The Multiplier

Agenda

• Keynesian Cross (or Multiplier) Model
 - The Multiplier
 • The (Simple) Spending Multiplier
 • Multipliers with Income Tax Rates
 • Multipliers with Endogenous Imports

The Multiplier

• What happens to Ye when G increases?
 - Graphically, Ep line shifts up.
 - Same for increases in C0, Ip, X or decreases in M.
 • Or for any exogenous change in spending.

The Multiplier

• By how much does Ye change?
 - $\delta Y_e > \delta G$
 - This concept is the simple income multiplier
 • Multiplier for short

The Multiplier

• Ye, an endogenous variable, depends on:
 - Ap, the sum of several exogenous variables, and
 - mpc, a parameter

The Multiplier

• Algebraically,
 - $Y = C + I + G + (X - M)$
 - And $C = C_0 + mpc(Y - T)$
 - $Y = C_0 + mpcY - mpcT + I + G + (X - M)$
 - Let $Ap = C_0 - mpcT + I + G + (X - M)$
 - $Y = Ap + mpcY$
 - $Y = Ap / (1 - mpc)$
The Multiplier

• If
 \[Y = \frac{Ap}{1 - mpc} \]
• Then
 \[\Delta Y = \frac{\Delta Ap}{1 - mpc} \]
• or
 \[\frac{\Delta Y}{\Delta Ap} = \frac{1}{1 - mpc} \]
• So
 \[k(Ap) = \frac{\Delta Y}{\Delta Ap} = \frac{1}{1 - mpc} \]

The Multiplier

• If
 \[G = 400, Ap = 1,000 \text{ and } mpc = 0.9, \]
• then
 \[Y = \frac{Ap}{1 - mpc} \]
 \[= \frac{1,000}{0.1} \]
 \[= 10,000 \]

The Multiplier

• Now if
 \[G = 500, Ap = 1,100 \text{ and } mpc = 0.9, \]
• then
 \[Y = \frac{Ap}{1 - mpc} \]
 \[= \frac{1,100}{0.9} \]
 \[= 1,100 / 0.1 \]
 \[= 11,000 \]
• And \(\Delta Y = 1,000 > \Delta G = 100 \)

The Multiplier

• Continuing further
 \[\frac{1}{1 - mpc} \] is called the simple multiplier
 • Because \(0 < mpc < 1, \)
 • \((1 - mpc) < 1, \) and
 • \(1/(1 - mpc) > 1 \)
 \[\text{The larger is } mpc, \text{ the greater is the multiplier} \]
 • The steeper the spending line (the slope of Ep), the
greater is the multiplier and the change in Ye.

The Multiplier

• Why Does This Work?
 \[\text{When } G \text{ increases, } Y \text{ increase as well} \]
 • \(G \) is a part of \(Y \)
 \[\text{When } Y \text{ increases, } YD \text{ increase, so } C \text{ increases} \]
 \[\text{When } C \text{ increases, } Y \text{ increases further} \]
 • \(C \) is a part of \(Y \)
 \[\text{This process continues but gets smaller and}
smaller with each round of spending} \]
The Multiplier

mpc = 0.9

<table>
<thead>
<tr>
<th>Spending Round</th>
<th>Delta G</th>
<th>Delta C</th>
<th>Delta Y</th>
<th>Total Delta Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0</td>
<td>---</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td>90.0</td>
<td>90.0</td>
<td>190.0</td>
</tr>
<tr>
<td>3</td>
<td>---</td>
<td>81.0</td>
<td>81.0</td>
<td>271.0</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>72.9</td>
<td>72.9</td>
<td>343.9</td>
</tr>
<tr>
<td>5</td>
<td>---</td>
<td>65.6</td>
<td>65.6</td>
<td>409.5</td>
</tr>
<tr>
<td>6</td>
<td>---</td>
<td>59.0</td>
<td>59.0</td>
<td>468.6</td>
</tr>
</tbody>
</table>

Equilibrium

100.0 900.0 1,000.0 1,000.0

The Multiplier

- **Why Does This Work?**
 - The increase in Y is > the increase in G because of the increase in C.
 - The multiplier measures the amount of Y stimulated by an increase in G or any other categories of autonomous spending (that is not itself sensitive to Y).
 - This spending cycle takes place very quickly
 - Less than a year

- **Observations**
 - Ye depends on the exogenous variables
 - Ye is a multiple of these exogenous variables
 - Relatively small changes in these exogenous variables can lead to large changes in Ye
 - The size of the multiplier depends on the magnitude of the “leakages”.
 - The greater the leakages, the smaller the multiplier.

Multipliers w/ Income Tax Rates

- **Multipliers with Income Tax Rates:**
 - Assume \(T = tY \)
 - \(t \) is the marginal tax rate
 - \(0 < t < 1 \)
 - \(tY \) are induced taxes

- **Reformulated Consumption Function**
 - \(C = C_0 + mpc (Y - T) \)
 - \(C = C_0 + mpc (Y - tY) \)
 - \(C = C_0 + mpc (1 - t) Y \)

- **Equilibrium**

\[
Y = \frac{Ap}{1 - mpc(1 - t)}
\]

\[
\Delta Y = \frac{\Delta Ap}{1 - mpc(1 - t)}
\]

\[
k(Ap) = \frac{1}{1 - mpc(1 - t)}
\]

- If \(mpc = 0.9 \) and \(t = 0.1 \), then
 \[
k(Ap) = \frac{1}{1 - 0.9(1 - 0.1)} = 1 / 0.19 = 5.26\]
Multipliers w/ Income Tax Rates

- Implications of adding income tax rate, \(t \)
 - The size of the multiplier is reduced.
 - There are more leakages into taxes.
 - A smaller multiplier \(\Rightarrow \) shallower business cycles.
 - \(t \) serves as an “automatic” stabilizer.

- \(Y_e \) changes when \(t \) changes.
 - Higher \(Y_e \) when \(t \) declines; lower \(Y_e \) when \(t \) increases.
 - \(E_p \) line rotates.
 - Fixed on the vertical axis.

Multipliers w/ Income Tax Rates

- If
 - \(A_p = 1,000, \) \(mpc = 0.9, \) and \(t = 0.2 \)
- then
 - \(Y = A_p / [1 - mpc \ (1 - t)] \)
 - \(= 1,000 / [1 - 0.9 \ (1 - 0.2)] \)
 - \(= 1,000 / 0.28 \)
 - \(= 3,571 \)
- And \(k(A_p) = 3.57 \)

Multipliers w/ Income Tax Rates

- If
 - \(A_p = 1,000, \) \(mpc = 0.9, \) and \(t = 0.15 \)
- then
 - \(Y = A_p / [1 - mpc \ (1 - t)] \)
 - \(= 1,000 / [1 - 0.9 \ (1 - 0.15)] \)
 - \(= 1,000 / 0.235 \)
 - \(= 4,255 \)
- And \(k(A_p) = 4.255 \)

Multipliers w/ Endogenous M

- Multipliers with Endogenous Imports.
 - Assume \(M = M_0 + mY \)
 - \(M_0 \) are autonomous imports.
 - \(m \) is the marginal propensity to import.
 - \(0 < m < 1 \)
 - And \(mY \) are induced imports.

Multipliers w/ Endogenous M

- Algebraically,
 - \(Y = C + I + G + (X - M) \)
 where \(C = C_0 + mpc \ (1 - t)Y \) and \(M = M_0 + mY \)
 - \(Y = C_0 + mpc \ (1 - t)Y + I + G + X - M_0 - mY \)
 - Let \(A_p = C_0 + I + G + X - M_0 \)
 - Then \(Y = A_p + mpc \ (1 - t)Y - mY \)
 - or \(Y = A_p + [mpc \ (1 - t) - m]Y \)
 - or \(Y = A_p / [1 - mpc \ (1 - t) + m] \)
Multipliers w/ Endogenous M

- Multipliers with Endogenous Imports:
 - $Y = \frac{Ap}{1 - mpc (1 - t) + m}$
 - $\Delta Y = \frac{\Delta Ap}{1 - mpc (1 - t) + m}$
 - $k(Ap) = \frac{1}{1 - mpc (1 - t) + m}$
 - If $mpc = 0.9$, $t = 0.1$, and $m = 0.2$, then
 \[k(Ap) = \frac{1}{1 - 0.9 \times (1 - 0.1) + 0.2} = \frac{1}{1 - 0.81 + 0.2} = 2.56 \]

Implications of Endogenizing Imports:

- The size of the multiplier is reduced.
- There are more leakages into imports.
- A smaller multiplier \Rightarrow shallower business cycles.

The is called the open economy multiplier.
- Always smaller than the closed economy multiplier.

- Ye changes when m changes.
 - Higher Ye when m declines; lower Ye when m increases.
 - Ep line rotates.

If $Ap = 1,000$, $mpc = 0.9$, $t = 0.2$, and $m = 0.2$

- then
 - $Y = \frac{1,000}{1 - 0.9 \times (1 - 0.2) + 0.2} = \frac{1,000}{0.48} = 2083$
 - And $k(Ap) = 2.083$

If $Ap = 1,000$, $mpc = 0.9$, $t = 0.2$, and $m = 0.15$

- then
 - $Y = \frac{1,000}{1 - 0.9 \times (1 - 0.2) + 0.15} = \frac{1,000}{0.43} = 2326$
 - And $k(Ap) = 2.326$
The Multiplier

- Summarizing the Multiplier:
 - \(k(A_p) = \frac{1}{\text{marginal leakage rate}} \)
 - Consumption Only: \(\frac{1}{1 - mpc} \)
 - With Income Tax Rates: \(\frac{1}{1 - mpc(1 - t)} \)
 - With Endogenous Imports: \(\frac{1}{1 - mpc(1 - t) + m} \)
 - If \(mpc = 0.9 \), \(t = 0.1 \), and \(m = 0.2 \), then
 - Consumption: \(\frac{1}{1 - mpc} = 10 \)
 - w/ Income Tax Rates: \(\frac{1}{1 - mpc(1 - t)} = 5.26 \)
 - w/ Endogenous Imports: \(\frac{1}{1 - mpc(1 - t) + m} = 2.56 \)

The Multiplier

- Implications for Business Cycles
- Implications for Stabilization Policy

The Multiplier

- Major Points:
 - \(Ye \) is determined where \(E = E_p \).
 - The multiplier expresses the simple relationship between changes in \(A_p \) and \(Ye \).
 - Introduction of income tax rates and endogenous imports reduces the size of the multiplier.