Section 1.2. Methods of Proof

We begin by looking at the notion of proof. What is a proof? “Proof” has a formal definition in mathematical logic, and a formal proof is long and unreadable. In practice, you need to learn to recognize a proof when you see one.

We will begin by discussing four main methods of proof that you will encounter frequently:

- deduction
- contraposition
- induction
- contradiction

We look at each in turn.

Proof by Deduction:

A proof by deduction is composed of a list of statements, the last of which is the statement to be proven. Each statement in the list is either

- an axiom: a fundamental assumption about mathematics, or part of definition of the object under study; or
- a previously established theorem; or
- follows from previous statements in the list by a valid rule of inference

Example: Prove that the function $f(x) = x^2$ is continuous at $x = 5$.

Recall from one-variable calculus that $f(x) = x^2$ is continuous at $x = 5$ means

$$\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } |x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon$$

That is, “for every $\varepsilon > 0$ there exists a $\delta > 0$ such that whenever x is within δ of 5, $f(x)$ is within ε of $f(5)$.”

To prove the claim, we must systematically verify that this definition is satisfied.

Proof: Let $\varepsilon > 0$ be given. Let

$$\delta = \min \left\{ 1, \frac{\varepsilon}{11} \right\} > 0$$
Why??

Suppose \(|x - 5| < \delta\). Since \(\delta \leq 1\), \(4 < x < 6\), so \(9 < x + 5 < 11\) and \(|x + 5| < 11\). Then

\[
|f(x) - f(5)| = |x^2 - 25| = |(x + 5)(x - 5)| = |x + 5||x - 5| < 11 \cdot \delta < 11 \cdot \frac{\varepsilon}{11} = \varepsilon
\]

Thus, we have shown that for every \(\varepsilon > 0\), there exists \(\delta > 0\) such that \(|x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon\), so \(f(x) = x^2\) is continuous at \(x = 5\). •

Proof by Contraposition:

First recall some basics of logic.

¬\(P\) means “\(P\) is false.”

\(P \land Q\) means “\(P\) is true and \(Q\) is true.”

\(P \lor Q\) means “\(P\) is true or \(Q\) is true (or possibly both).”

¬\(P \land Q\) means \((¬P) \land Q\); \(¬P \lor Q\) means \((¬P) \lor Q\).

\(P \Rightarrow Q\) means “whenever \(P\) is satisfied, \(Q\) is also satisfied.”

Formally, \(P \Rightarrow Q\) is equivalent to \(¬P \lor Q\).

The contrapositive of the statement \(P \Rightarrow Q\) is the statement

\(¬Q \Rightarrow ¬P\)

These are logically equivalent, as we prove below.

Theorem 1 \(P \Rightarrow Q\) is true if and only if \(¬Q \Rightarrow ¬P\) is true.

Proof: Suppose \(P \Rightarrow Q\) is true. Then either \(P\) is false, or \(Q\) is true (or possibly both). Therefore, either \(¬P\) is true, or \(¬Q\) is false (or possibly both), so \((¬Q) \lor (∼P)\) is true, \(¬Q \Rightarrow ¬P\) is true.

Conversely, suppose \(¬Q \Rightarrow ¬P\) is true. Then either \(¬Q\) is false, or \(¬P\) is true (or possibly both), so either \(Q\) is true, or \(P\) is false (or possibly both), so \(¬P \lor Q\) is true, so \(P \Rightarrow Q\) is true. •
So to prove a statement \(P \Rightarrow Q \), it is equivalent to prove the contrapositive \(\neg Q \Rightarrow \neg P \). See de la Fuente for an example of the use of proof by contraposition.

Proof by Induction:

We illustrate with an example.

Theorem 2 For every \(n \in \mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \),

\[
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
\]

i.e. \(1 + 2 + \cdots + n = \frac{n(n+1)}{2} \).

Proof:

Base step \(n = 0 \): The left hand side (LHS) above = \(\sum_{k=1}^{0} k = \) the empty sum = 0. The right hand side (RHS) = \(\frac{0 \cdot 1}{2} = 0 \) so the claim is true for \(n = 0 \).

Induction step: Suppose

\[
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
\]

for some \(n \geq 0 \)

We must show that

\[
\sum_{k=1}^{n+1} k = \frac{(n + 1)((n + 1) + 1)}{2}
\]

\[
\text{LHS} = \sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n + 1) = \frac{n(n+1)}{2} + (n + 1) \text{ by the Induction hypothesis} = (n + 1) \left(\frac{n}{2} + 1 \right) = \frac{(n + 1)(n + 2)}{2}
\]

\[
\text{RHS} = \frac{(n + 1)((n + 1) + 1)}{2} = \frac{(n + 1)(n + 2)}{2} = \text{LHS}
\]

so by mathematical induction, \(\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \) for all \(n \in \mathbb{N}_0 \). \(\blacksquare \)
Proof by Contradiction:

A proof by contradiction proves a statement by assuming its negation is true and working until reaching a contradiction. Again we illustrate with an example.

Theorem 3 There is no rational number \(q \) such that \(q^2 = 2 \).

Proof: Suppose \(q^2 = 2, \ q \in \mathbb{Q} \). We can write \(q = \frac{m}{n} \) for some integers \(m, n \in \mathbb{Z} \). Moreover, we can assume that \(m \) and \(n \) have no common factor; if they did, we could divide it out.\(^1\)

\[
2 = q^2 = \frac{m^2}{n^2}
\]

Therefore, \(m^2 = 2n^2 \), so \(m^2 \) is even.

We claim that \(m \) is even. If not\(^2\), then \(m \) is odd, so \(m = 2p + 1 \) for some \(p \in \mathbb{Z} \). Then

\[
m^2 = (2p + 1)^2 = 4p^2 + 4p + 1 = 2(2p^2 + 2p) + 1
\]

which is odd, contradiction. Therefore, \(m \) is even, so \(m = 2r \) for some \(r \in \mathbb{Z} \).

\[
4r^2 = (2r)^2 = m^2 = 2n^2
\]

so \(n^2 \) is even, which implies (by the argument given above) that \(n \) is even. Therefore, \(n = 2s \) for some \(s \in \mathbb{Z} \), so \(m \) and \(n \) have a common factor, namely 2, contradiction. Therefore, there is no rational number \(q \) such that \(q^2 = 2 \). \(\blacksquare \)

Section 1.3 Equivalence Relations

Definition 4 A *binary relation* \(R \) from \(X \) to \(Y \) is a subset \(R \subseteq X \times Y \). We write \(xRy \) if \((x, y) \in R \) and “not \(xRy \)” if \((x, y) \notin R \). \(R \subseteq X \times X \) is a *binary relation on \(X \).*

Example: Suppose \(f : X \to Y \) is a function from \(X \) to \(Y \). The binary relation \(R \subseteq X \times Y \) defined by

\[
xRy \iff f(x) = y
\]

\(^1\)This is actually a subtle point. We are using the fact that the expression of a natural number as a product of primes is unique.

\(^2\)This is a proof by contradiction within a proof by contradiction!
is exactly the graph of the function \(f \). A function can be considered a binary relation \(R \) from \(X \) to \(Y \) such that for each \(x \in X \) there exists exactly one \(y \in Y \) such that \((x, y) \in R\).

Example: Suppose \(X = \{1, 2, 3\} \) and \(R \) is the binary relation on \(X \) given by \(R = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\} \). This is the binary relation “is weakly greater than,” or \(\geq \).

Definition 5 A binary relation \(R \) on \(X \) is

(i) reflexive if \(\forall x \in X, xRx \)

(ii) symmetric if \(\forall x, y \in X, xRy \iff yRx \)

(iii) transitive if \(\forall x, y, z \in X, (xRy \land yRz) \Rightarrow xRz \)

Definition 6 A binary relation \(R \) on \(X \) is an equivalence relation if it is reflexive, symmetric and transitive.

Definition 7 Given an equivalence relation \(R \) on \(X \), write

\[
[x] = \{y \in X : xRy\}
\]

\([x]\) is called the equivalence class containing \(x \).

The set of equivalence classes is the quotient of \(X \) with respect to \(R \), denoted \(X/R \).

Example: The binary relation \(\geq \) on \(\mathbb{R} \) is not an equivalence relation because it is not symmetric.

Example: Let \(X = \{a, b, c, d\} \) and \(R = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\} \). \(R \) is an equivalence relation (why?) and the equivalence classes of \(R \) are \{\(a, b \)\} and \{\(c, d \)\}. \(X/R = \{\{a, b\}, \{c, d\}\} \)

The following theorem shows that the equivalence classes of an equivalence relation form a partition of \(X \): every element of \(X \) belongs to exactly one equivalence class.

Theorem 8 Let \(R \) be an equivalence relation on \(X \). Then \(\forall x \in X, x \in [x] \).

Given \(x, y \in X \), either \([x] = [y]\) or \([x] \cap [y] = \emptyset\).

Proof: If \(x \in X \), then \(xRx \) because \(R \) is reflexive, so \(x \in [x] \).

Suppose \(x, y \in X \). If \([x] \cap [y] = \emptyset\), we’re done. So suppose \([x] \cap [y] \neq \emptyset\). We must show that \([x] = [y]\), i.e. that the elements of \([x]\) are exactly the same as the elements of \([y]\).
Choose \(z \in [x] \cap [y] \). Then \(z \in [x] \), so \(xRz \). By symmetry, \(zRx \). Also \(z \in [y] \), so \(yRz \). By symmetry again, \(zRy \). Now choose \(w \in [x] \). By definition, \(xRw \). Since \(zRx \) and \(R \) is transitive, \(zRw \). By symmetry, \(wRz \). Since \(zRy \), \(wRy \) by transitivity again. By symmetry, \(yRw \), so \(w \in [y] \), which shows that \([x] \subseteq [y] \). Similarly, \([y] \subseteq [x] \), so \([x] = [y] \). □

Section 1.4 Cardinality

Definition 9 Two sets \(A, B \) are **numerically equivalent** (or have the same cardinality) if there is a bijection \(f : A \rightarrow B \), that is, a function \(f : A \rightarrow B \) that is 1-1 (\(a \neq a' \Rightarrow f(a) \neq f(a') \)), and onto (\(\forall b \in B \exists a \in A \) s.t. \(f(a) = b \)).

Roughly speaking, if two sets have the same cardinality then elements of the sets can be uniquely matched up and paired off.

A set is either finite or infinite. A set is **finite** if it is numerically equivalent to \(\{1, \ldots, n\} \) for some \(n \). A set that is not finite is **infinite**.

For example, the set \(A = \{2, 4, 6, \ldots, 50\} \) is numerically equivalent to the set \(\{1, 2, \ldots, 25\} \) under the function \(f(n) = 2n \). In particular, this shows that \(A \) is finite. The set \(B = \{1, 4, 9, 16, 25, 36, 49 \ldots \} = \{n^2 : n \in \mathbb{N}\} \) is numerically equivalent to \(\mathbb{N} \) and is infinite.

An infinite set is either countable or uncountable. A set is **countable** if it is numerically equivalent to the set of natural numbers \(\mathbb{N} = \{1, 2, 3, \ldots \} \). An infinite set that is not countable is called **uncountable**.

Example: The set of integers \(\mathbb{Z} \) is countable.

\[
\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots \}
\]

Define \(f : \mathbb{N} \rightarrow \mathbb{Z} \) by

\[
\begin{align*}
f(1) &= 0 \\
f(2) &= 1 \\
f(3) &= -1 \\
&\vdots \\
f(n) &= (-1)^n \left\lfloor \frac{n}{2} \right\rfloor
\end{align*}
\]

where \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \). It is straightforward to verify that \(f \) is one-to-one and onto.

Notice \(\mathbb{Z} \supset \mathbb{N} \) but \(\mathbb{Z} \neq \mathbb{N} \); indeed, \(\mathbb{Z} \setminus \mathbb{N} \) is infinite! So statements like “One half of the elements of \(\mathbb{Z} \) are in \(\mathbb{N} \)” are not meaningful.
Theorem 10 *The set of rational numbers* \(\mathbb{Q} \) *is countable.*

“Picture Proof”:

\[
\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\}
= \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}
\]

| \(n \) | 0 \(\frac{1}{2} \) \(\frac{1}{3} \) \(\frac{1}{4} \) \(\frac{1}{5} \) |
|-------|------------------|------------------|------------------|------------------|
| 1 | 0 \(\rightarrow \) 1 \(\rightarrow \) 2 \(\rightarrow \) 2 \(\rightarrow \) 2 |
| 2 | 0 \(\rightarrow \) \(\frac{1}{2} \) \(\rightarrow \) \(-\frac{1}{2} \) \(\rightarrow \) 1 \(\rightarrow \) -1 |
| 3 | 0 \(\rightarrow \) \(\frac{1}{3} \) \(\rightarrow \) \(-\frac{1}{3} \) \(\rightarrow \) 2 \(\rightarrow \) \(-\frac{2}{3} \) |
| 4 | 0 \(\rightarrow \) \(\frac{1}{4} \) \(\rightarrow \) \(-\frac{1}{4} \) \(\rightarrow \) \(\frac{1}{2} \) \(\rightarrow \) -\(\frac{1}{2} \) |
| 5 | 0 \(\rightarrow \) \(\frac{1}{5} \) \(\rightarrow \) \(-\frac{1}{5} \) \(\rightarrow \) \(\frac{2}{5} \) \(\rightarrow \) -\(\frac{2}{5} \) |

Go back and forth on upward-sloping diagonals, omitting the repeats:

\[
\begin{align*}
f(1) & = 0 \\
f(2) & = 1 \\
f(3) & = \frac{1}{2} \\
f(4) & = -1 \\
& \vdots
\end{align*}
\]

\(f : \mathbb{N} \rightarrow \mathbb{Q} \), \(f \) *is one-to-one and onto.*

Notice that although \(\mathbb{Q} \) appears to be much larger than \(\mathbb{N} \), in fact they are the same size.