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Abstract  
At the firm level, revenue and costs are well measured but prices and quantities are not. 
This paper shows that because of these data limitations estimates of returns to scale at 
the firm level are for the revenue function, not production function. Given this 
observation, the paper argues that, under weak assumptions, micro-level estimates of 
returns to scale are often inconsistent with profit maximization or imply implausibly 
large profits. The puzzle arises because popular estimators ignore heterogeneity and 
endogeneity in factor/product prices, assume perfect elasticity of factor supply curves 
or neglect the restrictions imposed by profit maximization (cost minimization) so that 
estimators are inconsistent or poorly identified. The paper argues that simple structural 
estimators can address these problems. Specifically, the paper proposes a full-
information estimator that models the cost and the revenue functions simultaneously 
and accounts for unobserved heterogeneity in productivity and factor prices 
symmetrically. The strength of the proposed estimator is illustrated by Monte Carlo 
simulations and an empirical application. Finally, the paper discusses a number of 
implications of estimating revenue functions rather than production functions and 
demonstrates that the profit share in revenue is a robust non-parametric economic 
diagnostic for estimates of returns to scale.  
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1 INTRODUCTION 
Production functions estimated on establishment level data provide essential insights into micro- and 

macroeconomic phenomena. Estimated returns to scale and measured productivity differences are 

important inputs to economic theories and policy analyses. However, micro level datasets have significant 

limitations. As observed by Klette and Griliches (1996) and Foster et al. (2008), price data at the micro 

level are rarely available and in the vast majority of cases one estimates a revenue function rather than a 

production function and, consequently, residuals obtained from the estimated specifications are 

combinations of demand and supply side shocks and, thus, measured “productivity” should be interpreted 

as variations in the “revenue generating ability” or profitability rather than technology shocks. Despite 

these data limitations, micro level estimates can still be highly informative for positive and normative 

economics,1 but there are two outstanding questions. First, does economic theory make predictions about 

plausible magnitudes of returns to scale in the revenue function? Second, how could one estimate 

consistently returns to scale and implied “productivity” with the data actually available?  

To answer the first question, I show that under weak assumptions the profit share is intimately 

related to the elasticity of the total cost with respect to inputs, returns to scale in production, and the 

markup. With the standard assumption of perfectly elastic factor supply curves, I demonstrate that returns 

to scale in the revenue function are equal to one minus the profit share. Given that the share of economic 

profits is small, there is a tight restriction on the estimates of returns to scale in the revenue function. 

Since I make only a few assumptions about the nature of production functions, costs, and market 

structure, the profit share can serve as a simple litmus test for whether the estimates of returns to scale 

make economic sense.  

To answer the second question, it is important to remember that estimation of revenue 

(production) function parameters is inseparable from simultaneity problem because the volumes of inputs 

and output are optimizing choices of firms. This fundamental problem is particularly acute in single-

equation approaches because in these approaches the researcher does not model the choice of inputs 

while, as Marschak and Andrews (1944) warn, one cannot treat inputs as independent variables. Modeling 

the choice of inputs should be an integral part of the revenue (production) function estimation. I show that 

that one can turn the simultaneity weakness of single-equation estimators into the strength of simple 

structural estimators as optimizing choices of inputs and output help in identification and estimation of 

the parameters governing the behavior of firms.  

                                                      
1 For example, the entry/exit decisions of firms depend on both technology and demand conditions and “revenue 
generating ability” conveniently summarizes this information about profitability of firms. Specifically, firms with 
large “revenue generating ability” are more likely to survive and to attract resources than firms with low “revenue 
generating ability”. Thus, even when the residual in the estimated regression does not measure technology, the 
measured “revenue generating ability” is still a very useful statistic. 
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Specifically, I extend the full information maximum likelihood estimator of Marschak and 

Andrews (1944) and Schmidt (1988) to dynamic production (revenue) function models with serially 

correlated measurement errors and factor prices correlated with productivity. This estimator, which I call 

the covariance estimator, deals simultaneously with the production and cost sides and with unobserved 

technology and factor prices. The key idea of the estimator is to use the covariance structures for the 

firms’ observed optimizing choices (inputs, output) to identify and estimate parameters of interest using 

the restrictions imposed by the economic model on the response of observed variables to unobservables 

such as productivity and factor prices. In this estimator, the researcher not only focuses on the production 

(revenue) function relationship but also utilizes information from firm’s optimizing choices of inputs. The 

covariance estimator is easy to implement and interpret since the estimator can have an instrumental 

variable interpretation.  

The covariance estimator adds to a large set of alternative estimators and, therefore, it is 

important to contrast this estimator with popular rival estimators. I use both simulations and economic 

arguments to highlight the differences. First, I argue that some of the popular estimators ignore that firms 

optimize given their technology and factor prices. Sweeping the factor price variation under the “ceteris 

paribus” rug can greatly distort estimates of returns to scale, measures of productivity and resource 

reallocation, calibration of economic models, etc. I emphasize that consistent estimation requires 

modeling not only unobserved technology but also unobserved factor prices and, possibly, other structural 

shocks. It is equally important to model both the revenue and cost sides of optimizing firms. In addition, 

optimization imposes restrictions on how firms react to changes in technology and prices and, thus, makes 

certain moment conditions redundant. I show that this reduction in the number of informative moments 

can be so acute that certain estimators become not identified. Likewise, tight theoretical restrictions on 

contemporaneous and dynamic responses of observed choices of firms to structural shocks such as 

productivity suggest that estimators based on inverting factor demands to construct proxy variables for 

unobserved productivity can be underidentified. In fact, the problem can be so acute that these types of 

estimators can be forced to make internally inconsistent assumptions to “achieve” identification, which 

means that these estimators cannot yield consistent estimates even in theory. I demonstrate that puzzling 

estimates of returns to scale can be an artifact of these misspecifications while simple structural 

estimators such as the proposed covariance estimator can address these problems. 

Second, I illustrate the quantitative importance of these concerns in Monte Carlo experiments 

which cover a wide range of setups including empirically important cases such as correlated productivity 

and factor prices, serially correlated measurement errors, upward sloping factor supply curves, etc. My 

simulations also suggest that popular estimators often yield productivity measures that are poorly 

correlated with true productivity and, thus, the researcher or policymaker can reach strikingly different 

(and likely incorrect) conclusions about the relative productivity of firms and the magnitudes of 
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productivity differences. Strikingly, even simplest OLS estimates can beat more sophisticated alternatives 

in terms of mean squared error of the estimated returns to scale and the correlation between true and 

measured productivity. On the other hand, the simulations demonstrate that simple structural estimators 

such as the proposed covariance estimator can address these concerns and estimate returns to scale and 

implied variation in productivity well. The covariance estimator can also yield economically more 

reasonable estimates than those achieved by alternative estimators when confronted with real data.  

Given these potentially acute problems with popular estimators, it is important to detect them as 

early as possible and one may use the profit share as a warning signal.  For example, under the standard 

assumption of perfectly elastic factor supply curves, returns to scale (RTS) in the revenue function cannot 

exceed unity otherwise the profit share in revenue is negative. To see the practicality of the warning 

system based on the profit share, note that estimates of RTS frequently exceed unity not only in simple 

least squares cases (e.g., Griliches and Ringstad 1971, Tybout and Westbrook 1996, Bartelsman and 

Dhrymes 1998), but also after correcting for the endogeneity of inputs—i.e., the transmission bias (e.g., 

Pavcnik 2002, Levinsohn and Petrin 2003). In other words, these estimates suggest that firms 

systematically violate the profit maximization principle and, thus, there should be legitimate concerns 

about the validity of the applied economic model and/or statistical estimator. At the other extreme, studies 

often find low returns to scale that imply a much larger profit share in revenue than is observed in the 

data. For example, 0.8 returns in the revenue function entails that the share of pure economic profits in 

revenue is 20% (or 50% in value added if the share of materials is 0.6). In most data, the profit share is 

3% or less (Rotemberg and Woodford 1995, Basu and Fernald 1997). One can reconcile increasing 

returns to scale in the revenue function and a small profit share by relaxing the assumption of perfectly 

elastic factor supply curves. Likewise, one can explain large decreasing returns to scale and a small profit 

share. Unfortunately, popular estimators either do not estimate the elasticity of the cost or depend 

critically on the assumption that factor supply curves are perfectly elastic. Again, simple structural 

estimators like the covariance estimator can allow for imperfectly elastic factor supply curves and 

symmetrically treat revenue and cost functions so that a researcher has more flexibility as well as 

transparency in estimating structural parameters of the revenue function and measuring productivity 

differences across firms.  

In the next section, I present theoretical results, discuss the sources of identification in production 

(revenue) functions, and examine the variables used in the production (revenue) function regressions. In 

Section 3, I present the covariance estimator and discuss identification and estimation issues. In Section 4, 

I derive the theoretical predictions about the performance of OLS, instrumental variables and inversion 

estimators. Monte Carlo experiments in Section 5 illustrate the performance of alternative estimators in 

terms of estimating returns to scale and measuring productivity. In Section 6, I use a well-known Chilean 
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firm-level data set to compare RTS estimates and implied productivity measures from the covariance 

estimator and popular alternatives. I present conclusions in Section 7.  

2 SETUP 
This section lays out the basic setup I will use to develop tools to evaluate and estimate returns to scale 

and implied measures of productivity. I derive the relationship between the markup, returns to scale in 

production, the elasticity of the cost and the profit share and demonstrate that the profit share can serve as 

a robust non-parametric diagnostic for economic tests of the estimates of revenue functions. Notation is 

summarized in Table 1.  

2.1 ECONOMIC MODEL OF PRODUCER BEHAVIOR 

Consider a firm that minimizes cost in expectation or non-stochastically.2 I assume that the cost of inputs 

is separable in inputs and factor prices, i.e., the cost can be written as ܥሺܼ,ݓሻ ൌ ∑ ሺܥ ܼ, ሻݓ

ୀଵ  where Z 

and w are vectors of inputs and factor prices, ܼ is the jth input, and ݓ is its price. The elasticity of the 

cost ܥ with respect to input j is ߶ ൌ
ങೕሺೋೕ,ೢೕሻ	

ങೋೕ
ൈ

ೋೕ
ೕሺೋೕ,ೢೕሻ

. The share of input j in total cost is ߱ ൌ

ሺܥ	 ܼ, ,ሺܼܥ/ሻݓ   .ሻݓ

Returns to scale in production is defined as ߛ ≡ ∑ ሺ߲ܳ ߲ ܼ⁄ ሻሺ ܼ ܳሺܼሻ⁄ ሻ
ୀଵ , where ܳሺܼሻ is the 

production function. Analogously, RTS in the revenue function is defined as 

ߟ ≡ ∑ ሺ߲ܻ ߲ ܼ⁄ ሻሺ ܼ ܻሺܼሻ⁄ ሻ	
ୀଵ , where Y is total revenue. I define the markup ߤ as the ratio of the output 

price to the marginal cost. The share of economic profits in revenue (henceforth, profit share) is ݏగ ≡

ሺܻ െ   .ܻ/ሻܥ

To simplify exposition, assume that firms freely adjust factors of production to avoid unnecessary 

(at this point) complications arising from dynamic optimization.3 This assumption implies that firms solve 

a static profit maximization problem in every period and inputs and output are chosen simultaneously. 

One can interpret this assumption as describing a large cross-section of firms or the long run when firms 

can adjust all inputs. In this general setup, the following result can be proven:  

Proposition 1. Suppose a firm minimizes cost, all inputs are variable, and its cost is separable in inputs. 
Then ߛ ⁄ߤ ൌ ሺ1 െ ߶ ,గሻ߶, where μ is the markupݏ ൌ ∑ ߱߶


ୀଵ  is the elasticity of the cost with respect to 

inputs,	߶  is the elasticity of the jth factor cost, ߱ is the share of input j in total cost, γ is returns to scale 
in production, and sπ is the profit share in revenue. Furthermore, if the firm maximizes profit, then 
ߟ ൌ ߛ ⁄ߤ , where η is returns to scale in the revenue function.  
Proof: see Appendix B. 

                                                      
2 I use firm and establishment interchangeably.  
3 See Appendix A for extensions with quasi-fixed factors.  
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This proposition generalizes Basu and Fernald (1997) to settings where factor markets have imperfectly 

elastic supplies and links it to revenue functions. One can draw several conclusions from Proposition 1. 

First, consider the case where factor supplies are perfectly elastic (i.e., ߶ ൌ 1 for all j). Since the profit 

share sπ is close to zero (Rotemberg and Woodford 1995, Basu and Fernald 1997), by Proposition 1 the 

returns in the revenue function η, which is equal to ߛ ⁄ߤ , should be approximately unity. Furthermore, 

finding constant RTS in revenue is likely to indicate that there are increasing RTS in production since the 

markup is often greater than 1.05-1.1 (e.g., Bresnahan 1988). Proposition 1 also shows that low RTS in 

the revenue function imply a large profit share. For instance, ߟ ൌ 0.8 implies sπ=20%.4 Similarly, finding 

ߟ  1 is not consistent with profit maximization since ߟ  1 implies a negative profit share. More 

generally, if the profit share implied by an estimate of ߟ is far from the profit share observed in the data, 

then one has a signal that either the statistical or economic model is incorrect. Because Proposition 1 

makes weak assumptions about producer behavior, the profit share serves as a robust non-parametric 

economic diagnostic for statistical estimates of ߟ.  

Second, in the case of ߶ ് 1  for some j, increasing RTS in the revenue function ߟ and a small 

positive profit share sπ can be reconciled by a steep cost (i.e., large ߶). For example, monopsony power or 

a shift premium can result in an upward-sloping labor supply schedule. Likewise, decreasing RTS in 

revenue or production functions can be consistent with a small profit share if ߶ is less than unity, i.e., the 

marginal unit cost of inputs is (locally) declining. Unfortunately, available estimators either do not yield 

an estimate of ߶ or hinge critically on the assumption that ߶ ൌ 1 (see Section 4). Table 2 summarizes the 

relationship between sπ, η and ߶.  

Note that in the case with ߶ ് 1 the cost-based Solow residual does not measure productivity 

correctly because cost shares are not equal to the elasticities of output with respect to corresponding 

inputs. Specifically, the cost-based Solow residual depends on factor ratios and thus can be procyclical 

and serially correlated.  

 In summary, Proposition 1 justifies using the profit share as an economic check to verify that 

statistical estimates of returns to scale make economic sense.5 Put differently, since the parameter ߶ can 

be interpreted as RTS in the cost, RTS in the revenue function η is always less than RTS in the cost but 

the difference is small. Furthermore, since the profit share is typically small, a consistent estimate of RTS 

in the revenue function can inform the researcher about the properties of the cost, specifically ߶. 

Likewise, one can infer η from ߶.  

                                                      
4 Griliches and Hausman (1986) attribute low returns to large, (possibly) serially correlated measurement errors, 
which are hard to handle in the instrumental variables (IV) framework as there are few good instruments to cope 
with measurement errors. It is not clear, however, why measurement errors are so pervasive in some industries and 
not others. 
5 Of course, some caution is warranted since measured profits can be deviate from economic profits.  
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2.2 FIRST ORDER APPROXIMATION  

To make further progress in the analysis of estimated productivity and RTS, I make a few assumptions 

about production, demand, and cost.6 Specifically, the inverse demand function is ܲ௧ ൌ ௧ܩ ൈ  ,ሺܳ௧ሻܦ

where i and t index firms and time, ܲ௧ is the price of the good, ܳ௧ is the quantity of the good, ܩ௧ is a 

separable demand shifter (e.g., quality of a good). The production function is ܳ௧ ൌ ௧ܣ
ఓ ൈ  ሺܼ௧ሻ whereܨ

 ,(௧ is a normalization to simplify notationܣ the power of) ௧ is Hicks-neutral firm-specific technologyܣ

and ܼ௧ is a composite input, which is measured in physical units. The cost of employing ܼ௧ is ܹ௧ ൈ

 is ߛ ,ሺܼ௧ሻ where ܹ௧ is the separable base price of the input. To be consistent with previous notationܥ

local returns to scale in production and ߶ is the elasticity of the cost with respect to the input ܼ௧. The 

case of ߶ ൌ 1 corresponds to supply of ܼ௧ being perfectly elastic. Hence, profits are ߨ௧ ≡ ܻ௧ െ ܹ௧ ൈ

ሺܼ௧ሻ , where ܻ௧ܥ ൌ ܲ௧ܳ௧ is the revenue function. The profit function is (locally) concave in the input if 

and only if  ߛ ⁄ߤ െ ߶ ൌ െߨݏ߶ ൏ 0. Throughout the paper I assume that neither productivity not factor 

prices are observed by the econometrician. However, the econometrician observes revenue (measured in 

dollars) and inputs (measured in physical units). To simplify exposition, I will assume for now that there 

is only one input.  

After log-linearizing the first order conditions, suppressing uninteresting constants, and partialing 

out industry-wide shocks, one obtains the following expressions for profit-maximizing input and revenue: 

௧ݖ ൌ
ଵ

ఎିథ
௧ݓ െ

ଵ

ఎିథ
ሺܽ௧  ݃௧ሻ,  (1) 

௧ݕ ൌ
ఎ

ఎିథ
௧ݓ െ

థ

ఎିథ
ሺܽ௧  ݃௧ሻ,  (2) 

where small letters denote log deviation of the respective variables from steady state (or industry 

averages).7 Note that demand shocks ܩ௧ and technology shocks ܣ௧ are isomorphic and, thus, are not 

identified separately.8 Henceforth, I treat ܩ௧ as if it were a shock to technology and consider only ܣ௧ but 

interpret it more broadly as “productivity” which in fact includes demand and supply side shocks.  

 Note that the system is not defined when ߟ ൌ ߶, which nests perfect competition in product and 

factor markets. In this case, the scale of firm size is not defined in the sense that output must be produced 

only by the most productive firm or a firm with the cheapest inputs in the industry. Given that in the vast 

majority of cases firms set prices, there is dramatic price dispersion even for narrowly defined industries, 

and multiple firms exist in practically any industry, I will ignore the case of ߟ ൌ ߶. 

It will be convenient in further analysis to write (1)-(2) in matrix form:  

                                                      
6 This model of producer behavior is similar to the model analyzed by Marschak and Andrews (1944) and Klette and 
Griliches (1996). 
7 Log-linearization may introduce biases in the estimates if non-linearities are important. See Thursby and Lovell 
(1978). 
8 Under stronger assumptions (e.g. Katayama et al. (2003) and De Loecker 2011) it is possible to separate demand 
and technology shocks. For example, Katayama et al. (2003) assume Bertrand pricing and constant marginal cost to 
identify demand and technology shocks.  
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௧ࢄ ≡ ቂ
௧ݖ
௧ݕ
ቃ ൌ 

ଵ

ఎିథ

ିଵ

ఎିథ
ఎ

ఎିథ

ିథ

ఎିథ

 ቂ
௧ݓ
ܽ௧

ቃ ≡ Λࡲ௧. (3) 

Equations (1) and (2) indicate that output and input demand are increasing in productivity ait and 

decreasing in the factor price wit. Equations (1)-(2) are a first-order log-linear approximation to the 

optimal behavior of firms. This approximation is exact if demand and factor supply are isoelastic and 

production function is Cobb-Douglas. Appendix A illustrates how one can extend (1)-(2) to log-linearized 

CES production function.   

2.3 ON SOURCES OF VARIATION  

Since variation in ait across firms is not controversial (see Bartelsman and Doms 2000), in this section I 

focus on factor price wit as a source of variation in (1)-(2) which helps to address two stylized facts. First, 

inputs and output are not collinear in the data. Second, there is enormous variation in input mixes. For 

example, the interquantile (Q3-Q1) range of log(capital/labor) and log(materials/labor) for Chilean and 

U.S. manufacturing firms is typically above 100% even at four-digit SIC industries. Note that in any 

model that assumes Hicks-neutral productivity such variation in input mixes can happen only if firms face 

different input prices or technology or firms cannot satisfy profit maximizing (cost minimizing) 

conditions (e.g., because of managerial errors).  

This paper does not seek to explain why firms face different input prices. Possible reasons include 

unionization, regulation, location, composition of capital, and subjective beliefs of the management about 

factor prices. Search and information costs result in equilibrium price dispersion even if firms are 

identical ex ante (e.g., Stigler 1961, Salop and Stiglitz 1982, Burdett and Judd 1983, Stahl 1989).  

There is substantial direct evidence on the dispersion of prices even for precisely defined products 

(Stigler 1961, Pratt, Wise and Zeckhauser 1979, Dahlby and West 1986, Abbott 1992, Sorensen 2000). 

Using firm-level U.S. Census data, Abbott (1992) reports that the mean coefficient of variation for output 

prices at 7-digit product codes is at least 55% (see also Roberts and Supina 1996). Even prices of 

homogenous inputs such as cement have significant dispersion at local markets (Abbott 1992, Adams 

1997, Lach 2002, Yoskowitz 2002). For 70% of firms, other firms are the main customers (Fabiani et al. 

2004) and, thus, such price dispersion is an important source of variation in input mixes.  

Likewise, there is voluminous evidence that similar workers are paid different wages (e.g., 

Mortensen 2003 and references cited therein). Abowd et al. (2002) find that approximately 40-50% of 

wage dispersion in France and the state of Washington in U.S. is determined by firm effects. Price 

dispersion in capital/financial markets is less documented yet it exists (see Hortaçsu and Syverson (2004) 

for an example of dispersion of fees charged by mutual index funds). Multiplicity of interest rates also 

suggests that different firms face different prices of capital even within the same industry and location. 
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Furthermore, firms may have different shadow prices of inputs (because of adjustment costs, for example) 

even when they face the same posted market prices for inputs.  

There are alternative explanations for variation in input mixes. Early studies (e.g., Marschak and 

Andrews 1944, Hoch 1961, Zellner et al. 1966) assumed that managerial errors determine the variation in 

input ratios. In another interpretation (e.g., Stigler 1976, McElroy 1987), managerial errors reflect 

constraints known to the management but unobserved by the econometrician.9  

Although the managerial errors theory may be right, it can hardly explain immense variation in 

input mixes. (Recall that the interquantile range of log input ratios is generally above 100%.) In addition, 

all measures of dispersion for input ratios increase with aggregation. It is hard to reconcile these facts 

with managerial errors theory because there is no reason to expect that managerial errors become more 

important with aggregation. In contrast, variation in prices for labor, capital and materials can 

approximately explain the volatility in input mixes.10  

 Differences in interpretation, however, do not generally imply differences in estimates of RTS. 

For example, suppose that factor prices are the same across firms and consider a Cobb-Douglas 

production function with labor Lit and capital Kit inputs and managerial errors ߞ௧
, ௧ߞ

   in the first order 

conditions so that ߚ



ൌ ܴ௧exp	ሺߞ௧
ሻ and ߚ



ൌ ௧ܹexp	ሺߞ௧

 ሻ , where βK and βL are elasticities of the 

revenue function with respect to capital and labor, Yit is revenue, Rt is the cost of capital and Wt is wages. 

After taking logs and ignoring uninteresting constants, one has ݕ௧ ൌ ݇௧  ௧ߞ
 and ݕ௧ ൌ ݈௧  ௧ߞ

 . If one 

assumes firm-specific factor prices, the corresponding first order conditions lead to ݕ௧ ൌ ݇௧   ௧ andݎ

௧ݕ ൌ ݈௧   ௧. Thus, the models are observationally equivalent and give identical estimates ofݓ

parameters in the revenue function. As a result, I treat factor prices as generic shocks to input ratios.  

                                                      
9 Another explanation of variability in input mixes is variation in parameters of the production function. A typical 
approach to estimate models with parameter heterogeneity (e.g., Mairesse and Griliches 1990, Biorn et al. 2002) is 
to use the random coefficients estimator (Swamy 1970) that assumes zero covariance between random coefficients 
and regressors. This assumption is, however, clearly violated in the context of production functions if management 
knows the parameters of its production function. Consider the model in (1)-(2) with no measurement errors, ߤ ൌ 1 
and random firm-specific RTS parameter ߛ such that ߛ~݅݅݀ሺ̅ߛ, ,௧ݓఊଶሻ and covሺߪ ሻߛ ൌ covሺܽ௧, ሻߛ ൌ 0. The 

estimated model is ݕ௧ ൌ ௧ݖߛ  ,௧ݖ௧. It is not hard to find covሺݑ ሻߛ ൎ െ
ൣఊഥమሺఊഥିଵሻሺఊഥିଶሻାఙം

మ൧

ሺఊഥିଵሻమ
൏ 0. Because 

ܿovሺݖ௧, ሻߛ ് 0, the estimator is not consistent and results should be interpreted very carefully. 
10 For example, Abowd et al. (2002) report that the standard deviation of log real hourly wages is 53%. If one takes 
the coefficient of variation as a proxy for the standard deviation of log deviations from the mean, then the standard 
deviation of material prices is 55% (Abbott 1992) at the 7-digit level. At the 4-digit level, the standard deviation is 
likely to be several times larger. Hence, variation in the ratio of prices for labor and materials, which is equal to 
log(labor/materials), can be as large as 100%. Likewise, the standard deviation of log fees in mutual funds is about 
50% (Hortaçsu and Syverson 2004), which, however, can be an upper bound. Hence, variation in the log wage-to-
capital price, which is equal to the log labor-to-capital ratio, can also be as volatile as 100%. Of course, the observed 
variation can be endogenous, yet this calculation is suggestive. Note that this simple calculation ignores possible 
variation in shadow prices which can be considerably larger than the variation in posted prices because shadow 
prices can differ across firms due to adjustment costs, complementarity of inputs, composition of inputs (especially 
vintages of capital), etc.  
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3 COVARIANCE ESTIMATOR 
The previous section and, in particular, system (3) highlight that i) inputs and output are determined 

simultaneously; ii) understanding output/revenue and cost is equally important; iii) productivity and 

factor price shocks should be treated symmetrically. At the same time, optimizing behavior of firms 

imposes a series of restrictions on the behavior of observed choices of firms. In this section, I propose a 

simple estimator which exploits these restrictions to identify and estimate structural parameters (e.g. RTS) 

and, consequently, to impute unobserved productivity. This estimator is based on matching the covariance 

matrix implied by the model to the empirical covariance matrix of observed choices of firms.11 In contrast 

to single equation estimators (e.g., OLS), this structural estimator models outputs and inputs 

simultaneously (system approach) by deriving optimal output and factor demands from a profit 

maximization or cost minimization problem. In this section I explain the intuition behind the estimator, 

which I call the covariance estimator, and discuss identification and estimation.  

3.1 INTUITION 

To illustrate the workings and intuition of the estimator, consider model (1)-(2) and assume—for reasons 

discussed later—that ߶ ൌ 1 and ait and wit have variances ߪଶ and ߪ௪ଶ  with ߩሺܽ௧, ௧ሻݓ ൌ 0. These 

assumptions are restrictive and later I will show that the estimator works under less stringent conditions.  

Because ait and wit are not observed, one cannot run a regression of zit and/or yit on these shocks to 

estimate the RTS in the revenue function ߟ. Note, however, that varሺݖ௧ሻ ൌ ሺߟ െ 1ሻିଶሺߪଶ   ,௪ଶሻߪ

varሺݕ௧ሻ ൌ ሺߟ െ 1ሻିଶሺߪଶ  ,௧ݕ௪ଶሻ, and varሺߪଶߟ ௧ሻݖ ൌ ሺߟ െ 1ሻିଶሺߪଶ  ,ߟ ௪ଶሻ  with unknownsߪߟ ,ଶߪ ௪ଶߪ . 

One can solve this system of equations for η: 

ߟ ൌ
୴ୟ୰ሺ௬ሻିୡ୭୴ሺ௬,௭ሻ

ୡ୭୴ሺ௬,௭ሻି୴ୟ୰ሺ௭ሻ
.  (4) 

Thus, one can estimate η from the observed second moments of the data. This was the insight of the 

seminal paper by Marschak and Andrews (1944). I will call (4) and expressions analogous to (4) the 

covariance (COV) estimator. Why is the estimator working?  

Equations (1)-(2) describe the optimal profit-maximizing behavior of firms and optimization 

imposes restrictions on how firms respond to shocks. Specifically, the assumption of Hicks-neutral 

productivity and perfectly elastic factor supply curve result in the restriction that revenue and input 

demand respond equally strongly to an innovation in productivity. In other words, the coefficient on the 

structural shock ait is the same in equations (1) and (2). Furthermore, the assumption of the perfectly 

elastic factor supply curve implies the restriction that the response of revenue to a shock in the factor 

price wit is η times stronger than the response of the factor demand zit to the factor price shock. Put 

differently, the coefficient on wit in equation (2) is equal to the coefficient on wit in (1) multiplied by η. 

                                                      
11 This approach is also called structural equation modeling, MIMIC, LISREL and other names (see Bollen 1989 for 
a general discussion).  
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The economic restrictions of Hicks-neutral productivity and perfect elasticity of the factor supply are 

complemented with the technical restriction ߩሺܽ௧, ௧ሻݓ ൌ 0. This latter condition ensures that one can 

separate productivity shocks and factor price shocks. If productivity and factor prices are correlated, this 

simple model is not identified.  

This estimator can have an instrumental variables interpretation. Equation (4) can be equivalently 

written as  

ߟ ൌ
ୡ୭୴ሺ௬,௬ି௭ሻ

ୡ୭୴ሺ௭,௬ି௭ሻ
 (5) 

and, hence, ݕ௧ െ  ௧. Because of the Hicks-neutral productivity andݖ ௧ is an instrumental variable forݖ

perfectly elastic factor supply, profit maximization imposes that revenue yit and input zit respond equally 

strongly to productivity shocks ait and, hence, ݕ௧ െ ௧ݖ ∝ ,ሺܽ௧ߩ ௧. Given the assumptionݓ ௧ሻݓ ൌ 0, 

௧ݕ െ  ௧ is correlated with zit and uncorrelated with ait. In this simple case, covariance and instrumentalݖ

variable estimators are equivalent. However, as I will discuss below, explicit instrumental variables like 

௧ݕ െ  ௧ are not always available and typically the instrument depends on an unknown parameter. Inݖ

section 3.3 I consider identification of the covariance estimator in a more general setting.  

3.2 MODEL FRAMEWORK  

The basic model (3) can be extended along several dimensions. First, I specify the dynamics of 

unobserved productivity and factor prices collected in the vector Fit. Second, measurement errors are 

salient in micro-level data sets. To address this important fact, I augment (3) with measurement errors. In 

summary, the general model is  

௧ࢄ ൌ Λࡲ௧  ഥࢄ   ௧,  (6)ࢿ
௧ࡲ ൌ Πࡲ,௧ିଵ    ௧, (7)࣏

where Xit is the vector of n observed variables (inputs and revenue), Fit is the vector of m unobserved 

variables (factor prices, productivity), the matrix Λ summarizes the responses of observed variable to Fit, 

 ௧ is a vector of i.i.d. zero-meanࢿ ,ഥ is a vector of unobserved permanent firm-specific effects for Xitࢄ

measurement or expectations errors, ࣏௧ is a vector of i.i.d. structural zero-mean innovations to Fit, and 

the matrix Π captures the dynamics of Fit.
12 Although in much of previous literature shocks are usually 

assumed to be AR(1), the present setup allows a VAR-type dynamics with potentially many lags. The 

matrix Λ for the n-input case is given in equation (34) in Appendix A. I collect parameters of the model in 

the vector θ and assume here and henceforth that the mapping from θ to Π, Λ, Ω ≡ ௧࣏௧࣏ሺܧ
ᇱ ሻ and Ψ ≡

௧ࢿ௧ࢿሺܧ
ᇱ ሻ  is one-to-one in the admissible domain of θ. Note that while Marshak and Andrews (1944) 

allow for serial correlation in Fit, they do not allow any measurement errors in observed variables.  

                                                      
12 Since dependence of Xit on observed exogenous variables (e.g., time dummies) can be easily eliminated by 
projection methods, I abstract from such dependence without loss of generality. 
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This state space representation of the problem nests many important cases such as dynamic factor 

models (m<n), log-linearized rational expectations models in state-space form and serially correlated 

measurement errors.13 I do not take a stand on time series properties of Fit and the contemporaneous 

correlation of innovations in ࣏௧ as economic theory may have few restrictions on how variables in Fit 

evolve over time or how ࣏௧ is correlated. Note that variables in Fit can be correlated because either Π or 

Ω is not diagonal. Likewise, I do not impose any structure on ࢄഥ.
14  

3.3 IDENTIFICATION  

Global identification of θ requires that there is no rotation matrix T producing ൛Λ෩, Π෩, Ω෩,Ψ෩ൟ ൌ

ሼΛܶ, ܶିଵΠܶ, ܶିଵΩܶᇱିଵ, Ψሽ  that satisfies the restrictions imposed on ሼΛ, Π, Ω,Ψሽ (see Theorem 5 in Tse 

and Anton 1972).15 Profit maximization imposes many restrictions on the matrix Λ and, thus, on 

admissible rotation matrices T. Yet, these restrictions do not eliminate rotational equivalence in (6)-(7). 

Further restrictions on Ω and Π can guarantee identification. The following proposition proves global 

identification for two important special cases. 

Proposition 2. Assume that  
i) the matrix Π is invertible,  
ii) the eigenvalues of Π are in the unit circle,  
iii) the system in (6)-(7) is observable and controllable,  
iv)  ܧሺ࣏௧ሻ ൌ ௧ሻࢿሺܧ ൌ 0 and ܧ൫࣏௧࣏௦

ᇱ ൯ ൌ ࢿ௧࣏൫ܧ
ᇱ ൯ ൌ ௦ࢿ௧ࢿ൫ܧ

ᇱ ൯ ൌ 0  for any t,i,p,j and ݏ ്  ,ݐ
v) firms maximize profits so that the matrix of loadings Λ is as in equation (34) in Appendix A,  
vi) at least one of the factors is supplied in a competitive market.  

Then the model (6)-(7) is uniquely globally identified if  
a) innovations in ࣏௧ are not correlated (i.e., the covariance matrix Ω is diagonal), or 
b) the matrix Π is diagonal (i.e., there are no dynamic cross-variable responses in Fit) 

Proof: see Appendix B. 

The first three assumptions are standard: the system does not have redundant (linearly dependent) 

shocks; unobservables are stationary; and one can back out the behavior of the system if one can control 

                                                      
13 The latter is important in practice because econometricians rarely have reliable estimates of capital stock, effort, 
etc. For example, there are two popular estimates of capital: 1) real capital stock computed by inventory methods; 2) 
book value of fixed assets. In either case, measurement error is likely to be serially correlated. Suppose that the 
econometrician uses a noisy measure of investment such that et, the error in true investment ܫ௧∗, is classical (the 
measurement error can arise from using an investment price index to deflate firm-level investment expenditures). 
The true capital stock evolves according to ܭ௧∗ ൌ ሺ1 െ ∗௧ିଵܭሻߜ  ௧ܭ ௧∗. Then the estimated capital stock isܫ ൌ
ሺ1 െ ௧ିଵܭሻߜ  ௧ܫ ൌ ∗௧ܭ  ∑ ሺ1 െ ሻ௦݁௧ି௦ߜ

ஶ
௦ୀ ൌ ∗௧ܭ  ௧ߝ

 with ߝ௧
 ൌ ሺ1 െ ௧ିଵߝሻߜ

  ݁௧
, that is, measurement error 

௧ߝ
~ܴܣሺ1ሻ. Importantly, serially correlated measurement errors invalidate instrumental variables based on leads/lags 

of inputs/outputs or input mixes. Similarly, true labor input may be measured with serially correlated error because 
of labor hoarding.  
14 The model (6)-(7) has much in common with dynamic factor models. However, in contrast to dynamic factor 
models, the factor loadings embodied in the matrix Λ can be identified under certain conditions and, thus, factors 
can have a structural interpretation. 
15 Local identification of these parameters in the static model (6) and dynamic model (6)-(7) is discussed elsewhere 
(e.g., Hoch 1958, Maravall and Aigner 1977, Maravall 1979, Bollen 1989, Bekker, Merkens and Wansbeek 1994). 
In effect, local identification requires showing that the appropriate Jacobian has full rank.  



 12

unobservables. The assumption that one of the factors is supplied in a perfectly competitive market fixes 

the elasticity of the factor supply curve for other inputs which, in turn, fixes the parameters of the revenue 

function. Note that factor price and productivity can be correlated in both (a) and (b). Identification is 

achieved by imposing restrictions on the correlation of innovations in factor prices and productivity (Ω is 

diagonal) or by imposing restrictions on the propagation of the shocks to productivity and factor prices (Π 

is diagonal). It is also possible to identify θ if combinations of restrictions on Π or Ω are available.16 

Proposition 3 shows how one can generalize this identification result to the case with measurement 

errors.17   

Proposition 3. Suppose that (i) serially correlated measurement errors in observed inputs and outputs 
are not correlated across inputs and outputs at all leads and lags; (ii) measurement errors are not 
correlated with factor prices and productivity and the number of serially correlated measurement errors 
k cannot exceed the number of observed variables n; (iii) serially correlated measurement errors are 
AR(1) and covariance stationary. Then Λ, Π, and Ω identified globally almost everywhere if and only if 
Λ, Π, and Ω are identified in the absence of measurement errors.  
Proof: see Appendix B. 

Note that in Proposition 2 and Proposition 3 I use only time series variation in factor prices and 

productivity to identify parameters of the model. In other words, I do not use variation in ࢄഥ. However, it 

is possible to use restrictions on the distribution of ࢄഥ to achieve identification in otherwise 

underidentified models. For example, one may be willing to impose ࢄഥ ൌ Λࡲഥ with varሺࡲഥሻ being 

diagonal. Such restrictions can be particularly important if between variation is large relative to within 

variation.18  

3.4 ESTIMATION AND INFERENCE 

I assume that the panel of the firms is balanced with t=0,…,T observations for N i.i.d. cross-section.19 I 

collect the parameters of interest in the vector θ, which is identified. I assume that Xit is stationary. The 

estimation strategy is to find θ that minimizes the distance between the appropriate sample covariance 

matrix and the covariance structure implied by θ. I focus on maximum-likelihood methods since they tend 

                                                      
16 Glover and Willems (1974) show that one needs to modify the conditions slightly if observed and latent variables 
can respond contemporaneously for the same set of shocks. 
17 Local identification of models with serially correlated measurement error is discussed in Maravall (1979) and 
Maravall and Aigner (1977). 
18 In applications, it may happen that η, returns to scale in the revenue function, is identified while other parameters 
in θ are not. In such cases, one can impose fairly arbitrary restrictions on unidentified parameters to have a well-
defined estimation problem without affecting the identification of η (see Bollen 1989 for a discussion). If η is 
identified locally but not globally, it may be possible to rule out implausible cases, e.g., η<0. If η is not locally 
identified, one can follow Marschak and Andrews (1944) and put economic bounds on possible values of η. This 
amounts to constructing the set of values that parameters can take for all admissible rotations. 
19 One may use weighting techniques similar in spirit of Olley and Pakes (1995) to control for entry/exit decisions. 
Modeling exit/entry is beyond the scope of this paper.  
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to have somewhat better performance in estimating covariance structures in finite samples (see e.g. Clark 

1996).  

It is convenient for further derivations to stack observed choices for each firm in vector ࢄ ൌ

ሾࢄ
ᇱ … ்ࢄ

ᇱ ሿᇱ where ࢄ௧ ൌ Λࡲ௧  ഥࢄ  ௧ࡲ ௧ andࢿ ൌ Πࡲ,௧ିଵ   ௧. Suppose that measurement error࣏

 ௧ are normally distributed and serially uncorrelated and that structural shocks࣏ ௧ and structural shocksࢿ

and measurement errors are not correlated at all leads and lags:  

࣏ ൌ ሾ࣏
ᇱ … ்࣏

ᇱ ሿᇱ~ܰሺ0, Ω⊗   ,ሻ்ܫ

ࢿ ൌ ሾࢿ
ᇱ … ்ࢿ

ᇱ ሿᇱ~ܰሺ0,Ψ⊗   ,ሻ்ܫ

ࢿ࣏ሺܧ
ᇱሻ ൌ 0 (i.e.,).  

Provided ࢄഥ ൌ 0, one can find that ࢄ~ܰሺ0,Φ்ሻ where  

Φ்ሺߠሻ ≡ ࢄࢄሺܧ
ᇱሻ ൌ ൦

Σ
Σଵ
⋮

⋱

Σ் ⋯ Σଵ Σ

൪ ൌ ൦

ΛΓΛᇱ  Ψ
ΛΓΠΛᇱ

⋮
⋱

ΛΓΠ்Λᇱ ⋯ ΛΓΠΛᇱ ΛΓΛᇱ  Ψ

൪,   (8) 

with Σ௦ ൌ ,௧ି௦ࢄ௧ࢄሺܧ
ᇱ ሻ is the sth autocovariance of observed choices of firms, Γ௦ ൌ ,௧ି௦ࡲ௧ࡲሺܧ

ᇱ ሻ is the sth 

autocovariance of unobserved productivity and factor prices, Γ: Γ ൌ ΠΓΠᇱ  Ω is the variance-

covariance matrix of unobserved productivity and factor prices. The maximum likelihood estimate is  

ߠ ൌ argminఏ ∑ ݈ሺࢄ, ሻߠ
ே
ୀଵ  where the log likelihood is given by  

∑ ݈ሺࢄ, ሻߠ
ே
ୀଵ ൌ െ0.5ܰ ln |Φ்ሺߠሻ| െ 0.5ܰ	trace൛Φ ்Φ்ሺߠሻିଵൟ   (9)  ݐݏ݊ܿ

where Φ் ൌ ܰିଵ ∑ ࢄࢄ
ᇱே

ୀଵ  is the sample analogue of Φ்ሺߠሻ.
20,21  

For the case where steady state levels of inputs and output are treated as random, suppose that 

,ഥ~ܰሺ0ࢄ Ξሻ and ܧሺࢄഥ࢛
ᇱሻ ൌ 0 and observe that Φ෩்ሺߠሻ ൌ ࢄࢄሺܧ

ᇱሻ ൌ Φ்ሺߠሻ  ሺΞ⊗ ்ܬ்ܬ
ᇱ ሻ, where ்ܬ is 

the ሺܶ  1ሻ ൈ 1 vector of ones. It is straightforward to find that the associated likelihood satisfies 

∑ ݈ሺࢄ, ሻߠ
ே
ୀଵ ൌ െ0.5ܰ ln |Φ෩்ሺߠሻ| െ 0.5ܰ	trace൛Φ ்Φ෩்ሺߠሻିଵൟ    .ݐݏ݊ܿ

If ࢄഥ is treated as a fixed parameter, one can transform the data to eliminate the incidental 

parameters ࢄഥ, e.g., apply first differencing as in Hsiao et al. (2002). The log-likelihood for first-

differenced ࢄ satisfies: 

 ∑ ݈ሺࢄܦ, ሻߠ
ே
ୀଵ ൌ െ0.5ܰ ln |ᇱܦሻߠΦ்ሺܦ| െ 0.5ܰ	trace൛൫ܦΦ்ܦᇱ൯ሺܦΦ்ሺߠሻܦᇱሻିଵൟ    ݐݏ݊ܿ

                                                      
20 A popular alternative is generalized method of moments (GMM) with the objective function  

ܬ ൌ ܰൣΦ்
∗ െ Φ்

∗ ሺߠሻ൧
ᇱ
ܹൣΦ்

∗ െ Φ்
∗ ሺߠሻ൧ 

where Φ்
ᇱ∗ ≡ ቂ݄ܿ݁ݒሺΣሻᇱ		ܿ݁ݒሺΣଵሻᇱ 	… ൫Σ൯ܿ݁ݒ	

ᇱ
ቃ, Φ்

∗  is a sample estimate of Φ்
∗ , W is a weighting matrix of 

conformable size. GMM and ML are asymptotically equivalent (Anderson and Amemiya 1988). If factor prices and 
productivity are uncorrelated, GMM and MLE are equivalent to IV estimator with (if necessary, leads or lags of) 
input ratios as instruments (Schmidt 1988). The key advantage of using GMM is that it may be more robust to 
distributional assumptions about unobserved shocks.  
21 Since rational expectations models can be represented in a state-space form like (6)-(7), it is an easy step to extend 
(9) to estimate models with elements of rational expectations (see Appendix A). 
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where ܦ is the ܰܶ ൈ ܰሺܶ  1ሻ first-difference matrix. Alternatively, one can use a conditional likelihood 

approach, which under certain conditions is equivalent to applying a transformation (Arellano 2003). 

In the course of specification searches, one can use overidentifying restrictions tests since 

dynamic models such as (6)-(7) are typically overidentified. If the researcher is not satisfied with standard 

asymptotic inference, he or she can evaluate the distribution of a test statistic using bootstrap procedures 

(e.g., Horowitz 1998) or rely on a statistic that is more robust to non-normality in finite samples (see 

Bollen 1989).22  

3.5 DISCUSSION 

The structural approach embodied in the suggested estimator is built on earlier works by Marschak and 

Andrews (1944) and Schmidt (1988). I extend their static full-information maximum likelihood (FIML) 

estimators to dynamic settings and improve upon their FIML in several respects. First, I allow factor 

prices to be correlated with productivity. This correlation can arise because of rent/profit sharing, 

complementarity of worker skills and technology, monopsony power, overtime premia, etc. In contrast, 

the static models considered in previous studies are not identified if ܽ௧ and factor prices are correlated. 

Furthermore, many popular dynamic estimators of returns to scale do not allow correlation between 

productivity and factor prices or innovations in productivity and factor prices. Second, my extension 

permits i.i.d. and serially correlated measurement errors while static FIML is not identified if there is any 

measurement error. Third, I show that static and dynamic models can be identified and estimated when 

factor markets are imperfectly competitive, i.e., factor supply curves are not perfectly elastic. Specifically, 

I show that having at least one input with a perfectly elastic factor supply is sufficient for identification. 

Furthermore, I show in Appendix A that the covariance estimator can be extended to cases where a profit-

maximizing firm faces adjustment costs or production function is constant elasticity of substitution.  

There is a cost of using the covariance estimator. Like any other FIML estimator, the COV 

estimator is more sensitive to misspecification than single-equation methods (e.g., OLS). Since the COV 

estimator works with higher moments, it may be more sensitive to outliers.  

4 ALTERNATIVE ESTIMATORS OF THE RETURNS TO SCALE 
In this section I analyze alternative estimators. I start with OLS to highlight the problems of estimating 

production (revenue) functions and then proceed with the analysis of popular solutions to these problems. 

                                                      
22 Monte-Carlo experiments (not reported here) suggest that finite sample performance of the COV estimator can be 
improved if a relatively small number of moments (sufficient for identification) are used in estimation. This 
enhancement is possible because low-order autocovariances can be estimated more precisely than in the presented 
formulation. For example, the first-order autocovaraince can be estimated using NT observations while in the 
presented formulation only N observations are used for the estimation. This issue is similar to choosing optimal 
number of moments in GMM application and is left for future research.  
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To contrast estimators, I use the dynamic model (6)-(7) with observed input z and revenue y, 

measurement errors ߝ௧
௭ , ௧ߝ

௬ , unobserved factor price ݓ௧, and unobserved productivity ܽ௧:  

௧ݖ ൌ
ଵ

ఎିథ
௧ݓ െ

ଵ

ఎିథ
ܽ௧  ௧ߝ

௭ , (10) 

௧ݕ ൌ
ఎ

ఎିథ
௧ݓ െ

థ

ఎିథ
ܽ௧  ௧ߝ

௬ , (11) 

,௧ାଵݓ ൌ ௧ݓ௪ߩ  ߭௧
௪, (12) 

ܽ,௧ାଵ ൌ ܽ௧ߩ  ߭௧
 . (13) 

To simplify the presentation, I abstract from firm-specific effects. The estimated equation is  

௧ݕ ൌ ௧ݖߟ  ܽ௧  ௧ߝ
௬ ൌ ௧ݖߟ   (14) .ݎݎݎ݁

This model makes exposition clear, yet my conclusions apply to more realistic cases as well.  

4.1 OLS 

Consider a firm characterized by (10)-(13) and assume that variables are measured without error and ait 

and wit are uncorrelated i.i.d. zero-mean shocks with ߩ ൌ 0 and ߩ௪ ൌ 0 and variances ߪଶ  and ߪ௪ଶ .23 

Using the structural equations in (10)-(13), I find the probability limit of ̂ߟைௌ in (14):  

plim	̂ߟைௌ ൌ ߟ  ሺ߶ െ ሻߟ
ఙೌమ ఙೢమ⁄

ଵାఙೌ
మ ఙೢ

మ⁄
  .ߟ

The upward bias in the OLS estimates is “the transmission bias” identified by Marschak and Andrews 

(1944). This bias, however, can be small. By Proposition 1, ሺ߶ െ ଶߪሻߟ ሺߪଶ  ⁄௪ଶሻߪ ൏ ሺ߶ െ ሻߟ ൌ  గ ifݏ߶

wage and productivity shocks are uncorrelated. Since the profit share is 3% or less (e.g., Basu and 

Fernald, 1997) and ߶ is likely to be no greater than 1.5, the bias is positive but likely to be smaller than 

0.045. Intuitively, the OLS estimate is between η and ߶. Because these two quantities are close to each 

other, there is only a narrow range in which the OLS estimate can fall. Even if wage and productivity 

shocks are correlated, the asymptotic bias is likely to be small.24 The same conclusion is likely to hold for 

cases with multiple inputs.25 A relatively small bias in RTS, however, does not imply a small bias in the 

OLS estimate of the coefficient for a given input. Put differently, an upward bias in one of the coefficients 

                                                      
23 If firm-specific productivity is time invariant, then one can use panel data techniques to control productivity with 
firm-specific fixed effects (FE). This happy situation is not universally applicable and FE is not consistent if 
productivity is time varying. Furthermore, as Griliches and Mairesse (1995) observe, FE aggravates other problems 
(e.g., attenuation bias of measurement errors) precisely because of assuming time invariant differences in 
productivity across firms. 
24 If wage and productivity shocks are correlated, the asymptotic bias is ሺ߶ െ ଶߪሻሺߟ െ ଶߪ௪ሻ/ሺߪߪߩ  ௪ଶߪ െ
 ௪ሻ where ρ ≡ ρ(ait,wit). The OLS estimate of η can exceed ߶ if and only if –ρ > σw/σa or fall below η if andߪߪߩ2
only if ρ > σa/σw. The first case requires a negative correlation between productivity and factor price, which is a 
possible but a less likely case. The second case is more plausible but it still requires that productivity be less volatile 
than base wage. Bartelsman and Doms (2000) report that the ratio of the ninth decile of the distribution of ait across 
firms to the first decile is typically about two to three. Juhn et al. (1993) report that the log wage differential between 
the 90th and 10th percentiles in the private sector is about 1.5 and the differential is about 1.1 after controlling for 
observed labor force characteristics. Hence, σa/σw is likely to be large. If the correlation between ait and wit is in the 
range (–σw/σa ,σa/σw), the bound presented above is still appropriate, i.e., the bias is likely to be less than 0.045. 
25 The expression for the bias becomes complicated with multiple inputs and the upper bound for the bias depends 
on the elasticities of cost for specific inputs and relative variability of factor prices.  
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is offset by a downward bias in other coefficients. This result, however, can be distorted by measurement 

errors. 

Using (10)-(11), one can also show that the measured productivity shock ොܽ௧ ≡ ௧ݕ െ  ௧ hasݖߟ̂

varሺ ොܽ௧ሻ ൌ ଶߪ௪ଶߪ ሺߪଶ  ⁄௪ଶሻߪ ൏ varሺܽ௧ሻ and  ߩሺ ොܽ௧, ܽ௧ሻ ൌ ሺ1  ௪ଶሻି.ହߪ/ଶߪ ൏ 1. That is, the measured 

productivity is necessarily less volatile than and imperfectly correlated with the true productivity.26  

4.2 IV/GMM ESTIMATORS 

The transmission bias can be eliminated if the researcher has an instrumental variable (IV) explaining 

variation in zit unrelated to productivity shocks ܽ௧. In the simple setup of uncorrelated wit and ܽ௧, the best 

instrument is ݓ௧, the price of zit. The problem is that factor prices wit are almost never collected and 

therefore such an IV is infeasible in the vast majority of cases. To rectify this problem, Schmidt (1988) 

suggests using input/output ratios as instruments, e.g., ݕ௧ െ -௧ in (5). If the production function is Cobbݖ

Douglas, then Schmidt’s IV (SIV) is identical to the IV estimator with factor prices as instruments. 

However, SIV is not consistent if factor prices and productivity are correlated, supply curve for at least 

one of the factors is not perfectly elastic (i.e., ߶ ് 1), or if either the output (revenue) or inputs are 

measured with a serially correlated error. All of these cases are empirically important. 

Alternatively, Blundell and Bond (1998, 1999, henceforth BB) suggest (i) using transformations 

of the variables to convert ܽ௧ into an innovation ߭௧
  in (14) and (ii) using lags of inputs and outputs as 

instruments. Specifically, BB suggest two types of moment conditions: levels and differences.27 Define 

௧ߴ ≡ ௧ݕ െ ,௧ିଵݕߩ െ ௧ݖߟ   ,௧ିଵ, the residual from the quasi-differenced revenue function (14). Theݖߟߩ

differences moment condition is ܧሺΔߴ௧ݏ௧ሻ ൌ 0, where ݏ௧ is any combination of  ݕ,௧ି, ,,௧ିݖ ݆  3. The 

levels moment condition is ܧሺߴ௧ݏ௧ሻ ൌ 0, where ݏ௧ is any combination of Δݕ,௧ି, Δݖ,௧ି, ݆  2. Since 

productivity is an AR(1) process by assumption, the two sets of moment conditions are valid. Two 

options are available for estimation:  

Restricted: ݕ௧ ൌ ,௧ିଵݕߩ  ௧ݖߟ െ ,௧ିଵݖߟߩ   (15)  ݎݎݎ݁
Unrestricted: ݕ௧ ൌ ܾଵݕ,௧ିଵ  ܾଶݖ௧  ܾଷݖ,௧ିଵ   (16)  ݎݎݎ݁

where b1, b2, b3 are free parameters and one can take ܾଶ as ̂ߟ.  

The following result can be proven for the restricted specification:  

Proposition 4. Consider profit-maximizing firms as in (6)-(7) and estimate the production (revenue) 
function using the restricted specification (15) of the BB estimator. Then the model is not globally 
identified. In particular, the model has multiple locally-identified solutions, provided that the matrix П 

                                                      
26 Note that, for example, correlation does not depend on ሺ߶ െ  ሻ as long as it is non-zero because productivity andߟ
factor price shocks are amplified in the same proportion and comovement between measured and true shocks 
depends only on the ratio of volatilities of productivity and factor price shocks. 
27 Since Arellano and Bond (1991) consider a subset of moments in Blundell-Bond estimator the subsequent 
discussion applies to Arellano-Bond estimator as well.  
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has distinct eigenvalues. The number of solutions is no greater than n+1 where n is the number of inputs. 
If the matrix П has repeated eigenvalues, then the model is not identified.  
Proof: see Appendix B. 

To get the intuition behind this result, note that profit maximization imposes ݕ௧ െ ௧ݖ߶ ∝  ௧ andݓ

௧ݕ െ ௧ݖߟ ∝ ܽ௧. After appropriate quasi-differencing, each of these expressions is proportional to a 

serially uncorrelated shock and hence two sets of parameter values satisfy the moment condition:  

Solution #1: ߩො ൌ ,ߩ ߟ̂ ൌ ௧ߴ which yields  ߟ ൌ ߭௧
 ,  (17) 

Solution #2: ߩො ൌ ,௪ߩ ߟ̂ ൌ ߶ which yields ߴ௧ ൌ ߭௧
௪.  (18) 

Thus, the objective function of the estimator in this simple case has two local minima. The standard 

prescription is to choose a solution that gives the global minimum of some objective function (e.g., 

residual sum of squares), yet this heuristic may choose the incorrect solution #2. It may be hard to rule out 

some of the solutions on economic grounds as both solutions can be appealing. Furthermore, since the 

empirically observed profit share is small, ߟ is likely to be close to ߶ and, hence, the estimator may be 

poorly identified even locally. Critically, the choice of the solution determines what shocks are labeled as 

productivity shocks. For example, if solution #2 is selected, then factor price shocks are interpreted as 

productivity shocks.  

The consequences of having multiple solutions become particularly acute in the unrestricted 

specification (16) since it is possible to take linear combinations of solutions such as (17) and (18) so that 

the model is not identified even locally; there is a continuum of solutions. The following proposition 

shows this formally.  

Proposition 5. Consider profit-maximizing firms as in (6)-(7) or in a modification of (6)-(7) that allows 
for a contemporaneous response of observed variables to innovations in Fit. Then in the unrestricted 
specification, the Jacobian of the moment conditions (either in levels or differences or both) based on 
lags of inputs or revenue or their differences does not have full rank.  
Proof: see Appendix B. 

Note that the problem highlighted by Propositions 4 and 5 is not in the weak correlation of lags of 

variables with their current values (which is the point addressed by using level moment conditions). The 

reduced rank problem arises because profit maximization imposes restrictions on how inputs and outputs 

comove over time so that some moments are collinear. In other words, one cannot treat choices of firms 

as independent. Optimization not only ensures the simultaneity in the choice of inputs and output but it 

also puts a precise structure on how the outcomes are related to each other. Such relationship in the 

context of profit-maximizing firms is so tight that observed choices (moment conditions) are linearly 

dependent. Furthermore, I show in Appendix A that, to a first order approximation, BB can be poorly 
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identified even when it is costly to adjust inputs. It is critical to use the restricted specification to attenuate 

the problem of weak identification. 28  

4.3 INVERSION (CONTROL FUNCTION) ESTIMATORS 

In this section I consider inversion (or control function, henceforth ICF) estimators that use demands for 

inputs, investment or other observable choices of firms to construct a proxy for firm’s productivity and 

condition inputs in the production (revenue) function on the proxy. A typical regression in this control-

function approach is  

௧ݕ ൌ ௧ݖߟ  ߣ ܽ௧   (19)  ,ݎݎݎ݁

where ܽ௧ is a proxy for the productivity of a firm. The critical assumption of these estimators is that the 

mapping (inversion function) from observed characteristics to productivity (or its proxy) is non-

stochastic. In other words, there is a one-to-one mapping between e.g. investment and productivity and by 

observing investment one can infer productivity. The simple model presented in (10)-(13), however, 

suggests that, if there is no variation other than ܽ௧, parameter 	ߟ in (19) is not identified if ܽ௧ is a good 

measure of ܽ௧. On the other hand, if there is variation in factor prices ݓ௧ which can identify ߟ in (19), 

then the inversion breaks down because there is no one-to-one mapping between observed choices of 

firms and productivity. For example, investment depends not only on productivity but also on the price of 

capital. Indeed, given the simple model in (10)-(13), input choices depend not only on productivity but 

also on factor prices. As a result, when one uses an inversion, a constructed proxy ܽ௧ is a combination of 

ܽ௧ and factor prices ݓ௧.  In appendix A, I show this formally for the Levinsohn-Petrin (2003, henceforth 

LP) estimator but my conclusions are also relevant for similar estimators (e.g., Olley and Pakes 1996, 

Pavcnik 2002). In short, there is potential internal inconsistency in these estimators. 29  

                                                      
28 The BB estimator can be identified from nonlinearities in decision rules captured by second-order effects. In 
addition, one may expect a better performance of the BB estimator if shocks to factor prices have higher orders of 
correlation than shocks to productivity. For example, factor prices with AR(2) structure are sufficient to guarantee 
identification of the BB estimator if productivity is AR(1). However, if the roots (other than the largest root) of the 
lag polynomial for factor prices are small, the BB moments can be almost collinear in finite samples and the 
estimator can behave erratically. Furthermore, there is no a priori reason to believe that wage shocks have a higher 
order of autocorrelation than productivity shocks. Likewise, identification from second-order effects can be fragile. 
BB can be identified if it is costly to adjust all inputs.  
29 Olley and Pakes (1996) for example use investment to construct a productivity proxy and thus avoid internal 
inconsistency evident in the LP estimator since investment does not enter the revenue or production function 
directly. Yet, Olley-Pakes and other similar estimators still require factor prices to be the same across firms to allow 
for one-to-one inversion from observed choices of firms (e.g., investment, materials) to productivity. Likewise, 
measurement errors can undermine the inversion. Therefore, identification problems of the ICF estimators could be 
less striking than in LP but fundamentally these problems are not resolved as long as factor prices vary across firms 
or there are non-negligible measurement errors.  
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What are the consequences of ignoring variation in factor prices? Consider a simple case of one 

input with perfectly elastic supply (߶ ൌ 1)30 and ܽ௧ ൌ ܽ௧   ௧ as a control function in (19) whereݓ߯

ሺߩ ܽ௧, ௧ሻݓ ് 0 if ߯ ് 0. Using projection methods, one can find that estimating (19) by OLS yields  

plim	̂ߟூி
ᇱ ൌ ߟ  ሺ1 െ ሻߟ

ఞ

ଵାఞ
. 

 Clearly, the estimated coefficient is inconsistent unless ߯ ൌ 0. As I show in Appendix A for the LP 

estimator, it is likely that ߯ is positive and ̂ߟூி
ᇱ  is biased upward. When ߯ increases, the bias in the ICF 

estimate increases. However, for small χ, inversion is likely to lead to large standard errors since variation 

of zit condition on ait is small. (To reiterate, if ߯ ൌ 0, ICF is not identified.) Hence, for reasonably small χ, 

ICF can have a smaller bias than OLS does.31 Using nonparametric techniques or polynomials to do the 

inversion does not resolve the identification problem in (19) because identification of ICF estimators does 

not depend on the functional forms. Furthermore, this exercise shows that ICF estimators cannot have 

productivity shocks correlated with factor prices.  

Measurement errors present another problem in the ICF estimators because the assumption of 

non-stochastic inversion of observable choices does not hold and upward biases are likely to arise. More 

generally, conditioning on a proxy variable contaminated with measurement error leads to inconsistent 

estimates. To get intuition, consider a simple case of one input and ܽ௧ ൌ ܽ௧   ௧  as a control functionߝ

in (19), where ߝ௧~݅݅݀ሺ0,  ఌଶሻ is a classical measurement error. It follows thatߪ

plim	̂ߟூி
ᇱᇱ ൌ ߟ  ሺ1 െ ሻߟ

ఙೌమఙഄమ

ఙೌ
మఙೢ

మାሺఙೌ
మఙೢ

మ ሻఙഄ
మ.   

Clearly, this estimate is not consistent unless ߪఌଶ ൌ 0 but ߟ is not identified in (19) if ߪఌଶ ൌ 0. Intuitively, 

because zit is correlated with ait, the attenuation bias in the estimate of ߣ in (19) translates into upward 

bias in the estimate of η. Note that the bias in ̂ߟூி
ᇱᇱ  is strictly increasing in ߪఌଶ and, as informativeness of 

ܽ௧ falls (i.e., ߪఌଶ ⟶ ∞), the probability limit of ̂ߟூி
ᇱᇱ  converges to the probability limit of ̂ߟைௌ. Thus, 

measurement error in the productivity proxy leads to inconsistent estimates of η although the bias is 

smaller than in the case of OLS estimates. 

Overall, ICF estimators can be a tenuous solution to the transmission bias problem because they 

ignore the variation in input mixes and/or measurement errors in inputs. Specifically, ICF estimates of 

RTS are likely to be biased upward, although the bias could be smaller than in OLS.  

                                                      
30 This scenario could be interpreted as a case when a researcher estimates a value added function and observes labor 
input and materials and capital is a negligible input. The number of inputs is kept at minimum to make exposition 
clear and concise. Observed materials are used to construct ܽ௧, a proxy for productivity.  
31 If ߯ is large, the OLS bias ሺ1 െ ଶߪሻሺߟ ⁄௪ଶߪ ሻ/ሺ1  ଶߪ ⁄௪ଶߪ ሻ can be smaller than the inversion estimator bias 
ሺ1 െ ሻ߯ߟ ሺ1  ߯ሻ⁄ . 



 20

5 MONTE CARLO EXPERIMENTS 
In this section I run a series of Monte Carlo experiments to evaluate the performance of the considered 

estimators. In each of these experiments, I draw factor prices, productivity and other shocks from the 

normal distribution and for given realizations of the shocks I compute profit maximizing choices of 

revenue and inputs. Starting values of shocks are drawn from the corresponding unconditional 

distributions. For each replication, I generate a panel of 1,000 firms observed for 10 periods, which is 

close to typical sizes in applied work. I feed the generated data into various estimators and compute the 

estimates for structural parameters. I repeat the procedure 1,000 times and report median bias, standard 

deviation and root mean squared error (MSE) for each of the considered estimators.  

In all experiments, RTS is ߛ ൌ 1.1, which is consistent with the estimates of RTS from reports 

compiled by engineers (e.g., Pratten 1988), and the markup is ߤ ൌ 2. RTS in the revenue function is 

ߟ ൌ ߛ ⁄ߤ ൌ 0.55. Factors are supplied in perfectly competitive markets unless specified otherwise. I 

choose a large markup to contrast the performance of the estimators (recall that bias increases in profit 

share which is 1 െ  lower) ߟ in the considered case). I will also illustrate later how higher values of ߟ

values of ߤ) affect the results.  

I consider the following estimators: OLS, fixed effects (FE), Schmidt’s instrumental variables 

(SIV), Blundell-Bond (BB), COV and, where possible, Levinsohn-Petrin (LP). I use STATA’s commands 

xtabond2 and levpet for the BB and LP estimators, respectively. Schmidt’s (1988) IV estimator uses (if 

necessary leads or lags of) input ratios as instruments for inputs. In designing COV estimator, I impose 

restrictions that are relevant for the given data generating process. Identification of the covariance 

estimator is ensured by Propositions 2 and 3.  

These simulations ignore potentially important non-convexities and discreteness in firms’ 

decisions. This omission is deliberate as I want to contrast the performance of the estimators in the 

simplest settings where intuition is clear. Furthermore, it is hard to expect an estimator to perform well in 

complex settings when it fails in simple ones.  

5.1 ONE-INPUT/ONE-OUTPUT 

The data generating process (DGP) for this set of experiments is given in (10)-(13). I start with the 

simplest calibration that allows no measurement error (Panel A, Table 3). SIV with ሺݕ௧ െ  ௧ሻ as theݖ

instrument for zit is consistent. Note, however, that COV is overidentified while SIV is exactly identified 

and thus SIV has larger variance than COV.32 OLS and FE have a predictably large bias in the estimated 

RTS. Although BB has a smaller bias than OLS, the reduction in the bias is small and the standard 

deviation of the estimates increases substantially. Figure 1 (Panel A) presents the kernel densities of the 

                                                      
32 In fact, SIV does not have even first moments because it is exactly identified (Kinal 1980). It is an easy extension 
to make SIV overidentified by using leads or lags of input ratios wherever appropriate.  
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estimates. In agreement with my theoretical predictions, the density of the BB estimator is essentially flat, 

which is typical for all experiments and parameterizations that I consider.  

Next, I add measurement error to y and z (Panel B, Table 3). SIV with ሺݕ,௧ିଵ െ  ,௧ିଵሻ as theݖ

instrument is consistent but it has standard deviation larger than that of COV. BB is considerably worse 

than FE in terms of MSE. Even OLS has a smaller MSE than BB. The somewhat better performance of 

OLS and FE can be explained by the fact that the measurement error attenuation (downward bias) 

partially offsets the upward transmission bias. This is particularly important for FE because the signal to 

noise ratio for FE falls more than that for OLS (Griliches and Hausman 1986).  

In the next experiment, I add serially correlated measurement errors to the input zit (Panel C, 

Table 3). In particular, I assume that the measurement error is ߝ௧
௭ ൌ ,௧ିଵߝ௭ߩ

௭  ݁௧ with ߩ௭ ൌ 0.8, ଶߪ ൌ 1. 

Note that SIV is not consistent because the input/output ratio is correlated with the measurement error 

and, consequently, the SIV’s instrument is correlated with the error term in the revenue function at all 

leads and lags. Serial correlation of the measurement error deteriorates the signal to noise ratio and the 

attenuation bias becomes stronger. The performance of BB (quasi-differenced twice) remains poor: the 

bias and standard error are large.  

Finally I consider the case when the factor price and productivity shocks are positively correlated 

(Panel D, Table 3). Specifically, I set ߩሺܽ௧, ௧ሻݓ ൌ 0.7. This correlation invalidates the SIV estimator 

because any lead/lag of ሺݕ௧ െ  ௧ሻ is correlated with the residual in the revenue function. To highlight theݖ

consequences of the correlation, I assume no measurement errors. Because ߩሺܽ௧, ௧ሻݓ ് 0, SIV has a 

very large downward bias so that the estimate of RTS is negative. COV is consistent. Note that the bias in 

OLS, FE and BB estimates of RTS increases considerably because there is less exogenous variation in 

factor prices. FE is more biased than BB but FE dominates BB in terms of MSE.  

In all simulations productivity measured according to OLS, FE or BB estimates is poorly 

correlated with the true productivity. Furthermore, ොܽ௧
ைௌ, productivity implied by OLS estimates, is more 

correlated with true productivity ait than productivity measures implied by FE or BB. SIV provides a good 

correlation only when it is consistent. In contrast, COV estimates yield productivity measures that are 

highly correlated with true productivity.  

5.2 MULTI-INPUT/ONE-OUTPUT 

In this section I consider a more realistic setup with multiple inputs (capital ݇, labor ݈ and materials ݉). 

The data generating process is given by (40)-(50) in Appendix A (section A6) and the estimated revenue 

function is: 

௧ݕ ൌ ݇௧ߚ  ݈௧ߚ  ெ݉௧ߚ   (20)  ݎݎݎ݁

where ߟ ൌ ߚ  ߚ  ߚ ெ is RTS in revenue. I setߚ ൌ ,ߟ0.1 ߚ ൌ ,ߟ0.2 ெߚ ൌ  I assume diagonal Ω .ߟ0.7

and Π, i.e., factor price and productivity are uncorrelated. Because capital is predetermined at time t, the 
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appropriate instrument for capital in SIV is ൫ݕ,௧ାଵ െ ݇,௧ାଵ൯ ൌ െሺߟ െ 1 െ ሻିଵ߭,௧ାଵߚ
   ,௧ାଵ  that isݎ

uncorrelated with ܽ,௧ିଵ and ߭௧
 .33  

In the first experiment, I consider the case with no measurement error (Panel A, Table 4). COV 

has the smallest median bias and MSE. SIV has no bias in estimated RTS in the revenue function η but 

the variance of the estimate is large (recall that SIV is exactly identified). The LP estimator does better 

than OLS but LP still has a sizable upward bias, which is consistent with my theoretical predictions. 

Furthermore, computationally simpler FE has performance very close to that of the LP estimator. The BB 

estimator has a large negative bias in the coefficient on materials and a large upward bias on the 

coefficient on labor. Nonetheless, BB has a relatively small bias in the estimated RTS. I plot the kernel 

density of the estimators in Figure 1 (Panel B). Observe that the density of the LP estimator almost 

coincides with FE’s density. Also note the flat density of the BB estimator.  

To show the importance of the small profit share for the estimate of the bias, I vary the demand 

elasticity so that profit share ranges from 50% to 0.1%. Figure 2 plots the bias as a function of the profit 

share. Note that BB, SIV, and LP reduce the bias relative to OLS but as profit share falls these estimators 

yield only a minor reduction in the bias. Interestingly, LP only marginally improves upon FE. Given that 

LP and BB tend to have larger variance than OLS, it is not clear if popular solutions to the transmission 

bias are better in terms of MSE than the OLS estimate.  

In the next experiment, I add a small measurement error to inputs and revenue to assess the 

sensitivity of BB and inversion-based LP to measurement errors (Panel B, Table 4). Predictably, the 

attenuation bias partially offsets the transmission bias and, thus, the estimates of RTS are less biased than 

in the absence of measurement errors. Nonetheless, BB has an increased bias because one has to take 

more distant lags in the moment conditions. This greatly deteriorates the performance of the estimator. 

Although the LP estimator has a smaller bias in the estimated RTS η, the upward bias in the coefficient on 

materials is reallocated to the upward bias in the coefficients on capital and labor. Overall, LP is similar to 

FE. Only SIV and COV yield consistent estimates in this experiment.  

Next I examine the case with an upward-sloping labor supply curve. I set the elasticity of the 

labor cost to ߶ ൌ 1.5 and I assume no measurement error (Panel C, Table 4). Importantly, although the 

base wage ln ܹ௧
 is uncorrelated with productivity ait, the log of wage ܹ௧

ܮ௧
థିଵ is correlated with ait. This 

correlation per se does not undermine BB or LP estimators but they continue to have identification 

problems due to reduced rank of moment conditions (BB) or variable factor prices invalidating one-to-one 

inversion from observed actions/inputs to productivity (LP). In contrast, SIV is not consistent precisely 

due to this correlation. Strikingly, the correlation between true productivity and productivity measured 

                                                      
33 Timing of shocks modifies the moments used in the BB estimator. However, the fact that output, labor and 
materials are determined simultaneously and the response of labor, materials and revenue to υa is identical leads to 
the reduced rank problem for the BB estimator (see proof of Proposition 5).  
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according to SIV estimates becomes negative in this scenario. The OLS, BB and FE estimates exceed 

unity although the true RTS in the revenue function is 0.55. Only COV estimates the parameters 

consistently and produces good measures of implied productivity.  

In the next series of experiments, I assume quadratic costs of adjustment for capital and keep the 

rest of the assumptions unchanged. In brief, the firm solves the following dynamic problem:  

maxܧ ∑ ቀ ܻ௧ െ ܴ௧ܫ௧ െ ܹ௧ܮ௧ െ ܲ௧
ெܯ௧ െ

భ
మ
߰൫ܫ௧ ,௧ିଵܭ െ ⁄ߜ ൯

ଶ
,௧ିଵቁܭ

ஶ
௧ୀ   (21) 

s.t. ܻ௧ ൌ ,௧ିଵܭ௧ܣ
ఉ಼ ௧ܮ

ఉಽܯ௧
ఉಾ,  

௧ܭ ൌ ሺ1 െ ,௧ିଵܭሻߜ    ,௧ܫ

ܹ௧ ൌ ܹ௧
ܮ௧

థିଵ, 
௧ݎ ൌ ,௧ିଵݎߩ  ߭௧

 , 
௧ݓ
 ൌ ,௧ିଵݓ௪ߩ

  ߭௧
௪, 

௧
ெ ൌ ,௧ିଵெߩ

ெ  ߭௧
ெ, 

ܽ௧ ൌ ܽ,௧ିଵߩ  ߭௧
 , 

where I is investment, ߰ is the adjustment cost parameter, small letter denote logs of the respective 

variables. In all simulations I set ߰ ൌ 6, which is consistent with the available estimates of adjustment 

costs (e.g., Gordon 1992), and estimate other parameters of the model. I log-linearize the first-order 

conditions and constraints given perfect foresight. Because the analytical solution to the above problem is 

complicated, it is hard to establish that the covariance estimator is uniquely globally identified. However, 

since the numeric solution can be readily written in the state-space form (see Appendix A), it is 

straightforward to establish local identification of the parameters by checking the rank of the Jacobian.  

Using the log-linearized solution to the model in (21), I generate artificial data sets and feed them 

into various estimators. Table 5 presents the results for the cases with perfectly and imperfectly elastic 

factor supply curves and with/without measurement errors. In the baseline experiment with perfect 

competition in factor markets (߶ ൌ 1) and no measurement errors (panel A, Table 5), OLS, FE and BB 

estimates are biased so much that the estimated RTS are increasing (recall that the true RTS in the 

revenue function is equal to 0.55). Consistent with the argument in section 4.2, BB estimates have large 

standard errors, which indicate poor identification of the estimator. Although the LP estimator has a 

smaller bias than other estimators, the size of the bias remains very large. SIV produces implausible 

estimates because the shadow price of capital is correlated with productivity and, hence, no lead or lag of 

the output-to-capital ratio is a valid instrument for the level of the capital stock. This correlation of the 

shadow price of capital and productivity is the key to understanding why the conventional estimators 

yield increasing RTS even when true returns are well below unity. Because of the attenuation bias, adding 

measurement error (panel B, Table 5) reduces the bias in the estimated RTS. In the case with an upward-

sloping labor supply curve (߶ ൌ 1.5, panel C, Table 5) the bias tends to increase in the estimate of ߚ and 

decrease in the estimate of ߚ. Nonetheless, because ߚ and ߚ have a small contribution to the RTS 
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(recall that the elasticity of output with respect to material is 0.7), the bias in the estimate of RTS barely 

changes.  

In all simulations with multiple inputs popular estimators lead to inferior productivity measures. 

Specifically, small departures from the assumptions required by SIV can produce a negative correlation 

between true productivity and productivity measured according to SIV estimates. In all simulations, other 

estimators (OLS, LP, FE, BB) yield low correlation between true and measured productivity. Typically, 

the correlation for these estimators is well below 0.4. Similar to the case with a single input, ොܽ௧
ைௌ, 

productivity implied by OLS estimates, is typically more correlated with true productivity ait than 

ොܽ௧
, ොܽ௧

ிா  or ොܽ௧
. The covariance estimator performs well in terms of measuring productivity and 

capturing returns to scale, although the standard error of the coefficient on capital is somewhat large.   

5.3 DISCUSSION 

The results of Monte Carlo experiments are in agreement with my theoretical predictions that LP is biased 

upwards and BB is poorly identified. SIV is extremely sensitive to serially correlated measurement errors 

and (shadow) factor prices being correlated with productivity. The experiments show that simpler OLS 

and FE have performance comparable to that of BB and LP. If the profit share is small, the reduction in 

the bias from using BB and LP is offset by an increase in the variance of the estimates. Hence, in 

empirically plausible settings with small profit shares, it is useful to compare estimates from sophisticated 

techniques with OLS estimates.  

Furthermore, the researcher can reach incorrect conclusions about relative productivity of firms 

and magnitudes of productivity differences across firms when he or she uses inconsistent estimates. 

Specifically, the experiments suggest that OLS, FE, BB, and LP tend to yield productivity measures that 

are poorly correlated with true productivity.34 SIV’s performance varies from good to disastrous. If the 

assumptions of SIV are satisfied, the correlation is close to one. Slight departures from SIV’s assumptions 

can lead to a negative correlation between measured and true productivity. These results are true 

irrespective of the absolute size of the bias in the estimates because productivity and factor price shocks 

are amplified in the same proportion for observed optimized choices of firms. In contrast, productivity 

measures constructed on the basis of COV estimates are highly correlated with true productivity.  

The sensitivity of SIV estimates and implied measures of productivity to departures from its 

assumptions underscores the dangers of using tight structural identifying restrictions and calls for more 

flexible estimators such as COV. These Monte Carlo simulations demonstrate that COV performs well 

when the right model is fitted and, as illustrated by SIV, the performance of COV would deteriorate if the 

fitted model is misspecified. However, in contrast to SIV, COV can handle a larger class of DGPs and 

                                                      
34 Productivity measured as a cost-based Solow residual can be poorly correlated with the true productivity when 
factor supply curves are upward sloping.  
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thus with appropriate specification searches one can obtain eventually consistent estimates of structural 

parameters and good measures of productivity or other shocks. Indeed, these Monte Carlo simulations 

demonstrate that, in principle, COV performs well in circumstances where SIV or other estimators fail.  

Finally, the Monte Carlo experiments suggest that the puzzling estimates of RTS in the revenue 

function can arise because statistical estimators fail to provide consistent estimates. In the next section, I 

contrast the estimates of competing techniques when applied to real data.  

6 APPLICATION 
In this section, I apply the COV estimator to a well-known data set of Chilean manufacturing plants. Lui 

(1991, 1993), Lui and Tybout (1996), Pavcnik (2002) and Petrin and Levinsohn (2005) describe the data 

in detail. To illustrate the estimator, I focus on the SIC 3240 industry (manufacture of footware).35 The 

annual data spans from 1982 to 1996. Descriptive statistics for logs of real value added, real capital stock 

and labor are presented in Table 6 and Table 7. 

I assume that the inverse demand function is given by ܲ௧ ∝ ܳ௧
ିሺఓିଵ	ሻ ఓ⁄  where ߤ is the markup 

and  ߤ/ሺߤ െ 1ሻ is the elasticity of demand. The production function is described by  

ܳ௧ ൌ ௧ܣ
ఓmin	ሼܯ௧, ௧ܭܿ

ఈ಼ܮ௧
ఈಽሽ, where Qit is output in physical units, Mit is the input of materials, Kit is 

capital, Lit is the number of employees, ܣ௧ is the level of Hicks-neutral productivity (ܣ௧ to the power of 

μ is a normalization), and c is a constant of proportionality. This functional form imposes zero 

substitution between materials and combined capital/labor inputs. Since at the optimum no resources are 

wasted,  ܯ௧ ൌ ௧ܭܿ
ఈ಼ܮ௧

ఈಽ and, hence, the profit function is given by ߨ௧ ൌ ܲ௧ܳ௧ െ ௧
ெܯ௧ െ ܴ௧ܭ௧ െ

ܹ௧ܮ௧ ൌ ௧ܭ௧ܣ
ఉ಼ܮ௧

ఉಽ െ ܴ௧ܭ௧ െ ܹ௧ܮ௧, where ܸܣ௧ is the value added, ܴ௧ and ܹ௧ are the cost of capital 

and labor for firm i at time t.36 In the data, the share of materials in total cost is 0.66.  

I assume that capital is supplied in perfectly competitive markets. The slope of the labor supply 

curve is a free parameter. In particular, I assume that the wage function is given by ܹ௧ሺܮ௧ሻ ൌ ܹ௧
ܮ௧

థିଵ  

so that the wage bill is ܹ௧ሺܮ௧ሻܮ௧ ൌ ܹ௧
ܮ௧

థ . I further assume that capital, labor, and revenue are chosen 

simultaneously. I allow serially correlated errors in all observed variables, which are capital, labor and 

revenue. Productivity (ܣ௧) and factor prices ( ܹ௧ , ܴ௧ሻ are unobserved and serially correlated. There 

                                                      
35 I am grateful to James Levinsohn for providing me with the data.  
36 Since I analyze value added, I do not need to measure the quantity of the materials input. Note that in the vast 
majority of cases the researcher knows only the nominal spending on materials and the quantity of the material input 
is obtained by deflating the nominal spending with the industry-level material price index. Since the mix of 
intermediate inputs varies across firms and the price index is the same for all firms in any given period, the 
computed quantity of the material input can be poorly correlated with the true quantity of the material input. In the 
case of the Cobb-Douglas production function, nominal spending on materials is proportional to revenue and, hence, 
including the deflated expenditures on materials should yield perfect collinearity. Stochastic errors (e.g., 
optimization errors, measurement errors) can break the collinearity but the coefficient is still likely to be close to 
unity, which is often the case in applications. 
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could be feedback from productivity to factor prices and vice versa. I assume that innovations to 

productivity and factor prices are uncorrelated. In summary, the estimated model is  

௧ݕ
∗ െ ݇௧

∗ ൌ  ௧,  (22)ݎ
௧ݕ
∗ െ ݈௧

∗ ൌ ௧ݓ  ሺ߶ െ 1ሻ݈௧
∗ ,  (23) 

௧ݕ
∗ ൌ ܽ௧  ݇௧ߚ

∗  ݈௧ߚ
∗ , (24)  

ܽ௧ ൌ ܽ,௧ିଵߩ  ,௧ିଵݓ௪ߩ
  ,௧ିଵݎߩ  ߭௧

 ,  (25) 

௧ݓ
 ൌ ௪ܽ,௧ିଵߩ  ,௧ିଵݓ௪௪ߩ

  ,௧ିଵݎ௪ߩ  ߭௧
௪,  (26) 

௧ݎ ൌ ܽ,௧ିଵߩ  ,௧ିଵݓ௪ߩ
  ,௧ିଵݎߩ  ߭௧

 ,   (27) 

௧ݕ ൌ ௧ݕ
∗  ௧ߝ

௬ ,  (28) 

݇௧ ൌ ݇௧
∗  ௧ߝ

 ,  (29) 

݈௧ ൌ ݈௧
∗  ௧ߝ

 ,  (30) 

௧ߝ
௬ ൌ ,௧ିଵߝఌ௬ߩ

௬  ݁௧
௬,   (31) 

௧ߝ
 ൌ ,௧ିଵߝఌߩ

  ݁௧
 ,   (32) 

௧ߝ
 ൌ ,௧ିଵߝఌߩ

  ݁௧
 ,   (33) 

where small letters denote logs of the respective variables with ݕ௧ ൌ lnܸܣ௧, stars denote true values, and 

ሼ߭௧
 , ߭௧

௪, ߭௧
 , ݁௧

௬, ݁௧
 , ݁௧

 ሽ are uncorrelated i.i.d. innovations. Parameters of interest are ߚ, ,ߚ ߶ and 

ߟ ൌ ߚ   . Equations (22) and (23) are the first order conditions for capital and labor. Equation (24) isߚ

the value-added function (analogue to the revenue function). Equations (25)-(27) describe the evolution of 

structural shocks to productivity and factor prices. Measurement equations are collected in (28)-(30). 

Dynamics of the measurement errors are in equations (31)-(33). The equations can be succinctly rewritten 

in the matrix form that corresponds to the state space representation in (6)-(7):  

௧ࢄ ≡ 
௧ݕ
݇௧
݈௧
൩ ൌ

ۉ

ۈ
ۇ

షഝ
ഁಽశഁ಼ഝషഝ

ఉಽ
ఉಽାఉ಼థିథ

ఉ಼థ

ఉಽାఉ಼థିథ
ିథ

ఉಽାఉ಼థିథ

ఉಽ
ఉಽାఉ಼థିథ

థିఉಽ
ఉಽାఉ಼థିథ

ିଵ

ఉಽାఉ಼థିథ

ଵିఉ಼
ఉಽାఉ಼థିథ

ఉ಼
ఉಽାఉ಼థିథ

ተ
ተ1 0 0
0 1 0
0 0 1

ی

ۋ
ۊ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ܽ௧
௧ݓ
௧ݎ
௧ߝ
௬

௧ߝ


௧ߝ
 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሺΛ|ܫଷሻࡲ௧,   

௧ࡲ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ߩ ௪ߩ ߩ
௪ߩ ௪௪ߩ ௪ߩ
ߩ ௪ߩ ߩ

0

0
ఌ௬ߩ 0 0
0 ఌߩ 0
0 0 ےఌߩ

ۑ
ۑ
ۑ
ۑ
ې

,௧ିଵࡲ 

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߭௧


߭௧
௪

߭௧


݁௧
௬

݁௧


݁௧
 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ቂΠ 0
0 ܴ

ቃ ,௧ିଵࡲ  ቂ
௧࣏
௧ࢋ
ቃ. 

The model has 21 parameters: 

ߠ ൌ ሼߚ, ,ߚ ߶, ,ߩ ,௪ߩ ,ߩ ,௪ߩ ,௪௪ߩ ,௪ߩ ,ߩ ,௪ߩ ,ߩ ,జߪ ,జ௪ߪ ,జߪ ,௬ߪ ,ߪ ,ߪ ,ఌ௬ߩ ,ఌߩ  ,ఌሽߩ

where ߪజ, ,జ௪ߪ జ are standard deviations of innovations to productivity ሺ߭௧ߪ
 ሻ, wages (߭௧

௪) and the 

interest rate (߭௧
 ), and ߪ௬, ,ߪ   are standard deviations of innovations to measurement errors in valueߪ
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added  ሺߝ௧
௬ሻ, capital stock ሺߝ௧

 ሻ, and labor input ሺߝ௧
 ሻ. Global identification is guaranteed by Proposition 2 

and Proposition 3. I use MLE given in (9) to estimate the model with T=5.  

I report the estimation results in Table 8, column 1. Since the data are not normally distributed, I 

bootstrap the estimates to correct the bias and improve the confidence intervals.37 Using bootstrapped 

critical values, I do not reject the model at any conventional significance level (p-value=0.4). To contrast 

the results, I estimate the value-added function ݕ௧ ൌ ܽ௧  ݇௧ߚ  ݈௧ߚ   by OLS, FE, LP, and ݎݎݎ݁

BB estimators and report these results in columns 2 to 7 in Table 8. I report two versions of the BB 

estimator: quasi-differenced (column 6) and twice-quasi-differenced (column 7).  

BB, LP and FE estimators yield RTS in a 0.62 to 0.9 range. These estimates suggest a very large 

10-38% profit share in value added if factor markets are perfectly competitive. In contrast, the observed 

(accounting) profit share in value added is 2%.38 Also observe that, consistent with my theoretical results 

and Monte Carlo experiments, the BB estimator has very large standard errors and LP estimates are close 

to FE estimates. On the other hand, the OLS estimate (RTS=1.30) is inconsistent with profit 

maximization if factor markets are perfectly competitive. In addition, the OLS estimate of βL implies 

increasing returns in labor. The SIV estimator yields implausibly large RTS. This cacophony in the 

estimates can be reconciled by the COV estimates.  

First, note that the COV estimates RTS in the revenue function to be 1.17, which is in line with 

my argument that the bias in the OLS estimate of RTS is likely to be relatively small. Second, the 

estimate of ߶ is greater than unity and, thus, firms face an upward-sloping labor supply curve. Since the 

OLS estimate is biased to ߶, the OLS estimate of RTS is greater than COV estimate of RTS. Third, I find 

relatively large serially correlated measurement errors. These errors tend to attenuate the estimates toward 

zero, especially when estimates are from within variation. This can explain why FE, BB, and LP produce 

low RTS. Note that the small coefficient on capital in BB is consistent with strong downward bias in βK in 

my Monte Carlo experiments with serially correlated measurement errors. Finally, since the SIV 

estimator uses output to input ratios as instruments and measurement error is present in inputs and factor 

prices are correlated with productivity, the instruments used in the SIV are correlated with the error term 

in the revenue function so that the estimates of βL and βK behave wildly.  

Increasing returns in the revenue function do not contradict profit maximization because the labor 

supply curve is upward sloping. Specifically, the elasticity of the labor cost ߶ ൌ 1.42  (i.e., the wage 

premium is 42%) is generally in agreement with the estimates from previous studies. For example, Bils 

                                                      
37 I use non-parametric bootstrap with resampling firms. See Horowitz (1998) for the discussion of bootstrap for 
covariance structures.  
38 The profit share is computed as the ratio of aggregate gross profit to aggregate value added. Although it is hard to 
sign the bias of the accounting profit as a measure of economic profit, the small magnitude of the profit share is 
consistent with the discussion in section 2. Alternative definitions of the profit share are in the range of 0.2% to 
2.5%.  
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(1987) estimates from aggregate US data that the shift premium is about 25-40%. Manning (2004) 

observes that a plausible elasticity of labor supply is between 2 and 10. In the present case, the point 

estimate of the implied elasticity of the labor supply curve 1/ሺ߶ െ 1ሻ 	ൌ 2.4 falls nicely in this interval.  

According to (36) in Appendix A, I find that the implied elasticity of the cost of capital and labor 

is 1.21 and elasticity of the cost of all inputs is 1.07. Using (37) in Appendix A to compute the profit 

share from the COV estimates, I find that the profit share in value added is 1.3%, which is a significant 

improvement in comparison to other estimators.  

The correlation between productivity measured according to COV estimates and productivity 

measured according to OLS, FE, SIV, LP, BB and BB2 estimates is 0.884, 0.637, 0.248, 0.361, 0.666, 

and 0.671 respectively. Given these low correlations, one can reach strikingly different conclusions about 

which firms are relatively productive when he or she uses different estimates to construct productivity 

measures. In light of Monte Carlo simulations, one may trust COV measures of productivity more than 

measures of productivity constructed on the basis of other estimators.39  

Note that variation in factor prices is comparable to variation in productivity ait. Specifically, the 

point estimates in Table 8 imply that ߪሺܽ௧ሻ ൌ ௧ሻݓሺߪ ,0.33 ൌ ௧ሻݎሺߪ ,0.51 ൌ 0.23. This supports other 

evidence on the dispersion of prices even in narrowly defined industries. I also conclude that ignoring 

variation in factor prices across firms can lead to serious identification problems for the inversion-based 

estimators. Finally, since the markup ߤ  1 and returns to scale in the production function ߛ ൌ ߟߤ   ,ߟ

one can expect sizable increasing returns to scale in production.   

7 CONCLUDING REMARKS 
The paper demonstrates that under weak assumptions estimates from revenue function regressions using 

firm-level data are often inconsistent with profit maximization or imply implausibly large profits. 

Specifically, returns to scale in the revenue function cannot be greater than unity or significantly less than 

unity as long as the profit share in revenue is non-negative and factor supplies are perfectly elastic. This 

prediction sharply contrasts with the frequent finding that returns to scale in the revenue function at the 

firm level exceed unity or are well below unity. On the econometric front, I point out that 

inversion/control-function estimators (e.g., Olley and Pakes 1996, Levinsohn and Petrin 2003) lead to 

inconsistent estimates because they ignore variation in input mixes (factor prices). I also show that 

GMM/IV estimators using lags of endogenous variables as instruments (e.g., Blundell and Bond 1998, 

1999) can be poorly identified in the context of estimating production (revenue) functions because of 

economic restrictions on the comovement of inputs and output. Furthermore, I show that these 

misspecifications can greatly distort measures of productivity so that the researcher using these estimators 

                                                      
39 It would be highly informative to compare various productivity measures with measurements based on detailed 
case studies or expert assessments of relative performance. Unfortunately, this external information is not available.  
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can be led to incorrect conclusions about the relative productivity of firms and magnitudes of productivity 

differences across firms. In summary, puzzling estimates can stem from applying misspecified or poorly 

identified estimators.  

I show that under weak assumptions the elasticity of the factor supply can reconcile increasing or 

large decreasing returns in the revenue function and a small non-negative profit share. Furthermore, I 

argue that simple structural estimators that model the cost and the revenue function simultaneously and 

treat unobserved heterogeneity in productivity and factor prices symmetrically can resolve many of the 

problems I identify above. I provide an example and illustrate the potential of the suggested estimator in 

Monte Carlo simulations and in an empirical application. Developing these estimators further to 

accommodate fixed costs of adjustment appears to be a fruitful avenue for future research.   

The paper has broader implications. First, I argue that the profit share can be used as a robust 

non-parametric economic diagnostic for estimates of returns to scale. Second, although I analyze only one 

industry, it is clear that variation in product and factor prices at the firm-level is not trivial. This entails 

important consequences for aggregating firm-level data (and devastating effects on the inversion-based 

estimators). Specifically, reallocation effects due to heterogeneity in factor prices are likely to be of first-

order importance. Furthermore, productivity aggregates measure revenue-generating ability in the 

industry rather than technical efficiency. Third, since it is fairly common to find constant returns to scale 

in the revenue function at the firm level and the markup is not less than unity, returns to scale in 

production at the firm level can be sizeable. Hence, business cycle and trade models appropriately 

calibrated to capture increasing returns to scale in production (not constant returns to scale in revenue!) 

can produce qualitatively different results. In addition, the gap between RTS in production at the 

aggregate level and RTS in production at the firm level is smaller than thought before because RTS in 

production at the aggregate level were compared to RTS in revenue at the micro level. Fourth, factor 

supply curves are likely to be upward-sloping at the firm level. This means that the cost-weighted 

composite input does not measure total input correctly and, hence, cost-based Solow residual can be 

procyclical. 
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Table 1. Notation 
Notation Meaning  

 Returns to scale in production ߛ
 Returns to scale in revenue ߟ
߶ Elasticity of cost with respect to an input 
 Cost of input ܥ
ܳ Quantity of output 
ܲ Price of output 
ܻ Revenue 
ܼ Quantity of input  
ܹ Price of input 
 Level of technology ܣ
 Demand shifter ܩ
 గ Share of profits in revenueݏ
 Markup ߤ
 Elasticity of output with respect to an input ߙ
 Elasticity of revenue with respect to an input ߚ
ܺ Vector of observed variables (revenue, inputs) 
 Vector of unobserved variables (technology, factor prices) ܨ
Λ Matrix of loadings of observed variables on unobserved variables 
߭ Innovations in unobserved variables 
Ω Covariance matrix of innovations to unobserved variables 
  Correlation ߩ
Π Matrix of serial correlation parameters 
 Measurement errors ߝ
Ψ Covariance matrix of measurement errors 
݁ Innovations to measurement errors 
 Standard deviation of a variable ߪ
i Firm index 
t Time index 
N Number of firms 
T Number of time periods 
 Vector of estimated parameters ߠ
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Table 2. Profit share sπ as a function of returns to scale in the revenue function and the 
elasticity of the cost with respect to inputs 

 
Returns to scale 
in the revenue 

function  

Elasticity of the cost  
with respect to inputs 

߶ ൏ 1 ߶ ൎ 1 ߶  1 

ߟ ൏ 1 small sπ large sπ large sπ 

ߟ ൎ 1 negative sπ small sπ large sπ 

ߟ  1 negative sπ negative sπ small sπ 
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Table 3. Estimates of returns to scale: One input 

  OLS FE BB SIV COV 
  (1) (2) (3) (4) (5) 

 
Panel A: no measurement error 

 Median bias 0.359 0.272 0.221 -0.001 0.001 
η Standard deviation 0.003 0.003 0.112 0.013 0.006 
 Root MSE 0.359 0.272 0.251 0.013 0.006 
       

ሺߩ ොܽ௧, ܽ௧ሻ Median estimate 0.658 0.454 0.381 1.000 1.000 
       

Panel B: i.i.d. measurement error 
 Median bias 0.332 0.217 0.225 -0.001 0.001 

η Standard deviation 0.004 0.005 0.259 0.039 0.007 
 Root MSE 0.332 0.217 0.348 0.039 0.008 
       

ሺߩ ොܽ௧, ܽ௧ሻ Median estimate 0.450 0.341 0.281 1.000 1.000 
       

Panel C: serially correlated measurement error 
 Median bias 0.288 0.192 0.145 -0.267 0.000 

η Standard deviation 0.006 0.005 0.200 0.024 0.018 
 Root MSE 0.288 0.193 0.247 0.269 0.018 
       

ሺߩ ොܽ௧, ܽ௧ሻ Median estimate 0.501 0.412 0.339 0.916 0.997 
       

Panel D: correlated factor prices and productivity 
 Median bias 0.423 0.313 0.223 -1.773 0.001 

η Standard deviation 0.004 0.005 0.413 0.323 0.008 
 Root MSE 0.423 0.313 0.475 1.844 0.008 
       

ሺߩ ොܽ௧, ܽ௧ሻ Median estimate 0.465 0.322 0.240 0.975 0.987 
 
Notes: The table reports median bias, standard deviation and root MSE for OLS, Schmidt’s instrumental variables 
(SIV), covariance (COV), fixed effects (FE), and Blundell-Bond (BB) estimators. The data generating process is 
(10)-(13): one input and one output. Each experiment is simulated 1,000 times. In all experiments, ߩ ൌ 0.9, 
௪ߩ ൌ జߪ ,0.5 ൌ జ௪ߪ ൌ 1. In panel A, ߩሺ߭௧

௪, ߭௧
ሻ ൌ ఌ௭ߪ ,0 ൌ ఌ௬ߪ ൌ 0. In panel B, ߩሺ߭௧

௪, ߭௧
ሻ ൌ ఌ௭ߪ ,0 ൌ ఌ௬ߪ ൌ 1. In 

panel C, ߩሺ߭௧
௪, ߭௧

ሻ ൌ ఌ௬ߪ ,0 ൌ ௧ߝ ,0
௭ ൌ ,௧ିଵߝ௭ߩ

௭  ݁௧, ߪ ൌ 1, ௭ߩ ൌ 0.8. In panel D, ߩሺ߭௧
௪, ߭௧

ሻ ൌ ఌ௭ߪ ,0.7 ൌ ఌ௬ߪ ൌ
ሺߩ .0 ොܽ௧, ܽ௧ሻ is the correlation between true productivity ܽ௧ and measured productivity ොܽ௧ given the estimate of ߟ. 
See text for further details.  
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Table 4. Estimates of returns to scale: Multiple inputs 

Parameter values 
OLS FE BB LP SIV COV 
(1) (2) (3) (4) (5) (6) 
Panel A: no measurement error 

βK 
Median bias 0.033 -0.011 -0.019 0.001 -0.009 0.000 

St. Dev. 0.004 0.003 0.054 0.003 0.100 0.007 

βL 
Median bias 0.265 0.270 0.482 0.265 -0.001 -0.001 

St. Dev. 0.006 0.006 0.206 0.006 0.034 0.010 

βM 
Median bias 0.123 0.096 -0.302 0.087 0.004 0.000 

St. Dev. 0.006 0.006 0.130 0.006 0.049 0.007 

η 

Median bias 0.421 0.356 0.161 0.353 -0.006 0.000 
St. Dev. 0.002 0.003 0.074 0.004 0.054 0.007 

Root MSE 0.421 0.356 0.177 0.353 0.054 0.007 

ሺߩ ොܽ௧, ܽ௧ሻ Median est. 0.505 0.389 0.342 0.666 1.000 1.000 
Panel B: i.i.d. measurement error 

βK 
Median bias 0.077 0.032 0.042 0.048 -0.017 0.000 

St. Dev. 0.006 0.006 0.230 0.007 0.144 0.011 

βL 
Median bias 0.269 0.259 0.254 0.269 -0.007 0.001 

St. Dev. 0.007 0.008 0.274 0.007 0.077 0.025 

βM 
Median bias 0.069 0.042 0.092 0.014 0.000 0.000 

St. Dev. 0.007 0.008 0.264 0.010 0.099 0.038 

η 

Median bias 0.415 0.334 0.388 0.331 -0.024 0.001 
St. Dev. 0.003 0.005 0.260 0.008 0.126 0.025 

Root MSE 0.415 0.334 0.467 0.331 0.129 0.025 

ሺߩ ොܽ௧, ܽ௧ሻ Median est. 0.612 0.420 0.391 0.709 1.000 1.000 
Panel C: upward sloping labor supply curve 

βK 
Median bias 0.044 -0.002 -0.017 0.010 -0.075 0.000 

St. Dev. 0.004 0.004 0.052 0.003 0.069 0.008 

βL 
Median bias 0.443 0.446 0.791 0.443 1.810 -0.001 

St. Dev. 0.009 0.009 0.285 0.009 0.120 0.017 

βM 
Median bias 0.117 0.093 -0.297 0.083 -0.500 0.000 

St. Dev. 0.006 0.006 0.108 0.006 0.026 0.008 

η 

Median bias 0.604 0.536 0.477 0.536 1.235 -0.001 
St. Dev. 0.004 0.005 0.178 0.006 0.045 0.013 

Root MSE 0.604 0.536 0.509 0.536 1.236 0.013 

ሺߩ ොܽ௧, ܽ௧ሻ Median est. 0.310 0.253 0.203 0.552 -0.414 0.999 
Notes: The table reports median bias, st. dev. and MSE of OLS, Schmidt’s instrumental variables (SIV), covariance 
(COV), fixed effects (FE), Blundell-Bond (BB), and Levinsohn-Petrin (LP) estimators. The data generating process 
is (40)-(50) in Appendix A (section A6): three inputs and one output. The estimated revenue function is (20). Each 
experiment is simulated 1,000 times. In all parameterizations, βK=0.1η, βL=0.1η, βM=0.1η, η=0.55, ρr=0.5, ρw=0.6, 
ಾߩ ൌ 0.4, ρa=0.9, ߪజ ൌ జ௪ߪ ൌ జಾߪ ൌ జߪ ൌ 1. In panel A, σεy= σεk= σεl=0, ߶ ൌ 1. In panel B, σεy= σεk= σεl=1, 
߶ ൌ 1. In panel C, σεy= σεk= σεl =0, ߶ ൌ ሺߩ .1.5 ොܽ௧, ܽ௧ሻ is the correlation between true productivity ܽ௧ and 
measured productivity ොܽ௧ given the estimates of βK, βL, and βM. See text for further details.  
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Table 5. Estimates of returns to scale: Multiple inputs with adjustment costs 

Parameter values 
OLS FE BB LP SIV COV 
(1) (2) (3) (4) (5) (6) 

Panel A: no measurement error 
βK Median bias 0.169 0.250 0.285 0.187 3.714 -0.002 
 St. Dev. 0.011 0.025 0.495 0.014 0.512 0.044 
        

βL Median bias 0.442 0.389 0.345 0.442 -0.093 0.000 
 St. Dev. 0.007 0.006 0.170 0.007 0.084 0.018 
        

βM Median bias -0.096 -0.087 0.106 -0.186 -0.079 0.000 
 St. Dev. 0.005 0.005 0.163 0.007 0.035 0.011 
        

η 
Median bias 0.516 0.552 0.735 0.443 3.542 -0.002 

St. Dev. 0.009 0.023 0.454 0.011 0.444 0.045 
Root MSE 0.266 0.305 0.747 0.197 12.741 0.002 

        

ሺߩ ොܽ௧, ܽ௧ሻ Median est. 0.361 0.276 0.121 0.487 -0.486 1.000 
Panel B: i.i.d. measurement error 

βK Median bias 0.153 0.059 0.032 0.154 -0.055 0.008 
 St. Dev. 0.011 0.014 0.178 0.011 61.911 0.061 
        

βL Median bias 0.369 0.317 1.105 0.369 2.385 -0.001 
 St. Dev. 0.008 0.008 0.339 0.008 51.015 0.034 
        

βM Median bias -0.037 -0.047 -0.696 -0.086 -1.893 -0.002 
 St. Dev. 0.008 0.007 0.312 0.010 35.505 0.018 
        

η 
Median bias 0.486 0.329 0.441 0.437 0.437 0.005 

St. Dev. 0.009 0.015 0.230 0.014 46.387 0.057 
Root MSE 0.236 0.108 0.248 0.191 2151.950 0.003 

        

ሺߩ ොܽ௧, ܽ௧ሻ Median est. 0.294 0.206 0.065 0.218 -0.436 0.999 
Panel C: upward sloping labor supply curve 

βK Median bias -0.014 -0.021 0.339 -0.004 3.026 0.000 
 St. Dev. 0.005 0.013 0.454 0.016 0.369 0.046 
        

βL Median bias 0.455 0.398 0.628 0.455 -0.014 -0.001 
 St. Dev. 0.005 0.005 0.228 0.005 0.059 0.028 
        

βM Median bias 0.039 0.062 -0.140 0.021 -0.012 0.000 
 St. Dev. 0.004 0.004 0.074 0.010 0.032 0.011 

        

η 
Median bias 0.481 0.439 0.827 0.472 2.999 -0.001 

St. Dev. 0.003 0.011 0.442 0.011 0.315 0.048 
Root MSE 0.231 0.193 0.880 0.223 9.096 0.002 

        

ሺߩ ොܽ௧, ܽ௧ሻ Median est. 0.267 0.237 0.349 0.154 -0.492 0.989 
 
Notes: The table reports median bias, st. dev. and MSE of OLS, Schmidt’s instrumental variables (SIV), covariance 
(COV), fixed effects (FE), Blundell-Bond (BB), and Levinsohn-Petrin (LP) estimators. The data generating process 
is(40)-(50) in Appendix A (section A6). The estimated revenue function is (39). Each experiment is simulated 1,000 
times. In all parameterizations, βK=0.1η, βL=0.1η, βM=0.1η, η=0.55, ρr=0.5, ρw=0.6, ߩಾ ൌ 0.4, ρa=0.9, ߪజ ൌ జ௪ߪ ൌ
జಾߪ ൌ జߪ ൌ 1. In panel A, σεy= σεk= σεl=0, ߶ ൌ 1. In panel B, σεy= σεk= σεl=1, ߶ ൌ 1. In panel C, σεy= σεk= σεl =0, 
߶ ൌ ሺߩ .1.5 ොܽ௧, ܽ௧ሻ is the correlation between true productivity ܽ௧ and measured productivity ොܽ௧ given the 
estimates of βK, βL, and βM. See text for further details. 
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Table 6. Descriptive statistics 

Variable variation Mean Std. Dev. Min Max 

Ln(real value added) 
overall 4.190 1.636 0.269 9.437 

between  1.548 0.793 8.816 
within  0.528 1.790 6.355 

Ln(real capital stock) 
overall 7.649 1.799 3.432 12.492 

between  1.701 3.935 12.330 
within  0.448 4.973 9.627 

Ln(number of employees) 
overall 3.763 1.078 2.303 7.145 

between  0.986 2.303 6.709 
within  0.325 1.982 5.095 

 

Notes: This table reports descriptive statistics for Chilean manufacturing plants in SIC 3240 industry (Manufacture 
of footware). The time span is from 1982 to 1996. Real value added is nominal value added deflated by the industry 
price index. Employment includes production and non-production workers. Capital stock, which includes machines 
and structures, is constructed by perpetual inventory method. See references cited in the text for further information.  
 

Table 7. Covariance and autocovariance matrices 

 Yt Kt Lt 
Yt 261.5 256.3 168.0 
Kt 256.3 344.8 176.3 
Lt 168.0 176.3 126.0 

Yt-1 244.8 251.3 163.7 
Kt-1 249.2 333.4 171.9 
Lt-1 163.5 172.5 120.0 
Yt-2 239.3 248.0 160.7 
Kt-2 244.0 324.0 167.8 
Lt-2 159.5 169.2 116.0 
Yt-3 233.3 245.1 157.3 
Kt-3 239.5 316.1 164.2 
Lt-3 155.6 166.5 112.3 
Yt-4 230.4 243.6 155.3 
Kt-4 234.1 308.2 159.9 
Lt-4 152.4 163.5 109.2 

 

Notes: This table presents covariance and autocovariance matrices for logs of value added (Yt), capital stock (Kt) and 
labor (Lt) after projecting these variables on the complete set of time dummies. See note to Table 6 for further 
details.  
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Table 8. Estimation results  

 COV OLS FE SIV  LP  BB BB-2 
 (1) (2) (3) (4) (5) (6) (7) 

βK 0.498 0.198 0.146 -0.398 0.135 0.197 0.2099 

[0.423, 0.514] (0.017) (0.029) (0.050) (0.054) (0.130) (0.123) 
βL 0.697 1.105 0.677 2.952 0.672 0.676 0.6897 

[0.510, 0.730] (0.029) (0.047) (0.131) (0.073) (0.132) (0.128) 

  1.420       

[1.307, 1.578]       

η  1.172 1.302 0.822    2.554    0.807    0.874    0.899 
 [1.008, 1.226] (0.017) (0.043) (0.089) (0.112) (0.161) (0.160) 

Factor prices and productivity: standard deviation of innovations and serial correlation 
συa 0.0306 ρaa 0.9059 ρaw -0.0602 ρar -0.2719 

[0.002, 0.408] [0.732, 0.961] [-0.163, 0.031] [-0.463, -0.042]
συw 0.0163 ρwa 0.3118 ρww 0.8177 ρwr 0.0398 

[0.001, 0.442] [-0.315, 0.533] [0.074, 0.915] [-0.090, 0.264] 
συr 0.0657 ρra -0.5024 ρrw -0.0359 ρrr 0.1579 

[0.001, 0.520] [-0.795, -0.147] [-0.181, 0.097] [-0.443, 0.408] 
        

Measurement errors: standard deviation of innovations and serial correlation 
σey 1.862 ρy 0.143     

 [1.665, 2.008]  [-0.110, 0.439]     
σek 1.8052 ρk 0.9305     

 [1.581, 1.972]  [0.903, 0.957]     
σel 1.5222 ρl 0.7609     
 [1.331, 1.668]  [0.651, 0.844]     

Notes: The COV model is described in (22)-(33). 95% bootstrap confidence interval is in square parentheses. FE is fixed effects, LP is Levinsohn-
Petrin estimator, BB is Blundell-Bond estimator, SIV is Schmidt’s instrumental variables estimator. BB estimator is unrestricted and the reported 
coefficients are on the current kit and lit. Standard errors are in parentheses. R2 in the OLS regression is 0.92. The LM test does not reject AR(1) 
model for the error term in the BB estimator.  
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Figure 1. Kernel density of estimates for returns to scale 
Panel A. One input 

 
Panel B. Multiple inputs 

 
Notes: The figure plots Epanechnikov kernel densities of the returns to scale in the revenue function for OLS, Schmidt’s instrumental 
variables (SIV), covariance (COV), fixed effects (FE), and Bond-Blundell (BB), and Levinsohn-Petrin (LP) estimators. Returns to 
scale are on horizontal axis.  Each experiment is simulated 1,000 times. Panel A: Parameter values of the data generating process are 
for the scenario reported in Panel A, Table 3.  The data generating process is (10)-(13). The estimated revenue function is (14). See 
text and Table 3 for further details. Panel B: Parameter values of the data generating process are for the scenario reported in Panel A, 
Table 4. Returns to scale are on horizontal axis. The data generating process is (40)-(50) in Appendix A (section A6): three inputs and 
one output. The estimated revenue function is (20). See text and Table 4 for further details.  
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Figure 2. Profit share and bias in returns to scale  

 

Notes: The figure reports the bias in the estimated returns to scale in the revenue functions for various values of the 
profit share. The lines are from lowess which smoothes over 100 replications for each value of the profit share. 
Parameterization is as in Panel A of Table 4. The data generating process is (40)-(50) in Appendix A (section A6): 
three inputs and one output. The estimated revenue function is (20). BB is Blundell-Bond estimator, FE is fixed 
effects, SIV is Schmidt’s IV, LP is Levinsohn-Petrin estimator, COV is the covariance estimator. SIV essentially 
coincides with COV in this figure.  
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Appendix A: Extensions  
A1. Multi-input case 
This section presents the n-input analogue for the model considered in Section 2.1. One could derive 
results as first order approximations but without loss of generality it is convenient to work with specific 
functional forms. The production function is assumed to be Cobb-Douglas: ܳ௧ ൌ ௧ܣ

ఓ ∏ ܼ,௧
ఈೕ

ୀଵ  where i, t, 

j index firms, time, and inputs, ߛ ൌ ∑ ߙ

ୀଵ  is returns to scale in production, Ait is Hicks-neutral firm-

specific productivity, and Zj,it is jth input. The inverse demand function is isoelastic ܲ௧ ൌ ௧ܳ௧ܩ
ିሺఓିଵሻ/ఓ 

where Pit is the price of the good, Qit is the quantity of the good, G is a demand shifter, and ߤ is the 
markup, and ߤ/ሺߤ െ 1ሻ is the elasticity of demand. Hence, the revenue function is ܻ௧ ൌ ܲ௧ܳ௧ ൌ

௧ܩ ቀܣ௧
ఓ ∏ ܼ,௧

ఈೕ
ୀଵ ቁ

ଵିሺఓିଵሻ/ఓ
ൌ ௧ܣ௧ܩ ∏ ܼ,௧

ఉೕ
ୀଵ , where ߚ ൌ ߙ ⁄ߤ , and ߟ ൌ ∑ ߚ


ୀଵ  is RTS in the 

revenue function. Also note that Ait and Git are isomorphic in the revenue function so that the 
econometrician cannot separate these shocks. Hence, I drop Git from the analysis and concentrate on Ait 

only. The cost for input j is given by ܥ൫ ܼ൯ ൌ ܹ,௧ ܼ,௧
థೕ  where ߶ is the elasticity of the cost of input j. 

The profit maximization problem is then maxሼభ,,…,,ሽ ௧ߨ ௧ whereߨ ൌ ܻ௧ െ ∑ ൫ܥ ܼ൯

ୀଵ .  

I take logs of the first order conditions, suppress uninteresting constants, partial out industry-wide 
shocks, and get the following expressions for optimal input choices and revenue  

ۏ
ێ
ێ
ێ
ێ
ۍ
െ߶ଵ 0 0
0 െ߶ଶ 0
0 0 െ߶ଷ

… 					0 	1
… 					0 	1
⋱ 				0 	1

⋮ ⋮ ⋱
0 0 0
െߚଵ െߚଶ െߚଷ

⋱ ⋮ 1
0 െ߶ 1
… െߚ ے1

ۑ
ۑ
ۑ
ۑ
ې

൦

ଵ,௧ݖ
⋮

,௧ݖ
௧ݕ

൪ ൌ ൦

ଵ,௧ݓ
⋮

,௧ݓ
ܽ௧

൪ ⟹ ௧ࢄ ≡ ൦

ଵ,௧ݖ
⋮

,௧ݖ
௧ݕ

൪ ൌ Λ ൦

ଵ,௧ݓ
⋮

,௧ݓ
ܽ௧

൪ ൌ Λࡲ௧, 

where  

Λ ൌ
ଵ

ୢୣ୲ஃ
ൌ

ۏ
ێ
ێ
ێ
ێ
ଵଵ߰ۍ െ ∑ ߰ଵஷଵߚ ଶ߰ଵଶߚ …

ଵ߰ଶଵߚ ߰ଶଶ െ ∑ ߰ଶஷଶߚ ⋱
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, (34) 

߰ ൌ ∏ ߶௦

௦ஷ,  and ߰ ൌ 1 if ݏ ് ݅, ݆ is an empty set. Observe that det Λ ൌ ∑ ߰ߚ


ୀଵ െ ∏ ߶


ୀଵ ൏ 0 

which is the necessary and sufficient condition for the profit function to be concave.  
One can use information from the first order conditions to compute the cost shares. Observe that 

for each input j, the first order condition is ߚ ܻ௧/ ܼ,௧ ൌ ߶ ܹ,௧ ܼ,௧
థೕିଵ. Hence, ܥ൫ ܼ൯ ൌ ܹ,௧ ܼ,௧

థೕ ൌ
ߚ ܻ௧/߶. If follows that the cost share for input j is given by  

߱ ൌ
ೕ൫ೕ൯

∑ ሺሻ

సభ

ൌ
ఉೕ/థೕ

∑ ఉ/థ

సభ

.  (35) 

The elasticity of the cost with respect to all inputs is  

߶ ൌ ∑ ߱߶

ୀଵ ൌ

∑ ఉ

సభ

∑ ఉ/థ

సభ

.  (36) 

Using this expression one can find the profit share in terms of cost and revenue elasticities:  
గݏ ൌ 1 െ

ఊ

ఓథ
ൌ 1 െ ∑ /߶ߚ


ୀଵ .  (37) 

 
A2. Constant elasticity of substitution (CES) production function 

Consider the CES production function ܳ ൌ ఢܭఓሺ߱ܣ  ߱ܮఢሻఊ/ఢ where 
ଵ

ଵିఢ
 is the elasticity of 

substitution. In this example, I assume that productivity and factor prices are mutually uncorrelated. 
Otherwise the structure is the same as in the Cobb-Douglas case. The profit function is given by 
ఢܭሺ߱ܣ  ߱ܮఢሻఊ/ሺఓఢሻ െ ܭܴ െܹܮ. The first order conditions with respect to capital and labor are: 
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ܭ/ܻݏߟ ൌ ܮ/ܻݏߟ ,ܴ ൌ ܹ where ݏ ൌ ߱ܭఢ/ሺ߱ܭఢ  ߱ܮఢሻ, ݏ ൌ 1 െ  . After log-linearizingݏ
first-order conditions and the revenue function, one has the following structural equations: ݕ ൌ ݇ݏߟ 
݈ݏߟ  ݕ ,ܽ െ ݇  ሺ݇ݏ߳ െ ݈ሻ ൌ ݕ ,ݎ െ ݈  ሺ݈ݏ߳ െ ݇ሻ ൌ   The reduced form is .ݓ
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ଵିఎା௦಼ሺఎିఢሻ

ሺଵିఎሻሺଵିఢሻ
െ

ሺଵି௦಼ሻሺఎିఢሻ

ሺଵିఎሻሺଵିఢሻ
ଵ

ଵିఎ
െ

௦಼ሺఎିఢሻ

ሺଵିఎሻሺଵିఢሻ
െ

ଵିఢି௦಼ሺఎିఢሻ

ሺଵିఎሻሺଵିఢሻ ے
ۑ
ۑ
ۑ
ې

ቈ
ܽ
ݎ
ݓ
. 

The model has six parameters: ߠ ൌ ሼߟ, ,ݏ ߳, ,ߪ ,ߪ  ௪ሽ. It is straightforward (but tedious) to show thatߪ
  .ሺܺܺᇱሻ has full rank and, hence, the model is locally identified almost everywhereܧఏ
 
A3. Rational Expectations models 
Following Blanchard and Kahn (1980), one can show that, after log-linearization, rational profit-
maximizing producer behavior can be summarized as follows: 

௧ࡿ ≡ 
௧ࡳ
௧ࡴ
௧ࢆ
൩ ൌ 

0 Πଵଶ Πଵଷ
0 Πଶଶ Πଶଷ
0 0 Πଷଷ

൩ 
௧ିଵࡳ
௧ିଵࡴ
௧ିଵࢆ

൩  
ଵܤ
ଶܤ
ଷܤ
൩ ௧࣏ ൌ Πࡿ௧ିଵ   ௧,  (38)࣏ܤ

where Gt is p1 vector of endogenous non-predetermined variables (e.g., materials), Ht is m1 vector of 
endogenous predetermined variables (e.g., capital), Zt is n1 vector of exogenous variables, ࣏௧ is vector 
of serially uncorrelated innovations. The econometrician observes only Gt and Ht. The number of shocks 
is not less than the number of observed variables, i.e., ݊  ݉   No assumptions are made about the .
sources of shocks ࣏௧, which can be shocks to adjustment costs, factor prices, productivity, etc. Hence, the 
setup is very general.  

The autocovariance matrix of the observed variables collected in ࢄ௧ ൌ ሾࡳ௧
ᇱ ௧ࡴ

ᇱ ሿᇱ ൌ Υࡿ௧  with 
Υ ≡ ൫ܫାห0൯ is given by Γ෨ ≡ ௧ିࢄ௧ࢄ)ܧ

ᇱ ሻ ൌ ΥΠΓΥᇱ, k=0,1,…, where Γ ൌ ௧ࡿ௧ࡿሺܧ
ᇱ ሻ, vecሺΓሻ ൌ

൫ܫାା െ Π⊗Π൯
ିଵ
ᇱሻ, and ΩܤΩܤሺܿ݁ݒ ≡ ௧࣏௧࣏ሺܧ

ᇱ ሻ. Given that Γ෨, k=0,1,…, and matrices Π,  are ܤ
deterministic one-to-one functions of structural parameters, one can use methods presented in section 3.4 
to set up likelihood function for MLE. Specifically, the log-likelihood function for the no-firm-specific-
effects and no-measurement-error case is given by ∑ ݈ሺࢄ, ሻߠ

ே
ୀଵ ∝ െ ln|Φ்ሺߠሻ| െ ൛Φ݁ܿܽݎݐ ்Φ்ሺߠሻିଵൟ 

where Φ் ൌ ܰିଵ ∑ ࢄࢄ
ᇱே

ୀଵ , and  

Φ்ሺߠሻ ≡

ۏ
ێ
ێ
Γۍ
෨
Γ෨ଵ Γ෨
⋮ ⋱ ⋱
Γ෨ … Γ෨ଵ Γ෨ے

ۑ
ۑ
ې
.  

The likelihood can be easily extended to cases with measurement errors and firm-specific effects.  
Note that model (38) is highly nonlinear in structural parameters. Hence, global identification is hard 

to prove in general. Local identification is easy to verify (numerically) by checking the rank of the 
relevant Jacobian.  
 
A4. Identification in models with adjustment costs 
In this section I show that, under certain assumptions, the Blundell-Bond estimator is not identified even 
in the presence of adjustment costs. In the spirit to the results in Section 4.2, poor identification arises 
because profit maximization imposes restrictions on the dynamic and contemporaneous comovement of 
inputs and output. The following proposition gives the necessary condition for identification of the BB 
estimator for any rational expectation model described by (38).  
 
Proposition 6. Consider rational profit-maximizing firm characterized by the reduced-form dynamics as 
in (38). Then if n < 2p+m–1, the unrestricted Blundell-Bond estimator (16) is not identified.  
Proof: see Appendix B.  
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Profit maximization can impose further restrictions on the dynamic and contemporaneous 
correlation between variables so that the estimator is not identified even when the presented necessary 
condition is satisfied. The following proposition provides an important example where BB is not 
identified although the necessary condition is satisfied.  

 
Proposition 7. Consider rational profit-maximizing firm characterized by the reduced-form dynamics as 
in (38). Suppose that મ is diagonal and that output and one of the inputs are free to adjust 
contemporaneously in response to shocks. Then, irrespective of the number of the structural shocks, the 
unrestricted Blundell-Bond estimator (16) is not identified to a first-order log-linear approximation.  
Proof: see Appendix B. 

 
If production function is Cobb-Douglas, then log-linear approximation is exact and, thus, even 

higher order approximation cannot identify the parameters. Using the argument of Proposition 4 it is 
straightforward to show that even when BB is locally identified, there could be several solutions. 

 
A5. Quasi-fixed factors of production 
For the case with some inputs being temporarily fixed, Proposition 1 needs a slight modification:  

Corollary 1. Suppose that the assumptions of Proposition 1 hold. Also suppose that the first k inputs are 
variable and the other  െ ∗ࢽ	,inputs are fixed. Then  ⁄ࣆ ൌ ሺ െ ∗࢙࣊ ሻࣘ∗࣓∗, where	ࣘ∗ ൌ ∑ ࣓ࣘ


ୀ   is 

the elasticity of the cost with respect to variable inputs, ࣓∗ is the cost share of variable inputs in total 
cost, ࢽ∗ is returns to scale in production with respect to variable inputs, and ࢙࣊∗  is the profit share in 
revenue. Furthermore, if the firm maximizes profit, then returns to scale in revenue with respect to 
variable inputs is ࣁ∗ ൌ ∗ࢽ ⁄ࣆ . 
Proof: see Appendix B. 

Corollary 1 suggests that the argument about the profit share should be applied to inputs only variable in 
the short run. The corollary explains that the profit share can be temporarily large since γ∗ can be 
significantly less than unity or temporarily small since some factors may be quasi-fixed. However, cross-
sectional variation in the quasi-fixed inputs is sufficient to identify the RTS with respect to quasi-fixed 
inputs and, hence, RTS with respect to all inputs so that one can use Proposition 1.  
 
A6. Levinsohn-Petrin (2003) estimator 
Following Levinsohn  and Petrin (LP), consider the Cobb-Douglas revenue function with capital, labor 

and material inputs, that is, ܻ௧ ൌ exp	ሺܽ௧ሻܭ௧
ఉ಼ܮ௧

ఉಽܯ௧
ఉಾ where the productivity shock ait is an AR(1) 

process: ܽ௧ ൌ ܽ,௧ିଵߩ  ߭௧
  and ߭௧

~݅݅݀ሺ0, జଶߪ ሻ. In the notation of LP, ߱௧ ൌ ܽ௧  and ߦ௧ ൌ ߭௧
   and, for 

convenience, define ߬௧ ൌ ൫߱௧ห߱,௧ିଵ൯ܧ ൌ  ܽ,௧ିଵ. Capital is chosen in the beginning of period t whenߩ
 ௧ isߦ ௧ is not observed but ߬௧ and factor prices are observed. Labor and materials are chosen whenߦ
known, that is, variable inputs can be adjusted when more information is available. I denote (log) factor 
prices for capital, labor and materials with rit, wit, and ௧

ெ. All factors are supplied in perfectly 
competitive markets. There is no measurement error. The rest of the problem is unchanged and the 
estimated production (revenue) function is  

௧ݕ ൌ ݇௧ߚ  ݈௧ߚ  ெ݉௧ߚ  ߱௧,  (39) 
where ߟ ൌ ߚ  ߚ    .ெ is RTS in the revenue functionߚ
 The idea of the LP estimator is to invert demands for capital and materials to infer productivity 
shocks ωit and then use the estimated productivity shock as a regressor in the production (revenue) 
function—that is, condition (39) on ωit. The problem, however, is in the poor quality of the estimates of 
the productivity shocks. 

Note from profit maximization that the observed variables kit, lit, mit and yit can be expressed in 
terms of unobserved variables rit, wit, ௧

ெ, τit, and ξit:  
ሺߟ െ 1ሻ݇௧ ൌ ሺ1  ߚ െ ௧ݎሻߟ  ௧ݓߚ  ௧ெߚ

ெ െ ߬௧, (40) 
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ሺߟ െ 1ሻ݈௧ ൌ ௧ݎߚ  ሺ1  ߚ െ ௧ݓሻߟ  ௧ெߚ
ெ െ ߬௧  ሺߟ െ 1ሻሺ1  ߚ െ  ௧, (41)ߦሻିଵߟ

ሺߟ െ 1ሻ݉௧ ൌ ௧ݎߚ  ௧ݓߚ  ሺ1  ெߚ െ ௧ሻߟ
ெ െ ߬௧  ሺߟ െ 1ሻሺ1  ߚ െ  ௧, (42)ߦሻିଵߟ

ሺߟ െ 1ሻݕ௧ ൌ ௧ݎߚ  ௧ݓߚ  ௧ெߚ
ெ െ ߬௧  ሺߟ െ 1ሻሺ1  ߚ െ  ௧. (43)ߦሻିଵߟ

It is straightforward to invert factor demands to firm’s productivity ߱௧ ൌ ߬௧   :௧ߦ
߬௧ ൌ ሺ1 െ ሻ݇௧ߟ  ሺ1  ߚ െ ௧ݎሻߟ  ௧ݓߚ  ௧ெߚ

ெ,  (44) 
௧ߦ ൌ െሺ1  ߚ െ ሻሺ݇௧ߟ െ ݉௧  ௧ݎ െ ௧

ெሻ. (45) 
There is a one-to-one non-stochastic mapping between factor demands and productivity shocks if 

and only if factor prices are the same across firms. But if factor prices are the same across firms then 
labor and materials are collinear. To see this point, suppose that factor prices are the same across firms in 
any given period t. Because inversion of factor demands is indexed by time, one can conveniently set 
rit=rt=0, wit=wt=0, and ௧

ெ ൌ ௧
ெ ൌ 0. Clearly, this leads to ݉௧ ൌ ݈௧ ൌ

షభ
ആషభ
߬௧ 

భ
భశഁ಼షആ

 ௧ and, thus, mitߦ

and lit are collinear. Even if the responses of lit and mit to τit and ߦ௧ are different (e.g., factor supply curves 
for labor and materials have different slopes), there is no unexplained variation in lit after it is conditioned 
on mit and kit: ݈௧ െ ሺ݈௧|݇௧,݉௧ሻܧ ൌ ݈௧ െ ,ሺ݈௧|߬௧ܧ ௧ሻߦ ൌ ݈௧ െ ݈௧ ൌ 0. Put differently, once (39) is 
conditioned on ωit there is no variation in labor/materials ratio and coefficients ߚ,  ெ are not identified.1ߚ
This point is raised by Basu (1999) and further discussed in Ackerberg et al. (2006) and Bond and 
Soderbom (2005).2 

On the other hand, if factor prices are not the same across firms, then the assumption of a non-
stochastic inversion function is violated. Therefore, inversion of factor demands and conditioning (39) on 
estimated productivity shocks are internally inconsistent. In applications, identification of LP must come 
from misspecification of the model.3  

In simulations, I assume that the data are generated by (39)-(43) and the factor prices as well as 
productivity are unobserved AR(1) processes:  

ܹ௧ ൌ ܹ௧
ܮ௧

థିଵ,  (46) 
௧ݎ ൌ ,௧ିଵݎߩ  ߭௧

 ,  (47) 
௧ݓ
 ൌ ,௧ିଵݓ௪ߩ

  ߭௧
௪,  (48) 

௧
ெ ൌ ,௧ିଵெߩ

ெ  ߭௧
ெ,  (49) 

ܽ௧ ൌ ܽ,௧ିଵߩ  ߭௧
 .  (50) 

where ߱௧ ≡ ܽ௧, ߭௧
 , ߭௧

௪, ߭௧
ெ, ߭௧

  are i.i.d. zero-mean shocks to factor prices with standard deviations 
,జߪ ,జ௪ߪ ,జಾߪ   .జߪ

In some simulations, I will assume that variables ݕ௧, ݇௧, ݈௧,݉௧ are contaminated with 
measurement errors so that  ݕ௧  ௧ߝ

௬ , ݇௧  ௧ߝ
 , ݈௧  ௧ߝ

 ,݉௧  ௧ߝ
 are the observables where 

௧ߝ
௬ , ௧ߝ

 , ௧ߝ
 , ௧ߝ

 are i.i.d. zero-mean measurement errors with standard deviations ߪఌ௬, ,ఌߪ ,ఌߪ   .ఌߪ
 

                                                      
1 Likewise labor and materials are collinear if one augments the conditioning set with factor prices. 
2 Ackerberg et al. (2006) propose alternative timing assumptions to remove this identification problem. Bond and 
Soderbom (2005) propose to utilize non-linearities and to introduce shocks to adjustment costs to all inputs to 
identify parameters.  
3 This internal inconsistency in LP was independently discovered by Ackerberg et al. (2006).  
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Appendix B: Proofs  
 
Proof of Proposition 1.  
Consider cost minimization problem, which is implied by profit maximization: 
∗ܮ ൌ argminሼ∑ ൫ܥ ܼ൯: ݂ሺܼሻ ൌ ܳ

ୀଵ ሽ, where f is the production function, ܥ൫ ܼ൯ is the cost of input Zj, Q 
is output.  

The first order condition gives ܥ
ᇱ൫ ܼ൯ ൌ ߣ ݂

ᇱሺܼሻ for ݆ ൌ 1, … , ݊ where ߣ is the Lagrange 
multiplier and f is the production function. Multiply both sides by Zj for each j and sum over j to get  

∑ ܥ
ᇱ൫ ܼ൯ ܼ


ୀଵ ൌ ∑ߣ ݂

ᇱሺܼሻ ܼ

ୀଵ ⟺ ܳ ∙ ሺܳሻܥܣ ∙ ∑

ೕ
ᇲ൫ೕ൯ೕ

ೕ൫ೕ൯

ೕ൫ೕ൯

்ሺொሻ

ୀଵ ൌ ሺܳሻܥܯ ∙ ∑ ݂

ᇱሺܼሻ ܼ

ୀଵ ⟺  

 
ሺொሻ

ெሺொሻ
∙ ∑ ߶ ߱


ୀଵ ൌ

ଵ

ொ
∑ ݂

ᇱሺܼሻ ܼ

ୀଵ ⟺ ሺܾݕ	ݎ݈݁ݑܧ	݊݅ݐܽݑݍ݁ሻ		

ሺொሻ

ெሺொሻ
߶ ൌ   ,ߛ

Where ߶ is the elasticity of jth factor price, ωj is the share of factor i in total cost TC(Q), ߶ ൌ ∑ ߶ ߱

ୀଵ  

is the elasticity of the cost with respect to inputs, AC(Q) and MC(Q) are average and marginal costs. If 
factor markets are competitive, ߶ ൌ 1 for all j and hence ߶ ൌ 1. Now observe that profit share is equal 

to ݏగ ൌ
ொିሺொሻ∙ொ

ொ
ൌ 1 െ

ሺொሻ


. It follows that ߛ ൌ ߶ሺ1 െ ߤ where ,ߤగሻݏ ൌ



ெሺொሻ
 is the markup.  

Since marginal revenue (MR) is equal to marginal cost for a profit-maximizing firm, one has 
డ்ோ

డೕ
ൌ ܴܯ

డொ

డೕ
⟹ ∑ డ்ோ

డೕ
ܼ


ୀଵ ൌ ܥܯ ∑

డொ

డೕ
ܼ


ୀଵ ൌ ሺ

ெ


ሻܳܲߛ and hence ߟ ൌ ൬∑ డ்ோ

డೕ
ܼ


ୀଵ ൰ ሺܲܳሻൗ ൌ

ఊ

ఓ
.■ 

 
Proof of Corollary 1. 
Consider cost minimization: ܼ ≡ ሼܼଵ, … , ܼ, ܼ̅ାଵ, … , ܼ̅ሽ ൌ argminሼ∑ ൫ܥ ܼ൯: ݂ሺܼሻ ൌ ܳ

ୀଵ ሽ where 
variables are defined as in the proof of Proposition 1, and k+1,…,n inputs are fixed. Using the arguments 

of Proposition 1, one can show that ∑ ܥ
ᇱ൫ ܼ൯ ܼ


ୀଵ ൌ ∑ߣ ݂

ᇱሺܼሻ ܼ

ୀଵ ⟹

ሺொሻ

ெሺொሻ
∙ ∑ ߶ ߱


ୀଵ ൌ

ଵ

ொ
∑ ݂

ᇱሺܼሻ ܼ

ୀଵ ⟹

ሺொሻ

ெሺொሻ
߶∗߱∗ ൌ ∗߶  ,where ߱∗ is the cost share of variable inputs in total cost ∗ߛ ൌ

∑ ߶ ߱

ୀଵ  is the elasticity of cost with respect to variable inputs, ߛ∗ is RTS in production with respect to 

variable inputs, AC(Q) and MC(Q) are average and marginal costs. Since ݏగ ൌ 1 െ
ሺொሻ


, it follows that 

∗ߛ ൌ ߶∗ሺ1 െ   .ߤగሻݏ
Since marginal revenue (MR) is equal to marginal cost for a profit-maximizing firm, one has 

డ்ோ

డೕ
ൌ ܴܯ ∙

డொ

డೕ
⟹ ∑ డ்ோ

డೕ
ܼ


ୀଵ ൌ ܥܯ ∙ ∑

డொ

డೕ
ܼ


ୀଵ ൌ ቀெ


ቁ ܳܲ∗ߛ ⟹  

∗ߟ ൌ ൬∑ డ்ோ

డೕ
ܼ


ୀଵ ൰ ሺܲܳሻൗ ൌ

ఊ∗

ఓ
 , 

where ߟ∗ is RTS in the revenue function with respect to variable inputs. By combining the results, one 
can find: ߟ∗ ൌ ߶ሺ1 െ  ■.గሻݏ

 
Proof of Proposition 2 

Without loss of generality assume that there are two inputs and one output, the first input is 
supplied in a competitive market. Suppose there are two solutions ߠ and ߠ෨. To satisfy restrictions imposed 
by profit maximization, the matrix Λ෩  must possess the same structure and properties as Λ.  

Because Λ෩, Λ, ܶ are invertible, Λ ൌ Λ෩ܶିଵ implies that  
ܶ ൌ ΛିଵΛ෩ ൌ

ଵ

ఉ෩భథ෩మାఉ෩మିథ෩మ
൦

෨ଵ߶෨ଶߚ  ෨ଶߚ െ ߶෨ଶ 0 0
െߚ෨ଵ൫߶ଶ െ ߶෨ଶ൯ ෨ଶߚ െ ߶ଶሺ1 െ ෨ଵሻߚ ߶ଶ െ ߶෨ଶ

෨ଵߚଵ൫ߚ െ ߶෨ଵ൯ െ ෨ଵߚଶߚ  ෨ଵ߶෨ଶߚ ଶ൫1ߚ െ ෨ଵ൯ߚ െ ଵߚ෨ଶߚ  ଵߚ ଶߚ െ ߶෨ଶሺ1 െ ଵሻߚ

൪	 (51) 

Note that det ܶ ൌ ሺߚଵ߶ଶ  ଶߚ െ ߶ଶሻ/ሺߚ෨ଵ߶෨ଶ  ෨ଶߚ െ ߶෨ଶሻ ് 0 and the solution ߠ෨ must have ߚ෨ଵ߶෨ଶ  ෨ଶߚ െ
߶෨ଶ ൏ 0. Thus, the model is not identified unless further restrictions are imposed.  
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Now consider  

Ω ൌ ܶΩܶᇱ ൌ
ଵ

൫ఉ෩భథ෩మାఉ෩మିథ෩మ൯
మ 
ଵଵܦ
ଶଵܦ ଶଶܦ
ଷଵܦ ଷଶܦ ଷଷܦ

, 

where D11, D22, D33 are positive quantities and  
ଶଵܦ ൌ ൫ߚ෨ଵ߶෨ଶ  ෨ଶߚ െ ߶෨ଶ൯ߚ෨ଵ൫߶෨ଶ െ ߶ଶ൯ߪଵଵ,  

ଷଵܦ ൌ ൫ߚ෨ଵ߶෨ଶ  ෨ଶߚ െ ߶෨ଶ൯ ቀߚଵ൫ߚ෨ଶ െ ߶෨ଶ൯  ෨ଵ൫߶෨ଶߚ െ ଶ൯ቁߚ   ,ଵଵߪ

ଷଶܦ ൌ ෨ଵ൫߶෨ଶߚ െ ߶ଶ൯ൣߚ෨ଵ൫߶෨ଶ െ ଶ൯ߚ െ ଵ൫߶෨ଶߚ െ   ଵଵߪ෨ଶ൯൧ߚ
ൣߚ෨ଶ െ ߶ଶሺ1 െ ෨ଶሺ1ߚ෨ଵሻ൧ൣߚ െ ଵሻߚ െ ଶ൫1ߚ െ ଶଶߪ෨ଵ൯൧ߚ  ሺ߶෨ଶ െ ߶ଶሻ൫ߚଵ߶෨ଶ  ଶߚ െ ߶෨ଶ൯ߪଷଷ.      

  The restriction that Ω is diagonal implies that ܦଶଵ ൌ ଷଵܦ ൌ ଷଶܦ ൌ 0. From D21=0 it follows that 
߶෨ଶ ൌ ߶ଶ since ߚ෨ଵ ് 0. Hence, ܦଷଵ ൌ ଷଶܦ ൌ 0 implies that  

෨ଵሺ߶ଶߚ െ ଶሻߚ െ ଵ൫߶ଶߚ െ ෨ଶ൯ߚ ൌ 0, (52) 
෨ଶሺ1ߚ െ ଵሻߚ െ ଶ൫1ߚ െ ෨ଵ൯ߚ ൌ 0. (53) 
The only solution to this system of equations is ߚ෨ଵ ൌ ෨ଶߚ ଵ andߚ ൌ  ,ଶ implying that T=I and, thusߚ

the model is uniquely globally identified.  
For a general model with a productivity shock and n inputs and associated factor prices, the first 

entry of the first row of T in (51) will continue to be non-zero while other entries of the row are zeros. 
This fixes ߶෨ ൌ ߶  for j=2,…,n and then it is an easy step to show that n-input analogue of (52)-(53) has 
unique solution ߚ෨ ൌ  .  for j=1,…,n. This proves part aߚ

To prove part b, again, without loss of generality, assume that there are two inputs and one output 
and that the first input is supplied in a competitive market. Suppose there are two solutions ߠ and ߠ෨. Then 
by assumptions of the proposition, the following matrix must be diagonal 

Π෩ ൌ ܶିଵΠܶ ൌ
ଵ

|்||ஃ෩|

ଵଵܦ 0 0
ଶଵܦ ଶଶܦ ଶଷܦ
ଷଵܦ ଷଶܦ ଷଷܦ

൩  

where D11, D22, D33 are non-zero quantities and 

ଶଵܦ ൌ ൫߶ଶ െ ߶෨ଶ൯ ቂหΛ෩หߚଵΠଵଵ െ ൫ߚଵ߶෨ଶ  ଶߚ െ ߶෨ଶ൯ߚ෨ଵΠଶଶ െ ቀߚ෨ଵ൫߶෨ଶ െ ଶ൯ߚ െ ଵ൫߶෨ଶߚ െ   ,෨ଶ൯ቁΠଷଷቃߚ

ଷଵܦ ൌ หΛ෩หൣߚଵ൫߶ଶ െ ෨ଶ൯ߚ െ ෨ଵሺ߶ଶߚ െ ଶሻΠଵଵ൧ߚ െ ෨ଵሺ1ߚൣ െ ଶሻߚ െ ଵሺ1ߚ െ ෨ଵ൫߶෨ଶߚ෨ଶሻ൧ߚ െ ߶ଶ൯Πଶଶ 
൫ߚ෨ଵ߶ଶ  ෨ଶߚ െ ߶ଶ൯ൣߚ෨ଵ൫߶෨ଶ െ ଶ൯ߚ െ ଵ൫߶෨ଶߚ െ   ,෨ଶ൯൧Πଷଷߚ

ଷଶܦ ൌ ෨ଶሺ1ߚൣ െ ଵሻߚ െ ଶ൫1ߚ െ ෨ଵ߶ଶߚ෨ଵ൯൧൫ߚ  ෨ଶߚ െ ߶ଶ൯ሺΠଷଷ െ Πଶଶሻ, 
ଶଷܦ ൌ ൫ߚଵ߶෨ଶ  ଶߚ െ ߶෨ଶ൯൫߶ଶ െ ߶෨ଶ൯ሺΠଶଶ െ Πଷଷሻ. 

The restriction that ܶିଵΠܶ is diagonal, implies that ܦଶଵ ൌ ଶଷܦ ൌ ଷଵܦ ൌ ଷଶܦ ൌ 0. Suppose that 
Πଶଶ ് Πଷଷ. From D23=0, ൫ߚଵ߶෨ଶ  ଶߚ െ ߶෨ଶ൯൫߶ଶ െ ߶෨ଶ൯ ൌ 0. Suppose that ߶෨ଶ ൌ ߶ଶ. Then D21=0 and 
D31=D32=0 imply that 

ଵ൫߶ଶߚ െ ෨ଶ൯ߚ െ ෨ଵሺ߶ଶߚ െ ଶሻߚ ൌ 0   (54) 
෨ଶሺ1ߚ െ ଵሻߚ െ ଶ൫1ߚ െ ෨ଵ൯ߚ ൌ 0 (55) 

provided that Π෩ଷଷ െ Π෩ଵଵ ് 0. The only solution to (54) and (55) is ߚ෨ଵ ൌ ෨ଶߚ ଵ andߚ ൌ  ଶ implying thatߚ
T=I and, thus, the model is uniquely globally identified almost everywhere. 

Now suppose that ߶෨ଶ ൌ ߶ଶ so that ߚଵ߶෨ଶ  ଶߚ െ ߶෨ଶ ൌ 0 ⟺ ߶෨ଶ ൌ ଶ/ሺ1ߚ െ  ଵሻ. Suppose thatߚ
෨ଶሺ1ߚ െ ଵሻߚ െ ଶ൫1ߚ െ ෨ଵ൯ߚ ൌ 0 ⟺ ෨ଶߚ ൌ ଶ൫1ߚ െ ෨ଵ൯/ሺ1ߚ െ ,ଵሻ  from D32=0. Substitute ߶෨ଶߚ  ෨ଶ in D21=0ߚ
and reach the contradiction that ߚ෨ଶ ൌ 0. Now suppose that ߚଵ߶෨ଶ  ଶߚ െ ߶෨ଶ ൌ 0 ⟺ ߚ ൌ ߶ଶሺ1 െ  ෨ଵሻߚ
from D32=0. Substitute ߶෨ଶ, ෨ଶ into หΛ෩ห and find that หΛ෩หߚ ൌ 0 which contradicts |ܶ| ് 0. Hence, ߶෨ଶ ൌ ߶ଶ 
leads to contradiction.  

For a general case with n inputs, one again uses the fact that ߶ଵ ൌ 1 to fix ߶෨ ൌ ߶ for j=2,…,n 
and then it is a tedious but straightforward step to show that n-input analogue of (54)-(55) has unique 
solution is ߚ෨ ൌ  ■ . for j=1,…,n almost everywhere. This proves part bߚ
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Proof of Proposition 3. 
Under assumptions of the proposition, system (6)-(7) can be re-formulated as follows:  

௧ࢄ ൌ ሾΛ|ܤሿ 
௧ࡲ
௧ࡹ

൨   ௧,  (56)ࢿ


௧ࡲ
௧ࡹ

൨ ൌ ቂΠ 0
0 ܴ

ቃ 
,௧ିଵࡲ
,௧ିଵࡹ

൨  ቂ
௧࣏
࣓௧

ቃ,   (57) 

where B is the known matrix whose columns are selection vectors ei (that is ei is the ith column of matrix 
In) with unity in the row corresponding to the variable with a serially correlated measurement error, Mit is 
a vector of measurement errors,  is a diagonal nonsingular matrix with entries less than unity in 
absolute value (stationarity of measurement errors), ܧሺ࣓௧࣓௧

ᇱ ሻ ൌ Ωଵ is a diagonal nonsingular matrix, 
൫࣓௧ܧ ࣓௦

ᇱ ൯ ൌ 0 for all i, j and ݏ ് 0, and ܧ൫ࢿ௧ ࣓௦
ᇱ ൯ ൌ ௧࣏൫ܧ ࣓௦

ᇱ ൯ ൌ 0 for all i, j, s.  
To prove global identification, it is sufficient to show that there is no rotation matrix T that 

preserves the structure of the model. Suppose that such T exits. Then a rotationally equivalent solution 
must satisfy 

ൣΛ෩|ܤ൧ ൌ ሾΛ|ܤሿ  ଵܶଵ ଵܶଶ

ଶܶଵ ଶܶଶ
൨ ൌ ሾΛ ଵܶଵ  ܤ ଶܶଵ|Λ ଵܶଶ  ܤ ଶܶଶሿ.  

Hence,  
Λ෩ ൌ Λ ଵܶଵ  ܤ ଶܶଵ ⟺ ଵܶଵ ൌ ΛିଵΛ෩ െ Λିଵܤ ଶܶଵ  (58) 
ܤ ൌ Λ ଵܶଶ  ܤ ଶܶଶ ⟺ ଵܶଶ ൌ Λିଵሺܫ െ ଶܶଶሻ. (59) 

Furthermore, there are nonlinear restrictions imposed by uncorrelatedness of ࣏௧ and ࣓௧ and block 

diagonal structure of ቂΠ 0
0 ܴ

ቃ. In particular,  

݊ ൈ ݇ restrictions: ଶܶଵΩ ଵܶଵ
ᇱ  ଶܶଶΩଵ ଵܶଶ

ᇱ ൌ 0 (60) 
0.5݇ሺ݇ െ 1ሻ restrictions:	 ଶܶଵΩ ଶܶଵ

ᇱ  ଶܶଶΩଵ ଶܶଶ
ᇱ  is a diagonal matrix (61) 

݊ ൈ ݇ restrictions: Π ଵܶଶ  ଵܶଶ ଶܶଶ
ିଵܴ ଶܶଶ ൌ 0 (62) 

݊ ൈ ݇ restrictions: ଶܶଵሺ ଵܶଵ െ ଵܶଶ ଶܶଶ
ିଵ

ଶܶଵሻΠሺ ଵܶଵ െ ଵܶଶ ଶܶଶ
ିଵ

ଶܶଵሻ ൌ ܴ ଶܶଵ (63) 
one restriction: det | ଶܶଶ| ് 0 (64) 
one restriction: det | ଵܶଵ| ് 0 (65) 

Because matrices Λ, Π, ,ܤ ܴ have full rank, (58)-(65) form an overidentified system of quadratic 
equations. It is easy to verify that ଵܶଵ ൌ ,ܫ ଵܶଶ ൌ 0, ଶܶଵ ൌ 0, ଶܶଶ ൌ   is a solution to the system for anyܫ
Ωଵ, Ω, Π, ܴ. It is straightforward to verify for low dimensional systems (i.e., ݇  ݊  3) that ଵܶଶ ൌ
0, ଶܶଵ ൌ 0, ଶܶଶ ൌ   is the unique real solution. For higher dimensional cases, consider the worst caseܫ
when n=k so that B=I. Substitute T12 from (59) into (62) so that after rearranging terms 

ܣ തܶଶଶ ൌ തܶଶଶܴ    (66) 
where ܣ ≡ ΛΠΛିଵ and തܶଶଶ ≡ ሺܫ െ ଶܶଶ

ିଵሻ. Note that A has full rank. It is convenient to treat matrices as 
linear operators. Note that the space X on which a linear operator Q is defined is given by ܺ ൌ ⊕ሺܳሻ݉ܫ
  .ሺܳሻ, where Im(Q) is the image of Q and Ker(Q) is the core of Qݎ݁ܭ

Suppose that ݔ ∈ ሺݎ݁ܭ തܶଶଶሻ. Then by the definition of the core, 0 ൌ ܣ തܶଶଶݔ ൌ തܶଶଶܴݔ ⟹ ݔܴ ∈
ሺݎ݁ܭ തܶଶଶሻ ⟹ ܴሺݎ݁ܭሺ തܶଶଶሻሻ ⊂ ሺݎ݁ܭ തܶଶଶሻ. Since R is invertible by assumption, ܴ൫ݎ݁ܭሺ തܶଶଶሻ൯ ൌ ሺݎ݁ܭ തܶଶଶሻ 
and, consequently, ܴ൫݉ܫሺ തܶଶଶሻ൯ ൌ ሺ݉ܫ തܶଶଶሻ from the orthogonal decomposition.  

On the other hand, for ݔ ∈ ሺ݉ܫ തܶଶଶሻ one has തܶଶଶݔ ൌ ݕ ∈ ሺ݉ܫ തܶଶଶሻ. Then ൌ തܶଶଶݖ, ݔܴ ൌ ݖ ∈
ሺ݉ܫ തܶଶଶሻ ⟹ ݕܣ ∈ ሺ݉ܫ തܶଶଶሻ . Since A is invertible, it follows that ܣሺ݉ܫሺ തܶଶଶሻሻ ൌ ሺ݉ܫ തܶଶଶሻ. Note that by 
the properties of the core, the operator T22 on ݎ݁ܭሺ തܶଶଶሻ is equal to I. Consider equation (66) on ݉ሺതܶଶଶሻ. 
As has been established, there is a ଶܶଶ

ିଵ operator defined on ݉ܫሺ തܶଶଶሻ. Apply this operator to both sides of 
(66) and get ܴ ൌ തܶଶଶ

ିଵܣ തܶଶଶ. Suppose that the dimension of ݉ܫሺ തܶଶଶሻ is at least one. In this case, operators 
A and R are equal on ݉ܫሺ തܶଶଶሻ (Korn and Korn, 1968, §14.6-2). The measure of this event, however, is 
zero. Hence, almost everywhere the dimension of ݉ܫሺ തܶଶଶሻ is zero, ݎ݁ܭሺ തܶଶଶሻ ൌ ܺ and ଶܶଶ ൌ  .on X ܫ
Since Ω has full rank and Ωଵ is diagonal, it follows that ଵܶଶ ൌ 0 and ଶܶଵ ൌ 0 and, hence, ଵܶଶ ൌ 0, ଶܶଵ ൌ
0, ଶܶଶ ൌ  . is the unique solution almost everywhereܫ

R
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Restrictions on T22, T21 and T12 do not pin down the matrix T11. Even if ଵܶଶ ൌ 0, ଶܶଵ ൌ 0, ଶܶଶ ൌ
, ଵܶଵܫ ൌ ΛିଵΛ෩ and, therefore, the model is identified if model (6)-(7) is uniquely identified. The “only if” 
direction follows trivially. ■ 

 
Proof of Proposition 4. 
Without loss of generality, consider the system without firm specific effects and measurement error ࢿ௧. 
Collect inputs in vector Zit and partition matrix Λ ൌ ሾΛଵ

ᇱ 		Λଶ
ᇱ ሿᇱ so that Λଵ and Λଶ correspond to Zit and yit 

respectively. The residual of the quasi-differenced production (revenue) function is 
௧ߴ ൌ ௧ݕ െ ,௧ିଵݕොߩ െ ܾࢆ௧  ොߩ ܾࢆ,௧ିଵ ൌ ൫Λଶ െ ܾΛଵ൯࣏௧  ൫Λଶ െ ܾΛଵ൯ሺΠ െ   ,,௧ିଵࡲሻܫොߩ

where ߩො, ܾ are “candidate” parameter values for the serial correlation of productivity and elasticities of 
output with respect to inputs. This residual is orthogonal to inputs and output lagged two or more periods 
if and only if ൫Λଶ െ ܾΛଵ൯ሺΠ െ ሻܫොߩ ൌ 0 (Fit is serially correlated while ࣏௧ is not).  

Note that ܾ is a 1 ൈ ሺ݊ െ 1ሻ vector and ߩො is a scalar. Hence, both ൫Λଶ െ ܾΛଵ൯ ൌ 0 and            
ሺΠ െ ሻܫොߩ ൌ 0 are overidentified because each system has n equations. However, some rows of ሺΠ െ  ሻܫොߩ
can be non-zero when the corresponding columns of ൫Λଶ െ ܾΛଵ൯ are equal to zero and vice versa.  

Consider first a simple case where the matrix Π is diagonal. If ߩො is equal to Πjj, one of the 
diagonal entries of Π, one of the equations in ൫Λଶ െ ܾΛଵ൯ ൌ 0 can be eliminated, the system becomes just 
identified and ܾ ൌ Λଵ,

ିଵΛଶ,  where Λ is the matrix Λ without the jth column. The Blundell-Bond 

estimator assumes that the ߩො is equal to the autocorrelation coefficient for productivity ߩ so that ܾ ൌ  .ߚ
However, there are other solutions. For example, the above logic suggests that ߩො can be equal to the 
autocorrelation coefficient for wage shocks ߩ௪ and this choice of ߩො gives a different solution for ܾ. It is 
straightforward to verify that these solutions are locally identified, i.e., the rank of the Jacobian is full:  

݇݊ܽݎ ൝ܧ 
െݕ,௧ିଵ  ,௧ିଵࢆܾ
௧ࢆ  ,௧ିଵࢆߩ

൨ ௧ࡿ
ᇱ ฬ

ఘୀೕೕ,ୀஃ෩భ,ೕ
షభஃ෩మ,ೕ

ൡ ൌ ݇݊ܽݎ ቊቈ
Λଶ െ Λ෩ଵ,

ିଵΛ෩ଶ,Λଵ
Λଵ൫Π െ Πܫ൯

 ௧ࡿ,௧ିଵࡲሺܧ
ᇱ ሻቋ ൌ ݊, 

where Sit is the vector of appropriately transformed lags of right hand side variables. It follows that there 
can be n different solutions to ൫Λଶ െ ܾΛଵ൯ሺΠ െ ሻܫොߩ ൌ 0 for the case with n inputs.  

Now suppose that Π is not diagonal. Let ߩො be equal to an eigenvalue of Π. Then ݇݊ܽݎሺΠ െ ሻܫොߩ ൌ
݊ െ 1 and, thus, one is back to the case with a diagonal Π, i.e., multiply ൫Λଶ െ ܾΛଵ൯ by a singular matrix. 
Hence, for each eigenvalue of Π there is a unique locally-identified solution for ܾ. Since Π can have n 
distinct eigenvalues (for n-1 inputs), there can be n solutions for ܾ.  

To prove the last result, note that if ߩො is equal to a repeated eigenvalue, ݇݊ܽݎሺΠ െ  ሻ is at mostܫොߩ
݊ െ 2. Hence, at least two columns in Λଵ, Λଶ can be deleted and ൫Λ෩ଶ െ ܾΛ෩ଵ൯ ൌ 0 is underidentified so 
that there are infinitely many solutions for ܾ. ■ 
 
Proof of Proposition 5.  
This proof is for the case with multiple inputs which are collected in the vector Zit. Partition matrix Λ so 

that 
௧ࢆ
௧ࢅ

൨ ൌ Λࡲ௧  
ഥࢆ
ഥࢅ
൨  ௧ࢿ ൌ 

Λଵ
Λଶ
൨ ቂ
௧࢝
ܽ௧

ቃ  
ഥࢆ
ഥࢅ
൨  ,ഥࢆ ௧, whereࢿ  ഥ are time invariant effects. Forࢅ

convenience, I define ሺࡲ௧ࡲ௧
ᇱ ሻ ൌ Σ. It is sufficient to show that the rank of the Jacobian for the moment 

conditions does not have full rank, i.e., the rank of the Jacobian is smaller than the number of parameters 

in the model. Define ࣖ௧ ≡ ௧ࢅ െ ௧ࢆൣߛ
ᇱ ,௧ିଵࢆ		

ᇱ ௧ࢅ	
ᇱ 	൧

ᇱ
ൌ ௧ࢅ െ  ௧, which corresponds to the residualࢂߛ

from quasi-differenced production (revenue) function. Apart from having a permanent component, the 
error term ࣖ௧ has MA(1) structure because of the error term  ࢿ௧.  

Consider the level moments ܧሺࣖ௧ࡿ௧
ᇱ ሻ ൌ 0 where ࡿ௧ ൌ ൣΔࢆ,௧ିଶ

ᇱ …	Δࢆ,௧ି
ᇱ 		Δࢅ,௧ିଶ

ᇱ … 	Δࢅ,௧ି
ᇱ ൧

ᇱ
. 

The expected value of the Jacobian of the moment conditions is  

௧ࡿ௧ࢂሺܧ
ᇱ ሻ ൌ ቈ

ΛଵΠଶܦଵ 	…	ΛଵΠܦଵ ΛଵΠଶܦଶ 	…	ΛଵΠܦଶ
						ΛΠܦଵ 	… 	ΛΠିଵܦଵ 						ΛΠܦଶ 	… 	ΛΠିଵܦଶ

, 
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where ܦଵ ൌ ሺܫ െ ΠሻΣΛଵ
ᇱ ଶܦ , ൌ ሺܫ െ ΠሻΣΛଶ

ᇱ . Observe that the first row is ΛଵΠΛିଵ times the second row; 
hence, the matrix ܧሺെࢂ௧ࡿ௧

ᇱ ሻ does not have full rank and parameters of the model are not identified.  
Now consider the difference moment conditions ( ) {( ) } 0it it it it itE E       S Y V S  where 

௧ࡿ ൌ ,௧ିଷࢆൣ
ᇱ ,௧ିࢆ	…

ᇱ ,௧ିଷࢅ		
ᇱ ,௧ିࢅ	…

ᇱ ൧
ᇱ
. Find that the Jacobian is  

௧ࡿ௧ࢂሺെΔܧ
ᇱ ሻ ൌ ቈ

ΛଵΠଶܦଵ 	…	ΛଵΠܦଵ ΛଵΠଶܦଶ 	…	ΛଵΠܦଶ
						ΛΠܦଵ 	… 	ΛΠିଵܦଵ 						ΛΠܦଶ 	… 	ΛΠିଵܦଶ

. 

 
Hence, the difference moment conditions do not have full rank either because the first row is ΛଵΠΛିଵ 
times the second row. The same conclusion follows for the case without measurement errors, i.e., ࢿ௧ ൌ 0.  

Now suppose that there is no firm-specific effect. Then ܧሺࣖ௧ࡿ௧
ᇱ ሻ ൌ 0 with 

௧ࡿ ൌ ,௧ିଶࢆൣ
ᇱ ,௧ିࢆ	…

ᇱ ,௧ିଶࢅ		
ᇱ ,௧ିࢅ	…

ᇱ ൧
ᇱ
 is a set of valid moment conditions. However, the reduced rank 

is still a problem as the Jacobian does not have full rank:  

௧ࡿ௧ࢂሺܧ
ᇱ ሻ ൌ ቈ

ΛଵΠଶΣΛଵ
ᇱ 	…	ΛଵΠΣΛଵ

ᇱ ΛଵΠଶΣΛଶ
ᇱ 	…	ΛଵΠΣΛଶ

ᇱ

						ΛΠΣΛଵ
ᇱ 	… 	ΛΠିଵΣΛଵ

ᇱ 						ΛΠΣΛଶ
ᇱ 	… 	ΛΠିଵΣΛଶ

ᇱ , 

where the first row is ΛଵΠΛିଵ times the second row.  

Now consider 
௧ࢆ
௧ࢅ

൨ ൌ Λࡲ௧  
ഥࢆ
ഥࢅ
൨  

ଵܤ
ଶܤ
൨ ௧࣏  ௧ࢿ ൌ Λࡲ௧  

ഥࢆ
ഥࢅ
൨  ௧࣏ܤ   ௧ that nestsࢿ

models where some of the inputs can response contemporaneously to changes in productivity (the matrix 
B is square). This modification also results in level and difference moments not having full rank because 
the structure of the moment conditions is not changed. For example, consider the difference moment 
conditions and find that the Jacobian is:  

௧ࡿ௧ࢂሺെΔܧ
ᇱ ሻ ൌ ቈ

ΛଵΠଶܦଵ 	…	ΛଵΠܦଵ ΛଵΠଶܦଶ 	…	ΛଵΠܦଶ
						ΛΠܦଵ 	… 	ΛΠିଵܦଵ 						ΛΠܦଶ 	… 	ΛΠିଵܦଶ

   

 ቈ
ΛଵΠܦଷ 	…	ΛଵΠିଵܦଷ ΛଵΠܦସ 	…	ΛଵΠିଵܦସ
						Λܦଷ 	… 	ΛΠିଶܦଷ 						Λܦସ 	… 	ΛΠିଶܦସ

, 

where Σ ൌ ௧࣏௧࣏ሺܧ
ᇱ ሻ, ܦଷ ൌ ሺܫ െ ΠሻΣܤଵ

ᇱ ସܦ , ൌ ሺܫ െ ΠሻΣܤଶ
ᇱ . This matrix does not have full rank 

because the first row is equal to ΛଵΠΛିଵ times the second row. ■ 
 
Proof of Proposition 6.  
It is shown in Proposition 5 that level and difference moment conditions yield the same Jacobian matrix: 

ܦ ൌ ቈ
ΨሺΓ෨ଶ െ Γ෨ଷሻ
Γ෨ଵ െ Γ෨ଶ

				
ΨሺΓ෨ଷ െ Γ෨ସሻ
Γ෨ଶ െ Γ෨ଷ

	
…
…				

ΨሺΓ෨ௗ െ Γ෨ௗାଵሻ
Γ෨ௗିଵ െ Γ෨ௗ

, 

where Ψ ≡ ሾ0|ܫାିଵሿ. Given assumptions of the problem, identification of the Blundell-Bond estimator 
requires that ݇݊ܽݎሺܦሻ ൌ 2ሺ݉  ሻ െ 1.  

Observe that Γ෨ െ Γ෨ାଵ ൌ ΥΠሺܫ െ ΠሻΓΥᇱ. Consider matrix ܲ ൌ Ψ 
0 Πଵଶ 0
0 Πଶଶ 0൨. Multiply the 

second row of D by P and subtract from the first row of D. Denote the resulting matrix with ܦଵ ൌ ଵܦ
ଵܦ∗

ற 

where ܦଵ
∗ ൌ ቂΦΠ

ΥΠ
ቃ, ܦଵ

ற ൌ ሾሺܫ െ ΠሻΓΥᇱ			Πሺܫ െ ΠሻΓΥᇱ 	…		Πௗିଶሺܫ െ ΠሻΓΥᇱሿ, Φ ൌ Ψ
0 0 Πଵଷ
0 0 Πଶଷ

൨. 

Observe that ݇݊ܽݎሺܦሻ ൌ ଵሻܦሺ݇݊ܽݎ  min൛݇݊ܽݎሺܦଵ
∗ሻ, ଵܦሺ݇݊ܽݎ

றሻൟ and 

ଵܦሺ݇݊ܽݎ
∗ሻ ൌ ݇݊ܽݎ ቀቂΦΠ

ΥΠ
ቃቁ ൌ ݇݊ܽݎ ൮൦

Ψ 
0 0 ΠଵଷΠଷଷ
0 0 ΠଶଷΠଷଷ

൨


0 Πଵଶ Πଵଷ
0 Πଶଶ Πଶଷ

൨
൪൲  ݉  ݊. 

Hence the model can be identified if ݉  ݊  2ሺ ݉ሻ െ 1 ⟺ ݊  2 ݉ െ 1. ■ 
 
Proof of Proposition 7.  
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Order entries of Xt so that the first element in Xt (and Gt) is output y. Without loss of generality suppose 
that there is only one freely-adjusted input l (labor) such that the first-order condition with respect to this 
input is ݕ௧ െ ߶݈௧ ൌ ௧ݓ ,௧ where ߶ is some constantݓ ൌ ݁௪ࢄ௧  is an exogenous shock, and ew is the 
selection vector (i.e., ew is equal to one at the position of wt in Xt and zero otherwise). Also, without loss 
of generality, assume that all other inputs are predetermined. Define Π௬ and Π as rows of the matrix Π 
that correspond to the output yt and the freely adjusted input lt. By (38),  

൫Π௬ െ ߶Π൯ࢄ௧ିଵ  ൫ܤ௬ െ ௧࣏൯ܤ߶ ൌ ௧ݕ െ ߶݈௧ ൌ ௧ݓ ൌ ݁௪ࢄ௧ ൌ ݁௪Πࢄ௧ିଵ  ݁௪࣏ܤ௧. 
Since this holds for any ࢄ௧ and ࣏௧, ൫Π௬ െ ߶Π൯ ൌ ݁௪ and ൫ܤ௬ െ ൯ܤ߶ ൌ ݁௪. It follows that Πଵଶ

௬ െ
߶Πଵଶ

 ൌ 0 and Πଵଷ
௬ െ ߶Πଵଷ

 ൌ ݁௪Πଷଷ. To a first-order log-linear approximation, production (revenue) 
function ݕ௧ ൌ ݈௧ߙ  ௧ܭߙ  ܽ௧ imposes another restriction on Π: Πଵଷ

௬ െ Πଵଷߙ
 െ ݁Πଷଷ ൌ αΠଶଷ and 

Πଵଶ
௬ െ Πଵଶߙ

 ൌ αΠଶଶ. Using these restrictions and the proof of Proposition 6, one finds that the rank of 
the Jacobian matrix D is: 

ሻܦሺ݇݊ܽݎ  ଵܦሺ݇݊ܽݎ
∗ሻ ൌ ݇݊ܽݎ ൮൦

Ψ 
0 0 ΠଵଷΠଷଷ
0 0 ΠଶଷΠଷଷ

൨


0 Πଵଶ Πଵଷ
0 Πଶଶ Πଶଷ

൨
൪൲ ൌ ݇݊ܽݎ

ۉ

ۈۈ
ۇ

ۏ
ێ
ێ
ێ
ێ
0ۍ Πଵଷ

 Πଷଷ
0 ΠଶଷΠଷଷ
Πଵଶ
௬ Πଵଷ

௬

Πଵଶ
 Πଵଷ



Πଶଶ Πଶଷ ے
ۑ
ۑ
ۑ
ۑ
ې

ی

ۋۋ
ۊ
ൌ

݇݊ܽݎ

ۉ

ۈۈ
ۇ

ۏ
ێ
ێ
ێ
ێ
ۍ 0 ቀ ଵ

థିఈಽ
݁ െ

ଵ

థିఈಽ
݁௪ቁΠଷଷ

ଶ

0 ΠଶଷΠଷଷ
0
0
Πଶଶ

݁௪Πଷଷ
݁Πଷଷ
Πଶଷ ے

ۑ
ۑ
ۑ
ۑ
ې

ی

ۋۋ
ۊ
ൌ ݇݊ܽݎ

ۉ

ۈ
ۇ

ۏ
ێ
ێ
ێ
ۍ
0 0
0 ΠଶଷΠଷଷ
0
0
Πଶଶ

݁௪Πଷଷ
݁Πଷଷ
Πଶଷ ے

ۑ
ۑ
ۑ
ې

ی

ۋ
ۊ
 2ሺ  ݉ሻ െ 2  

The last equality follows from Πଷଷ being diagonal. Since the rank is less than 2ሺ  ݉ሻ െ 1, the 
estimator is not identified. ■ 
 

 


