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a b s t r a c t

Firms often have imperfect information about demand for their products. We develop an integrated
econometric and theoretical framework to model firm demand assessment and subsequent pricing
decisions with limited information. We introduce a panel data discrete choice model whose realistic
assumptions about consumer behavior deliver partially identified preferences and thus generate
ambiguity in the firm pricing problem.We use theminimax-regret criterion as a decision-making rule for
firms facing this ambiguity. We illustrate the framework’s benefits relative to the most common discrete
choice analysis approach through simulations and empirical examples with field data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Standard approaches for applying random utility models to in-
terpret discrete choice datamaintain assumptions that allow point
identification of consumer preferences,which eases counterfactual
choice predictions. The point of this paper is to relax our mod-
eling assumptions of consumer behavior without compromising
our ability to provide guidance on counterfactual outcomes. To this
end, the first part of this paper develops amodel that requires only
conservative assumptions about consumer decision-making pro-
cesses to partially identify preferences and, consequently, coun-
terfactual choices. We focus on settings with panel data, and
extend prior work by integrating conservative assumptions on
inter-temporal decision-making into our econometric framework.

The second part of the paper focuses on how firms use the
model’s output to make strategic decisions. While our robust

∗ Correspondence to: 213 Social Sciences Building, 419 Chapel Drive, Durham, NC
27708, United States. Tel.: +1 919 660 1822.

E-mail addresses: handel@berkeley.edu (B.R. Handel), kmisra@london.edu
(K. Misra), j.roberts@duke.edu (J.W. Roberts).

modeling assumptions still allow us to predict counterfactual
choices, the analysis of a firm’s strategic optimization problem is
complicated by the fact that those counterfactual demand curves
are only partially identified. With this information set, how does a
firm make a strategic choice like a pricing decision? When output
is point identified, a firm has complete information about the
distribution of consumer preferences, and can use this information
to maximize expected profits. In our setting, and indeed in
any setting where a firm uses partially identified parameters as
decision-making inputs, the firm may not be able to construct a
prior over the set of feasible preference parameters in order to
maximize expected profits. In this sense the firm faces ‘‘Knightian
Uncertainty’’, or ambiguity, about consumer demand. The second
primary contribution of this paper analyses how a firm can use the
partially identified set of preference distributions arising from our
conservative econometricmodel to choose prices under ambiguity.

This paper thus integrates the prior theoretical work on firm
pricing under ambiguity with a novel econometric framework
to (i) econometrically model the lack of information inherent in
the firm’s problem when only conservative assumptions about
consumer decision-making are made and then to (ii) study how
firms will price under ambiguity if their information set is
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consistent with the output of our econometric model. We then use
this two part framework to study firm pricing in both simulations
and field data. We show that there are many cases where, despite
its more conservative approach, our integrated model compares
favorably to, and at times outperforms, the combined mixed
logit and expected profit maximization framework, which is the
‘‘workhorse’’ model of the industrial organization literature.

We investigate an environment with panel data and develop
four alternative models that correspond to different assumptions
on how consumer preferences can change over time. Each model
results in a distinct, partially identified set of consumer preferences
and, consequently, demand curves and counterfactual choices.
Across these models, the primary parametric assumption we
maintain is that consumer preferences are a linear function of
product attributes, as in the canonical discrete choice framework
of McFadden (1974). Under this assumption, each alternative
inter-temporal decision-making framework places restrictions
on the range of feasible valuations for products and their
associated attributes, given consumers’ choices. Unlike models
with more powerful statistical assumptions about the distribution
of preferences (e.g. random coefficients) and the distribution of
idiosyncratic preference shocks (e.g independent and identically
distributed logit errors), each of our models can be rejected by
the data if the underlying assumptions are violated, increasing the
credibility of the analysis at the expense of reduced precision.

The four frameworks differ according to their maintained
assumptions on the time variation of consumers’ preferences.1
In the first, most basic, setup, consumers have the same exact
preferences in each time period, with no idiosyncratic component,
and we directly apply the strong axiom of revealed preferences
to partially identify consumer preferences. This most basic model
lacks flexibility in allowing for within-consumer variation in
preferences over time, and hencewill likely be rejected by the data.
Thuswe extend it in threeways to allow for time varying consumer
utility. First, we study random shocks to each consumer’s utility
for each product and time period. Unlike previous models in this
literature, which place more structure on the distribution of these
random shocks, we only maintain that these errors are bounded
in size by a constant in absolute value and we do not make
any independence or distributional assumptions about these error
terms.2 Including bounded errors allows the model to account for
small departures from stable preferences that occur often over
the course of multiple decisions. We illustrate how the bound
(i) is identified and (ii) can be estimated in a first stage using
only the original panel data set.3 Our next framework studies
data contamination, an oft-cited determinant of observed time-
variation in purchases (see e.g. Keane (1997) or Einav et al. (2010)).
Intuitively, this allows the model to account for large departures
from stable preferences that occur rarely. It will often be the case
that for particular data sets there is existing knowledge that can
be drawn upon to inform the econometrician about the extent
of contamination in the data. Our final framework combines our
analysis of bounded errorswith our analysis of data contamination.

With these partially identified predictions in hand, we then
investigate the firm pricing problem under ambiguity. To our
knowledge, this is the first work that integrates an econometric

1 As an additional extension to each of these four frameworks, we develop a
method to use cross-sectional variation in conjunction with each of these inter-
temporal frameworks to obtain further identifying power when the panel is not a
representative sample from the population.
2 These assumptions address many of the undesirable features of the standard

extreme value random utility model, as discussed in Bajari and Benkard (2003).
3 We characterize the identified sets in the cases (i) where the error bound is

known by the firm and econometrician and (ii) where the error bound is unknown
by both parties and is estimated.

framework that generates partially identified demand, due to a
firm’s lack of information on consumer preferences, with a model
of firm pricing under ambiguity. We model firm decision-making
using the minimax-regret pricing criteria discussed elsewhere
in a purely theoretical setting (see e.g. Bergemann and Morris
(2005) Bergemann and Schlag (2007) or Bergemann and Schlag
(2008)). Under this criterion, the firm chooses a price to minimize
its maximum regret over the set of perceived feasible demand
curves represented by the partially identified output of our
econometric model. Here regret is defined for a given demand
curve in the set of feasible demand curves, and equals the
difference between profits under the optimal price for that demand
curve and the profits under the actualprice.4 Our analysis considers
the cases of monopolistic and duopolistic pricing under ambiguity
based on the partially identified set of demand curves where
the latter incorporates a strategic environment.5 While we use
minimax-regret as a criterion because it has the desirable property
that it trades off potential losses fromoverpricing (selling too little)
versus those from underpricing (not extracting enough consumer
value), we note that any criterion for decision-making under
ambiguity could be used to make decisions with our partially
identified econometric output. For example, the maxmin criterion
(see e.g. Gilboa and Schmeidler (1989)) is a potential alternative
to minimax-regret, which we study briefly in the context of our
empirical examples.

We use simulations to test the performance of our joint
econometric–theoretical framework relative to two benchmark
specifications: (i) the mixed logit with multivariate mixing and
(ii) ex post optimal pricing under perfect information. For plausible
underlying data generating processes, we analyze how consumer
choices translate into partially identified estimates of demand for
our different econometric models. The results show that, in the
monopoly setting, the monopolist gets close to ex post efficient
prices with our framework independent of the underlying error
data generating process. On the other hand, the mixed logit
performs well if the underlying data structure has i.i.d. errors
but can yield large differences from optimal pricing when this is
violated (such as when there are time correlated error shocks). In
the oligopolistic setting, we analyzeminimax-regret best response
curves given partially identified preferences and show that prices
under our model are much closer to the ex post efficient prices
for many data generating processes. These results suggest that
our integrated framework for robust firm pricing provides a viable
alternative to the canonical mixed logit model in cases where it is
likely that the firms studied have limited information.

Finally, we illustrate how ourmethodology can be applied in an
actual empirical setting in order to recommend an optimal price
when only conservative assumptions about consumer decision-
making are made. The setting we consider is retailer milk pricing.
Fluid milk is a frequently purchased non-storable good and is an
important category for retailers as it has the highest penetration
of any retail category (Bronnenberg et al. (2008)). It is mainly
driven by retailer owned, private label brands and, importantly
for us, it is a non-storable good.6,7 By first estimating demand

4 Note that this notion of regret from the statistical decision literature (e.g. Savage
(1951)) is completely distinct from the notion of regret discussed in the psychology
and economics literature.
5 We developed our framework for strategic firm pricing under ambiguity

simultaneously and independently of recent work by Renou and Schlag (2010)
who study foundations for minimax-regret strategic pricing equilibrium in a purely
theoretical paper.
6 See Fong et al. (2011) for a review of marketing papers estimating private label

elasticity with standard models.
7 This second observation is relevant as this rules out stockpiling behavior which

will generate dynamic choice behavior, themodeling ofwhich lies outside the scope
of this paper (for papers that do model this behavior based on more ‘‘traditional’’
demand estimation techniques, see Erdem et al. (2003) or Hendel andNevo (2006)).
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and then solving for minimax-regret optimal prices, we show
that our methodology is applicable in real-world settings and
returns sensible counterfactual recommendations (the minimax-
regret optimal price is $2.40/gallon when actual observed prices
average about $2.56/gallon).

This paper helps to advance the twin goals in the broader dis-
crete choice literature of (i) describing preferences and (ii) making
counterfactual predictions. Papers that best describe preferences
in specific contexts can make conservative assumptions with sim-
ple decision-theoretic foundations, but, as a result, are generally
notwell suited for counterfactual prediction. For example, Samuel-
son (1938, 1948) study observed consumers’ choices from differ-
ent choice sets and price–income pairs and use either the weak
or strong axiom of revealed preference along with a transitiv-
ity assumption to draw powerful conclusions about preferences
for products in the observed environment. Following this line of
work, Varian (1982, 1983) develop an econometric methodology
that (i) tests if observed choice behavior is consistent with ratio-
nal choices and (ii) recovers preferences as a function of prices and
budget sets. While these approaches infer preferences under min-
imal assumptions, their empirical viability is limited because they
require very rich choice data, the models can be easily rejected by
the data, and they cannot inform predictions in counterfactual set-
tings.

In more recent work, Blundell et al. (2008) use revealed
preference restrictions to non-parametrically identify demand
responses along Engel curves.8 Similar to this paper, their objective
is to use theoretical restrictions to obtain credible preference
estimates, given individual-level data on relative prices and
total expenditures, without imposing the usual parametric and
statistical assumptions that permeate the demand estimation
literature. Our approaches differ along multiple dimensions, most
prominently that Blundell et al. (i) take a cross-sectional approach
that does not incorporate time series decision restrictions in
identification and (ii) do not incorporate the notion of products as
bundles of attributes (or maintain the linear utility in attributes
assumption that we do). The former implies that our primary
sources of identification and ideal data sets differ substantially, as
we incorporate theoretical restrictions on how a given consumer
makes decisions over time. While Blundell et al. study what
minimum level of statistical perturbation to their consumer
utility bounds can justify a rational paradigm given their model
and choice environment, our analysis partially identifies sets of
preferences for attributes and can be used to make predictions
in counterfactual choice settings where products are composed
of those same attributes (e.g. with new products or new choice
settings based on existing products). Finally, we incorporate the
possibility of data contamination and link the output of the
econometric exercise directly to the firm pricing decision under
ambiguity.

The second, and much more heavily utilized, branch of the dis-
crete choice literature makes stronger assumptions about con-
sumer behavior but is also able to make stronger statements about
counterfactual outcomes. These papers assume that consumers
have preferences for product attributes which are aggregated to
establish preferences over products (see Lancaster (1966) and
McFadden (1974)). The canonical model assumes that consumer
preferences have a specific parametric form that maps attribute-
specific preference parameters, vectors of product attributes, and
an additive preference shock known to the firm (but not the re-
searcher) into product values and preference orderings. Papers in
this literature make different assumptions about the distributions

8 In relatedwork Blundell et al. (2003) showhow to use non-parametricmethods
to detect revealed preference violations.

of deterministic preference heterogeneity and the idiosyncratic
preference shock. Many assume that the error terms are either in-
dependent and/or identically distributed across consumers, prod-
ucts and time.9 Given the distribution of error shocks and form
of utility, model parameters are identified using observed choice
data.10 Our work uses some of the basic assumptions in this litera-
ture, such as attribute based preferences, to maintain the ability to
perform flexible counterfactual analyses, but refrains frommaking
parametric assumptions which are without theoretical foundation
and can be difficult to interpret.11

Of special note is recent work by Manski (2007), who studies
a semi-parametric cross-sectional discrete choice model with
no assumptions on the distribution of errors. Manski partially
identifies preferences based on three main sources: (i) linear
utility in attributes, (ii) the consistency of preference parameters
with observed rational behavior for a given choice set and
(iii) cross-sectional variation in prices and choice sets. Our paper
uses (i) but has different notions of (ii) and (iii), primarily because
we study a panel setting where choice consistency over time must
be taken into. We view his paper as complementary to our own
from an econometric perspective since it has a similar underlying
motivation but applies to a distinctly different data environment.
Moreover, his paper does not investigate how the output of the
model will be used in decision-making aswe dowith our emphasis
on firm pricing.

The remainder of the paper proceeds as follows. Section 2
sets up the model and derives the identification regions for each
framework. Section 3 discusses estimation. Section 4 describes
the firm problem when preferences are partially identified.
Section 5 illustrates the methodology through simulations and in
an application to milk pricing. Section 6 concludes.

2. Model

The problem we consider is one where a firm observes panel
data and uses them to make a pricing decision. Our goal is to
relax the assumptions underlying the traditional literature on such
behavior by not requiring the firm to know the distribution of
demand for its products. That is, we consider a firm which seeks

9 It is important to note that the mixed-logit class of models does allow
for error correlations (see e.g., McFadden and Train (2000)). Several other
papers provide counterexamples to this claim and deserve specific mention. An
important contribution in this line of work is Keane (1997) who establishes the
presence of state dependent preferences as well as heterogeneity in these tastes.
Recently, Fiebig et al. (2010) extend the mixed multinomial logit model to present
a generalized multinomial logit model that allows better modeling of consumers
with extreme and/or random tastes (in the sense that a particular attribute of
a product drives much of their decision-making). In other related work, Geweke
(2012) explores recovering regions of parameters based on observed data but from
a Bayesian perspective.
10 Broadly speaking, these models fall into four categories (Ben-Avika et al.
(1997)): those assuming (1) functional forms for deterministic utility (linear
in product attributes) and that error terms are i.i.d. according to a specified
distribution, such as Type 1 Extreme Value (this could include dynamic structural
models of demand, e.g. Erdem and Keane (1996), Erdem et al. (2003) or Hendel and
Nevo (2006)); (2) a parametric functional form for deterministic utility (usually
linear in attributes) but with unspecified error distribution (see Manski (1975));
(3) a specific form for the error distribution, but no functional form assumption
on deterministic utility (see Haistie and Tibshirani (1990) and Abe (1995)); and
(4) no functional form for deterministic utility or the distribution of error terms
(see Matzkin (1993)).
11 We view our work as complementary to the prior literature that maintains
stronger assumptions on the distributions of preferences and preference shocks.
If the output from a model with many maintained assumptions does not lie within
the bounds ourmodels produce, the researcher should be skeptical that theirmodel
is correctly specified. Further, if the point identified output lies near one edge
of our feasible demand curve set, our model sheds light on the likely direction
of any potential model bias. Finally, if the researcher believes there are specific
justifications for the parametric assumptions maintained, this adds insight above
and beyond our model.
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to maximize profits, but cannot necessarily do so in the traditional
way because it does not know the distribution of types in the
population. This implies that the firm can only partially identify
demand for each potential price it considers. In this section we
show how to non-parametrically identify consumer preferences
using panel data. We consider a variety of models with increasing
flexibility to illustrate how one can identify demand under specific
incremental assumptions.

2.1. Base case: time consistency

We begin our analysis with the base model that assumes that
each individual has stable preferences over time. There are no
product or time specific preference shocks, which yields tight
bounds, but a high probability that themodelwill be rejectedwhen
consumers’ decisions cannot be rationalized within the linear
preferences over attributes specification.

2.1.1. Model 1: time consistent preferences
As in Manski (2007) we examine the discrete choice problem

faced by consumers within a treatment response framework. In
this setup, there are A possible distinct alternatives (products)
each uniquely characterized by a K dimensional attribute vector
x. Each attribute is assumed to have finite support,12 therefore the
set A is finite. We define the set of possible treatments D as the
space of possible choice sets an individual could face, which in this
setting is the collection of all non-empty finite subsets of A. Each
individual faces a choice set from D and responds by choosing an
element of that set. Formally, there is a population ofN individuals,
denoted I, in which each individual i ∈ I has a response function
yi(·) : D → A mapping choice sets into unique choices from
that set. The probability distribution P[y(·)] of the random function
y(·) : D → A describes the aggregate choices (product shares)
made by the population.

For example, consider a case where there are three feasible
alternatives b, c , and d, so that A = {b, c, d}. Assume that the
alternatives are described only by their identified name (b, c or
d). In our notation we would say that K = 3, as each alternative
is described by three indicators (similar to fixed effects). Suppose
that we observe data from a choice setting where N consumers
choose between product b and c , so thatD = {b, c}. In our notation
wewould say that yi({b, c}) = b for the Nb consumers who choose
b, yi({b, c}) = c for the Nc consumers who choose c and that
P[y({b, c}) = b] =

Nb
N , P[y({b, c}) = c] =

Nc
N .

Our objective is to estimate counterfactual choice probabilities.
For example, what percentage of consumers would choose d in a
choice between all three alternatives? Without any assumptions
about the underlying consumer decision-making process, we
cannot say anything informative about this counterfactual. In our
setting we make several conservative assumptions on individual
behavior that will allow us to make counterfactual predictions.

Assumption 1 (Utility Maximization). Consumers have well de-
fined preferences andmake decisions thatmaximize utility subject
to the available elements in their choice set.

Under this assumption, if consumer i faces choice set Dwe have
the following information about the consumers response function
where ui,a is the utility consumer i gets from alternative a:

yi(D) = argmax
a∈D

ui,a. (1)

12 This assumption contrasts with those in Berry and Haile (2009).

This assumption allows us tomake inferences about counterfactual
consumer choices, and we can classify the population into types
based on their preferences. A type is defined by preferences over
all elements of D. There are |D|! possible types in the population
corresponding to different permutations of the elements of D that
could correspond to rational preference orderings. Inference about
what type a consumer might be can be made from observed
choice data. In the simple example above, there are 6 types of
consumers:

1. b ≻ c ≻ d, 2. b ≻ d ≻ c, 3. c ≻ b ≻ d
4. c ≻ d ≻ b, 5. d ≻ b ≻ c, 6. d ≻ c ≻ b.

Observing the fact that Nb consumers choose option b in a
choice between {b, c} implies that these consumers are of type
1, 2 or 5. Similarly, observing Nc consumers choose c implies
that they are of type 3, 4, or 6. In counterfactual choice settings,
the proportion of consumers who choose c from a choice set
{b, c, d} is equivalent to estimating the proportion of consumers
of type 3 or 4. In this example this is bounded above at Nc

N .
However, withoutmakingmore assumptions about the underlying
utility structure, we cannot estimate the counterfactual choice
probability for choice d since we never observe d in the consumer
choice set.

Therefore, we follow the discrete choice literature (McFadden
(1974)) and consider products to be bundles of attributes and
assume that consumers’ utility functions are linear in these
attributes.

Assumption 2 (Linear Utility). Individual utility functions are
linear in the K dimensional attribute vector x, that describes the
alternatives in the choice sets.

Additionally, we define individual specific K dimensional
parameters ωi to describe individual i’s preferences for each
attribute. We define Ω as the feasible parameter space for these
preferences, with ωi ∈ Ω .

Under these characterizations, the utility consumer i gets from
alternative a is defined as:

ui,a = ωi · xa. (2)

Relating this to the response function we now have:

yi(D) = argmax
a∈D

ωi · xa. (3)

In our formulation of this utility model, price is one attribute
in xa. Thus, we consider one product sold at P different prices
as P distinct feasible alternatives in the set of all alternatives A.
Here, a demand curve involves constructing a set of counterfactual
predictions based on the set of alternatives.

Unlike our simple example where we had six types of con-
sumers in our model with linear utility, we now have a continu-
ous parameter space with infinite consumer types. However, since
we have a space of finite alternatives, we can represent the contin-
uous space Ω by a discrete distribution of types corresponding to
the different possible choice functions over A (as inManski (2007)).
These representations are equivalent because each of the ω ∈ Ω

that corresponds to the same preference ordering over all alterna-
tives cannot be identified from each other in the data in ourmodel.
Formally, let Am, m = 1, . . . , |A|! represent the mth permutation
of A. If xm,n is the attribute bundle of the nth element of Am, then
the discrete type space can be defined:

Θm ≡ [ω ∈ Ω : ω · xm1 > ω · xm2 > · · · > ω · xm|A|].

Let θl denote a generic element of Θl which we can use from
this point forward to represent that typewithout loss of generality.
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We have now mapped our parameter space from a continuous set
Ω to a set of discrete types {θ1, . . . , θ|A|!}.13

We partially identify the distribution of types with panel data
by using this model to identify the feasible range of preferences
for each individual based on their choices and then aggregating
these to form an aggregate bound on the distribution of types. In
our panel data, for each individual i ∈ I we observe choices ait
from distinct choice sets over time (e.g., choice made every week)
dit for t = 1, . . . , Ti.14

The main advantage of these data are that we can use all Ti
observations for the individual to gain more information about
a given individual and aggregate feasible types. However, the
panel framework also presents additional complications since it is
possible for data on individual decisions to be inconsistent with
a constant preference parameter over time. Below we present
models that allow for the most commonly given explanations
for such apparent inconsistencies: time varying preferences and
data contamination.15 We begin, however, with a base model that
assumes that consumers have stable preferences over time and
that there is no data contamination. It is the strictest of the models
we present since it is the least flexible in terms of how it can
rationalize a sequence of observed choices.

Definition 1 (Time-Consistent Utility). An individual in the popula-
tion is time-consistent if they always make decisions according to
a fixed θi.

This definition implies that a consumer’s utility in each
purchase occasion is described completely by observable (to the
researcher) attributes. An individual can be time-consistent if:

Θ1
i ≡


θ : θ ∈ ∩Ti{θ : θ · xa∗it > θ · xa−∗

it
, ∀a−∗

it ∈ dit}


≠ ∅

where a∗

it is i’s purchase decision at time t and a−∗

it is an element
not chosen from that set. Here, Θ1

i denotes the set of feasible θ for
individual i given the decisions we observe over time. Under the
time-consistency assumption, the partially identified probability
of an individual i being of type θ is:

H[Pr(θi = θ)] = [Pr(Θ1
i = {θ}), Pr(θ ∈ Θ1)]. (4)

This says that the lower bound of a specific consumer being a
certain type is the probability that the identification region for an
individual includes only that type, while the upper bound is the
probability that a given type is included in an identification region.
If an individual is not time-consistent so thatΘ1

i = ∅, we conclude
that individual is not in the |A|! rational types and lies instead in
the larger collection of types that is described by all permutations
of possible choices across feasible choice sets.

In our basemodel, we consider the sample thatwe analyze to be
the population of interest. This simplifies exposition of our model
in that it allows us to focus on identification instead of sampling
properties at this point. The set of feasible distributions for θ in
the population comes directly from identifying the feasible types

13 As shown in Manski (2007) the linear utility specification has some identifying
power as we reduce the number of feasible choice functions before going to the
data. In the simulations that we study in Section 5.1, the dimensionality of feasible
discrete types is reduced approximately by a factor of ten when we impose the
linear model, implying that the number of points in the distribution that we are
estimating is also reduced by a factor of ten.
14 For simplicity, we will consider models where consumers make only one
discrete choice at each point in time, though nothing about our setup precludes
us from observingmultiple choices at multiple points in time for a given individual,
where linking contemporaneous decisions would also add identifying power.
15 Two other potential explanations for such inconsistencies are decision-making
errors and non-linear utility. To focus on the core issue of robust firm pricing, we
leave the exploration of these types of models to future work.

at the individual level (as described above) and then determining
all combinations of these types aggregated to the population
level. Then, all such feasible aggregations describe the partially
identified set of type distributions. More formally, the set of
feasible distributions satisfies:

H[F(θ)] ≡


F(θ)|f (θ) =

1
N


i∈I

I[θ = θi], ∀i ∀θi ∈ Θ1
i


. (5)

To understand the set definition, consider the example from above
where there are six consumer types. Suppose that there are two
consumers for whom, based on their sequence of purchases, we
have determined that the first can be type 1 or 2 and the second
can be type 2, 3 or 4. Then there are six possible distributions and
H[F(θ)] includes all six possibilities:

1. f (1) = 1/2, f (2) = 1/2; 2. f (1) = 1/2, f (2) = 1/2
3. f (1) = 1/2, f (4) = 1/2; 4. f (2) = 1
5. f (2) = 1/2, f (3) = 1/2; 6. f (2) = 1/2, f (4) = 1/2.

The knowledge of the partially identified distribution of
preferences allows us to study counterfactual choice settings
and, hence, counterfactual demand. At the individual-level, a
given consumer either could or could not choose product a
from counterfactual choice set D. This binary possibility depends
directly on whether the partially identified preference set for
that individual contains at least one preference profile where the
individual would choose a from D. Given this, we define bounds
on demand for product a when the population faces choice set D
relative to H[F(θ)], the set of feasible preference distributions at
the population level. Minimum demand for product a comes from
the feasible distribution in H[F(θ)] where the fewest consumers
would purchase a (and vice-versa for the maximum):

H[P(y(D)) = a] =


min

F(·)∈H[F(·)]


θ

1[y(D) = a]f (θ),

max
F(·)∈H[F(·)]


θ

1[y(D) = a]f (θ)


. (6)

2.2. Relaxing time consistency: bounded preference shocks and data
contamination

The base model above is predicated on consumers having
constant preferences over time. Given this inflexibility, it is
possible that an individual’s observed purchase decisions cannot
be rationalized by such a model. Therefore, we now present two
extensions to make the model more realistic.

The first of these allows for individual-time-product specific
preference shocks as most discrete choice models do, but assumes
no structure on the population distribution of the shocks except
that they are bounded. This approach is motivated by Bajari
and Benkard (2003) who illustrate that canonical discrete choice
models with unbounded errors have some notable undesirable
properties. First, as the number of products in the choice set
becomes large, the standard approach implies that all consumer
decisions are driven by unobserved error shocks. This implies that
in settings with large choice sets researchers cannot learn about
underlying consumer preferences. Second, in any choice setting,
the standard approach implies that every product has a non-zero
probability of being chosen by a given consumer, regardless of
underlying preferences. In this section, our model with bounded
errors allows researchers to learn about preferences over time even
with a large number of products and, additionally, allows for a zero
probability of choosing a dominated product.

The second of these extensions allows for the possibility that
the data may be contaminated and thus observed purchases do
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not reflect actual choices. There are numerous reasons that data
may be contaminated including, but not limited to, recording
errors, non-response, or interpolation/extrapolation. Heuristically,
bounded errors allow the model to explain consumers making
frequent, but small departures from stable preferences. Data
contamination, on the other hand, permits less frequent, though
larger fluctuations in implied preferences.

2.2.1. Model 2: random utility
Most attempts to estimate demand with panel data employ a

utility model of the form:

ui,a = θi · xa + εi,a. (7)

A consumer’s utility in each purchase occasion is described by
observable (to the researcher) attributes and unobserved error
shocks. Here we make the following assumption on ε:

Assumption 3 (Random Utility Model with Bounded Errors). An
individual in the population receives random utility shocks εi,a,t
for each i, a, and t . The only assumption about these shocks are
that they are (strictly) bounded within some range [−δ, +δ].

Therefore, at each point in time, and for any product, an indi-
vidual receives a shock to his utility of magnitude no greater than
δ. Further, as opposed to what is done in the literature, we make
no distributional or independence assumptions about this shock,
apart from setting this bound.16 In theory, the firm could know δ
or calibrate it froma variety of data sources. In Section 3wepresent
onemethodology for how a firmmay non-parametrically select an
appropriate δ in a given empirical setting.

Without any assumptions about the distribution of ε, all we
know is that ∀a1, a2 ∈ D, −2δ ≤ εi,a1,t − εi,a2,t ≤ 2δ. Therefore
the identification region for this model is given:

Θ2
i ≡ {θ : θ ∈ ∩Ti{θ : θ · xa∗it ≥ θ · xa−∗

it
− 2δ, ∀a−∗

t ∈ dit}}. (8)

As in the time-consistency case, the partially identified probability
of an individual i being of type θ and the feasible population
distributions of types are given by Eqs. (4) and (5), respectively,
with Θ2

i replacing Θ1
i .

As in the base model, knowledge of the partially identified
distribution of preferences allowsus to study counterfactual choice
settings. We can derive the probability that alternative a is chosen
from a choice set D as was done in Eq. (6).

2.2.2. Model 3: data contamination
While bounded errors provide flexibility in terms of describ-

ing consumer decisions that depart by a small magnitude from
their stable preferences, in some cases there may be large fluc-
tuations in implied preferences for an individual as a function
of observed choices. Here, we expand the base model by allow-
ing for a proportion of the data to be contaminated. An alter-
native interpretation of large deviations from apparently stable
preferences that is based more on behavioral foundations, is that
consumers occasionally make sub-optimal decisions.17 We prefer

16 If there are distinct consumer types in the data which are observable, then δ

could vary across consumer types. For simplicity we assume no such distinctions
exist as the extension is straightforward.
17 This may occur for a variety of reasons. It may be, for instance, that consumers
do not have full information about the options available and make decisions based
on some individual heuristic. For example, there is evidence showing that time-
constrained consumers are more likely to purchase items from the middle of store
shelves (Dreze et al. (1994)). As researchers, we do not know when individuals use
such heuristics, nor which heuristics they use.

the data contamination explanation and so proceed under that in-
terpretation.18,19

Assumption 4 (Data Contamination Model with Time-Consistent
Utility). Individuals have time-consistent utility but up to φ
percentage of their decisions could be recorded with error.

There are numerous reasons that data may be contaminated
and multiple papers have explored the extent of data contami-
nation and issues relating to identification and estimation in its
presence (see for example Horowitz and Manski (1995), Keane
(1997), Erdem et al. (1999) or Einav et al. (2010)). Define Tφ

i as the
set of observations for i that are not contaminated, with Tφ

i ⊆ Ti
and |Tφ

i | ≥ (1−φ)|Ti|. Given Tφ

i the partially identified set of pref-
erences for each consumer are defined20:

Θ3
i (T

φ

i ) ≡


θ : θ ∈ ∩Tφ

i
{θ : θ · xa∗it ≥ θ · xa−∗

it
∀a−∗

t ∈ dit}

. (9)

For a given bound φ, there are many possible candidates for
Tφ

i since the researcher cannot observe which data are actually
contaminated. As a result, all feasible Tφ

i must be considered to
determine the true partially identified set Θ3

i :

Θ3
i ≡ ∪Tφ∗

i
Θ3

i (T
φ

i ). (10)

Here, Tφ∗

i is the set of all feasible Tφ

i . The union of these sets is the
correct metric, because each potential Tφ

i could reflect the set of
all actual purchases. It is important to note that, from an empirical
standpoint, the only potential Tφ

i the researcher needs to consider
are those that have exactly 1 − φ observations (|Tφ

i | = (1 −

φ)|Ti|). This is true because the set of potential preferences can only
expand as restrictions from choices are removed, so those feasible
data sets with the fewest choice restrictions (largest possible
proportion of misclassified data) will be the most inclusive.

As in the time-consistency case, the partially identified
probability of an individual i being of type θ and the feasible
population distributions of types are given by Eqs. (4) and (5),
respectively, with Θ3

i replacing Θ1
i .

21 Counterfactually, once we
determine the partially identified distribution of preferences we
can derive the probability that alternative a is chosen from a choice
set D as was done in Eq. (6).

18 There is an added benefit of avoiding a model of sub-optimal decision-making.
If consumer decisions are actually random some fraction of the time, a firm may
wish to set an infinite price. As we study firm pricing below, it would be difficult to
rationalize this strategy with empirical evidence that prices are rarely infinite. We
thank the referees for pointing this out.
19 An alternative interpretation of φ could be that with a small probability, a
particular consumer’s observation is recorded with error. We do not adopt this
approach because if φ were the probability that an individual observation was
misclassified, then it is possible, albeit unlikely, that all observations in any one data
set would be contaminated. This would be equivalent to having our interpretation
of φ as a proportion and that proportion being 1. φ can be thought of as a value that
will be above the proportion of misclassified data for almost every individual.
20 A related process is discussed in Keane and Sauer (2009, 2010), but in a different
contextwhere the authors consider the case of employment statusmisclassification
when modeling female labor supply.
21 We assume that at most φ percent of observations are misclassified/
contaminated for each individual. If the true data generating process (DGP) is
binomial where, with some probability p, an observation is recordedwith error, any
bound less than φ = 1 could in theory be violated. In the context of our assumed
bound, if a consumer actually has a proportion of misclassified data greater than
φ, the model will be rejected by the data if the misclassification, treated as an
actual choice, leads to implied preferences that are not consistent across purchases.
In this case, the identified set of parameters will be empty. Our model already
conservatively accounts for the case where actual misclassifications are less than
the assumed bound φ.
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2.2.3. Model 4: random utility with data contamination

Assumption 5 (Data Contamination Model with Random Util-
ity). Individuals have random utility with bounded errors and up
to φ percentage of their decisions could be recorded with error.

This model is a combination of models 2 and 3 discussed above.
There are two parameters: δ, the bound for the random utility
shocks and φ, the bound for the frequency of data contamination.
The combination of these factors is attractive in situations where
there is a large probability that individual preferences change
by small amounts over different choice settings and a small
probability that an individual appears to makes a decision that
departs completely from our description of their preferences.

To estimate consumer preferences with these assumptions
given a feasible Tφ

i , we define:

Θ4
i (T

φ

i ) ≡

θ : θ ∈ ∩Tφ

i
{θ : θ · xa∗it ≥ θ · xa−∗

it
− 2δ ∀a−∗

t ∈ dit}

(11)

where Tφ

i is defined as above. Then, as in model 3, the full partially
identified set of consumers preferences is defined:

Θ4
i ≡ ∪Tφ∗

i
Θ4

i (T
φ

i ). (12)

As in the time-consistency case, the partially identified proba-
bility of an individual i being of type θ and the feasible population
distributions of types are given by Eqs. (4) and (5), respectively,
with Θ4

i replacing Θ1
i .

22 Counterfactually, once we determine the
partially identified distribution of preferences we can derive the
probability that alternative a is chosen from a choice set D as was
done in Eq. (6). As with model 2, the firm could know δ or calibrate
it from a variety of data sources. Section 3 presents one methodol-
ogy for how a firmmay non-parametrically select an appropriate δ
conditional onφ. In our empirical exercise in Section5,we calibrate
φ using prior work on data contamination, and discuss several al-
ternative approaches.

As an additional extension to each of these four frameworks, in
Appendix A we develop a method to use cross-sectional variation
in conjunction with each of these inter-temporal frameworks
to obtain further identifying power when the panel is not a
representative sample from the population.

2.2.4. Price endogeneity and bounded errors
While most discrete choice models rely on exogenous variation

of the independent variables, such as price, our model makes no
explicit independence assumptions and therefore does not require
exogenous variation. In general, endogeneity is a much bigger
concern with aggregate purchase data (see e.g. Berry et al. (1995))
thanwhen the researcher has panel scanner data in our setting (see
e.g. Erdem et al. (2003)). While endogeneity is thus not likely to
be a major concern in our context, we note as a robustness point
that the partially identified estimates of consumer preference
distributions would not be biased even if firms had any additional
amount of information that they were incorporating into prices.

To see this consider the utility function as in Berry et al.
(1995) a canonical model in industrial organization, where uijt =

22 In the case that the true DGP is one where there is some probability p an
observation is misclassified, it is possible that a particular individual has more
than φ percent of observations misclassified. In that event, our estimate of δ (as
described in Section 3) would increase to account for apparent larger deviations in
stable preferences from misclassified observations not accounted for with φ. This
again would lead to conservative estimates, as our partially identified parameters
sets would reflect the larger δ values that would be necessary to rationalize these
purchases.

βiXjt + ξjt + εijt where ξjt is a common shock that impacts all
consumers. The common assumption is that the firm observes ξjt
and therefore sets a price Pjt that includes this information. In
our specifications with bounded errors, we consider ξjt to be a
part of εijt , which, in most standard discrete choice models with
independent and i.i.d. errors would cause price endogeneity as the
error term would be correlated with the independent variables.
However, in our model we make no independence or identical
distribution assumptions and therefore, with the caveat that the
error termmust lie within the bounds, the model is still estimated
consistently with endogenous independent variables. To see this
explicitly, say ξjt is a negative shock. In our model this will imply
all εijt will simultaneously receive negative shocks. However, as
long as the shocks lie within the assumed bound δ, the partially
identified set will still be consistent and contain the true demand
distribution.

This feature remains true allowing for some proportion of the
data to be contaminated, as we do in our setting. As with the
bounded error models, so long as the proportion of assumed data
contamination falls underneath our assumed upper bound for such
decisions (we discuss how this can be determined systematically
in the next section), the set of estimated preference distributions
is still consistent and the true deterministic demand curve is
contained within this set. Thus, our model will be robust to
endogeneity concerns with respect to price or other features of the
environment such as advertising or marketing.

2.3. Simulation

In order to illustrate our methodology, we study a simulated
market where the firm or firms have information on consumer
purchase behavior that they use to estimate a demand curve.
The simulation gives us the ability to study the degree to which
the partially identified demand output from the various proposed
models links to underlying preferences. In our simulation we will
have two products and an outside option and in each time period
consumers decide which product to purchase (if any) given the
specified price.

We simulate the preferences of 300 individuals from the
population who obey the utility specification:

Uijt = αij + βipijt .

Here, αi are product fixed effects which we use to aggregate
preferences for all attributes except for price, as well as any
other brand specific utility component. This is without loss of
generality for our pricing problem since we assume that firms in
this market do not change product attributes over time, except
for price. Additional information about product attributes can only
help refine themodel further. Consumer i chooses product k at time
t given the decision set dit based on the decision rules in the four
models just described.

We set the utility of the outside option for each person and
time period to 0 and normalize the value of αi1 = 1 ∀i in order
to obtain identification. Throughout the analysis there are two
possible products, so there are two free preference parameters for
each individual in the population. For this population, we draw
αi2 from a uniform distribution on [0.5, 1.5] and βi independently
from a uniform distribution on the range [−3.75, −1.75]. We then
simulate 208 time periods of choices (corresponding to four years
of weekly data23) of decisions for each individual. In order to do
so, we assume that both products are offered in every period and

23 Most panel data sets available to researchers have 4 years of weekly purchase
data. We have also experimented with fewer periods. If we have 50 weeks our
overall conclusions do not change.
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Fig. 1. Sample identification sets for a consumer. The black dot represents the true preference parameters, and the blue region represents the partially identified region.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

that their prices are drawn independently and uniformly from the
range [0.1, 0.7]. We define the feasible identification region for
(αi2, βi) to be [0, 5] × [−5, 0] so that the feasible identification
region covers a large region of reasonable relative preferences.

We simulate data for each of the four choice models described
above. For model 1 we simulate the data as just described. For
the models with random utility shocks (models 2 and 4) we set
δ = 0.10. This implies that random utility shocks here are at most
10% of the base value of the preference for product 1. We allow
there to be three types of consumers. The first 100 have i.i.d. errors.
The second 100 have errors that are correlated across products.
This correlation is generated in each period by first drawing ε1t
uniformly from the range [−δ, δ], resulting in ε1t . We then draw
ε2t uniformly from [ε1t − δ, δ] if ε1t > 0 and from [−δ, ε1t + δ]
if ε1t < 0. The last 100 have errors that are correlated over time.
This correlation is generated for each product by first drawing εj1
uniformly from the range [−δ, δ], resulting in εj1. We then draw
εj2 uniformly from [εj1 − δ, δ] if εj1 > 0 and from [−δ, εj1 + δ] ifεj1 < 0. We then repeat for period three (and so on) replacing εj1
with εj2.24 For models 3 and 4 we set the φ parameter to 0.10. This

24 The average (over consumers) correlation in the errors across brands is 0.544
and the average correlation in the errors between times t and t + k is 0.483, 0.223,
0.108, 0.045 and 0.018 for k = 1, 2, 3, 4 and 5, respectively.

implies that 10% of the data are contaminated. We also divide the
consumers into three types: 100 have (up to) 10% of their decisions
mis-recorded (randomly), 100 choose brand 1 independent of
preferences (up to) 10% of the time and the other 90% of the time
they make utility based decisions and the last 100 choose not to
buy (up to) 10% of the time. However, these 10% are more likely
(100 times) to occur after a purchase of brand 1 in time t−1. These
rules are intended to simulate data contamination.

Given each individual’s choice data,we canpartially identify her
true parameters within this feasible set. The size of the partially
identified set varies based on the observed choice behavior and the
choice. Below, we give examples of partially identified sets for two
consumers, based on the four choice models presented. The first
individual (see Fig. 1) is an example of a consumer who purchases
both products (and the outside option) at some point in time in
our generated data for all four choice models. This allows us to
refine the partially identified set of alternatives to a relatively small
region for all four models. All the estimated identification regions
contain the true parameters. The largest identification region will,
by definition, occur for model 4 since the data generating process
incorporates both data classification errors and utility shocks,
implying less information about consumers’ actual preferences
than the other specifications. The second example, depicted in
Fig. 2, is that of a consumer who never purchases product 2 in the
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Fig. 2. Sample identification sets for a consumer. The black dot represents the true preference parameters, and the blue region represents the partially identified region.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

entire data sample. Given these data we cannot achieve such tight
bounds.

After we have found the partially identified set of preferences
for all 300 consumers, we aggregate these regions in the manner
described for each model to obtain a partially identified set for
the joint distribution of tastes in the population. This distribution
is generated in a two dimensional space (α2, β space) and is
used to estimate demand. The demand estimates are shown in
two different formats. First, we consider a demand curve for each
product if it were sold in isolation (without the other product) and
then estimate demand with both products selling.

From Fig. 3 we obtain several insights. We correctly capture the
true demand in the bounds for all of our models. The bounds are
tightest in the model with the time-consistency assumption and
are widest in model 4. Overall, the bounds are tight and can be
informative for managerial decision-making. One way of thinking
of this in terms of parametric discrete choice modeling is that any
correctly specified model that describes these data must predict
demand to be within the bounds specified.

Finally, in Fig. 4 we consider demand in a setting where both
products are sold. These representations show that we do capture
large parts of the demand curve with tight bounds across all
models. Once again, the smallest bounds are with model 1 and the
largest bounds are with model 4.

3. Estimation

The econometric framework just described assumes that the
researcher and firm know the bound on the individual consumer-
level preference shock δ as well as the maximum extent of data
contamination φ. For cases where the firm and researcher know,
or assume, δ and φ, there is a direct link from the data observed
to the partially identified preference sets that are our primary
econometric output, as described in Section 2. It is important to
note that our model can be rejected by the data if the values of δ
and φ imposed by the econometrician cannot explain the observed
variation in the data.

In most empirical settings, researchers will have limited
information about these parameters. In this section we propose
a simple method to identify and estimate δ in a first stage
that precedes the implementation of the framework set out in
Section 2. To do this, we first resolve the issue of where the data
contamination parameter φ comes from in an empirical setting,
and then discuss the first stage estimation of δ conditional on that
value of φ.

3.1. Data contamination

There are numerous reasons that data may be contaminated
including, but not limited to, recording errors, non-response,
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Fig. 3. Partially identified demand curves if products were sold in isolation. The rows represent the four models presented in this paper and the columns represent the
demand curves for product 1 and product 2, respectively.
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Fig. 4. Partially identified demand curves if both products are sold. The rows represent the four models presented in this paper and the columns represent the demand
curves for product 1 and product 2, respectively.
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or interpolation/extrapolation. Numerous authors have explored
the extent, and issues relating to identification and estimation
in the presence of data contamination across myriad empirical
settings (see for example Horowitz and Manski (1995), Keane
(1997), Erdem et al. (1999) or Einav et al. (2010)). In our setup,
we cannot separately identify both δ and φ using just the panel
data because a large δ can be used to empirically justify the
large departure from stable preferences represented by data
contamination.25

In our approach, we lean on the ability to identify the extent
of data contamination from past studies or a simple empirical
investigation set up by the researcher or firm. We then use the
panel data we observe to estimate δ conditional on φ.26 Previous
work, such as Erdem et al. (1999) or Einav et al. (2010) provide
excellent sources for researchers to learn about the extent of
data contamination. Additionally, in principle it is feasible in most
empirical contexts for the firm or researcher to perform a similar
type of validation study to get φ̂.

3.2. Estimating the error bound

Once we have a conjecture φ̂, we can estimate δ in a first stage
that uses the same panel data used throughout the rest of the
analysis. Define δ∗ as the true value of δ we are trying to recover.
We construct an estimator for δ∗ that leverages both the time-
series and cross-sectional variation across consumers in the panel
data that we observe. As in Section 2, we illustrate the estimation
with homogeneous δ∗. In practice we can condition estimation
of δ∗ on observable demographics without altering the methods
described here.27

Define δ
φ̂

iT as the lowest δ that can rationalize consumer i’s
decisions when there are T time periods observed and φ̂ is the
extent of data contamination. This is the minimum value of δ that
results in the identified set for consumer i to be a non-empty set
conditional on φ̂. Explicitly from themethodology in Section 2, this
implies that the δ

φ̂

iT is the lowest value of δ, such that the set
θ : θ ∈ ∩

T φ̂
i
{θ : θ · xa∗it ≥ θ · xa−∗

it
− 2δ ∀a−∗

t ∈ dit}


is non-empty for some feasible T φ̂

i , with the set of feasible T φ̂

as defined in Section 2.28 In addition to the assumption that
δ is homogeneous conditional on observable demographics, we
assume that the bound is tight for the potential purchase data we
observe. That is, as we observe infinite data, the most extreme
values of δ will be realized for each consumer. Formally, we have
limT→∞ P(δ

φ̂

iT = δ∗) = 1.

25 In our model as δ → ∞, all data can be rationalized as unbounded large
‘‘random’’ shocks and as φ → 1, all data can be rationalized as completely
contaminated data.
26 We note that, in principle, we could estimate the model by using an estimate
of δ from ‘‘outside’’ the panel data we observe and then estimate φ with our data
conditional on that value for δ. However, since it is easy to think of how one would
construct data validation studies outside of the panel data, but difficult to think
about studies that would inform the extent of preference shocks, we believe that
the approach outlined in this section is more practical for most empirical settings.
27 It is important to point out that as T becomes large and we observe more
purchase data per consumer, it becomes more attractive to try and estimate
unobserved heterogeneity in δ∗ , conditional on a demographic profile. In the limit
as T → ∞ (and there is enough price variation), we identify the true δ∗ for each
individual. The estimation here recognizes that we do not observe infinite data in
reality, and uses homogeneity conditional on demographics to help identify δ∗ in
the relevant group of interest.
28 If a set of preferences is feasible any given T φ̂

i then it is feasible in general.

Given these assumptions, we proceed as follows. In any sample
we can define ∆

φ̂

T = {δ
φ̂

iT , i ∈ I} and assume that the sample is

ordered so that δ
φ̂

1T ≤ · · · ≤ δ
φ̂

IT . A simple estimator of δ∗ is δ̂ =

max(∆φ̂

T ). This will be biased downwards relative to δ∗. Though δ̂
would be consistent for δ∗, we follow the econometric literature
on estimating boundaries and correct for this bias in our estimator
(see the summary of current methods in Karunamuni and Alberts
(2005)).

Denote this bias as γ . While the literature on estimating
boundaries has a variety of sophisticated methods for estimating
the edge of a distribution, Hall and Park (2002) discuss a simple
m-out-of-n subsampling bootstrap method in which the estimate
of the bias is γ HP

m =


i(δn−i+1−δn−i)K(i/m)

i K(i/m)
, where K(·) is a non-

negative function, which can be interpreted as a kernel weighted
average of the difference between consecutive values of δ. We
adapt their approach, which is for continuous bounded random
variables (as is generally the case in this literature) to our setting in
which all admissible values of δ are from a discrete set (as we have
a discrete set of types) in our model.29 Despite this difference, we
show in Monte Carlo exercises in Appendix B that our procedure
effectively corrects for the bias in δ̂.

Define f̂ (δφ̂

iT ) as the empirical distribution of δφ̂

iT across I for fixed
T , whichwill be a discrete distribution in our setting. Our estimator
for γ is:

γ̂T =


δ
φ̂
iT∈∆

φ̂
T

(δ̂ − δ
φ̂

iT )f̂ (δ
φ̂

iT ). (13)

For this estimator to be consistent, we need limT→∞ γ̂T = 0.
This is true as limT→∞ f (δφ̂

iT ) = 0, ∀δ
φ̂

iT ≠ δ̂∗ by our assumption of
a common δ∗ for the population in question. In other words both
the simple estimator δ̂ and the bias-corrected estimator δ̂ + γ̂ are
consistent for δ∗, but the latter is more conservative in the sense
that it is less likely to underestimate δ∗.30 The extent towhich γ̂T +

δ̂T is upwardor downwardbiased in a given applicationdepends on
the interaction between the assumed form of the bias correction in
Eq. (13) and the data. To evaluate the performance of this estimator
we run a series of Monte Carlo simulations in Appendix B. Our
simulations reveal thatwithmore than 50 consumers and 100 time
periods (reasonable values in the context of existing panel data
sets) our estimator provides a reliable and conservative estimate
for the true δ∗. Under a variety of data generating processes, the
bias-corrected estimator has very few instances where estimated
δ̂ < δ∗ and is usually quite close to δ∗ coming from above. It is
worth noting that, even when the bias correction we implement
leads to an estimator that slightly overstates the true δ∗ in the finite

29 The literature on boundary estimation considers a setupwhere the econometri-
cian observes N draws from a continuous univariate distribution F with a unknown
and finite upper boundary. Our estimator below is a discrete analog to these meth-
ods, since the distribution of δ̂iT is discrete. As in Siddiqui (1960) and Bloch and
Gastwirth (2002) we take the difference between the mth highest draw (of the N
draws) from F and the highest draw, andweight by 1

M . As in theHall and Park (2002)
estimator discussed in the text, we consider a kernel weighted average of different
values of m ranging from 2 to M out of the N total draws. This allows us to use the
range of draws while not having the worry about the fact that, in discrete data, the
difference between the j and j + 1 highest draws could often be zero, as one would
have to if using Hall and Park (2002) directly.
30 Estimating the choicemodel defined in this paper with a value of δ less than the
true δ∗ could result in biased estimates of individual types (i.e. partially identified
sets that do not contain true preferences). On the other hand, estimating the choice
model with a value of δ greater than the true δ∗ will lead to a loss of efficiency (the
partially identified sets will be larger), but not a bias. This is one reason that we feel
it is important to correct for the bias in δ̂ with γ̂ .
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sample analysis, in our framework this leads to more conservative
estimates in the form of larger partially identified preference
sets.

It is important to note that, with the assumptionsmaintained in
this section, δ∗ for the population (conditioning on any observable
demographics) is identified by the purchases of a given consumer
i as T → ∞ and there is sufficient variation in prices. With finite
data on T , a larger number of consumers I improves the precision
of δ̂ and γ̂ . Also, we note that while the model can be rejected by
the data for the general case where φ and δ are imposed by the
econometrician, for the estimation methodology proposed here
the model will not be rejected by the data since δ is estimated as
the minimum rationalizable value.

4. The firm problem

We now demonstrate how a firm which has partially identified
demand in the manner described thus far can make strategic
decisions in the face of the resulting ambiguity about consumer
preferences.We focus on perhaps the quintessential firm problem:
how to set prices. We examine the cases of a monopoly and a
duopoly.

4.1. Monopoly

A monopolist observes a panel of individual decisions and
makes a decision on what price to charge to the same target
population that composes the sample. Given the framework above,
the monopolist observes a range of feasible type distributions that
characterize the population and uses that information to arrive at
a pricing decision. The monopolist wishes to maximize profits, but
cannot necessarily do so in the traditional way because he does not
know the distribution of types in the population and thus can only
partially identify demand for each potential price.

Given that the firm does not know the distribution of types,
expected profit maximization is not possible. Therefore, we must
take a stand on how the firm makes its pricing decision. As
in Bergemann and Schlag (2007), we examine the monopolist’s
problem using the minimax-regret criterion, which does not
incorporate subjective beliefs on the state space by the decision-
maker. Instead, this decision-making criterion is to minimize the
largest possible ‘‘distance’’ fromwhat the actual best choice would
have been, were it to know the true state of the world ex post. It is
conservative in the sense that it analyses themaximumregret (that
is, the maximum distance from the ideal value over all possible
states), but less conservative than a pure maxmin criterion. This
is because the minimax-regret criterion accounts for deviations
from possibly very good outcomes as well as just considering the
worst case scenario (as would the maxmin criterion). We assume
that the firm solves a constrained minimax-regret problem where
the vector of possible prices chosen is fixed, instead of allowing for
random pricing or menu pricing.

The monopolist in our setting has data on past purchase
decisions by the population of consumers and seeks to maximize
profits in a counterfactual setting in which prices can be set at
levels not yet observed in the data for a given set of products. In our
setting, the fundamental state is the distribution F(θ) describing
the population of discrete types. If the monopolist knew this state
exactly, it could easily construct a demand function for its product.
We will denote demand as D(F(θ), p). Here, p is a price vector and
D(F(θ), p) is the demand vector, where both quantities are vectors
becausewe assume that themonopolist can sell multiple brands. A
monopolist’s regret is a mapping from any chosen price and given
distribution of preferences into a scalar which measures how ‘‘far’’
the profits resulting from the chosen price are from the profits that
would result from the optimal price if the candidate distribution
of preferences were the true distribution. Maximum regret for the
monopolist, given a choice of a price vector p and the potential

distributions of types H[F(θ)], is defined as:

R(p,H[F(θ)]) = max
F(θ)∈H[F(θ)]

p∗(F(θ))D(F(θ), p∗) − pD(F(θ), p).

(14)

The first term in Eq. (14) denotes the optimal profits for the
monopolist if it knew that the true distribution of types was F(θ).
Here, p∗ is the price vector that implements this ideal profit level.
Fromnowon,wewill denote the ideal profit level given a state F(θ)
as π∗(F(θ)). In addition, we will simplify notation by alluding to
the quantity pD(F(θ), p) as π(p, F(θ)), the profits earned by the
monopolist in state F(θ) given some chosen price vector p. The
key empirical challenge is estimating π(p, F(θ)) for every possible
distribution of types.

For every potential price, we calculate demand for each
distribution of preferences. We find the optimal price as the price
with the highest demand for any given distribution and regret
for any other price is the difference between the profit under
that price and the optimal price. Once we have calculated the
regret for every potential price and distribution combination, we
can easily calculate the maximum regret for any price (maximum
over distributions). Then, we choose the price which minimizes
the maximum regret. To be clear, we can define the monopolist’s
minimax-regret, given the identification region H[F(θ)], as:

MMR(H[F(θ)]) = min
p

max
F(θ)∈H[F(θ)]

π∗(F(θ)) − π(p, F(θ)). (15)

For any combination of (p, F(θ)), a monopolist’s regret will
stem fromeither overpricing or underpricing based onwhether p is
greater than or less than p∗, respectively. In the Bayesian setup, this
overpricing and underpricing for each (p, F(θ)) pair is weighted by
a subjective Bayesian prior over H[F(·)] and regret minimization
with respect to this weighting is equivalent to expected profit
maximization.

We denote the minimax-regret solution as pMMR. Since the
minimax-regret state space is directly defined by the econometric
exercise, the state space is complex in the sense that it is
impossible to obtain an analytical solution to this problem. This
is an important way in which the current paper differs from that
of Bergemann and Schlag (2007), since their model relies on the
set notion of an ε neighborhood, given some size ε, and finds
solutions analytically. In practice, implementing the minimax-
regret solution requires a multi-stage algorithm given H[F(θ)].
First, for each distribution F(θ) and each feasible price vector p,
we compute the demand vector D(F(θ), p). Then, we compute
the ideal profit given for each F(θ). Afterward, we compute the
maximum regret for each price vector over the identification
region for feasible distributions. Finally, we minimize these
maximum regrets over all possible price vectors.

Before we move on to the oligopoly problem, we present a
stylized example meant to illustrate the way one can think about
the monopolist’s minimax-regret problem.

4.1.1. Stylized example
This section presents a simple example of the monopolist

minimax-regret problem for one good. We assume that there is
one preference parameter which translates directly into demand
with feasible values in [1, 2] given our econometric input. This is
a much simplified version of our model, in which we must first
translate partially identified distributions of types into demand
in a non-trivial way. The benefit is that it provides intuition for
minimax-regret in a very simple framework. Suppose, that given
the possible distributions in H[F(θ)], the monopolist knows that,
for a given p, the range of demand is [1 − 2p, 1 − p], where this
range comes from the mapping D(F(θ), p), taken over H[F(θ)] for
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each p.Wewill assume themarginal cost equals zero for simplicity.
The monopolist’s minimax-regret problem is:
min

p
max

F(θ)∈H[F(θ)]
π∗(F(θ)) − π(p, F(θ))

⇐⇒ min
p

max
β∈[1,2]

1
4β

− p + βp2.

Now, when the monopolist solves for his maximum regret over
β given his choice of price, he only has to consider two states,
β ∈ {1, 2}. This is because, given the optimal price p∗(F(θ)), the
profit function is monotonically decreasing on R+ going in both
directions from that optimum since profit is a quadratic function
of price. This implies that for any given price, the maximum regret
will be one of the endpoints of the range of β , since the optimal
price given β is monotonically decreasing in β . Thus, we can map
the range of β directly into a range of optimal prices, p∗(β), and for
any given p, maximum regret will occur at the maximum possible
distance from a feasible p∗(β), which will always correspond to an
extreme value of β . In our example, the regret functions for p given
β ∈ {1, 2} are:

R(β = 1, p) =
1
4

− p + p2

R(β = 2, p) =
1
8

− p + 2p2.

The first function is minimized with zero regret at p =
1
2 , while

the second is minimized at p =
1
4 . Each function is monotonically

increasing in both directions from its respective minimum, so we
know that theminimax-regretmust occur in the range [

1
4 ,

1
2 ] at the

point where both of these functions have identical regret values
given p. This occurs when:
1
4

− p + p2 =
1
8

− p + 2p2 ⇒ pMMR
=

1
√
8
.

The solution is easy to verify. If p is increased or decreased
from pMMR, the maximum regret increases because one of the two
regret functions corresponding to β ∈ {1, 2} must increase. This
provides some insight into the MMR solution that we will derive
in our pricing experiments in the next section. For a given set
of distributions H[F(θ)], there will be an extreme distribution
that corresponds to the minimum and maximum demand for a
given price. For that price, it will then be possible to compute the
maximum regret, which will then be compared over all prices to
derive the final solution, which will balance the potential losses
from pricing low in a low elasticity state and pricing high in a high
elasticity state.

4.2. Oligopoly

In addition to the monopolist’s problem specified above, we
analyze a static oligopoly game. In this setting, every firm shares
the same information set and evaluates payoffs according to
minimax-regret over H[F(θ)], given the other firms’ prices p−.
This extends the assumption that the firm and the researcher
have the same information set to one where both firms and the
researcher have the same information set, which we believe is
more reasonable in situations where firms observe similar limited
data to base their pricing decisions on.31 A further more detailed
model where firms have only partial information about the other
firms’ information sets (or their perceptions of the distribution of
types) would be interesting, but for now we stick to this base case
and leave this extension to future work.

Let firms be indexed by j corresponding to J different sets of
brands. The firms play a game where each evaluates outcomes
by minimizing maximum regret over possible price vectors given

31 Our empirical example is one situation where this may be reasonable.

their opponents’ prices. The firms evaluate maximum regret for pj
given the opponents’ price vector p−j as follows:

R(pj, p−j, F(θ)) = max
F(θ)∈H[F(θ)]

p∗

j (F(θ), p−j)D(F(θ), p∗

j , p−j)

− pjD(F(θ), pj, p−j). (16)

Here, the firm evaluates regret at a given state of nature
conditional on his opponents’ prices. His minimax-regret given p−j
is:

MMR(H[F(θ)], p−j) = min
pj

max
F(θ)∈H[F(θ)]

π∗(F(θ), p−j)

− π(pj, p−j,F(θ)) (17)

π∗(F(θ), p−j) is the ideal profit for firm j, given a specific
distribution of types drawn from the identification set and p−j.
π(pj, p−j, F(θ)) is the profit for firm j given the type distribution
and opponent’s price. In the game that the firms play, the action
space is the set of feasible non-negative prices, andwe restrict each
firm to the use of pure strategies. The game is one of complete
information between players in the sense that each firm knows the
uncertainty faced by the other with respect to the distribution of
types. We assume that both firms have common knowledge and
look for a pure strategy Nash equilibrium in price vectors. We say
that firm prices pNE are a Nash equilibrium if the following best
response conditions are simultaneously satisfied:

pNEj ∈ argmin
pj

max
F(θ)∈H[F(θ)]

π∗(F(θ), pNE
−j ) − π(pj, pNE−j , F(θ)),

∀j ∈ J. (18)

In our simulation described in the next section we find a pure
strategy equilibrium using the best response curves of each firm to
his opponent’s price, given the identification region H[F(θ)].

5. Empirical analysis

The purposes of this section are (i) to compare the results of our
model to those of themost commonly used discrete choice models
and (ii) to show an example of how our method can be applied
to data. We will start with a simulation experiment in Section 5.1
where we show that when the underlying data violate the i.i.d.
assumption of the standard discrete choice models, our model
provides a more reliable and robust pricing recommendation.

We then consider panel data from milk purchases from two
competing retailers in Section 5.2. We show that our methodology
is applicable in this real-world setting and that it returns sensible
counterfactual recommendations.

5.1. Simulation experiment of the firm problem

In order to illustrate our methodology, we study a simulated
market where the firm or firms have information on consumer
purchase behavior that they use to determine how prices should
be set. The simulation gives us the ability to study how solving the
firm problem with our method compares to what the firm would
do if it knew the true distribution of preferences in the population.
In addition, it allows us to study the predictions of our model
compared to more familiar models, such as a mixed logit model,
when estimated with the same data.

We simulate the preferences of 100 individuals with utility
uijt = αij + βipijt , as was done in Section 2.3.32 We assume that
consumer i chooses product k at time t given the decision set dit

32 For clarity, as was done in Section 2.3, we set the utility of the outside option
for each person and time period to 0 (location invariance) and normalize the
value of αi1 = 1 ∀i (scale invariance) for identification. Throughout the analysis
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Table 1
Results of monopoly pricing from simulation. See text for details on simulation
design.

Consumer type Pricing model Price 1 Price 2 % of optimal profits

i.i.d. shocks
ex post efficient 0.27 0.36
Mixed logit 0.27 0.45 90
Minimax-regret 0.27 0.36 99

Brand correlated shocks
ex post efficient 0.26 0.36
Mixed logit 0.36 0.36 84
Minimax-regret 0.27 0.36 98

Time correlated shocks
ex post efficient 0.28 0.39
Mixed logit 0.90 0.90 0
Minimax-regret 0.27 0.36 96

based on the decision rules in model 2 described in Section 2. We
set δ∗

= 0.20 (for this exercise, φ = 0, i.e. there is no data
misclassification). Given our parameterization, this implies that
random utility shocks here are at most 20% of the base value of the
preference for product 1. We simulate three types of consumers.
The first type have i.i.d. errors drawn from a uniform distribution
between [−δ∗, δ∗

]. The second type have errors that are correlated
across products. This correlation is generated in each period by
first drawing ε1t uniformly from the range [−δ, δ], resulting inε1t . We then draw ε2t uniformly from [ε1t − δ, δ] if ε1t > 0 and
from [−δ, ε1t + δ] if ε1t < 0. The third type have errors that are
correlated over time. This correlation is generated for each product
by first drawing εj1 uniformly from the range [−δ, δ], resulting inεj1. We then draw εj1 uniformly from [εj1−δ, δ] if εj1 > 0 and from
[−δ, εj1 + δ] if εj1 < 0.We then repeat for period three (and so on)
replacing εj1 with εj2.

We proceed first by partially identifying each consumer’s pref-
erences as was illustrated in Section 2.3. Given each individual’s
choice data, we can partially identify true parameters as being
within this feasible set. Next we turn to the industry pricing prob-
lem. To evaluate our model we compare it with two benchmarks:
(1) ex post efficient prices based on true parameters and (2) amixed
logit with multivariate normal mixing.33

Monopoly
We begin by considering a multi-product monopolist possess-

ing the purchasing decisions of each set of 100 consumers over
100 periods. The firm must now set prices for each of its goods.
In Table 1 we show three options for the optimal prices: (1) ex
post efficient prices, from the simulated values of each individual;
(2) optimal prices from the mixed logit model where we con-
sider the prices that maximize expected profits; and (3) optimal
prices from the minimax-regret model as described in Section 4.

there are two possible products, so there are two free preference parameters
for each individual in the population. For this population, we draw αi2 from a
uniformdistribution on [0.5, 1.5] andβi independently from a uniformdistribution
on the range [−3.75, −1.75]. We then simulate 100 time periods of choices
(corresponding to about two years of weekly data) of decisions for each individual.
In order to do so, we assume that both products are offered in every period and
that their prices are drawn independently and uniformly from the range [0.1, 1.0].
We define the feasible identification region for (αi2, βi) to be [0, 5] × [−5, 0] so
that the feasible identification region covers a large region of reasonable relative
preferences.
33 Our mixed logit model is specified as ui,j,t = αi,j + βiPj,t + εi,j,t for j =

1, 2 and ui,0,t = εi,0,t . We assume the ε are distributed i.i.d. Type 1 Extreme
Value. For heterogeneity we assume (αi,1, αi,2, βi) ∼ N((α1, α2, β), Σ). We use
simulated maximum likelihood with 100 draws to estimate α1, α2, β and the
Cholesky decomposition of Σ (we follow the estimation procedure in Revelt and
Train (1998)).

Fig. 5. Best response curves in duopoly simulation. See text for details on
simulation design.

Note that for the mixed logit and the minimax-regret model we
consider prices in 0.09 increments between 0.09 and 0.90.34

The first set of results in Table 1 are for the case where
consumers are drawn with i.i.d. errors. In this case the minimax-
regret model estimates prices that are close to ex post, with firms
earning nearly 100% of potential ex post profits. The mixed logit
optimal prices are also close to the ex post efficient ones, and
recover nearly 90% of the optimal ex post profits. This suggests
that both models recommend nearly ex post efficient prices when
consumers have i.i.d. error draws. The second and third sets of
results in Table 1, where consumers have either brand correlated
error shocks or time correlated error shocks, are noticeably
different. Here while the minimax-regret model sill recommends
prices close to ex post efficient prices, the optimal prices from
the mixed logit are far too high. This is particularly evident for
consumer type 3 with time correlated shocks.

Duopoly
We now turn to the case of multiple single product firms in a

differentiated goods industry. We focus on the duopoly case, pool
all 300 simulated consumers from the monopoly experiment (100
consumers of each type) and now assume that the two products
are sold by two different firms. Each firm must now choose the
price for its good taking into account what the other firm will do.
We solve for the equilibrium of the pricing game by finding the
intersection of the firms’ best response curves, depicted in Fig. 5.
We also show the true ex post efficient response curves for the
firms in this figure.

Here the minimax-regret model estimates best response
curves close to the ex post efficient best response curve. The
model recommends duopoly prices of 0.18 for each product.
In comparison, the mixed logit model here would recommend
duopoly prices of 0.90 for each product. This occurs because, as
before, consumers in this simulation have non-i.i.d. error draws.35

34 Using a finer grid did notmaterially affect the qualitative findings in this section.
35 As a point of further comparison, we have estimated the optimal prices with a
different non-prior based decision rule: maxmin. Under maxmin preferences, the
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Fig. 6. Observed prices for private label, 1 gallon milk for two competing stores in Pittsfield, MA.

Table 2
Simulation results for monopoly and duopoly pricing when δ is estimated. Actual δ
used to generate data is 0.20. See text for more details on simulation design.

δ Monopoly Duopoly
Price 1 Price 2 Price 1 Price 2

Assumed to be 0.2 0.27 0.36 0.18 0.18
Estimated to be 0.285 0.27 0.36 0.18 0.18
Assumed to be 0.5 0.36 0.45 0.27 0.27

Simulation results with estimating δ

The simulation results for the minimax-regret model for both
the monopoly and duopoly results assume that we know the true
value of δ. In this section estimate a value of δ, as described in
Section 3.2, and then determine optimal prices from the minimax-
regret model. We use the same 300 consumers from above and re-
estimate themonopoly andduopoly priceswith an estimated value
of δ. Recall that the true value of δ used to generate the data was
0.20. For these data, the lowest value of δ that can rationalize all
observed decisions is 0.19.With the bias adjustment, the estimated
value of δ is 0.285, which is a conservative estimate of 0.20. We
report the recommended prices when we assume we know the
true δ and when we estimate it to be 0.285 in Table 2. For both
the monopoly and duopoly cases, the suggested prices based on
the estimated δ are the same as when we know δ’s true value. This
need not be the case. For example, if we assume δ = 0.5 and again
make optimal recommended prices, they will differ substantially
as the final row in the table illustrates.

5.2. Field data analysis

The purpose of this section is to provide an illustrative example
to show how our method can be used to study pricing in an
empirical context with field data. We apply our model to six years

firm chooses the price that maximizes its profits given the realization of worst-
case demand for that price, selected from the set of feasible demand curves (see
e.g. Gilboa and Schmeidler (1989)). We find that, consistent with the arguments
discussed inBergemannandSchlag (2008) andManski (2005), themaxmin criterion
tends to prescribe overly conservative decisions. For example, in the duopoly case
we find that the maxmin duopoly prices are 0.09 and 0.09 and the model recovers
only about 50% of the ex post optimal profits.

of IRI panel data from the fluid milk category in Pittsfield, MA.
Milk is a frequently purchased, non-storable, product category in
which the top selling UPCs are private label brands. One reason for
considering milk is that it is non-storable and is thus unlikely to
be stockpiled. This is important because stockpiling, in addition to
creating complex error structures that could invalidate standard
logit model assumptions, will generate a dynamic choice process,
themodeling ofwhich is beyond the scope of this paper (for papers
that do model this behavior see Erdem et al. (2003) or Hendel and
Nevo (2006)).

We choose to study the pricing decisions of two neighboring
retailers that have the highest unit sales in the IRI panel data
in Pittsfield, MA (see Bronnenberg et al. (2008) for a detailed
discussion of these data). As is common for retail milk prices, both
stores charge the same price for all private label, one gallon milk
products independent of fat content (Khan et al. (2012)). For these
two stores we observe nearly 6 years (297 weeks) of panel data for
396 panelists.36 Fig. 6 displays the average weekly prices for each
store over the sample. The median prices in the data for the two
stores over the 6 years are $3.20 and $3.22 per gallon, respectively.
The correlation in prices across stores is 0.44. On average, 9% of
panelists buy from store 1 and 17% of panelists buy from store 2
in a given week. We find 55% of the panelists make at least one
purchase in each store over the six years.

To compute optimal prices we must have a measure of store-
level marginal costs. The majority of this cost is likely to be the
wholesale price the stores pay for milk. As a proxy for wholesale
prices,we collect averagemonthly Co-opprices37 inMassachusetts
for 2008 (data from USDA’s Agricultural Marketing Services). Note
this time period overlaps with the last 6 months of our panel data.
In the overlapping time periodwe find the averagewholesale price
is $0.60 per gallon and the average retail prices at the two stores
are $2.68 and $2.45 per gallon, respectively.

36 We consider panelists who make at least 50 milk purchases from this store in
six years.
37 We will assume that this is each firms’ marginal costs. It is realistic to assume
that each pays the same wholesale price, but unrealistic to assume that this
wholesale price is the entirety of each firm’s marginal cost, and therefore we view
our optimal prices likely as being lower bounds on the true optimal prices for each
store.
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To apply our model in this setting we first need to calibrate
a value of φ. Einav et al. (2010) study a panel scanner data
setting similar to our own, and report two estimates for the
level of data contamination. First, they report that about 20% of
purchase trips in the panel scanner data that they observe are
incorrectly recorded. Second, they report that approximately 50%
of actual purchase trips are omitted in the scanner data. In our
data, consumers purchase from either store in 26.5% of weeks.
From this analysis, we construct two alternative measures of the
extent of data contamination that might be present in our data,
φ, defined as the maximum proportion of purchase recording
errors per individual. Our first measure assumes that only the
first type of error (observed purchases that are incorrect) occurs.
This suggests that 20% of the 26.5% of purchases made every
week are contaminated, or that 5.3% of all purchase/no-purchase
decisions are contaminated. Our second measure allows for data
contamination stemming from purchases that are not recorded,
suggesting that 10.6% (50% of 26.5% − 5.3%) purchases were never
recorded in the scanner data in our context. As there is some room
for interpretation in the way the Einav et al. (2010) results link
to our setting, we estimate δ and study firm pricing in the two
alternative cases where φ = 0.053 and φ = 0.106.38

While the Einav et al. (2010) study is the best source for
calibrating a value ofφ in our context, it is not ideal. This is because
they focus on Nielsen Homescan data in which consumers record
their purchases at home. Although some panelists in the IRI data
we use also record their purchases at home, many scan them in
the store (see SymphonyIRI (2012) or Bronnenberg et al. (2008)
for more information on the IRI method of data collection).39 It
is likely that the extent of data recording error is greater for
those scanning at home as opposed to at the store.40 Therefore,
for internal consistency and robustness we also investigate firm
pricing for smaller φ equal to 0.026, or half the lowest value
calibrated from the Nielsen Homescan data.41

For φ = 0.053, we find that the lowest value of δ that can
rationalize all observed decisions in the data is 0.37. Using the bias
correction methodology discussed in Section 3.2, the estimated
value of δ as 0.442. Using δ = 0.442 and φ = 0.053 we estimate
preferences and compute theminimax-regret best response curves
for each store (assuming a wholesale price of $0.60 per gallon).
Our estimates yield a unique pure strategy equilibrium where one
store charges $2.40/gallon and the other charges $2.35/gallon for
private labelmilk.42 Webelieve that these are reasonable estimates
for this market since they are similar to the observed price levels
in the raw data, where the prices between the stores are often
close together (the median weekly price difference between the
two stores is zero). Repeating the analysis for φ = 0.106 yields

38 If we assume that the probability a given observation is misclassified equals
0.053, as opposed to the upper bound on the proportion of misclassified
observations per individual, a binomial calculation reveals that, with 100 purchases
per individual in the panel, 99.3% of individuals will have 11 misclassified
observations or less, so only very few individuals would violate the higher bound
φ = 0.106. The firmpricing results are quite robust to doublingφ to 0.106, as shown
below.
39 As discussed in Bronnenberg et al. (2008), of the panelists in our data, 47% only
scan purchases in the store and 53% scan their purchases both in the store and at
home.
40 Additionally, the type of data recording error may differ across the two data
collection methods as well. Since only the extent of data recording error matters
for our model, we ignore this additional difference in data recording errors in the
current paper.
41 In 2009, IRI andNielsenmerged their panel data collection operations and, from
that point on, these data sets (i) reflect the same panel of consumers and (ii) come
exclusively from home scanned data (see Nielsen (2009)).
42 The bootstrap standard errors, based on 5000 iterations, for the prices are 0.02
and 0.05, respectively.

equilibrium price estimates of $2.50/gallon and $2.35/gallon for
stores one and two respectively. For the lower value of φ, 0.026,
estimated equilibrium prices are $2.40/gallon and $2.30/gallon.
This suggests that our price estimates are relatively robust to the
possibility that the IRI data that we perform the analysis with has a
lower amount of data recording errors than the Nielsen Homescan
data that we use to calibrate φ.

6. Conclusion

This paper presents an econometric framework that partially
identifies consumer preferences and market demand under weak
assumptions in a setting with panel data. The identification re-
strictions we make combine non-parametric methods from the
Samuelsonian revealed preference tradition with an attribute
based product representation commonly used in the discrete
choice literature. Overall, the cost of maintaining very weak as-
sumptions on the structure of consumer utilities is that we pro-
duce bounds on the distribution of preferences instead of a point
estimate, as almost all work in this area does. However, the pre-
dictions that we can make with our methodology are more cred-
ible than those made under the traditionally strong assumptions
found in this literature. We view this work as complementary to
past work since the results from an approach with more (correct)
assumptions should fall within the bounds that our model pro-
vides,while the placement of point identified results relative to our
bounds shed light on the potential direction of bias in these results.

The purpose of developing and analyzing our econometric
framework is to better model and understand how firms price in
an environment with limited information leading to a high level of
uncertainty. We characterize this uncertainty here with the notion
of ambiguity though this is just one possibility for how firms with
limited information could price (relying more on simple heuristics
is another possibility). We model the firm pricing problem under
ambiguity, borrowing from the theory literature, and link this to
the econometric framework by assuming that the ambiguity the
firm faces is described by the partially identified distribution of
the demand curve. We investigate this joint framework in both
monopoly and oligopoly settings to increase the scope of the
framework.

Perhaps the most substantial contribution of this paper is
to develop a joint theoretical and empirical framework that
is a credible alternative to the full information mixed logit
and expected profit maximization workhorse model used to
analyze firm decision-making. Through simulations we show
how our framework performs relative to this standard approach,
concluding that a robust pricing framework can perform as well
or better in terms of predicting what prices firms actually choose.
We also illustrate how the methodology can be applied in an
actual empirical setting. In situations where firms have limited
information and the combined logit-expected profit maximization
approach seems implausible,weprovide a credible framework that
can be used to study standard industrial organization problems
without assuming such ahigh bar for firmknowledge anddecision-
making.
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Appendix A. Cross-sectional identification: for online publica-
tion

In many cases a panel sample may not be representative of
the entire market. In this appendix we present a framework
to use cross-sectional identification in conjunction with panel
identification to form bounds on demand parameters when the
panel is not representative of the population.We add two elements
to the models outlined in Section 2. First, we posit that in addition
to observing the panel across each of T time periods, we now also
observe aggregate purchase data for each time period. Second, we
assume that the panel accurately represents q% of the population.
For example, if the projected market size were 100,000 and the
panel size were 2000, the assumption that the panel represents
80% of the population implies that the demand estimates from the
panel represent the quantity demanded by 80,000 of the 100,000
in the population.

We incorporate cross-sectional identification to developbounds
on the population distribution of preferences using the aggregate
data and panel data together in each time period. Since the panel
represents the same q% of the population in each time period, once
we account for the information learned from the panel in the ag-
gregate data, the remaining (100 − q)% of the population is the
same over each time period. Partition the overall population Ψ

into two sets: Γ , the portion represented by the panel, and Υ , the
portion not represented by the panel (Γ ∪ Υ ≡ Ψ ). Our identi-
fication proceeds in two steps. First, we use one of the four mod-
els developed in Section 2 to partially identify the distribution of
preferences in the panel sample. Next, we represent the purchases
made by Γ with the data from the panel, proportionally scaled up,
and construct an observation each period for aggregate purchases
made by the part of the population not represented by the panel. If
Qt(Ψ ) is the vector of purchases in period t for the entire popula-
tion and Qt(Γ ) is the vector of purchases for the population repre-
sented by the panel, the aggregate purchase observation for Υ in
each t is:

Qt(Υ ) = Qt(Ψ ) − Qt(Γ ). (19)

To place bounds on demand parameters for the entire popu-
lation, we combine the bounds on preferences derived from the
panel data with a bound on the aggregate preferences for the re-
maining population derived from observing Qt(Υ ) over all time
periods. Once we construct the residual observation Qt(Υ ) from
aggregate and panel data, identification of the preferences of con-
sumers in Υ is independent of the panel preference identification.

It is important to note that the assumption that the panel
represents q% of the population is testable within our framework.
If the bounds on the preference parameters of Υ are the empty
set, then as long as we accept the assumptions on inter-temporal
variations in preferences from the panel model in Section 2 that
we are using, then q% is assumed to be too large. For example, this
would be the case if Qt(Υ ) ever has any negative entries. This is a
one-sided test since the data will never reveal that q is too low.

To partially identify the distribution of preferences in Υ

we construct tightest bounds from the series of observations
(Qt(Υ ), pt) where pt is the price vector for each t . We use two
theoretical restrictions that must be satisfied by the population Υ .
The first concerns dominated price movements. Here x denotes a
specific product and x− denotes all other products.

Condition 1 (Purchase Consistency I).

∀t ≠ t ′, ∀x, Qxt ≥ Qxt ′ if pxt ≤ pxt ′ and px−t ≥ px−t ′ . (20)

This condition says that if the price of one product goes down and
the prices of all other products go up, then we must see a higher
aggregate purchase level for x in Υ .

The second condition concerns purchase behavior of the outside
option x0 relative to certain types of price changes.

Condition 2 (Purchase Consistency II).

∀t ≠ t ′ Qx0t ≤ Qx0t ′ if pt ≤ pt ′ . (21)

This condition states that if the prices of all goods go weakly up or
down, then the amount of individuals not purchasing also moves
weakly up or down.

We further define the following two objects:

Φx(pc) ≡ p : px ≥ pxc, px− ≤ px−c

∆x(pc) ≡ p : px ≤ pxc, px− ≥ px−c .

For any counterfactual price vector pc , Φx(pc) is the set of feasible
price vectors such that the price of product x is weakly greater than
pxc (the price of product x in the vector pc) and the price of every
other product is weakly smaller than its price in pc . ∆x(pc) is the
converse, where px is weakly lower than pxc and all other products
are weakly more expensive.

We cannowdefine, given purchase consistency conditions I and
II, the bounds on demand for product x ∈ D under counterfactual
price vector pc for Υ :

H[P(y(D) = x)|Υ ] = [maxp1,....,pT∈Φx(pc )Qxt ,

1 − maxp1,....,pT∈∆x(pc )Qx−t ]. (22)

The bounds on preferences and counterfactual demand for the
residual population Υ can then be combined with those from the
population represented by the panel, Γ , to find the bounds for
preferences and counterfactual demand for the entire population
Ψ :

H[P(y(D) = x)|pc] = qH[P(y(D) = x)|Γ , pc]
+ (1 − q)H[P(y(D) = x)|Υ , pc]. (23)

The simulation in the next section reveals that both the panel
and cross-sectional components of this model add significant
predictive power by tightening the bounds on preferences and
counterfactual demand.

Simulation with cross-sectional and panel data

To simulate the scenario where we have cross-sectional and
panel data, we simulate two sets of individuals. The first set
represents the panelists and second set represents the consumers
that are not represented in the panel. For the analysis we will
observe (a) all decisionsmade in every time period by the panelists
and (b) aggregate cross-sectional decisions (across both groups) for
every time period.

In this setting we consider the preferences of the panelists to
represent 80% of the entire population. The utility formulation
for the panelists is exactly as in Section 2.3. For the consumers
not represented by the panel, we draw the αi2 parameter from
a uniform distribution on [0.0, 2.0] and βi independently from a
uniform distribution on the range [−2.5, −1.0]. Therefore, these
consumers are on average less price sensitive andhavemore varied
tastes for product 2 than the panelists. We simulate 200 time
periods of data and simulate each panelist’s individual decisions
and the aggregate decision across all consumers.

We estimate the demand curves in four steps. First, we estimate
the identification region for each panelist based on their purchase
data. Second, we bound the counterfactual demand for each
panelist. Third, we estimate the counterfactual bounds for the
aggregate consumers not represented in the panel. Fourth, we
estimate the population’s demand curve bounds by adding the
panel and the aggregate estimates.
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Fig. 7. Partially identified demand curves if products were sold in isolation. The rows represent the different levels of data and the columns represent the demand curves
for product 1 and product 2, respectively.

Fig. 7 below displays three sets of bounds for each product’s
demand curve. The first row represents the demand curves using
both the panel and the cross-sectional data. The second row
represents the demand curve using just the panel data and the
third row represents the demand curve using the cross-sectional
data for the consumers not represented by the panel.

Observe that the estimated bounds with only the cross-
sectional data are quite wide. This suggests that while these data

do provide some information, we cannot tightly bound the
counterfactual demand. On the other hand, as we have seen above,
we can tightly bound the counterfactual demand with panel data.
The difference between these two charts shows the additional
benefit of panel data in estimating tight counterfactual bounds.We
can now combine both pieces of information to create a bound for
the entire population (top row of Fig. 7). In these charts observe
that we get quite tight bounds in the middle of the demand curve
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Fig. 8. Partially identified demand curves if both products were sold. The panels represent the demand curves for product 1 and product 2, respectively.

Fig. 9. Box plot of the estimated maximum of a distribution based on a small
sample. Here we consider 100 experiments with 20 individuals. The experiments
differ in the number of observations per consumer. The dark black lines represent
the mean. The box represents the inner quartile range. The whiskers extend to the
most extreme data point which is no more than 1.5 times the length of the box
away from the box. The dots represent outliers that lie outside the whiskers. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

for prices between 0.35 and 0.65. However the bounds are quite
wide for higher price points. This is mainly driven by the fact
that we estimate wide bounds for the cross-sectional data at high
price points. Overall this demand curve can be informative and can
be used for firm decision-making. In Fig. 8 we display the joint
demand curves when both products are sold.

Appendix B. Monte Carlo studies of the procedure to estimate
δ: for online publication

In this section we study the performance of our estimator of
δ, the bound on consumers’ utility shocks. We do this through

Table 3
Table represents the percentage of estimated δ that are below the true value 0.10
by changing the number of consumers and the number of time periods. See text for
more details on simulation design.

Number of consumers Number of time periods
50 (%) 100 (%) 500 (%) 1000 (%)

10 77.5 32.5 15.0 2.5
20 32.5 10.0 5.0 0.0
50 25.0 0.0 0.0 0.0

two Monte Carlo studies. In the first study, we abstract from any
choice model and study our estimator of the upper bound of the
support from which a random variable is drawn. The study is
designed as follows. Fix some number of time periods T and set the
number of ‘consumers’ to be 20. For each of these 20 consumers,
draw T realizations of δ uniformly from [0, 0.10] and compute the
maximum of the T draws for each of the 20 consumers, yielding
20 maximum values of δ. Then use these 20 maximum values of
δ to estimate the upper bound of the interval from which δ was
drawn (the true value is 0.10) as described in Section 3.2. We then
repeat this estimation procedure 100 times for each integer value
of T between 1 and 100. The results are reported in Fig. 9. These
suggest that we have a conservative estimate of the truemaximum
and as the number of realizations increase, we asymptote to the
correct value.

The second Monte Carlo study we perform involves an actual
choicemodel. Each study involvesN consumers and T time periods
over which choices are made. Within a consumer, a time period
is distinguished by the value of δnt for that consumer n during a
time period t , which is drawn uniformly from [0, 0.10]. We use
the same simulation as in Section 2.1. Each timeperiod, a consumer
makes a choice according to buy one of the two goods in themarket
or the outside option. Then we choose the lowest value of δ for
each consumer that can rationalize the choices hemade during the
T time periods. Then we collect these N-lowest-values-of-δ and
estimate δ according to the method described in Section 3.2. We
search over a grid of possible δs with 0.025 spacing. Finally, we
repeat 40 times for each combination of N and T . The important
statistic here is to understand how often we estimate a value of δ
that is less than 0.10 as this can lead to a bias in our discrete choice
estimates. The results are reported in the Table 3,which shows that
for reasonable numbers of consumers or time periods our method
performswell. In Fig. 10 we report the box plot for the estimates of
δ from observing 50 consumers. Once again these do suggest that
we have a conservative estimate of the true maximum and as the
number of time periods increase we observe less variance across
simulations.
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Fig. 10. Box plot of the estimated values of δ after bias correction in a choice
model setting. The box plot represents the estimates of δ across 40 Monte Carlo
experiments with 40 observations. The experiments vary by the number of data
points observed for each consumer (either 50, 100, 500 or 1000). The dark black
lines represent themean. The box represents the inner quartile range. Thewhiskers
extend to themost extreme data pointwhich is nomore than 1.5 times the length of
the box away from the box. The dots represent outliers that lie outside thewhiskers.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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