Solow Growth Model, Part 1

Agenda

• The Saving Function.
• The Balanced Investment Function.
• The Solow Growth Model.

The Saving Function

• Saving, \(S \), is how Investment, \(I \), is financed.
 \[S = I_a \]
 \(I_a \) = actual investment
 Which, over time, determines how much \(K \).

• Transform \(S = \nu \ast Y \) by dividing by \(N \).
 \[S/N = \nu \ast Y/N \]
 \[= \nu \ast A \ast f(K/N) \]

 Remember \(S = I_a \), so
 \(S/N = I_a/N \) (This is an identity.)
 \[\Rightarrow \text{where } I_a = \text{actual } I. \]

The Production and Saving Functions

The Saving Function

• What happens if:
 \[\nu \text{ changes?} \]
 \[A \text{ changes?} \]
The Investment Function

- $I_g = k \cdot \text{dot} + \delta \cdot K$

- $I_g = k \cdot \text{dot} + \delta \cdot K$

- $I_g = (k \cdot \text{dot} + \delta) \cdot K$

- $\frac{I}{N} = (k \cdot \text{dot} + \delta) \cdot \frac{K}{N}$

Balanced Investment Function

- How much I/N is needed to keep K/N constant?

 - For K/N to be constant, $k \cdot \text{dot} = n \cdot \text{dot}$
 - This is called “The Balanced Growth Path.”

 - If $\frac{I}{N} = (k \cdot \text{dot} + \delta) \cdot \frac{K}{N}$ and $k \cdot \text{dot} = n \cdot \text{dot}$

 - Then $Ib/N = (n \cdot \text{dot} + \delta) \cdot \frac{K}{N}$
 - This is called “balanced investment”, Ib.

The Investment Function

- $I_g = I_n + \text{depreciation}$
 - I_g = gross investment.
 - I_n = net investment.

- $I_n = \Delta K = k \cdot \text{dot} \cdot K(t-1)$
 - Because ΔK is small, $K(t)$ is approximately $\approx K(t-1)$.
 - Therefore, $\Delta K = k \cdot \text{dot} \cdot K(t)$.

- Depreciation = $\delta \cdot K(t-1)$
 - δ is the rate of economic depreciation of K, $0 < \delta < 1$.
 - Because $K(t)$ is approximately $\approx K(t-1)$, depreciation is approximately $\approx \delta \cdot K(t)$.
Balanced Investment Function

\[\frac{I_b}{N} = (n - \text{dot} + \delta) \times \frac{K}{N} \]

The Solow Growth Model

- The Solow Growth Model combines:
 - The production function,
 - The saving function, and
 - The balanced investment function.

- All in per capita terms.
 - Measured by \(N \) as a proxy for population.

- Assumes \(A = \alpha \), a constant. Then, \(\text{a-dot} = 0 \).

Balanced Investment Function

- What happens if:
 - \(n - \text{dot} \) changes?
 - \(\delta \) changes?

Solow Growth Model

- \(A \) is called “steady-state equilibrium.”
 - \(S/N = I/N = I_b/N \)
 - \(S = I_a = I_b \).
 - Once the economy is at its steady state there are no economic pressures to move away from it.
 - This is a stable equilibrium.

The Solow Growth Model

- \(Y/N = A \times f\left(\frac{K}{N}\right) \)
- \(S/N = v \times Y/N = I_a/N \)
- \(I_b/N = (n - \text{dot} + \delta) \times K/N \)
- \(S/N = I_a/N = I_b/N \)
Solow Growth Model

- How fast is the economy growing at A?
 - At the steady-state, \(\frac{Y}{N} \) is constant.
 - Therefore, \(y-\text{dot} = n-\text{dot} \).
 - The economy is growing at the same rate as labor input is growing.

Solow Growth Model

- How fast is the capital stock growing at A?
 - At the steady-state, \(\frac{K}{N} \) is constant.
 - Therefore, \(k-\text{dot} = n-\text{dot} \).
 - The capital stock is growing at the same rate as labor input is growing.

The Solow Growth Model

- Therefore, in a steady state:
 - \(y-\text{dot} = n-\text{dot} = k-\text{dot} \)

Solow Growth Model

- Most advanced economies are generally near their steady states.
 - What is potential GDP, \(Y^* \)?
 - The \(Y \) in \(Y/N \) at the steady state.
 - How fast is \(Y^* \) growing?
 - \(y^*-\text{dot} = n-\text{dot} \) if \(a-\text{dot} = 0 \).
Solow Growth Model

• Disequilibria dynamics
 ➢ What if the economy is not at its steady-state?
 • $K/N < (K/N)_A$
 ➢ German reunification, increase N
 ➢ Natural disasters, decrease K
 • $I_a > I_b$ and K increases

Solow Growth Model

• Disequilibria dynamics
 ➢ What if the economy is not at its steady-state?
 • $K/N > (K/N)_A$
 ➢ Plagues, decrease N
 ➢ Foreign wars, decrease N
 ➢ Neutron bomb, decrease N
 • $I_a < I_b$ and K decreases
Solow Growth Model

- Disequilibria dynamics:
 - Growth process is stable.
 - Economy will always converge over time to the SAME steady state.
 - However, growth rates during the transition period will be different.
 - When $K/N < (K/N)_A$, y-dot $> n$-dot.
 - When $K/N > (K/N)_A$, y-dot $< n$-dot.