our 

benchmark in several respects. Specifically, we consider three cases: (1) block bootstraps are used 

for bias-correction, (2) 퐿 = 퐿 = 퐿  are selected by Akaike information criterion, and (3) 

inference is based on asymptotic standard errors. 

 

Appendix E1. A comparison between the block and the VAR-based bootstraps 
For simulation studies in the main text, we rely on the VAR-based bootstraps to correct for biases 

and to construct confidence intervals. Here we compare the performances of the VAR-based 

bootstrap and the block bootstrap for local projections suggested by Kilian and Kim (2011).  

 We show results for three versions of R2 estimators: (1) R2 estimator without bias-

correction, (2) R2 estimator with VAR-based bias-correction, and (3) R2 estimator with bias-

correction based on block bootstraps. Similar to the main text, we experiment with DGP 1, 2, and 

3, where the sample size is 160, and the replication size is 2,000. For each estimator, we calculate 

mean, root mean-squared error, and coverage probability of 90% confidence intervals. The VAR 

lag order is selected by the HQIC, and the size of each block is four following Kilian and Kim 

(2011). For the DGP 3, we also check the results when the VAR lag order and the size of each 

block are ten as in Table 4. 

 As illustrated in Table E1-E3, the VAR-based bootstrap performs better than the block 

bootstrap. The R2 estimator with VAR-based bias-correction has smaller root mean-squared 

errors. Furthermore, coverage rates for the estimator with VAR-bootstrap are closer to the nominal 

rate than the estimator based on block bootstraps. 
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Table E1. Simulation results for DGP 1. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Forecast Error Variance Decomposition (VAR(HQIC), Block Size(4)) 

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2, Without bias-correction 0.01 0.06 0.20 0.25 0.26 0.27 
R2, VAR-based bootstrap 0.00 0.02 0.13 0.16 0.13 0.11 
R2, Block bootstrap 0.00 0.03 0.16 0.21 0.19 0.18 

       
Root mean squared error       

R2, Without bias-correction 0.01 0.05 0.11 0.15 0.19 0.22 
R2, VAR-based bootstrap 0.01 0.05 0.12 0.16 0.17 0.18 
R2, Block bootstrap 0.01 0.05 0.12 0.17 0.19 0.21 

       
Coverage (90 % level, asymptotic)       

R2, Without bias-correction 0.99 0.81 0.69 0.65 0.63 0.61 
R2, VAR-based bootstrap 0.99 0.95 0.64 0.64 0.72 0.81 
R2, Block bootstrap 0.99 0.90 0.69 0.59 0.54 0.56 
       

Notes: The results are for DGP1 in Section 4.1. The sample size is 푇 = 160, and the number of simulations is 2,000. 
We consider three estimators in the table. ‘R2, Without bias-correction’ stands for 푠̂  without bias-correction. ‘R2, 
VAR-based bootstrap’ denotes for 푠̂ − ∑ 푠̂ ,( ) − 푠∗ , where 푠̂ ,( ) is based on a simulated sample using  a 

VAR. 푠∗  is the true FEVD in this DGP used for bootstrapping 푠̂ ,( ), and ∑ 푠̂ ,( ) − 푠∗  is the estimated bias 

in 푠̂ . The order of the VAR is selected by HQIC. Finally, ‘R2, Block bootstrap’ is for 푠̂ − ∑ 푠̂ ,( ) − 푠̂ , 

where 푠̂ ,( ) is obtained from the block bootstrap. Similarly, ∑ 푠̂ ,( ) − 푠̂  is the estimated bias in this case. 
Following Kilian and Kim (2011), the size of each block is four. We rely on bootstrap estimates for constructing 
confidence intervals similar to Table 2-4.  
 

  



20 
 

Table E2. Simulation results for DGP 2. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Forecast Error Variance Decomposition (VAR(HQIC), Block Size(4)) 

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2, Without bias-correction 0.79 0.26 0.15 0.14 0.15 0.19 
R2, VAR-based bootstrap 0.81 0.24 0.09 0.03 0.01 0.00 
R2, Block bootstrap 0.80 0.25 0.10 0.07 0.06 0.07 

       
Root mean squared error       

R2, Without bias-correction 0.03 0.11 0.12 0.14 0.17 0.21 
R2, VAR-based bootstrap 0.03 0.10 0.09 0.09 0.10 0.12 
R2, Block bootstrap 0.03 0.11 0.12 0.13 0.15 0.17 

       
Coverage (90 % level, asymptotic)       

R2, Without bias-correction 0.90 0.89 0.89 0.82 0.73 0.67 
R2, VAR-based bootstrap 0.92 0.90 0.97 0.97 0.95 0.94 
R2, Block bootstrap 0.91 0.73 0.68 0.77 0.79 0.75 
       

Notes: The results are for DGP2 in Section 4.1. The sample size is 푇 = 160, and the number of simulations is 2,000. 
We consider three estimators in the table. ‘R2, Without bias-correction’ stands for 푠̂  without bias-correction. ‘R2, 
VAR-based bootstrap’ denotes for 푠̂ − ∑ 푠̂ ,( ) − 푠∗ , where 푠̂ ,( ) is based on a simulated sample using a 

VAR. 푠∗  is the true FEVD in this DGP used for bootstrapping 푠̂ ,( ), and ∑ 푠̂ ,( ) − 푠∗  is the estimated bias 

in 푠̂ . The order of the VAR is selected by HQIC. Finally, ‘R2, Block bootstrap’ is for 푠̂ − ∑ 푠̂ ,( ) − 푠̂ , 

where 푠̂ ,( ) is obtained from the block bootstrap. Similarly, ∑ 푠̂ ,( ) − 푠̂  is the estimated bias in this case. 
Following Kilian and Kim (2011), the size of each block is four. We rely on bootstrap estimates for constructing 
confidence intervals similar to Table 2-4.  
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Table E3. Simulation results for DGP 3. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Forecast Error Variance Decomposition (VAR(HQIC), Block Size(4))  

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2, Without bias-correction 0.06 0.22 0.36 0.45 0.52 0.57 
R2, VAR-based bootstrap 0.05 0.21 0.32 0.40 0.44 0.46 
R2, Block bootstrap 0.05 0.21 0.34 0.43 0.49 0.54 

       
Root mean squared error       

R2, Without bias-correction 0.03 0.11 0.17 0.19 0.20 0.21 
R2, VAR-based bootstrap 0.04 0.13 0.20 0.24 0.27 0.29 
R2, Block bootstrap 0.04 0.13 0.19 0.22 0.24 0.25 

       
Coverage (90 % level, asymptotic)       

R2, Without bias-correction 0.85 0.76 0.75 0.78 0.81 0.84 
R2, VAR-based bootstrap 0.83 0.72 0.68 0.68 0.70 0.71 
R2, Block bootstrap 0.83 0.65 0.53 0.50 0.46 0.44 
       

Forecast Error Variance Decomposition (VAR(10), Block Size(10)) 
True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2, Without bias-correction 0.06 0.25 0.39 0.48 0.54 0.57 
R2, VAR-based bootstrap 0.07 0.29 0.46 0.56 0.62 0.65 
R2, Block bootstrap 0.06 0.27 0.43 0.53 0.59 0.62 
       

Root mean squared error       
R2, Without bias-correction 0.04 0.11 0.16 0.19 0.21 0.22 
R2, VAR-based bootstrap 0.05 0.12 0.16 0.19 0.21 0.23 
R2, Block bootstrap 0.04 0.13 0.18 0.21 0.23 0.26 
       

Coverage (90 % level, asymptotic)       
R2, Without bias-correction 0.81 0.83 0.81 0.83 0.83 0.83 
R2, VAR-based bootstrap 0.74 0.78 0.79 0.80 0.82 0.82 
R2, Block bootstrap 0.76 0.72 0.67 0.65 0.63 0.61 
       

Notes: The results are for DGP3 in Section 4.1. The sample size is 푇 = 160, and the number of simulations is 2,000. 
We consider three estimators in the table. ‘R2, Without bias-correction’ stands for 푠̂  without bias-correction. ‘R2, 
VAR-based bootstrap’ denotes for 푠̂ − ∑ 푠̂ ,( ) − 푠∗ , where 푠̂ ,( ) is based on a simulated sample using a 

VAR. 푠∗  is the true FEVD in this DGP used for bootstrapping 푠̂ ,( ), and ∑ 푠̂ ,( ) − 푠∗  is the estimated bias 
in 푠̂ . The order of the VAR is either selected by HQIC or ten. Finally, ‘R2, Block bootstrap’ is for 푠̂ −

∑ 푠̂ ,( ) − 푠̂ , where 푠̂ ,( ) is obtained from the block bootstrap. Similarly, ∑ 푠̂ ,( ) − 푠̂  is the 
estimated bias in this case. The size of each block is either four or ten. We rely on bootstrap estimates for constructing 
confidence intervals similar to Table 2-4.  
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Appendix E2. VAR with Akaike information criterion 
This section considers the Akaike information criterion (AIC) when we select the lag order 퐿 =

퐿 = 퐿  instead of the HQIC. It is well known that the AIC suggests higher-order models than the 

HQIC or the Bayesian information criterion. Thus, we can check how sensitive our new estimators 

of FEVDs are to the lag order of VAR models that are used to correct for the biases. Also, we can 

compare the performance of the higher-order VARs with our estimators when estimating FEVDs.  

 Tables E4-E6 illustrate results for DGP 1-3. The lag orders 퐿 = 퐿 = 퐿  are selected 

by the AIC, while all the other details are similar to the simulations in Section 4.1. It is clear from 

the tables that the FEVDs based on bivariate VARs are strongly biased for DGP 1 and 3. Note that 

DGP 2 admits a VAR(1) representation, and this is the only case in our simulations when VARs 

perform better than our suggested estimators. Furthermore, the R2 estimator is slightly more 

efficient when the VAR lag order is selected via HQIC than AIC. This can be seen from Table 

2(3) and Table E4(E5) for DGP 1(2). 
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Table E4. Simulation results for DGP 1. 
 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 0.00 1.39 3.00 2.06 0.88 0.29 
Local projections 0.00 1.40 3.01 2.03 0.83 0.27 
VAR(AIC) 0.00 0.81 1.41 1.40 1.37 1.38 

       
Forecast Error Variance Decomposition       

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.01 0.06 0.21 0.26 0.26 0.27 
LP A 0.01 0.05 0.19 0.24 0.23 0.24 
LP B 0.01 0.05 0.19 0.23 0.22 0.22 
VAR(AIC) 0.01 0.04 0.10 0.12 0.13 0.13 

       
Root mean squared error       

R2 0.01 0.06 0.12 0.16 0.19 0.22 
LP A 0.01 0.05 0.13 0.16 0.19 0.21 
LP B 0.01 0.05 0.12 0.15 0.16 0.16 
VAR(AIC) 0.01 0.04 0.15 0.18 0.17 0.17 

       
Coverage (90 % level) (asymptotic)       

R2 0.98 0.85 0.80 0.78 0.75 0.72 
LP A 0.99 0.90 0.66 0.70 0.80 0.79 
LP B 0.99 0.89 0.64 0.67 0.78 0.77 
VAR(AIC) 0.99 0.85 0.38 0.37 0.38 0.39 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(AIC)) 

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.00 0.03 0.15 0.18 0.16 0.14 
LP A 0.00 0.03 0.15 0.17 0.15 0.13 
LP B 0.00 0.03 0.16 0.18 0.17 0.15 
VAR(AIC) 0.00 0.02 0.09 0.11 0.12 0.13 

       
Root mean squared error       

R2 0.01 0.06 0.14 0.17 0.18 0.19 
LP A 0.01 0.05 0.12 0.16 0.17 0.18 
LP B 0.01 0.05 0.13 0.16 0.17 0.17 
VAR(AIC) 0.01 0.05 0.16 0.19 0.18 0.18 

       
Coverage (90 % level)       

R2 0.98 0.94 0.68 0.72 0.79 0.86 
LP A 1.00 0.90 0.62 0.66 0.77 0.89 
LP B 1.00 0.90 0.58 0.60 0.72 0.84 
VAR(AIC) 0.99 0.73 0.36 0.35 0.36 0.36 
       

Notes: The table reports the performances of various estimators introduced in Section 3 for DGP1. The sample size is 
푇 = 160, and the number of simulations is 2,000. R2 and VAR stand for 푠̂  and 푠̂  estimators of forecast error 
variance decompositions. The number of lags is selected by the Akaike information criterion (AIC). Confidence 
intervals for the bias-corrected R2 estimator are given by 푞 , / + 푠̂ , ,   푞 , / + 푠̂ ,  as discussed in Section 
3.5, where 훼 = 0.1. Confidence intervals for the other estimators are constructed similarly. The average lag order 
퐿  is 3.05.  
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Table E5. Simulation results for DGP 2. 
 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 3.00 1.97 1.29 0.85 0.56 0.36 
Local projections 2.99 1.89 1.14 0.64 0.30 0.08 
VAR(AIC) 2.95 1.95 1.36 1.00 0.77 0.62 

       
Forecast Error Variance Decomposition       

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.78 0.27 0.15 0.14 0.16 0.18 
LP A 0.80 0.27 0.13 0.09 0.09 0.10 
LP B 0.79 0.26 0.13 0.09 0.09 0.09 
VAR(AIC) 0.80 0.27 0.13 0.08 0.06 0.05 

       
Root mean squared error       

R2 0.04 0.10 0.11 0.14 0.17 0.21 
LP A 0.03 0.09 0.08 0.08 0.10 0.12 
LP B 0.03 0.08 0.07 0.08 0.09 0.11 
VAR(AIC) 0.03 0.08 0.07 0.06 0.06 0.05 

       
Coverage (90 % level) (asymptotic)       

R2 0.88 0.88 0.90 0.82 0.73 0.67 
LP A 0.93 0.90 0.92 0.87 0.82 0.77 
LP B 0.87 0.89 0.91 0.86 0.80 0.75 
VAR(AIC) 0.90 0.89 0.92 0.96 0.97 0.97 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(AIC)) 

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.81 0.25 0.09 0.04 0.02 0.00 
LP A 0.79 0.25 0.10 0.05 0.03 0.02 
LP B 0.81 0.25 0.10 0.05 0.03 0.02 
VAR(AIC) 0.80 0.25 0.10 0.05 0.03 0.02 

       
Root mean squared error       

R2 0.03 0.10 0.09 0.09 0.11 0.13 
LP A 0.04 0.08 0.07 0.07 0.08 0.09 
LP B 0.03 0.08 0.07 0.07 0.07 0.08 
VAR(AIC) 0.03 0.08 0.06 0.05 0.05 0.04 

       
Coverage (90 % level)       

R2 0.93 0.91 0.96 0.96 0.94 0.93 
LP A 0.93 0.90 0.92 0.95 0.93 0.91 
LP B 0.90 0.86 0.89 0.93 0.90 0.90 
VAR(AIC) 0.90 0.89 0.91 0.96 0.99 0.99 
       

Notes: The table reports the performances of various estimators introduced in Section 3 for DGP2. The sample size is 
푇 = 160, and the number of simulations is 2,000. R2 and VAR stand for 푠̂  and 푠̂  estimators of forecast error 
variance decompositions. The number of lags is selected by the Akaike information criterion (AIC). Confidence 
intervals for the bias-corrected R2 estimator are given by 푞 , / + 푠̂ , ,   푞 , / + 푠̂ ,  as discussed in Section 
3.5, where 훼 = 0.1. Confidence intervals for the other estimators are constructed similarly. The average lag order 
퐿  is 1.25. 
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Table E6. Simulation results for DGP 3. 
 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 1.00 4.10 6.13 7.46 8.33 8.91 
Local projections 0.97 3.84 5.61 6.70 7.28 7.56 
VAR(AIC) 0.95 3.09 3.55 3.66 3.69 3.71 

       
Forecast Error Variance Decomposition       

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.06 0.24 0.37 0.47 0.53 0.58 
LP A 0.06 0.25 0.40 0.51 0.60 0.67 
LP B 0.06 0.24 0.37 0.46 0.52 0.56 
VAR(AIC) 0.06 0.19 0.23 0.25 0.26 0.26 

       
Root mean squared error       

R2 0.04 0.11 0.17 0.19 0.20 0.21 
LP A 0.04 0.11 0.17 0.20 0.23 0.26 
LP B 0.04 0.11 0.16 0.18 0.20 0.20 
VAR(AIC) 0.04 0.14 0.27 0.37 0.43 0.47 

       
Coverage (90 % level) (asymptotic)       

R2 0.85 0.77 0.77 0.80 0.83 0.86 
LP A 0.88 0.81 0.77 0.79 0.81 0.82 
LP B 0.87 0.78 0.75 0.76 0.79 0.81 
VAR(AIC) 0.87 0.56 0.30 0.18 0.12 0.10 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(AIC)) 

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.06 0.23 0.36 0.44 0.48 0.51 
LP A 0.06 0.23 0.36 0.45 0.52 0.57 
LP B 0.06 0.23 0.36 0.44 0.49 0.52 
VAR(AIC) 0.06 0.18 0.23 0.24 0.25 0.26 

       
Root mean squared error       

R2 0.04 0.12 0.19 0.22 0.25 0.27 
LP A 0.04 0.12 0.18 0.22 0.25 0.28 
LP B 0.04 0.12 0.18 0.21 0.23 0.25 
VAR(AIC) 0.04 0.15 0.28 0.37 0.43 0.47 

       
Coverage (90 % level)       

R2 0.82 0.75 0.72 0.73 0.74 0.74 
LP A 0.86 0.77 0.73 0.75 0.78 0.79 
LP B 0.85 0.74 0.69 0.70 0.72 0.73 
VAR(AIC) 0.85 0.54 0.29 0.17 0.13 0.10 
       

Notes: The table reports the performances of various estimators introduced in Section 3 for DGP3. The sample size is 
푇 = 160, and the number of simulations is 2,000. R2 and VAR stand for 푠̂  and 푠̂  estimators of forecast error 
variance decompositions. The number of lags is selected by the Akaike information criterion (AIC). Confidence 
intervals for the bias-corrected R2 estimator are given by 푞 , / + 푠̂ , ,   푞 , / + 푠̂ ,  as discussed in Section 
3.5, where 훼 = 0.1. Confidence intervals for the other estimators are constructed similarly. The average lag order 
퐿  is 2.40.  
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Appendix E3. Asymptotic vs. bootstrap standard error 
As illustrated in Section 3.5, our benchmark method for inference is based on the bootstrap 

standard errors and the distribution of 푠̂ ,( ) across 푏 ≤ 퐵. On the other hand, one may estimate 

the asymptotic standard deviation of 푠̂  in Proposition 1 and 2 directly to compute the standard 

errors. This section compares the performance of those different approaches of inference in small 

samples. We consider DGP 1-3 in Section 4.1 and the Smets and Wouters (2007) model in Section 

4.2. For the Smets and Wouters model, we investigate how either economic output or price 

inflation responds to monetary policy shocks where the information set includes output growth 

rate, price inflation, monetary policy rate, and monetary policy shock. The results are shown in 

Tables E7-E11. 

 In each table, coverage rates under the name of “R2, bootstrap [P5, P95]” means the 

probability of 푠  being in the interval 푞 , / + 푠̂ , ,   푞 , / + 푠̂ ,  as discussed in Section 

3.5, where 훼 = 0.1. In this case, confidence intervals are obtained from the bootstrap distribution 

of 푠̂ ,( ). Instead, “R2, bootstrap s.e.” implies that the confidence interval is constructed in a 

symmetric way with the bootstrap standard error, which is the standard deviation of 푠̂ ,( ) across 

푏. The critical values are obtained from a standard normal distribution. When 훼 = 0.1, it is 1.65. 

Symmetric confidence bands based on the asymptotic s.e., not the bootstrap s.e., is denoted by 

“R2, asymptotic s.e.” Finally, we also present the results for the VAR-based  

FEVDs. Confidence bands are constructed using bootstrap samples as is the case in “R2, bootstrap 

[P5, P95].” 

 When we compare the coverage rates of confidence intervals around bias-corrected 

estimators of FEVDs, it becomes clear that asymptotic standard errors do not perform strictly better 

than our benchmark method. While the coverage rates of the symmetric confidence intervals based 

on the asymptotic standard error are closer to the nominal rate of 90% for DGP1, the opposite is 

true for DGP 3. Furthermore, the asymptotic standard error is rather “spiky” across horizons. 

Combined with non-smooth 푠̂ , erratic standard errors will produce figures with choppy 

confidence bands. 
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Table E7. Simulation results for DGP 1. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 0.00 1.39 3.00 2.06 0.88 0.29 
Local projections 0.00 1.39 3.00 2.05 0.87 0.29 
VAR(HQIC) 0.00 0.18 0.24 0.25 0.25 0.25 

       
Forecast Error Variance Decomposition 

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.01 0.06 0.20 0.25 0.26 0.27 
VAR(HQIC) 0.01 0.02 0.02 0.02 0.03 0.03 

       
Root mean squared error       

R2 0.01 0.05 0.11 0.15 0.19 0.22 
VAR(HQIC) 0.01 0.03 0.17 0.20 0.16 0.13 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.99 0.81 0.69 0.65 0.63 0.61 
R2, bootstrap s.e. 1.00 0.93 0.72 0.71 0.74 0.72 
R2, asymptotic s.e. 1.00 0.91 0.80 0.79 0.78 0.77 
VAR(HQIC), bootstrap [P5, P95] 0.99 0.75 0.06 0.06 0.07 0.10 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC)) 

True 0.00 0.04 0.19 0.21 0.18 0.14 
Average estimate       

R2 0.00 0.02 0.13 0.16 0.13 0.11 
VAR(HQIC) 0.00 0.00 0.01 0.01 0.01 0.01 

       
Root mean squared error       

R2 0.01 0.05 0.12 0.16 0.17 0.18 
VAR(HQIC) 0.01 0.04 0.19 0.21 0.17 0.14 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.99 0.95 0.64 0.64 0.72 0.81 
R2, bootstrap s.e. 1.00 0.92 0.60 0.61 0.67 0.77 
R2, asymptotic s.e. 0.78 0.72 0.72 0.72 0.71 0.69 
VAR(HQIC), bootstrap [P5, P95] 1.00 0.53 0.06 0.05 0.07 0.09 
       

Notes: The table reports the performances of various estimators introduced in Section 3 for DGP1. The sample size is 
푇 = 160, and the number of simulations is 2,000. R2 and VAR stand for 푠̂  and 푠̂  estimators of forecast error 
variance decompositions. The number of lags is selected by the Hannan-Quinn information criterion (HQIC). We 
consider three different methods of constructing confidence intervals. First, we can use 훼/2 and 1 − 훼/2 quantiles of 
the bootstrap estimates 푠̂ ,( ) as discussed in Section 3.5, where 훼 = 0.1. The two other methods build symmetric 
confidence intervals with critical values from a standard normal distribution. We investigate both bootstrap standard 
error and asymptotic standard error. Confidence intervals for the other estimators are constructed similarly. For the 
asymptotic s.e., we use the asymptotic variance in Proposition 1 and follow the implementation details in Section A. 
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Table E8. Simulation results for DGP 2. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 3.00 1.97 1.29 0.85 0.56 0.36 
Local projections 2.99 1.83 1.07 0.57 0.22 0.06 
VAR(HQIC) 2.96 1.93 1.33 0.95 0.71 0.56 

       
Forecast Error Variance Decomposition 

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.79 0.26 0.15 0.14 0.15 0.19 
VAR(HQIC) 0.80 0.27 0.12 0.08 0.06 0.05 

       
Root mean squared error       

R2 0.03 0.11 0.12 0.14 0.17 0.21 
VAR(HQIC) 0.03 0.08 0.06 0.06 0.05 0.05 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.90 0.89 0.89 0.82 0.73 0.67 
R2, bootstrap s.e. 0.91 0.87 0.91 0.89 0.84 0.79 
R2, asymptotic s.e. 0.85 0.83 0.82 0.90 0.86 0.80 
VAR(HQIC), bootstrap [P5, P95] 0.88 0.90 0.92 0.96 0.97 0.98 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC)) 

True 0.80 0.25 0.10 0.05 0.03 0.02 
Average estimate       

R2 0.81 0.24 0.09 0.03 0.01 0.00 
VAR(HQIC) 0.80 0.25 0.10 0.05 0.03 0.02 

       
Root mean squared error       

R2 0.03 0.10 0.09 0.09 0.10 0.12 
VAR(HQIC) 0.03 0.07 0.06 0.05 0.04 0.04 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.92 0.90 0.97 0.97 0.95 0.94 
R2, bootstrap s.e. 0.90 0.89 0.96 0.98 0.98 0.97 
R2, asymptotic s.e. 0.83 0.86 0.83 0.85 0.86 0.85 
VAR(HQIC), bootstrap [P5, P95] 0.88 0.89 0.91 0.96 0.99 0.99 
       

Notes: The table reports the performances of various estimators introduced in Section 3 for DGP2. The sample size is 
푇 = 160, and the number of simulations is 2,000. R2 and VAR stand for 푠̂  and 푠̂  estimators of forecast error 
variance decompositions. The number of lags is selected by the Hannan-Quinn information criterion (HQIC). We 
consider three different methods of constructing confidence intervals. First, we can use 훼/2 and 1 − 훼/2 quantiles of 
the bootstrap estimates 푠̂ ,( ) as discussed in Section 3.5, where 훼 = 0.1. The two other methods build symmetric 
confidence intervals with critical values from a standard normal distribution. We investigate both bootstrap standard 
error and asymptotic standard error. Confidence intervals for the other estimators are constructed similarly. For the 
asymptotic s.e., we use the asymptotic variance in Proposition 1 and follow the implementation details in Section A. 
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Table E9. Simulation results for DGP 3. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True 1.00 4.10 6.13 7.46 8.33 8.91 
Local projections 0.95 3.80 5.55 6.57 7.15 7.43 
VAR(HQIC) 0.94 2.46 2.58 2.61 2.62 2.62 

       
Forecast Error Variance Ddecomposition 

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.06 0.22 0.36 0.45 0.52 0.57 
VAR(HQIC) 0.06 0.14 0.15 0.16 0.16 0.16 

       
Root mean squared error       

R2 0.03 0.11 0.17 0.19 0.20 0.21 
VAR(HQIC) 0.04 0.17 0.33 0.43 0.50 0.54 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.85 0.76 0.75 0.78 0.81 0.84 
R2, bootstrap s.e. 0.83 0.70 0.68 0.71 0.74 0.79 
R2, asymptotic s.e. 0.82 0.74 0.71 0.70 0.72 0.71 
VAR(HQIC), bootstrap [P5, P95] 0.86 0.31 0.08 0.03 0.02 0.01 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC)) 

True 0.06 0.29 0.47 0.58 0.65 0.70 
Average estimate       

R2 0.05 0.21 0.32 0.40 0.44 0.46 
VAR(HQIC) 0.05 0.13 0.15 0.15 0.15 0.16 

       
Root mean squared error       

R2 0.04 0.13 0.20 0.24 0.27 0.29 
VAR(HQIC) 0.04 0.18 0.34 0.44 0.51 0.55 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.83 0.72 0.68 0.68 0.70 0.71 
R2, bootstrap s.e. 0.80 0.67 0.58 0.61 0.63 0.63 
R2, asymptotic s.e. 0.79 0.69 0.62 0.57 0.53 0.46 
VAR(HQIC), bootstrap [P5, P95] 0.84 0.29 0.08 0.03 0.02 0.01 
       

Notes: The table reports the performances of various estimators introduced in Section 3 for DGP3. The sample size is 
푇 = 160, and the number of simulations is 2,000. R2 and VAR stand for 푠̂  and 푠̂  estimators of forecast error 
variance decompositions. The number of lags is selected by the Hannan-Quinn information criterion (HQIC). We 
consider three different methods of constructing confidence intervals. First, we can use 훼/2 and 1 − 훼/2 quantiles of 
the bootstrap estimates 푠̂ ,( ) as discussed in Section 3.5, where 훼 = 0.1. The two other methods build symmetric 
confidence intervals with critical values from a standard normal distribution. We investigate both bootstrap standard 
error and asymptotic standard error. Confidence intervals for the other estimators are constructed similarly. For the 
asymptotic s.e., we use the asymptotic variance in Proposition 1 and follow the implementation details in Section A. 
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Table E10. Simulation results for the Smets and Wouters (2007) model, output. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True -0.18 -0.31 -0.18 -0.07 -0.02 0.00 
Local projections -0.18 -0.30 -0.16 -0.07 -0.02 0.00 
VAR(HQIC) -0.18 -0.34 -0.34 -0.33 -0.33 -0.33 

       
Forecast Error Variance Decomposition 

True 0.05 0.08 0.06 0.05 0.04 0.03 
Average estimate       

R2 0.05 0.09 0.10 0.12 0.15 0.19 
VAR(HQIC) 0.05 0.09 0.10 0.09 0.09 0.09 

       
Root mean squared error       

R2 0.03 0.07 0.10 0.13 0.16 0.20 
VAR(HQIC) 0.03 0.06 0.08 0.09 0.09 0.09 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.88 0.91 0.90 0.81 0.73 0.67 
R2, bootstrap s.e. 0.85 0.89 0.94 0.88 0.85 0.80 
R2, asymptotic s.e. 0.84 0.80 0.88 0.90 0.86 0.81 
VAR(HQIC), bootstrap [P5, P95] 0.90 0.86 0.86 0.89 0.87 0.87 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC)) 

True 0.05 0.08 0.06 0.05 0.04 0.03 
Average estimate       

R2 0.05 0.06 0.05 0.04 0.04 0.04 
VAR(HQIC) 0.05 0.08 0.08 0.08 0.08 0.07 

       
Root mean squared error       

R2 0.03 0.07 0.09 0.10 0.12 0.14 
VAR(HQIC) 0.03 0.06 0.08 0.09 0.09 0.09 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.85 0.87 0.95 0.93 0.91 0.90 
R2, bootstrap s.e. 0.82 0.83 0.94 0.96 0.95 0.94 
R2, asymptotic s.e. 0.82 0.72 0.70 0.74 0.77 0.78 
VAR(HQIC), bootstrap [P5, P95] 0.87 0.83 0.83 0.84 0.87 0.88 
       

Notes: The table reports the performance of various estimators introduced in Section 3 for the Smets and Wouters 
(2007) model. The dependent variable is output, and we consider monetary policy shocks as inputs. The information 
set further includes price inflation and the monetary policy rate. The sample size is 푇 = 160, and the number of 
simulations is 2,000. We consider three different methods of constructing confidence intervals. First, we can use 훼/2 
and 1 − 훼/2 quantiles of the bootstrap estimates 푠̂ ,( ) as discussed in Section 3.5, where 훼 = 0.1. The two other 
methods build symmetric confidence intervals with critical values from a standard normal distribution. We investigate 
both bootstrap standard error and asymptotic standard error. Confidence intervals for the other estimators are 
constructed similarly. For the asymptotic s.e., we use the asymptotic variance in Proposition 1 and follow the 
implementation details in Section A.  
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Table E11. Simulation results for the Smets and Wouters (2007) model, price inflation. 

 Horizon ℎ 
 0 4 8 12 16 20 

       
Impulse Response       

True -0.04 -0.04 -0.02 -0.01 0.00 0.00 
Local projections -0.04 -0.04 -0.02 0.00 0.00 0.00 
VAR(HQIC) -0.04 -0.02 -0.01 0.00 0.00 0.00 

       
Forecast Error Variance Decomposition 

True 0.02 0.04 0.05 0.05 0.05 0.05 
Average estimate       

R2 0.02 0.07 0.10 0.13 0.16 0.19 
VAR(HQIC) 0.02 0.04 0.05 0.05 0.05 0.05 

       
Root mean squared error       

R2 0.02 0.07 0.09 0.11 0.14 0.17 
VAR(HQIC) 0.02 0.04 0.04 0.04 0.04 0.04 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.91 0.80 0.73 0.64 0.54 0.42 
R2, bootstrap s.e. 0.88 0.89 0.82 0.74 0.65 0.53 
R2, asymptotic s.e. 0.82 0.86 0.89 0.86 0.81 0.71 
VAR(HQIC), bootstrap [P5, P95] 0.94 0.92 0.93 0.93 0.94 0.94 

       
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC)) 

True 0.02 0.04 0.05 0.05 0.05 0.05 
Average estimate       

R2 0.02 0.05 0.05 0.05 0.05 0.06 
VAR(HQIC) 0.02 0.03 0.03 0.03 0.03 0.03 

       
Root mean squared error       

R2 0.02 0.06 0.08 0.09 0.09 0.10 
VAR(HQIC) 0.02 0.04 0.05 0.05 0.05 0.05 

       
Coverage (90 % level, asymptotic)       

R2, bootstrap [P5, P95] 0.85 0.80 0.83 0.85 0.85 0.85 
R2, bootstrap s.e. 0.81 0.79 0.82 0.84 0.85 0.85 
R2, asymptotic s.e. 0.77 0.74 0.76 0.80 0.83 0.84 
VAR(HQIC), bootstrap [P5, P95] 0.87 0.82 0.80 0.81 0.81 0.82 
       

Notes: The table reports the performances of various estimators introduced in Section 3 for the Smets and Wouters 
(2007) model. The dependent variable is price inflation, and we consider monetary policy shocks as inputs. The 
information set further includes price inflation and the monetary policy rate. The sample size is 푇 = 160, and the 
number of simulations is 2,000 We consider three different methods of constructing confidence intervals. First, we 
can use 훼/2 and 1 − 훼/2 quantiles of the bootstrap estimates 푠̂ ,( ) as discussed in Section 3.5, where 훼 = 0.1. The 
two other methods build symmetric confidence intervals with critical values from a standard normal distribution. We 
investigate both bootstrap standard error and asymptotic standard error. Confidence intervals for the other estimators 
are constructed similarly. For the asymptotic s.e., we use the asymptotic variance in Proposition 1 and follow the 
implementation details in Section A. 
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Appendix F. Supplementary Figures for Bivariate Simulations 
This section provides additional results for bivariate DGPs in Section 4.1. We include results for 

the LP-A and LP-B estimators. We further consider large-sample performances of the estimators.  

 For bias-correction, we apply our estimators to bootstrap samples and obtain 푠̂ ,( ) , 

푠̂ ,( ), 푠̂ ,( ), and 푠̂ ,( ) for 푏 = 1, … , 2000. The biases for each estimator are calculated by 

1
퐵 푠̂ ,( ) − 푠∗  

for 푚 = 푅2, 퐿푃퐴, 퐿푃퐵, and VAR, where 푠∗  denotes the true contribution of 푧 to the forecast error 

variance of 푦 at horizon ℎ for the DGP used for bootstrap. For other details, see Section 3.4 and 

Section 4.1. 

 

 

How to read the figure legend in the following pages: 

1. Impulse responses 

- The 90% bands are based on the 5th and 95th percentiles of the estimates across 2,000 

replications.  

 

2. FEVD, Coverage probability, and Root MSE 

- ‘R2-VAR’ means the bias-corrected R2 estimator with a VAR-bootstrap. For the coverage 

rates, we construct the confidence intervals 푞 , / + 푠̂ , ,   푞 , / + 푠̂ ,  as 

discussed in Section 3.5, where 훼 = 0.1.  

- ‘R2-Sim’ uses the method in Appendix A, which does not rely on VAR-based bootstraps. 

The coverage probability is based on the asymptotic standard error with pre-whitening as 

discussed in Appendix A. That is, we consider a symmetric confidence interval. 

-  ‘R2’ denotes for the estimator without any finite-sample correction. Its coverage rate is 

calculated in a way similar to ‘R2-VAR’: 푞 , / + 푠̂ ,   푞 , / + 푠̂ . Note that the 

interval is centered around the estimate without bias-correction. 

- ‘LP A/B-VAR’, ‘LP A/B-Sim’, ‘LP A/B’, ‘VAR-VAR’, and ‘VAR’ are defined similarly. 
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DGP 1, T = 160. 
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DGP1, T = 500. 
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DGP2, T = 160. 
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DGP2, T= 500. 
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DGP3, T = 160, VAR(HQIC). 
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DGP3, T = 160, VAR(5). 
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DGP3, T = 160, VAR(10). 
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DGP3, T = 500, VAR(HQIC). 
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Appendix G. Supplementary Figures for the Smets and Wouters model 
We presents results for the LP-A and LP-B estimators in this section. We further consider large-

sample performances of the estimators. For details of the simulations, see Section 4.2.  

 

How to read the figure legend in the following pages: 

1. Impulse responses 

- The 90% bands are based on the 5th and 95th percentiles of the estimates across 2,000 

replications.  

 

2. FEVD, Coverage probability, and Root MSE 

- ‘R2-VAR’ means the bias-corrected R2 estimator with a VAR-bootstrap. For the coverage 

rates, we construct the confidence interval 푞 , / + 푠̂ , ,   푞 , / + 푠̂ ,  as 

discussed in Section 3.5, where 훼 = 0.1.  

- ‘R2-Sim’ uses the method in Appendix A, which does not rely on VAR-based bootstraps. 

The coverage probability is based on the asymptotic standard error with pre-whitening as 

discussed in Appendix A. That is, we consider a symmetric confidence interval. 

-  ‘R2’ denotes for the estimator without any finite-sample correction. Its coverage rate is 

calculated in a way similar to ‘R2-VAR’: 푞 , / + 푠̂ ,   푞 , / + 푠̂ . Note that the 

interval is centered around the estimate without bias-correction. 

- ‘LP A/B-VAR’, ‘LP A/B-Sim’, ‘LP A/B’, ‘VAR-VAR’, and ‘VAR’ are defined similarly. 
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Real GDP and monetary policy shock, T = 160 
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Real GDP and monetary policy shock, T = 500. 
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Price inflation and monetary policy shock, T = 160 
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Price inflation and monetary policy shock, T = 500. 
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Appendix H. Applications  
This section covers additional results on applications. Appendix H1 includes results for the total 

factor productivity and monetary policy shocks when we employ either LP-A or LP-B estimator. 

The figures in Appendix H2 depicts the contribution of the military news shock series constructed 

by Ramey and Zubairy (2018) on output and price inflation. 

 

Appendix H1. Supplementary figures to Figures 3 and 4 
Below we show figures similar to Figures 3 and 4. While other things are the same, we add the 

estimates and 90% confidence intervals for the LP-A and LP-B estimators discussed in Appendix 

B. Biases are corrected with VAR-bootstraps, and confidence intervals are based on the P5 and 

P95 of the bootstrap estimates as discussed in Section 3.5.  
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1969:Q1-2008:Q4, Real GDP.  
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1969:Q1-2008:Q4, Inflation. 
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Appendix H2. Military news shocks 
We study the effects and contribution of military news shocks on real GDP and price inflation in 

the U.S. economy. Similar to Section 5, our information set includes the military news shock 

constructed by Ramey and Zubairy (2018), output growth rate, inflation, and 3-month Treasury 

bill rate in a secondary market. This ordering is also used for the VAR analysis. The sample period 

is from 1920Q1 to 2015Q4. During the sample period, one standard deviation military news shock 

amounts to 6.4%. This implies that the sum of the present discounted values of future increases in 

military expenditure corresponds to 6.4% of the current trend GDP. 

 Military news shocks have both statistically and economically significant effects on real 

GDP. The estimated FEVD is slightly less than 20 percent at the 5-year horizon. However, its 

contribution to inflation is negligible. The estimated FEVD is around 5 percent in the medium-run. 
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1920:Q1-2015:Q4, Real GDP.  
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1920:Q1-2015:Q4, Inflation.
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