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We evaluate the effects of state-provided financial incentives for biotech companies, which are part of a
growing trend of placed-based policies designed to spur innovation clusters. We estimate that the adop-
tion of subsidies for biotech employers by a state raises the number of star biotech scientists in that state
by about 15% over a three year period. A 10% decline in the user cost of capital induced by an increase in
R&D tax incentives raises the number of stars by 22%. Most of the gains are due to the relocation of star
scientist to adopting states, with limited effect on the productivity of incumbent scientists already in the
state. The gains are concentrated among private sector inventors. We uncover little effect of subsidies on
academic researchers, consistent with the fact that their incentives are unaffected. Our estimates indicate
that the effect on overall employment in the biotech sector is of comparable magnitude to that on star
scientists. Consistent with a model where workers are fairly mobile across states, we find limited effects
on salaries in the industry. We uncover large effects on employment in the non-traded sector due to a
sizable multiplier effect, with the largest impact on employment in construction and retail. Finally, we
find mixed evidence of a displacement effect on states that are geographically close, or states that eco-
nomically close as measured by migration flows.
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1. Introduction

There is growing empirical evidence that agglomeration of eco-
nomic activity generates significant economies of scale at the local
level. This evidence raises both normative questions, concerning
whether government intervention is socially optimal from a na-
tional or global perspective, and positive questions about whether
such intervention, even if desirable, is effective. Can firms’ location
decisions be influenced by government incentives and, if so, should
national or local governments provide incentives to firms to cluster
in particular locations?

These questions have led to growing interest among economists
on the effect of place-based economic policies. Place-based eco-
nomic policies are development strategies intended to foster eco-
nomic activity in a city or a region. These policies are widespread
both in the US and in the rest of the world.1 Indeed, it is rare for
a large production or research facility to open today in the US with-
out the provision of some form of subsidy from the relevant local
government (Greenstone and Moretti, 2004; Greenstone et al., 2010).

An increasingly common type of place-based policy is state-
provided subsidies for ‘‘high-tech’’ and life-science firms designed
to spur innovation-based clusters. Urban economists have long
suspected that innovative industries like high-tech and life-science
are characterized by significant localized agglomeration econo-
mies. For example, the distribution of the bio-technology industry
is heavily clustered spatially, with a large fraction of the industry
employment concentrated in Boston/Cambridge, the San Francisco
Bay area, San Diego, New Jersey, Raleigh-Durham and the
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Washington, DC area. This concentration is consistent with the
existence of strong localized agglomeration externalities.2

Because local governments often aim at creating and fostering
self-sustaining clusters of life-science research, a growing number
of them have introduced incentives that specifically target the bio-
tech industry. As of 2010, 11 states provide some type of incentive
for biotech firms, and their generosity appears to be growing. In
addition, over the past two decades, general R&D tax credits of-
fered by US states have become increasingly important. These
credits are not specific to biotech, but given the importance of
R&D for the industry they are likely to disproportionally benefit
the biotech sector. As of 2010, 34 states provide a broad-based
tax credit on R&D, and the average effective credit rate has grown
approximately fourfold over this period to equal half the value of
the federal effective credit rate. In many states, the state tax credit
is considerably more generous than the federal credit (Wilson,
2009).

Yet, despite the growing importance of these incentives, their
effects are not well understood.3 In this paper, we investigate the
effects of state-provided biotech incentives on the local biotech
industry and the broader state economy. We construct a rich state-
level panel data set combining data on biotech-specific incentives
and general R&D tax credits with data on various outcomes measur-
ing biotech activity in a given state and year. Our outcome measures
consist of the number of ‘‘star scientists’’ (defined below), employ-
ment, wages, establishments and patents – each specific to the bio-
tech sector – for the period 1990–2010. We also estimate models
where the outcome variables measure employment in the non-
traded sector outside biotech. Using this data set, we identify the ef-
fect of biotech incentives and the R&D user cost off of the variation
within each state over time.

We find significant effects both of the biotech specific subsidies
and the general R&D tax credits on biotech star scientists, defined
as those patenters whose patent count over the previous ten years
is in the top 5% of patenters nationally.4 The adoption of biotech
subsidies raises the number of star scientists in a state by 15% rela-
tive to states’ pre-adoption baseline. This is important because of the
existing evidence on the important role played by the localization of
star scientists on the localization and survival of US biotech clusters
(Zucker et al., 1998).

Notably, most of the gains in star scientists are due to the relo-
cation of star scientists to adopting states, with limited effect on
the prolificacy of incumbent scientists already in the state. In addi-
tion, we find that the gains are concentrated among private sector
inventors, both corporate and individual. We uncover little effects
of subsidies on academic researchers, consistent with the fact that
incentives for universities – which are mostly non-profit – are
unaffected by the subsidies.
2 The hypothesis of agglomeration economies dates back at least to Marshall (1920)
who discussed how they could be generated by a variety of mechanisms, including
localized knowledge spillovers, thick labor markets for specialized workers, and
localized supply chains.

3 Economists have long cautioned that due to the complex nature of the market
failures at work it is unclear what cluster policies should do in practice and how they
should do it (Duranton, 2011). A number of recent empirical studies have sought to
assess the effectiveness of state-wide incentives. Examples include, but are not
limited to, Faulk (2002), Bartik and Erickcek (2010), Bartik and Eberts (2012), Chirinko
and Wilson (2008, 2010), Wilson (2009), Head et al. (1999), and Duranton et al.
(2011). Overall, the empirical evidence on the effect of tax incentives on local labor
markets is still limited and more work is needed to understand how in practice these
subsidies contribute to economic development.

4 We follow the literature in using the term ‘‘star scientists,’’ though it should be
noted that patenters include institutions such as universities and corporations in
addition to individuals. Specifically, in our biotech patent database, individuals
account for 70.9% of patents, universities account for 5.6%, and other institutions
(mostly corporations) account for 23.5% of patents.
The effect of incentives on employment is not limited to top sci-
entists, but it extends to other parts of the biotech workforce. We
uncover significant effects on total employment in the Pharmaceu-
tical and Medicine Manufacturing industry (16% gain); the Phar-
maceutical Preparation Manufacturing industry (31% gain); and
the scientific R&D industry (18% gain). Because the effect for all
workers is generally similar to the effect for stars, we infer that
the incentives do not alter the ratio of stars in the workforce.5

Consistent with a model where workers are fairly mobile across
states, we find limited effects on average salaries in these three
industries. While we do not have a direct measure of start-up cre-
ation, we find that the number of biotech-related establishments
also increases following incentive adoption. On the other hand,
we find limited effects on patents following the subsidy, possibly
because it takes time for biotech research to come to fruition.

We cannot rule out the possibility that the adoption of subsidies
is correlated with unobserved trends in the vitality of the local
economy in general or the local innovation sector in particular.
However, we fail to find an effect of biotech subsidies and R&D
credits on employment in fields different from biotech. Triple dif-
ference models that include other sectors largely confirm our esti-
mates for the employment effects.

Consistent with the presence of a local employment multiplier
effect (Moretti, 2011), we do uncover an indirect effect on the local
non-traded sector, including retail, construction and real estate. It
appears that by increasing employment in biotech, the incentives
indirectly increase employment in local services, like construction
and retail, whose demand reflect the strength of the local economy.

In additional specifications, we test whether the provision of
biotech-specific tax credits increases biotech employment at the
expense of nearby states. We find mixed evidence of an effect on
states that are geographically close, or states that are economically
close as measured by worker migratory flows. If there is displace-
ment, it is likely to be national in scope.

Finally, we provide some partial, illustrative and indirect evi-
dence on whether there is a first mover advantage in providing
incentives. In the presence of agglomeration economies and large
fixed costs, the initially positive effect of the subsidy on the biotech
industry of an early adopting state should be long lasting, as bio-
tech activity keeps agglomerating in the state even after other
states have matched the subsidy. On the other hand, in the absence
of significant agglomeration economies and large fixed costs, the
initially positive effect experienced by an early adopter will not
last after competing away any relative advantage. In this case, local
biotech activity will revert to the long run equilibrium level that
existed before the provision of any subsidies. Empirically, we find
limited evidence of a first-mover advantage for biotech incentives,
although data limitations preclude us from drawing definitive
conclusions.

In terms of policy implications, it is important to keep in mind
that our finding that biotech subsidies are successful at attracting
star scientists and at raising local biotech employment do not im-
ply that biotech subsidies are a good use of taxpayer money. Find-
ing that the provision of tax incentives by a state results in an
increase in biotech R&D activity in that state does not necessarily
suggests the existence of a market failure, nor does it imply that
the provision of tax incentives is an efficient use of public funds.
In this paper we have little to contribute to the question of local
efficiency of place based policies. Efficiency of these policies from
the point of view of the nation as a whole is even harder to address
and is outside the scope of this paper.6
5 The Pharmaceutical Preparation Manufacturing industry is an exception.
6 See Kline and Moretti (2013) for a discussion.
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The remainder of the paper is organized as follows. In Section 2,
we describe our data and the incentives available for biotech com-
panies. In Section 3, we discuss the possible mechanisms through
which incentives can affect a state economy and we present the
econometric models used. The empirical results of the paper are
in Section 4. Section 5 concludes.
2. Data

We investigate the effects of biotech and R&D incentives on a
number of different measures of economic activity in the biotech
sector. The dataset used in this paper is obtained from combining
several separate data sources. In this Section we describe the data
sources used and we provide descriptive statistics.

2.1. Incentives

We focus our analysis on two types of state-specific incentives
for innovation: R&D tax credits and biotech-specific subsidies. The
former subsidize any form of investment in R&D, not just biotech.
But given the disproportionate importance that R&D costs have for
biotech, it is obviously an important cost shifter for firms in the
industry. To quantify the magnitude of R&D tax incentives offered
by states in our sample, we treat R&D as an input into a firm’s pro-
duction function, whose price is the implicit rental rate, or user
cost, after taxes. Extending the standard Hall-Jorgenson (1967)
formula for the user cost of capital to incorporate tax and
subsidies – and ignoring federal taxes just for the exposition –
yields the following formula for the user cost of R&D capital (per
dollar of investment):

User Cost of R&D ¼ ðrt þ dÞ½ð1� skst � ztstÞ=ð1� tstÞ�

where rt is the real interest rate in the economy, assumed to be
the same for all states in any given year; d is the economic depre-
ciation rate of R&D capital, assumed to be the same for all firms;
tst and kst are the corporate income tax rate and the R&D tax credit
rate in a given state and year; s is the share of R&D expenditures
that qualify for the credit according to the tax code, set equal to .5
based on IRS Statistics; and z denotes the present discounted value
of tax depreciation allowances. The formula provides a compre-
hensive measure of the tax advantage provided by each state in
each year that is comparable across jurisdictions and periods.
We use data from Wilson (2009), updated through 2010, to com-
pute the relevant user cost of capital for each state and year in our
sample.

In addition to generic R&D tax credits, states have adopted a
variety of specific fiscal incentives to attract biotech activity to
their jurisdiction. These incentives take various forms, including
tax credits on investment or job creation, sales and use tax exemp-
tions, low-interest start-up loans, and even grants. In total, 11
states have some form of incentive targeted primarily at the bio-
tech sector. Appendix A provides the list of adopting states and de-
tails on each state’s program.7

One major limitation of our data is that, unlike R&D tax cred-
its, it is difficult to come up with a comparable measure of the
generosity of the biotech incentives, due to the heterogeneity in
their forms. For instance, Massachusetts adopted in 2009 a ‘‘Life
Sciences Tax Incentive Program’’ consisting of an investment tax
credit, special sales tax exemptions, and a refundable research
tax credit, all applicable only for companies in life sciences. Con-
structing a single summary measure of the value of this program
7 North Carolina is the earliest adopter. Because the state adopted a biotech
incentive in 1984, and our data begins in 1990, North Carolina does not contribute to
identification of the coefficients in our regression models.
that could be compared with another state, which might have
only one of these three tax incentives (though it could be espe-
cially generous) or might have another type of incentive alto-
gether (such as low interest loans as in North Carolina or
research grants as in California), is next to impossible. In princi-
ple, one could construct a proxy for the effective credit rate by
taking the ratio of the total amount spent by each state for ‘‘tax
expenditures’’ and grant outlays divided by the biotech sector
revenues in the state. However, states do not typically report
how much they spend on incentives separately from other items
in their budget. After a comprehensive search, we were unable to
find systematic data for a significant number of states. Thus, in
our empirical analysis, we simply use an indicator for the adop-
tion of biotech incentives. The coefficient on this indicator has
to be interpreted as the mean effect of adoption, averaged across
all adopting states.

2.2. Biotech star scientists

We use data on biotech patents to identify the location of pro-
lific biotech scientists and to measure biotech innovation in a
state. We purchased a proprietary data set on biotech patents
from IFI Claims Patent Services, a company that provides data
services associated with biotechnology and related fields. IFI’s
specialists, who have expertise in chemistry and biology, go
through public individual patent records (from US Patent and
Trademark Office, USPTO) and identify all patents that involve
advances in the biotechnology field. This identification is neces-
sary because the technology classes that the USPTO assigns to
patents (which change only infrequently and hence often cannot
keep up with emerging technologies) do not map well to biotech,
which is at the intersection of a number technological fields.
Analyses of the biotech sector based on USPTO technology classes,
as the previous literature has relied on, are likely to have diffi-
culty cleanly identifying effects on biotech patenting given this
poor mapping. To our knowledge, this paper is the first to use
the IFI database or any other data specifically focused on identi-
fying biotech patents.

The IFI’s patent database contains five variables for each (IFI-
identified) biotech patent from 1976 to 2010: year, inventor name,
inventor city, inventor state, and USPTO patent ID number. A single
patent may have multiple inventors and hence multiple observa-
tions in this data set. From these data, we construct three variables
at the state-by-year level: (1) patent counts, (2) number of ‘‘star’’
scientists patenting in the state, and (3) number of star scientists
that are new to the state in that year. The latter variable, the num-
ber of new star scientists, is the sum of an extensive margin – star
scientists who were patenting in a different state in the previous
year – and an intensive margin – star scientists who were in the
previous year in the same state but were not ‘‘stars’’ (as defined be-
low). In some specifications, we will analyze the effect of incen-
tives on each margin separately.

For constructing patent counts by state-year, if the patent has
multiple inventors from multiple states, we assign fractions of
the patent to each of its inventors’ states in proportion to the num-
ber of inventors of that patent in each state. For example, if a pat-
ent has four inventors, one from California, one from Oregon, and
two from Washington, we would give a patent count of 0.25 to Cal-
ifornia, 0.25 to Oregon, and 0.5 to Washington. After constructing
patent counts for each inventor � patent-ID observation in this
way, we then simply sum biotech patent counts by state � year.

We define ‘‘star’’ biotech inventors, in a given year, as those that
are at or above the 95th percentile in number of biotech patents
over the past ten years. In other words, stars are exceptionally pro-
lific patenters in the biotech field. The 95th cutoff is of course arbi-
trary, but our empirical results are not sensitive to it. We have also
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estimated our regressions based on star measures using the 90th or
99th percentiles and obtained similar results. Stars in a given year
are assigned to a single state (even if they have listed different
states on different patents) corresponding to the state in which
they have the most patents (in that year).8

The IFI database includes inventor names and distinguishes be-
tween individual and institutional (corporations, research institu-
tions, and universities) inventors by listing names for the latter
in all uppercase. Furthermore, it is possible to separate institutions
into universities and other institutions (mainly corporations) by
classifying patenters with the word ‘‘university’’ or ‘‘college’’ in
their name as universities. We exploit this information to measure
state-year counts of patents, stars, and new stars separately for
individuals, universities, and other (non-university) institutions.
2.3. Employment, wages and establishments

In addition to these measures of biotech innovation, we look at
biotech sector employment, wages and number of establishments.
While our patent data allow an exact identification of biotech pat-
ents, the same is not true for labor market and establishment data.
First, NAICS does not directly and exactly identify the biotech
industry including both the R&D side and the production and sales
side. Second, and more importantly, for years before 1998, SIC
codes were used, and the link with biotech is even more imperfect.
In practice, we consider three different NAICS industries as poten-
tially reflecting biotech activity: Pharmaceutical and Medicine
Manufacturing (NAICS 3254), Pharmaceutical Preparation Manu-
facturing (NAICS 325412 – a subset of 3254), Research and Devel-
opment in the Physical, Engineering, and Life Sciences (NAICS
54171).9 None of these three sectors perfectly captures the biotech
industry, as each of them excludes parts of biotech and includes
parts of other industries that do not belong to biotech. But we hope
that taken together, the three sectors may prove informative about
the industry. We also note that in our analysis, employment, salaries
and number of establishments are used as dependent variables.
Well-behaved measurement error in the dependent variable of linear
models increases standard errors, but does not introduce any sys-
tematic bias in the estimates.

We obtain employment data by month, industry and state from
the Bureau of Labor Statistics’ Census of Employment and Wages
(CEW) series, and aggregate to a yearly frequency. These data are
based on administrative records (state Unemployment Insurance
payroll reports) so they contain minimal measurement error. They
cover all employers, with no minimum thresholds for employer
size. We obtain data on wages and number of establishments by
month and state from the Census Bureau’s County Business Pat-
terns (CBP) data series, and aggregate to a yearly frequency. Both
the CEW and CBP data contain missing (non-disclosed) values for
some state-years when disclosure of such values could potentially
be used to identify specific employers. For our regressions, we con-
struct balanced panels for each dependent variable by dropping
states that do not have complete time series for that variable.
8 The city and state of the patenter may be measured with error, especially when
there is a difference between the location of the inventor and the location of her
employer. It is also possible that there are two or more inventors with the same name
within the same city, state, and year, although such instances should be quite rare
because the number of biotech patents within a city-state-year cell is rarely large and
hence the probability of two inventors within that cell having the exact same name
should be very small. Both of these cases would induce classical measurement error in
the dependent variable, and so not a cause of bias.

9 In principle, restricting the third group to R&D in Life Science would be better, but
too many states have their values set to missing to protect confidentiality. There also
is a NAICS industry for ‘‘Research and Development in Biotechnology’’ (541711),
however, employment, wage, and establishments data for this industry is only
available from 2007 onward.
2.4. Summary statistics

Table 1 shows summary statistics. Panel A shows the means of
our variables. Columns 1–3 and 7–8 show the means in levels
(which we use in the regressions) and Columns 4–6 show the
means in per capita terms. The means are calculated over our total
sample. Columns 1 and 4 report means across all states; columns 2,
3, 5, and 6 split the sample between states that adopt biotech
incentives and those that do not. While adoption occurs sometimes
in the middle of the sample period, the means are computed across
all years in the sample. Columns 7 and 8 shows the means only for
adopting states before and after the adoption.

Columns 2 and 3 indicate that states that adopt biotech incen-
tives appear to have a stronger presence of life science industry,
though much of that appears to be simply a matter of size differ-
ences: the adopters are larger states on average. Yet, even after
scaling by population, the adopters tend to have a higher average
level of biotech economic activity (columns 5 and 6). The most
striking difference is in the number of star biotech scientists –
those scientists who are major producers of biotech research. The
table indicates that adopting states have significantly more stars
than non-adopting states. There are 7.9 star scientists per million
residents in adopting states, while the corresponding figure for
non-adopting states is 3.5.

We also look at ‘‘new stars’’ – star scientists that are new to the
state, either because they were patenting in a different state in the
previous year or because they were not stars in the previous year.
This group of movers and rising stars is particularly interesting, be-
cause it captures one of the stated goals of state biotech subsidies,
namely to attract and grow major producers of biotech research.
Just under 1 per million residents in adopting states are new stars,
while new stars in non-adopting states are only 0.4 per million.

Of course, some of the differences between adopting states and
non-adopting states reflect pre-existing differences among states
in the penetration of the life science sector, while other differences
reflect the effect of subsidies (if there is any). Absolute employ-
ment in Pharmaceutical and Medicine Manufacturing (3254), Phar-
maceutical Preparation Manufacturing (325412), Research and
Development in the Physical, Engineering, and Life Sciences
(54171) is also higher in adopting states, although the per-capita
differences are smaller. For example, 0.08% of residents in states
that adopt incentives at some point during the sample period work
in the Pharmaceutical and Medicine Manufacturing industry, com-
pared with 0.07% in states that do not adopt.10 For Pharmaceutical
Preparation Manufacturing, there is no discernible difference in per-
capita employment.

Salaries and number of establishments also tend to be higher
among adopters: the average salary in the Pharmaceutical and
Medicine Manufacturing industry in states that adopt incentives
is $52,710, compared with $47,329 in states that do not adopt
(2011 dollars); the number of establishments is almost double in
the former group relative to the latter.

Columns 7 and 8 of the table show the pre- and post-adoption
means for adopting states. While there is more annual employ-
ment in pharmaceutical manufacturing after adoption, there are
actually lower levels of stars scientists, new star scientists, R&D
employment, and patents after adoption. What this comparison
of raw means is missing, and what our regression analysis will cap-
ture, is the national trends in these variables. As the regression re-
sults show, it turns out that the post-adoption decline in these
variables is actually smaller for adopting states compared with
the pattern over time in non-adopting states.
10 The states that have the most jobs per capita in the industry are Indiana (2.71%),
North Carolina (2.13%), and Connecticut (2.05%).



Table 1
Summary statistics.

Variable name Mean (in levels) Mean (per 100,000 residents) Mean (in levels) – Adopting
States Only

All
states

Biotech incentive
adopters

Non-
adopters

All
states

Biotech incentive
adopters

Non-
adopters

Pre-adoption
mean

Post-adoption
mean

Panel A. Means
Star Scientists 28.04 80.19 15.32 0.436 0.790 0.349 90.78 63.30
New Star Scientists 9.17 24.37 5.46 0.053 0.096 0.043 26.37 18.13
Employment in Pharmaceutical and

Medicine Manuf.
5,529 8,058 4,853 74.145 83.348 71.687 7211 9257

Employment in Pharmaceutical
Preparation Manufact.

4,563 5,958 4,191 52.809 52.136 52.990 4742 7920

Employment in Scientific R&D 9,026 18,465 6,655 175.131 199.365 169.043 20,115 16,132
Salaries in Pharmaceutical and Medicine

Manuf.
48,656 52,710 47,329 – – – 50,264 56,904

Salaries in Pharmaceutical Preparation
Manufact.

50,294 51,960 49,631 – – – 51,494 52,742

Salaries in Scientific R&D 46,420 51,869 44,943 – – – 42,574 67,360
Establishments in Pharmaceutical and

Medicine Manuf.
35.20 67.01 27.02 0.599 0.781 0.552 70.55 61.46

Establishments in Pharmaceutical
Preparation Manufact.

17.89 29.84 14.72 0.298 0.319 0.292 30.56 28.72

Establishments in Scientific R&D 226.81 513.70 156.84 4.465 5.336 4.252 546.68 462.12
Number of Patents 78.33 211.78 45.78 1.288 2.090 1.093 239.12 169.62
Biotech Incentive Dummy 0.081 0.414 0 0.002 0.011 0.000 0.000 1.000
R&D User Cost 1.175 1.171 1.176 0.059 0.027 0.066 1.171 1.171

Variable name Total sample Regression sample

N # of statesa # of yearsa N # of states # of years

Panel B. Observation counts
Star Scientists 1071 51 21 1071 51 21
New Star Scientists 1071 51 21 1071 51 21
Employment in Pharmaceutical and Medicine Manuf. 996 47 21 798 38 21
Employment in Pharmaceutical Preparation Manufact. 929 44 21 588 28 21
Employment in Scientific R&D 1046 49 21 987 47 21
Salaries in Pharmaceutical and Medicine Manuf. 693 47 20 618 43 18
Salaries in Pharmaceutical Preparation Manufact. 499 28 20 438 37 18
Salaries in Scientific R&D 900 45 20 670 40 18
Establishments in Pharmaceutical and Medicine Manuf. 1020 51 20 1020 51 20
Establishments in Pharmaceutical Preparation Manufact. 1000 50 20 1000 50 20
Establishments in Scientific R&D 1020 51 20 1020 51 20
Number of Patents 1071 51 21 1071 51 21
Biotech Incentive Dummy 1071 51 21 1071 51 21
R&D User Cost 1071 51 21 1071 51 21

a With at least one non-missing observation.

24 E. Moretti, D.J. Wilson / Journal of Urban Economics 79 (2014) 20–38
In our empirical analysis we use the subset of states for which
we have non-missing observations in at least 20 years. Columns
1–3 of Panel B show the number of observations, number of states,
and number of years in our total sample. Columns 4–6 show the
same for the estimation sample. The number of states in each
dependent variable’s balanced panel is also shown at the bottom
of each column in the regression results tables.11

Lastly, to give a sense of how much of the within-state variation
in the R&D user cost is driven by variation in the R&D tax credit, we
first regress the R&D user cost on state and year fixed effects and
then regress the residual on the state R&D tax credit rate. The R-
squared from the latter regression is 0.345. By comparison, the
R-squared from regressing the residual on the state tax rate is just
0.004. Because the R&D user cost is a non-linear function of these
11 We do this because we need to have a sufficiently long time dimension in our
panel to be able to identify (with reasonable precision) state fixed effects as well as
the medium-run (over three years) effects of the incentives. This leads to their being a
different number of states across outcomes (dependent variables) in the tables and
makes the results less comparable from outcome to outcome. As a robustness check
we have repeated all of the regressions with the same sample of 28 states that have
non-missing data for all of the outcomes that we look at. The results are quite similar,
though the standard errors are larger. (Results available on request) Limiting the
sample in this way involves a considerable loss of information for most of the
outcomes, many of which have data for all 50 states.
two state tax policies along with federal tax policies, interactions of
the state R&D tax credit and these other components likely explain
much of the remaining variation. We conclude that the key (single)
driver of within-state changes in the R&D user cost is the R&D
credit rate.
3. Possible mechanisms and econometric models

The adoption of subsidies for the biotech industry can affect the
state economy through a number of different channels – both di-
rect and indirect. Here we first discuss the most important chan-
nels, and then describe how we propose to empirically assess
their importance.
3.1. Mechanisms

(A) Direct effects. By making biotech R&D more profitable in
the state, the adoption of incentives may directly affect the state
economy by increasing the size of the industry in the state. In prac-
tice, this direct effect may result in changes in the industry’s
employment, wages and number of firms.

(i) Employment. To quantify the employment effect, we will be-
gin by focusing on the effect of biotech incentives on the number of



12 This would make the placebo tests and the triple difference models discussed
above invalid.

13 In addition, if agglomerations economies are important, the increase in biotech
may result in more local agglomeration outside biotech.
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star scientists in the state. The presence of star scientists is impor-
tant because they are arguably the most important input in the
biotech production function.

The literature on star scientists has highlighted the role that
stars have historically played in the birth and growth of the biotech
industry since the mid 1970s. Star scientists have been shown to
play the key role in the development of the biotech scientific dis-
coveries and their successful commercialization. Their localization
is therefore an important determinant of the localization of the
biotech industry itself. Zucker et al. (1998) argue that the impor-
tance of these individuals, especially the more entrepreneurial
among them, ‘‘derives from the tacit character of new break-
through discoveries. In this way, knowledge, at least when it is
new, is embodied in particular individuals; it cannot diffuse rap-
idly, as might easily-duplicated recipes.’’

The adoption of incentives can in principle increase the number
of star scientists in a state through two channels: (a) relocation by
star scientists relocate to the adopting state or (b) increase their
patenting prolificacy of incumbent scientists already present in
the state and their movement into the top tier of patenters. Empir-
ically, we will seek to separate these two margins.

The effect of subsidies on biotech research is expected to be
vastly different for private firms and academic institutions. Biotech
incentives and R&D tax credits typically target private sector re-
search, not academic institutions, which are almost universally
nontaxable organizations. Thus incentives should have a smaller,
possibly zero, direct effect on academic researchers than on private
sector researchers. While it is still possible that incentives might
have an indirect feedback effect on academia through displacement
(expected negative effect) or human capital spillovers and agglom-
eration economies (expected positive effect), this indirect effect
should be smaller than the direct effect. Our empirical analysis will
differentiate between biotech scientists in the private sector and in
academia.

While scientists are probably the most important input in the
biotech industry, they are not the only one. Quantitatively, the
most important channel through which the adoption of incentives
might affect the local economy is through increases in the overall
employment in the industry. We will quantify this channel by
assessing changes in overall industry employment caused by bio-
tech incentives. Biotech incentives may help established firms to
expand, or foster the creation of new biotech star-ups. While we
do not have direct measures of start-up creation, we will investi-
gate the effect of incentives on the total number of biotech firms
in the state.

We note that our estimates capture the overall effect of incen-
tives on industry employment. This overall effect is the sum of
the direct effect on the size of the industry and any localized
agglomeration economies, if they exist.

(ii) Wages. Of course, the adjustment to an increase in the de-
mand for biotech workers induced by an increase in subsidies need
not come entirely in the form of employment gains. If the supply of
scientists or other workers in the biotech sector is not elastic, the
effect of incentives on employment could be limited, but there
could be an effect on salaries. Indeed, Goolsbee (1998) finds that
when the federal government increases subsidies for R&D, the
immediate effect on employment is rather limited because the
short run labor supply of this type of worker is quite inelastic at
the national level and most of the increased spending translates
into higher wages. Empirically, this appears particularly true for
scientists related to defense R&D such as physicists and aeronauti-
cal engineers.

Our setting is different in two respects. First, and most funda-
mentally, Goolsbee was looking at nation-wide changes, while
we look at state-level policies. The elasticity of labor supply at
the state level is likely to be quite different from the elasticity of
labor supply at the national level. While it is difficult to add highly
specialized workers in the nation as a whole in the short run, work-
ers are mobile, and highly educated workers are particularly mo-
bile, making state-level elasticity of labor supply likely to be
significantly larger than the national level elasticity. For this rea-
son, we expect that while wage effects may take place, at least
some of the effect will manifest itself in increased employment.

Second, within each local labor market, there may be mobility
across sectors. This type of mobility is rare for biotech engineers,
but it is probably common for less specialized occupations, like
support staff, commercial personnel, and unskilled labor, which
arguably represent a significant fraction of workers in the three
industries we focus on. The degree of mobility that exists between
the biotech industry and the rest of the labor market does not have
to be identical to the one that exists between government sup-
ported research sector and the rest of the labor market.

(B) Indirect effects. In addition to the direct effect on the bio-
tech sector, the adoption of incentives may affect parts of the state
economy outside the biotech sector. First, biotech incentives need
to be financed implicitly or explicitly through higher taxes on the
rest of the state taxpayers. This will likely result is economically
costly distortions and lower employment in other parts of the state
economy. Separate from the negative effect of taxation, there
might be two additional indirect effects on the local traded and
non-traded sector:

(i) Employment in the non-traded sector. It is possible that the
employment gains in biotech indirectly may result in employment
changes in the non-traded sector outside biotech through a local
job multiplier effect. Every time a state economy generates a
new biotech job by attracting a new biotech company, additional
jobs might also be created, mainly through increased demand for
local goods and services.

This multiplier effect is expected to be particularly large for
innovative industries like biotech. First, workers in innovative
industries tend to have higher-than-average salaries and therefore
tend to support more local jobs thorough their personal consump-
tion of local non-traded services. In addition, firms in innovative
industries tend to consume more local services. Third, agglomera-
tion economies may also be stronger in these industries, further
increasing the local multiplier effect. Consistent with this hypoth-
esis, Moretti (2011) finds that for each additional job in the manu-
facturing sector in a given city, 1.6 jobs are created in the local non-
traded sector in the long run and that this number is significantly
larger for high tech manufacturing industries and industries that
are more human capital intensive.

(ii) Employment in the traded sector outside biotech. In principle,
it is possible that an increase in biotech activity may affect labor
demand not just the local non-traded sector, but also the local
traded sector.12 The sign of this relationship is a priori unknown.
The increase in labor demand in the state caused by an increase in
biotech activity could result in higher local wages (if local labor sup-
ply is not perfectly elastic) and therefore hurt employment in other
parts of the traded sector. Unlike the case of non-tradable goods, the
price of tradable goods is set on national market and cannot adjust to
local economic conditions. Thus, some of the production in traded
industries may be shifted to different cities. On the other hand, gains
in biotech may increase the local demand for intermediate goods
and services. This effect depends on the geography of the industry
supply chain. While many industries are geographically clustered,
the magnitude of this effect is likely to be quantitatively limited if
the market for traded industries is truly national.13
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In practice, however, we expect the indirect effect of biotech on
the rest of the tradable sector to be limited. The biotech sector is
very small with respect to the rest of all state economies. Thus, it
is unlikely to generate strong general equilibrium effects on local
wages. Indeed, given that we will find below that the salary effects
on the biotech sector itself are small, it is unlikely that the salary
effects outside biotech can be very large.14 In addition, the biotech
supply chain is quite distinct from that of most other parts of the
traded sector.

3.2. Econometric models

We now turn to the description of our econometric models. For
each of the outcome variables that we consider, we estimate a two-
way fixed effects regression of the outcome on both the biotech
incentive indicator variable and the R&D user cost variable, con-
trolling for state and year fixed effects:

yit ¼ fi þ ft þ bBit þ crit þ eit ð1Þ

where yit is the outcome of interest; fi and ft are state and year fixed
effects, respectively; Bit is the biotech incentive indicator, and rit is
the R&D user cost.15 If incentives are successful at increasing biotech
activity in a state, we expect b > 0 and c < 0, since a more generous
R&D tax credit would result in a lower user cost of R&D investment.
We do not control for total employment in the state, because
employment in the local non-traded sector is likely to be endoge-
nous, and vary as a function of employment in biotech (see
Section 4.3).

Identification of the effect of biotech incentives and the R&D
user cost comes from variation over time within a state. We as-
sume that while states may differ in the political influence of the
local biotech industry, the exact timing of these changes is mostly
driven by exogenous factors. For example, California adopted spe-
cific incentives for biotech companies when state-wide Proposition
71 in support of state funding for stem-cell research was approved
by voters. While California has had a significant biotech presence
since the inception of the industry in the mid-1970s, the timing
of the stem-cell proposition was largely a reflection of idiosyncratic
political factors, especially the imposition of constraints on the use
of federal funds for stem-cell research by the G.W. Bush
administration.

As far as the R&D user cost is considered, we expect its variation
to be largely exogenous as well. First, because these credits apply
to all R&D-performing industries, idiosyncratic movements in the
relative size and relative political influence of the biotech sector
should have a limited, if any, effect on R&D credit adoption. Second,
as with biotech incentives, the exact timing of R&D credit adoption
likely owes more to idiosyncratic political and budget conditions
than to recent R&D activity.

However, we cannot rule out that the adoption of incentives re-
flects unobserved differences across states in the prospects of the
local biotech industry. While permanent differences across states
are fully accounted for, time-varying differences are not. The sign
of the potential bias is not known a priori. If the probability of
adoption is correlated with unobserved factors that favor the bio-
tech industry – as in the case where states with strengthening
innovation clusters tend to adopt incentives for biotech and R&D
– then our model will over-estimate the true effect of the subsidies.
On the other hand, if the probability of adoption is correlated with
14 Moretti (2011) finds limited effect of shocks to one part of the traded sector on
other parts of the traded sector.

15 We jointly estimate the separate effects of the biotech incentives and the R&D
user cost rather than estimating their effects in separate regressions to avoid any
possible bias due to correlation between biotech incentives and R&D credits.
Estimating the effects in separate regressions yields similar results.
factors that impede growth of the biotech industry – as in the case
where states that historically lack innovation clusters tend to
adopt incentives for biotech or R&D – then our models under-esti-
mate the true effect of the subsidies.

To get a sense of the magnitude of this problem, we investigate
what happens to industries other than biotech. First, we perform a
series of placebo tests, where we test for whether the incentives
are correlated with employment changes in high tech industries
different from biotech. If states that have a growing local innova-
tion sector are more likely to adopt incentives, we might find that
biotech incentives are positively correlated with employment in
the Computer industry, or the Chemical Industry. We also test
for whether the incentives are correlated with changes in employ-
ment in non-high tech industries, like Food Manufacturing.

In addition, to formalize this intuition, for employment out-
comes we estimate triple difference models that estimate the dif-
ferential effect of incentives on the biotech industry above and
beyond any effect on non-biotech industries. Specifically, we esti-
mate the following model:

yjit ¼ fji þ fjt þ bBIOðBit � BIOjitÞ þ cBIOðrit � BIOjitÞ þ b0ðBitÞ
þ c0ðritÞ þ ejit ð2Þ

where the subscript j indicates whether an observation is for the
biotech sector or the non-biotech sector; fji and fjt are state � sector
and year � sector fixed effects, respectively; BIOjit is an indicator
variable that takes the value 1 if the observation is for the biotech
sector and 0 if the observation is for the non-biotech sector. Unfor-
tunately, data limitations prevent us from extending the triple dif-
ference models to the analysis of star scientists and patents.16Eqs.
(1) and (2) measure short run effects. To allow for the biotech incen-
tives or the R&D user cost to have delayed effects, we estimate a var-
iant of Eq. (1) with current plus two lags of each variable:

yit ¼ fi þ ft þ
X2

s¼0

bsBit�s þ
X2

s¼0

csrit�s þ eit ð3Þ

In this case we report the cumulative effects over the three years
(i.e., the sum of the coefficients on the current and two lags of the
biotech incentive or R&D user cost).17 This extension is of more
use for identifying the treatment effect of changes in the R&D user
cost than it is for identifying that of biotech incentives. This is be-
cause the R&D user cost varies from year to year whereas the biotech
incentive dummy variable is a step function because a change in this
variable from 0 to 1 tends to be permanent. Including lags in the R&D
user cost allows for the possibility that the effect of a temporary
change in the R&D user cost may not occur for one or two years after
the change. Delayed effects from the enactment of a biotech incen-
tive will be picked up even without including lags because the value
of the incentive dummy will remain 1 for years beyond the enact-
ment. Nonetheless, it is useful to include lags of this dummy when
including lags of the R&D user cost to control for any contemporane-
ous correlation between adoption of the two types of subsidies.
Moreover, including lags of this dummy tests for whether the effect
gets larger over time by seeing whether the post-adoption outcome
is even larger in periods more than one (or two) years beyond the
adoption year (compared with the post-adoption outcome including
the adoption year).
Individual level patent data with the relevant geocoding information are available
from the NBER Patent Database only until 2006. Given that several of the biotech
incentives in our data set were adopted shortly before and after 2006, using these
data to construct non-biotech measures of star scientists and patents provides too
few years to estimate the effect of incentive adoption with any reasonable degree of
precision.

17 We also experimented with additional lags, which resulted in similar cumulative
effects though with larger standard errors.
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Residuals in our models are likely to be serially correlated. Two
factors make serial correlation an especially important concern in
our setting. First, the unexplained component of our outcome vari-
ables is likely to be positively serially correlated. This happens be-
cause unobserved state-specific shocks to number of biotech stars
and employment in biotech are likely to be fairly persistent over
time, although not completely permanent. After all, the actual
number of biotech stars or employment in biotech in a state does
not vary much from year to year, but it is not fixed either. Second,
the key independent variables are also highly serially correlated
within each state over time. The indicator for biotech subsidies
takes the value of 0 in all the years before adoption and the value
of 1 in all the years after adoption. The measure of R&D user cost is
also highly serially correlated. These two factors reinforce each
other to create potentially large mismeasurement in the OLS stan-
dard errors (Bertrand et al., 2004). Throughout the paper, all mod-
els estimate Newey–West standard errors allowing for AR(2) serial
correlation.18

To estimate the effect of a state’s incentives on other states’ out-
comes we estimate models with spatial lags:
yit ¼ fi þ ft þ bBit þ crit þ boutBout
it þ coutrout

it þ eit; ð4Þ
where Xout
it is a spatial lag of a given variable X = {B, r}, defined as
Xout
it ¼

XJ

j–i

xi;jXj;t;
XJ

j–i

xi;j ¼ 1
A spatial lag is simply a weighted average of Xit from other states.
The weights, xit, are the elements of a spatial weighting matrix
meant to capture the relevant ‘‘relatedness’’ between pairs of states.
We present results below based on two complementary definition
of distance: (i) geographical proximity (inverse distance) between
states’ population centroids (provided by the Census Bureau); and
(ii) economic distance as measured by population flows (from Cen-
sus Bureau data on interstate migration).

Finally, we estimate models that test whether the effect of
adoption of incentives depends on the order of adoption. To do this,
we generate a dummy variable, B4it, that is one for the first four
adopters of biotech incentives and zero otherwise. (We set out to
use the first three adopters, but Colorado and Missouri – both
1999 adopters – tied for third place). Similarly, we generate a dum-
my, R4it, that is one for the first four R&D credit adopters and zero
otherwise. We then expand Eq. (1) above to include these dummies
and their interactions with their corresponding incentive variable:
yit ¼ fi þ ft þ bBit þ crit þ @B4it þ kR4it þ rB4it � Bit þ gR4it � rit þ eit

ð5Þ
20 Specifically, we calculate this elasticity as �ð@y=@rÞ � ð�r=�yÞ=10 where the upper
bars denote the pre-credit-adoption sample means and (oy/or) is the coefficient on the
In the presence of strong agglomeration economies and large fixed
costs, states that adopt earlier should enjoy a stronger effect (r > 0
and/or g < 0) than states that adopt later. On the other hand, in the
absence of significant agglomeration economies and large fixed
costs, the initially positive effect of the subsidy may decline when
other states also adopt and the relative attractiveness of the state
declines.
18 See Bertrand et al. (2004) for alternative solutions to this problem.
19 As noted earlier, we use the term ‘‘scientists’’ loosely here as about 30% of the

patenters in our biotech patent database are not individuals but rather universities,
corporations, and other institutions. Below, we look at the effect of incentives on stars
defined separately for individual, universities, and corporations and other
institutions.
4. Empirical results

4.1. Number of star scientists

We begin by estimating the effect of incentives on the most
skilled part of biotech labor force, the star scientists.19 Panel A in
Table 2 reports estimates of Eq. (1) via OLS where the dependent var-
iable is either the number of stars (columns 1–3) or new stars (col-
umn 4–6). The two pre-adoption means provided at the bottom of
the panel are the baseline number of star scientists in adopting
states in the year before adoption of the biotech incentive and in
the year before adoption of the adoption of R&D subsidies, respec-
tively. For biotech incentives, the percent effect is defined as the ra-
tio of the coefficient over the pre-adoption mean, holding constant
R&D tax credits. For R&D user cost, the percent effect is the effect
of an increase in R&D tax credits large enough to lower the R&D user
cost by 10% evaluated at the pre-credit-adoption sample mean, hold-
ing constant biotech incentives.20

Entries in column 1 indicate that the adoption of biotech incen-
tives is associated with an average increase in the number of star
scientist equal to 14.7. Compared with the baseline number of
100.7 star scientists on average in adopting states in the year be-
fore adoption, this effect represents a 14.6% increase. As expected,
the coefficient on the R&D user cost is negative: a higher user cost
implies less R&D investment and therefore fewer star scientists.
The point estimate indicates that an increase in R&D tax credits
large enough to lower the R&D user cost by 0.1 (about 8% of its
pre-credit adoption sample mean) would raise the number of star
scientists in the state by 7.8 scientists. Evaluated at the pre-credit
adoption sample means for both the dependent variable and the
R&D user cost, the implied percentage increase in stars scientists
from a 10% reduction in the R&D user cost is 22.3%. We regard both
of these effects as economically important.21

The variable ‘‘new stars’’ captures positive changes over time in
the number of star scientists in a state. While ‘‘stars’’ is a stock,
‘‘new stars’’ is a flow. When the number of new stars is the depen-
dent variable, the coefficients on the incentives in the two-way
fixed effects models such as Eq. (1) represent the effects of the
incentives on the rate of change in star scientists. Estimates in col-
umns 3 and 4 indicate that biotech incentives and reductions in the
R&D user cost are associated with an acceleration in the growth of
stars scientists. Quantitatively, the effect appears strong. Entries in
column 3, for example, indicate that the adoption of biotech incen-
tives is associated with an average increase in the number of new
stars of 1.9, a 7.2% increase relative to the pre-adoption mean,
though the point estimate is not statistically significant. An in-
crease in R&D tax credits that lowers the R&D user cost by 10%
would raise the number of new star scientists in the state by
17.3% relative to the baseline.

In columns 2 and 4 we report the medium run effect, as mea-
sured by the cumulative effect for the first three years. This med-
ium run effect is statistically indistinguishable from the
immediate effect.22 The percent effects of biotech incentives for
stars and new stars are, respectively, 11.3% and 5.5%. The percent ef-
fects of a 10% lower R&D user cost for stars and new stars are,
respectively, 24.1% and 15.3%.
R&D user cost (r).
21 We note that comparing the magnitude of the effect of biotech subsidies to the

effect of R&D tax credits is not feasible, due to the lack of data on the generosity of
biotech subsidies: We do not know whether biotech subsidies are cheap or expensive
for states, compared to R&D tax credits.

22 Recall that because the R&D user cost varies from year to year whereas the
biotech incentive dummy variable is a step function, this model is more useful for
R&D user cost than it is for biotech incentives.



Table 2
The effect of incentives on the number of star scientists.

1 2 3 4 5 6

Panel A. Stars and new stars Stars New Stars

A1 Contemporaneous effects
Biotech incentive 14.680� 632.270� 1.905 104.468

(8.527) (356.313) (1.987) (81.742)
R&D user cost �77.786��� �62.186�� �18.402�� �15.812��

(28.908) (25.595) (7.864) (7.403)
Biotech incentive � R&D user cost �531.288� �88.230

(301.021) (68.852)

A2 Cumulative effects (0–2 years)
Biotech incentive 11.421 1.451

(8.072) (1.926)
R&D user cost �84.113�� �16.290�

(33.011) (8.583)
Pre-biotech-incentive-adoption mean 100.667 26.556
Pre-credit-adoption mean 40.158 12.248
Percent effect of biotech incentives 14.582 11.345 7.175 5.466
Percent effect of R&D user cost 22.303 24.118 17.300 15.314

Panel B. New stars New stars, extensive margin New stars, intensive margin

B1 Contemporaneous effects
Biotech incentive 3.037� 141.826�� �1.132 �37.358

(1.758) (70.035) (.847) (36.058)
R&D user cost �14.027�� �10.522� �4.375� �5.290��

(6.474) (6.053) (2.531) (2.475)
Biotech incentive � R&D user cost �119.394�� 31.164

(59.183) (30.418)

B2 Cumulative Effects (0–2 years)
Biotech incentive 2.674 �1.223

(1.843) (.974)
R&D user cost �13.455� �2.835

(7.097) (3.259)
Pre-biotech-incentive-adoption mean 20.778 5.778
Pre-credit-adoption mean 8.959 3.289
Percent effect of biotech incentives 14.617 12.870 �19.585 �21.161
Percent effect of R&D user cost 18.029 17.294 15.315 9.924
Sample period 1990–2010 1992–2011 1990–2010 1990–2010 1992–2010 1990–2010
Number of observations 1071 969 1071 1071 969 1071

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. Pre-adoption means are the baseline numbers of star scientist in adopting states in the year before adoption of incentive or credit.
For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect
of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative to its average among adopting states), holding constant biotech incentives. Panel A
includes all patenters. In Panel B, we define the extensive margin of ‘‘new stars’’ in a given state in year t as the flow of star patenters who were in a different state in the year
t � 1, based on year’s t � 1 patent(s). Patenters with patents in multiple states in year t � 1 are assigned to a single state based on their modal state. We define the intensive
margin of ‘‘new stars’’ in a given state in year t as the flow of star patenters who were in the same state in year t � 1 based on year’s t � 1 patent(s) and did not qualify as
‘‘stars’’ because their 10-year trailing biotech patent count measured in t � 1 was not in the top 5% of all biotech patenters. Sample includes data for 51 states. All models
include state fixed effects and year fixed effects.

24 We have performed numerous additional robustness checks that are available on
request: (1) Our baseline models are based only on states for which we have non-
missing observation for at least 20 consecutive years. We do this because we need to
have a sufficiently long time dimension in our panel to be able to identify (with
reasonable precision) state fixed effects as well as the medium-run (over three years)
effects of the incentives. However, shortening the length of the panel gives
qualitatively similar results, but larger standard errors. (2) In addition, we have re-
estimated all of models with the same sample of 28 states that have non-missing data
for all of the outcomes to increase comparability. The results are quite similar, though
as one would expect the standard errors are larger. (3) We have also re-estimated our
main models replacing the R&D user cost variable with the R&D credit rate. The
results are shown in Appendix Table A3. We find that the R&D credit rate generally
has positive and significant effects on economic outcomes in the Biotech sector,
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We are also interested in uncovering possible interaction effects
of biotech subsidies and R&D tax credits. Columns 3 and 6 show
the results of including an interaction between the biotech incen-
tive dummy and the R&D user cost. Here, we aim to assess whether
biotech and R&D incentives have extra benefits if a state employs
both of them, over and above their direct effect. We find that the
interaction term is statistically different from zero, indicating that
the adoption of both biotech incentives and more generous R&D
tax credits results in an additional positive effect on stars above
and beyond their individual effects. (Recall that a negative coeffi-
cient on the interaction implies higher employment from having
both a biotech incentive and a lower R&D user cost since the ex-
pected sign on the R&D user cost is negative.)23

Difference-in-difference estimates in Table 2 are biased if states
adopting incentives experience different trends in the number of
biotech stars. In Appendix Table A2 we investigate the robustness
of our estimates to the inclusion of four region-specific time trends
23 In these models we do not report the percent effect because it is unclear how to
define the pre-adoption means.
(columns 1 and 2) and 9 division-specific time trends (columns 3
and 4). The models here are similar to the baseline models in panel
A of Table 2. Estimates that condition on region or division trends
are qualitatively consistent with the corresponding estimates in
Table 2.24
consistent with the negative and significant effects of the R&D user cost we found in
our baseline specifications (given that the user cost is inversely related to the credit
rate). (4) We also attempted to estimate models that include state specific trends, but
standard errors were so large to make these estimates uninformative.



25 Note that the definition of the last industry group is not ideal, because it is rather
expansive: not only it includes all life science R&D, but also other types of R&D
outside the life science sector. A narrower definition is not feasible. While R&D
biotech is identified in the County Business Patterns in recent years, it is not identified
before 1998.

E. Moretti, D.J. Wilson / Journal of Urban Economics 79 (2014) 20–38 29
4.1.1. Intensive vs. extensive margin
Overall, Panel A indicates that adoption of more generous

incentives by a state results in a significant increase in the number
of biotech star scientists in the state. The number of star scientists
in a state can change (a) because star scientists relocate to the
adopting state or (b) because incumbent scientists already present
in the state increase their patenting prolificacy and move into the
top tier of patenters. Separating these two sources of variation is
useful because it provides some information on the possible mech-
anism(s) underlying the incentives’ effects.

In panel B of Table 2 we address this question by separately
analyzing these extensive and intensive margins. We define the
extensive margin of ‘‘new stars’’ in a given state in year t as the flow
of star patenters who were in a different state in the year t � 1,
based on year t � 1 patent(s). (Patenters with patents in multiple
states in a given year are assigned to the state where they have
the most patents.). We define the intensive margin of ‘‘new stars’’
in a given state in year t as the flow of star patenters who were
in the same state in year t � 1 based on year t � 1 patent(s) and
did not qualify as ‘‘stars’’ because their 10-year trailing biotech pat-
ent count (measured in t � 1) was not in the top 5% of all biotech
patenters. By construction, the sum of the intensive and extensive
margins equals the variable ‘‘new star’’ used in Panel A.

Estimates indicate that biotech incentives are quite effective on
the extensive margin, but have no discernible effect on the inten-
sive margin, at least within 3 years from adoption. In fact, the esti-
mated effect of biotech incentives on the extensive margin more
than accounts for the total effect on new stars, with the effect on
the intensive margin being negative but statistically insignificant.
(The coefficient on total new stars is of course equal to the sum
of the coefficients on each of the two margins.)

We find that R&D incentives appear to stimulate both margins.
The point estimate on the extensive margin is much larger, but
percentage effect relative to the baseline is only slightly larger
for the extensive margin. The percent effects of a 10% reduction
in the R&D user cost on the extensive and intensive margin are,
respectively, 18.0% and 15.3%. Overall, it seems that it is easier to
incentivize existing star scientists to move to a state than it is to
turn less prolific inventors already in your state into stars. We cau-
tion however, that patenting takes time. It is possible that three
years are a time horizon not long enough to allow for a complete
estimation of the intensive margin effect.

4.1.2. Private sector stars vs. academic stars
Biotech incentives and R&D tax credits typically target private

sector research, not academic institutions, which are almost uni-
versally nontaxable organizations. As argued above, the incentives
should have a smaller, possibly zero, direct effect on academic
researchers than on private sector researchers.

In Table 3, we separately identify the effect of subsidies on stars,
depending on whether they are individual patenters, patenters
working for academic institutions, or patenters working for corpo-
rations and other non-academic institutions. For both biotech
incentives and R&D tax credits, we uncover a larger percent effect
on individual star patenters and corporate and other non-academic
star patenters than on academic stars. In particular, the percentage
effects of biotech incentives are 16.5% for individual stars, 7.2% for
corporate and other non-academic stars, and 0.1% for academic
stars. For the R&D user cost, we find an effect for all three catego-
ries. The point estimates are larger for individual stars and corpo-
rate and non-academic stars than they are for university patenters,
yet the estimate percentage effects are largest for university paten-
ters. However, it must be noted that the percentage effects for uni-
versity patenters are particularly difficult to measure given that
the baseline (pre-credit-adoption) level of university new stars is
very close to zero.
Overall, the results indicate that the incentives have a larger ef-
fect on individuals and corporations than they are on universities.
This is consistent with the hypothesis that academic institutions
may not benefit from tax incentives as much as private sector
researchers.
4.2. Overall industry employment

The findings on star scientists are important not just in itself,
but especially because of the role that stars play in the birth and
growth of the biotech industry. But of course, the vast majority
of workers in the biotech industry are not star scientists. Table 4
assess the effect of subsidies on total industry employment (mea-
sured in thousands of jobs) for the three industries that are closest
to biotech: the Pharmaceutical and Medicine Manufacturing sector
(columns 1, 2 and 3); in the Pharmaceutical Preparation Manufac-
turing sector (columns 4, 5, and 6), which is a subset of Pharmaceu-
tical and Medicine Manufacturing; and in the Scientific R&D sector
(columns 7, 8, and 9).25

Estimates indicate that adoption of biotech incentives is associ-
ated with a significant increase in the number of jobs in all three
industries. The estimated employment effects are economically
sizable. For example, the entry in column 1 suggests that the adop-
tion of biotech incentives by a state is associated with 1324 addi-
tional Pharmaceutical and Medicine Manufacturing jobs in the
state. Compared with the average baseline industry employment
level in adopting states in the year before adoption (8043), this
amounts to a 16.5% increase in employment. The medium run ef-
fect in column 2 is slightly smaller, but not statistically different.
The percentage effect is similar for employment in the R&D indus-
try (columns 7 and 8). Not surprisingly, the percentage effects are
largest for the Pharmaceutical Preparation Manufacturing sector –
a subset of Pharmaceutical and Medicine Manufacturing and argu-
ably a closer approximation of biotech employment – at about 30%
(columns 4 and 5).

More generous R&D tax credits are also associated with more
employment in the three industries. An increase in R&D tax credits
large enough to lower the R&D user cost by 10% would raise indus-
try employment by between 6% and 18%. As with biotech incen-
tives, the percentage effects of a 10% reduction in the R&D user
cost are largest for the Pharmaceutical Preparation Manufacturing
sector at 15.6%. Surprisingly, the percentage employment effect of
a 10% reduction in the R&D user cost is small and insignificant in
the R&D industry. However, the effect becomes significant if one
allows for a delayed effect by including two lags of the R&D user
cost. In this case, the cumulative effect of a 10% reduction in the
user cost is 10.3%.

Columns 3, 6, and 9 investigate the possible interactions of bio-
tech subsidies and R&D tax credits. Point estimates and percent ef-
fects suggest that having both a biotech incentive and a low R&D
user cost leads to higher employment in these sectors. This is con-
sistent with the presence of an interaction effect uncovered above
for star scientists.

The estimated effects of the subsidies for total employment in
Table 4 are generally similar to the estimated effects for stars in Ta-
ble 2 in percent terms. This implies that the provision of incentives
does not alter the ratio of stars in the workforce. In retrospect, this
is not too surprising. The share of stars is largely determined by the
production function, and there is no reason to expect that the pro-
vision of subsidies alter the technology used by biotech companies.



Table 3
The effect of incentives on the number of star scientists, by type of patenter.

Stars New stars

(1) (2) (3) (4) (5) (6)

Panel A. Individual
A1 Contemporaneous effects
Biotech incentive 13.171� 565.095� 2.249 119.119

(7.325) (305.030) (1.888) (77.656)
R&D user cost �61.609�� �47.669�� �15.982�� �13.030�

(23.957) (20.883) (7.345) (6.825)
Biotech incentive � R&D user cost �474.798� �100.539

(257.737) (65.490)

A2 Cumulative effects (0–2 years)
Biotech incentive 10.806 1.830

(6.974) (1.826)
R&D user cost �66.265�� �14.642�

(27.325) (8.159)
Pre-biotech-incentive-adoption mean 79.778 24.556
Pre-credit-adoption mean 31.930 11.506
Percent effect of biotech incentives 16.509 13.545 9.161 7.454
Percent effect of R&D user cost 22.217 23.896 15.994 14.653

Panel B. Corporate
B1 Contemporaneous effects
Biotech incentive 1.263 62.425 �0.434 �14.668

(1.309) (56.429) (.293) (11.781)
R&D user cost �14.800��� �13.255��� �2.137�� �2.497���

(4.770) (4.422) (.975) (.968)
Biotech incentive � R&D user Cost �52.615 12.245

(47.642) (9.957)

B2 Cumulative effects (0–2 years)
Biotech incentive 0.431 �0.441

(1.238) (.322)
R&D user cost �16.334��� �1.500

(5.524) (1.030)
Pre-biotech-incentive-adoption mean 17.667 2.000
Pre-credit-adoption mean 7.316 1.064
Percent effect of biotech incentives 7.150 2.438 353.347 �21.676 �22.068 �733.379
Percent effect of R&D user cost 23.293 25.709 20.862 23.131 16.237 27.023

Panel C. University
C1 Contemporaneous effects
Biotech incentive 0.004 0.644 �0.029 �1.750

(.191) (6.226) (.057) (1.746)
R&D user cost �2.027� �2.011� �0.624� �0.667�

(1.221) (1.213) (.368) (.368)
Biotech incentive � R&D user cost �0.550 1.481

(5.299) (1.494)

C2 Cumulative effects (0–2 years)
Biotech incentive �0.083 �0.054

(.200) (.063)
R&D user cost �2.277� �0.819��

(1.340) (.412)
Pre-biotech-incentive-adoption mean 3.333 0.222
Pre-credit-adoption mean 2.056 0.120
Percent effect of biotech incentives 0.119 �2.502 �13.121 �24.386
Percent effect of R&D user cost 11.352 12.747 59.720 78.404
Sample period 1990–2010 1992–2010 1990–2010 1990–2010 1992–2010 1990–2010
Number of observations 1071 969 1071 1071 969 1071

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. Pre-adoption means are the baseline numbers of star scientist in adopting states in the year before adoption of incentive or credit.
For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect
of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative to its average among adopting states), holding constant biotech incentives. Panel A
includes individual patenters. Panel includes corporae patenters. Panel C includes aacdemic patenters. Sample includes data for 51 states. All models include state fixed
effects and year fixed effects.
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The exception seems to be the Pharmaceutical Preparation Manu-
facturing sector where the percent effect is significantly larger for
overall employment than star scientists.

Our estimates of the effect of R&D tax credits are consistent
with some of the key estimates in the literature. Consider for
example an increase in R&D tax credits resulting in a 10% reduction
in R&D user costs. Assuming that R&D costs are one-quarter of
overall costs in biotech firms, a 10% reduction in R&D user costs
cause a 2.5% reduction in overall costs. Our estimates indicate that
such a reduction would result in an increase in employment of 2–
4%. This range is consistent with estimates by Bartik and Erickcek
(2010). In their analysis of Michigan’s MEGA program, they find
an elasticity of �0.2 of state business activity with respect to over-
all state and local business taxes, corresponding roughly to an



Table 4
The effect of incentives on employment in biotech related industries.

Pharmaceutical and Medicine
Manufacturing (3254)

Pharmaceutical Preparation
Manufacturing (325412)

Research & Development in the Physical,
Engineering, and Life Sciences (54171)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Contemporaneous effects
Biotech incentive 1.324�� 64.682�� 1.796�� 47.858� 3.951��� 157.398���

(.658) (29.513) (.740) (27.334) (1.482) (59.433)
R&D user cost �8.355�� �6.115� �8.793�� �6.327 �5.844 �1.801

(3.476) (3.167) (4.402) (3.943) (4.150) (3.579)
Biotech incentive � R&D user cost �54.761�� �39.848� �132.002���

(25.317) (23.416) (50.520)

Cumulative effects (0–2 years)
biotech incentive 1.190� 1.741�� 4.037��

(.700) (.784) (1.980)
R&D user cost �10.030�� �9.819� �9.517�

(3.953) (5.329) (5.593)
Pre-biotech-incentive-adoption mean 8.043 5.792 21.701
Pre-credit-adoption mean 7.698 6.495 10.611
Percent effect of biotech incentives 16.456 14.791 31.016 30.062 18.206 18.601
Percent effect of R&D user cost 12.496 15.003 15.589 17.409 6.341 10.327
Sample period 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009
Number of states 38 38 38 28 28 28 47 47 47
Number of observations 798 722 798 588 532 588 987 893 987

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Employment is measured in thousands. Regressions estimated via OLS. Standard
errors based on Newey–West VC estimator with within-state AR(2) errors. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-
adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative to
its average among adopting states), holding constant biotech incentives. All models include state fixed effects and year fixed effects.

26 We investigate this possibility below.
27 Data limitations preclude triple-difference estimates of the models for biotech

stars in Tables 2 and 3.
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elasticity of �4 with respect to a change in overall business costs,
as state and local business taxes tend to be somewhere around 5%
of overall business value-added.

Another study that addresses a similar question to our analysis
here is Bartik and Hollenbeck (2012). They study the effects of an
R&D tax credit in the state of Washington on job creation. They find
that this tax credit created jobs: employment grew by between
0.5% and 0.6% at the firms that claimed credits because of the tax
credit. Once scaled by the size of the R&D credit, this estimate is
not inconsistent with our estimates, although somewhat smaller.

4.2.1. Placebos and triple-difference estimates
Identification of coefficients in Table 4 comes from within-state

changes over time in incentives. State fixed effects fully account for
any permanent difference between states that adopt incentives
and those that do not. But estimates in these difference-in-differ-
ence models may be biased if the timing of incentive adoption is
correlated with unobserved shocks to a state local economy. For
example, it is possible in principle that states tend to adopt biotech
incentives when the local biotech sector is stronger than in the rest
of the nation. This would be the case if economic strength of the
local biotech industry translates into lobbying clout. If adoption
is positively correlated with industry strength, our estimate of
the adoption effect would be upward biased. The reverse could also
be true, if states tend to adopt biotech incentives in a countercycli-
cal/stimulate way, i.e. when the local biotech sector is weak. In this
case our estimate of the adoption effect would be downward
biased.

An examination of the media reporting around the time of
adoption in four states did not reveal any particular pattern in
the motivations used by legislators for adoption. To obtain some
more systematic evidence on the validity of our identification
assumption, we provide three additional pieces of information.
First, as mentioned above, we include results where we condition
on four region-specific trends and nine division-specific trends.
Our point estimates appear robust to the inclusion of these con-
trols (see Appendix Table A2).

Second, we test for whether the incentives are correlated with
changes in employment in tradable industries other than biotech.
We look only at tradable industries because increased activity in
the biotech industry resulting from subsidies may well cause in-
creased demand for local non-tradable services such as construc-
tion, retail, and real estate.26 Thus, for the purpose of a placebo
test, we focus on other tradable industries which should not materi-
ally be affected by biotech-specific incentives, though they could be
affected by more general incentives such as R&D credits. We con-
sider overall Manufacturing excluding Chemicals; Machinery Manu-
facturing; Computer and Electronic Product Manufacturing; and
Food Manufacturing. Other non-chemical manufacturing industries
did not have sufficient state-level data coverage.

The results are shown in Table 5. The coefficient on the biotech
incentive is either insignificantly different from zero or negative in
all cases, suggesting no stimulative effect from the incentive. Per-
haps surprisingly, the R&D user cost is also found to have no effect
on employment in these industries. Possible reasons for this are
that R&D scientists are a smaller share of total employment in
these industries compared with the biotech industry and/or that
labor supply of R&D workers in these industries is more inelastic.

We explore more systematically the idea of using other tradable
industries as a control group by providing triple-difference esti-
mates. Specifically, we report estimates of Eq. (2), using our base-
line specification where outcomes now vary by state, year, and
sector (where sector is ‘‘biotech’’ or ‘‘non-biotech’’) and interacting
all right-hand-side variables, including year and state fixed effects,
by a biotech sector indicator. The triple-difference estimates of the
incentive is identified from the difference between the biotech sec-
tor and the non-biotech sector in the pre-adoption to post-adop-
tion change in the outcome for adopting states relative to the
change over the same period for non-adopting states. Unlike Ta-
ble 5, here we include all nonbiotech industries in the tradable sec-
tor in the analysis, in order to use all available information on
control industries.27 We do not include non-tradable industries be-
cause employment changes there are endogenous to biotech subsi-
dies due to employment multiplier effects (see Section 4.3 below).



Table 5
The effect of biotech incentives on employment in other industries in the traded sector.

Chemical Machinery manufacturing Computer and electronic products Food manufacturing

(1) (2) (3) (4) (5) (6) (7) (8)

Contemporaneous effects
Biotech incentive �22.240 �0.098 �12.825�� �2.158���

(18.917) (1.273) (5.386) (.748)
R&D user cost 56.965 �1.383 22.497 4.376

(83.436) (9.663) (15.182) (4.085)

Cumulative effects (0–2 years)
Biotech incentive �17.571 0.487 �12.836�� �2.410���

(22.833) (1.556) (6.291) (.659)
R&D user cost 31.212 �1.097 23.770 3.167

(101.754) (11.653) (18.456) (4.508)
Pre-biotech-incentive-adoption mean 368.308 23.735 63.676 42.436
Pre-credit-adoption mean 322.756 29.093 40.551 34.513
Percent effect of biotech incentives �6.038 �4.771 �0.415 2.053 �20.141 �20.158 �5.084 �5.679
Percent effect of R&D user cost �2.032 �1.113 0.547 0.434 �6.388 �6.749 �1.460 �1.057
Sample period 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009
Number of states 48 48 49 49 49 49 51 51
Number of observations 1008 912 1029 931 1029 931 1071 969

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. Employment is measured in thousands. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the
pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative
to its average among adopting states), holding constant biotech incentives. Sample includes data for 51 states. All models include state fixed effects and year fixed effects.

Table 6
Triple difference estimates.

Employment (3254) Employment (325412) Employment (54171)
(1) (2) (3)

Contemporaneous effects
Biotech incentive – biotech industry 1.290�� 1.801�� 3.862���

(.658) (.741) (1.470)
R&D user cost – biotech industry �1.165��� �8.996�� 4.447���

(.324) (4.406) (.837)
Pre-biotech-incentive-adoption mean 8.043 5.792 21.701
Pre-credit-adoption mean 7.698 6.495 10.611
Percent effect of biotech incentives 16.042 31.098 17.795
Percent effect of R&D user cost 1.742 15.950 �4.826
Sample period 1990–2009 1990–2009 1990–2009
Number of observations 1595 1176 1973

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. Pre-adoption means are the baseline numbers of star scientists in adopting states in the year before adoption of incentive or credit.
For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption mean, holding constant R&D tax credits. Sample includes data for 51
states. All models include indicators for state, year, biotech sector, as well as the the interaction of state and biotech, and year and biotech.
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The results are shown in Table 6. The focus in the triple-differ-
ence models is on the coefficients on biotech incentives. The coef-
ficients on R&D user cost are reported for completeness but are not
particularly informative on the validity of our identifying assump-
tion: unlike biotech-specific incentives, R&D tax credits affect both
the treatment and the control group. The triple-difference coeffi-
cient in the table measures whether R&D tax credits differentially
affect biotech relative to other traded industries.

We find estimates for the effects of biotech-specific incentives
that are similar to those from difference in difference models.
Notably, the percent effects of the biotech-specific incentives are
very close to those in Table 4. We find that reductions in the
R&D user cost increase employment in pharmaceutical manufac-
turing more so than in other tradable industries (as a whole), but
surprisingly we find the opposite for employment in the R&D
industry.

Overall, the evidence in Tables 5 and 6 is reassuring. While we
cannot rule out the possibility that that the adoption of incentives
reflects unobserved time-varying differences across states in the
prospects of the local biotech industry, this evidence lends some
credibility to our identification assumptions.
4.3. Employment in the local non-traded sector

We have found that biotech-specific incentives and tax credits
for R&D result in increases in biotech employment. A related ques-
tion is whether this direct effect on employment is limited to the
biotech sector or it extends to other parts of the labor force through
the type of multiplier effects discussed in Section 3.1 above.

Consistent with the notion of a strong local multiplier effect, Ta-
ble 7 indicates that the adoption of biotech incentives results in
significant employment gains in the construction industry
(37,000 additional jobs, 16% of pre-adoption baseline), retail indus-
try (31,000 additional jobs, 6.7% of the baseline) and real estate
industry (6000 additional jobs, 8.0% of the baseline). States adopt-
ing tax credits for R&D experience significant employment gains in
construction but not in retail or real estate. The percent effect for
construction is 7.6%.

These indirect effects are quantitatively very large, especially
the ones for biotech incentives. Taken at face value, these effects
imply significantly larger multiplier effects that the one found by
Moretti (2011) for high tech, human capital intensive industries.
We note that the magnitude of these effects could in principle



Table 7
The effect of incentives on employment in the non-traded sector.

Constr Retail Real estate

(1) (2) (3) (4) (5) (6)

Contemporaneous effects
Biotech incentive 36.819�� 31.349��� 5.814���

(14.623) (10.867) (2.034)
R&D user cost �87.570� �18.286 -5.021

(49.198) (40.324) (6.680)

Cumulative effects (0–2 years)
Biotech incentive 35.121�� 32.185��� 6.098���

(16.028) (11.447) (2.324)
R&D user cost -133.096�� -43.734 �10.560

(57.853) (46.676) (7.712)
Pre-biotech-incentive-adoption mean 229.83 470.79 73.12
Pre-credit-adoption mean 131.86 312.45 40.68
Percent effect of biotech incentives 16.02 15.28 6.66 6.84 7.95 8.34
Percent effect of R&D user cost 7.647 11.623 0.674 1.612 1.421 2.989
Sample period 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009 1990–2009
Number of states 50 50 51 51 51 51
Number of observations 1050 950 1071 969 1071 969

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. Employment is measured in thousands. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the
pre-adoption mean, holding constant R&D tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative
to its average among adopting states), holding constant biotech incentives. All models include state fixed effects and year fixed effects.

Table 8
The effect of incentives on salaries.

Pharmaceutical and Medicine
Manufacturing (3254)

Pharmaceutical Preparation
Manufacturing (325412)

Research & Development in the Physical,
Engineering, and Life Sciences (54171)

(1) (2) (3) (4) (5) (6)

Contemporaneous effects
Biotech incentive 0.001 0.000 0.005�

(.003) (.004) (.003)
R&D user cost �0.033�� �0.034� �0.006

(.016) (.020) (.020)

Cumulative effects (0–2 years)
Biotech incentive �0.001 �0.003 0.003

(.002) (.003) (.003)
R&D user cost �0.035�� �0.033 �0.008

(.018) (.027) (.025)
Percent effect of biotech incentives 0.077 �0.076 0.047 �0.265 0.513 0.341
percent effect of R&D user cost 0.374 0.401 0.392 0.377 0.069 0.089
Sample period 1990–2007 1990–2007 1990–2007 1990–2007 1990–2007 1990–2007
Number of states 43 43 37 37 40 40
Number of observations 618 555 438 395 670 590

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption mean, holding constant R&D
tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative to its average among adopting states),
holding constant biotech incentives. All models include state fixed effects and year fixed effects.
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reflect the possibility that other policies are enacted simultaneously
with the changes in biotech incentives or with changes in the gen-
erosity of R&D tax credits that might affect the non-traded sector. It
could also reflect the presence of unobserved shocks to the local
economy that are positively correlated with adoption.28

4.4. Salaries in the biotech industry

Our main focus is on employment, measured both by the
number of jobs and by the number of star scientists. In additional
models, we also look at salaries. Table 8 focuses on salaries. Fol-
lowing the standard in the literature estimating wage equations,
we measure the dependent variable in log values. The coefficients
on the biotech incentives thus represent elasticities; percentage
28 This would cast doubt on our identification strategy. However, we are not aware
of any specific examples of state-sponsored subsidies to the non-traded sector that
tend to be systematically associated with biotech incentives.
effects are simply the elasticities times 100. The coefficients on
the R&D user cost represent the percent effect of a one-unit
change in the R&D user cost. We compute the percent effects of
a 10% reduction in the R&D user cost, shown in the table, by mul-
tiplying the coefficient by 10% of the mean R&D user cost in the
year prior to credit adoption for adopting states. Consistent with
a model where labor supply of biotech workers at the state level
is fairly elastic, we find the effect of subsidies on salaries to be
limited. Biotech incentives are not associated with wage increases
in the Pharmaceutical and Medicine Manufacturing (columns 1
and 2) and in the Pharmaceutical Preparation Manufacturing sec-
tors. There is a positive although small effect of adoption for the
Scientific R&D sector: adoption is associated with 0.5% percent in-
crease in the sector’s salaries (column 5), but over a three year
period the effect disappears. Turning to R&D user costs, we find
that changes in the user cost get capitalized to some extent into
salaries in the pharmaceutical industries but not in the R&D
industry. However, the effect is quite small: a 10% reduction in



Table 10
The effect of incentives on patents.

Patents Patents (individual) Patents (corporate) Patents (university)

(1) (2) (3) (4) (5) (6) (7) (8)

Contemporaneous effects
Biotech incentive 36.469 29.276 5.607 1.463

(30.836) (21.616) (8.388) (1.254)
R&D user cost �275.933�� �192.160�� �67.667�� �15.152��

(114.246) (79.066) (30.795) (5.970)

Cumulative effects (0–2 years)
Biotech incentive 27.020 24.577 1.400 1.030

(29.990) (20.999) (8.503) (1.265)
R&D user cost �269.134�� �185.172�� �70.328�� 13.045��

(131.251) (90.765) (35.660) (6.589)
Pre-biotech-incentive-adoption mean 262.94 183.95 66.05 13.31
Pre-credit-adoption mean 114.11 79.53 31.67 6.42
Percent effect of biotech incentives 13.870 10.276 15.915 13.361 8.488 2.120 10.993 7.741
Percent effect of R&D user cost 27.844 27.158 27.821 26.809 24.603 25.570 27.181 23.402
Sample period 1990–2010 1992–2010 1990–2010 1992–2010 1990–2010 1992–2010 1990–2010 1992–2010
Number of observations 1071 969 1071 969 1071 969 1071 969

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption mean, holding constant R&D
tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative to its average among adopting states),
holding constant biotech incentives. All models include state fixed effects and year fixed effects.

Table 9
The effect of incentives on number of establishments.

Pharmaceutical and Medicine
Manufacturing (3254)

Pharmaceutical Preparation
Manufacturing (325412)

Research & Development in the Physical,
Engineering, and Life Sciences (54171)

(1) (2) (3) (4) (5) (6)

Contemporaneous effects
Biotech incentive 9.102��� 5.541�� 113.541��

(3.319) (2.425) (45.636)
R&D user cost �9.812 �8.827 �333.870���

(10.920) (8.961) (120.078)

Cumulative effects (0–2 years)
Biotech incentive 7.840�� 4.775� 105.524��

(3.144) (2.574) (47.431)
R&D user cost �9.663 �13.035 �405.360���

(11.918) (12.964) (142.180)
Pre-biotech-incentive-adoption mean 76.78 35.556 621.222
Pre-credit-adoption mean 47.08 23.260 281.929
Percent effect of biotech incentives 11.86 10.21 15.58 13.43 18.28 16.99
Percent effect of R&D user cost 2.400 2.363 4.370 6.453 13.636 16.556
Sample period 1990–2007 1990–2007 1990–2007 1990–2007 1990–2007 1990–2007
Number of states 51 50 50 49 51 51
Number of observations 977 880 955 863 1020 918

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. For biotech incentives, the percent effect is defined as the ratio of the coefficient over the pre-adoption mean, holding constant R&D
tax credits. For R&D user cost, is the effect of an increase in R&D tax credits large enough to lower the R&D user cost by 10% (relative to its average among adopting states),
holding constant biotech incentives. All models include state fixed effects and year fixed effects.
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the R&D user cost results in a 0.4% increase in the average salary
in Pharmaceutical and Medicine Manufacturing as well as in the
subsector of Pharmaceutical Preparation Manufacturing. In
Appendix Table A2 we include of four region-specific trends and
9 division specific trends. Our point estimates appear robust to
the inclusion of these controls.

The small wage effects in Table 8 stand in contrast with Gools-
bee’s (1998) findings of large wage effects following labor demand
increases due to policy changes. The difference is likely to be ex-
plained by the differences in the geographical scope of the analysis,
as discussed in Section 3.1 above. In our analysis policy variation
occurs at the state level – thus allowing for inter-state mobility
to induce significant shifts in local labor supply – while in Gools-
bee’s analysis the policy variation is national.

In addition, workers in the three industries under consideration
are unlikely to be all specialized. A significant fraction of workers
employed in biotech have skills that are not specific only to that
industry. Thus, there is likely to be significant within-state, cross-
sector reallocation, at least for workers in non-scientific occupa-
tions. For example, when demand for administrative staff increases
in biotech in response to an increase in state subsidies, some
administrative staff might leave other sectors to move to biotech.
Unfortunately, we do not have salary data for scientists. In theory
we would expect their salaries to be more sensitive to demand
shifts than the salary of the general population, as movements
across industries are less likely.
4.5. Biotech establishments and biotech patents

One important question is whether state subsidies for innova-
tion help the formation of start-ups. We do not have direct mea-
sures of start-up creation, but we report the effect on number of
establishments. Increases in the number of establishments may



Table 11
Spatial lag specifications.

Stars
(95th percentile)

New stars
(95th percentile)

Pharmaceutical
and Medicine
Manufacturing (3254)

Pharmaceutical
Preparation
Manufacturing (325412)

Research & Development
in the Physical, Engineering,
and Life Sciences (54171)

(1) (2) (3) (4) (5)

Panel A: Spatial weighting matrix based on interstate population flows
Contemporaneous effects
Biotech incentive 13.583 1.712 1.235� 1.769�� 3.990���

(8.326) (1.940) (.631) (.711) (1.439)
R&D user cost �76.110��� �17.774�� �7.538�� �7.959� �5.214

(28.760) (7.821) (3.606) (4.471) (4.059)

Spatial lag
Biotech incentive �19.147� �3.717 �1.027 �0.459 1.798

(10.079) (3.034) (.900) (.918) (2.346)
R&D user cost �244.358 �111.325� 18.356 30.271 �3.494

(215.649) (62.434) (19.819) (22.716) (33.226)
Pre-biotech-incentive-adoption mean 100.667 26.556 8.043 5.792 21.701
Pre-credit-adoption mean 40.158 12.248 7.698 6.495 10.611
Percent effect of biotech incentives 13.493 6.446 15.352 30.549 18.387
Percent effect of R&D user cost 21.823 16.709 11.275 14.111 5.657
Sample period 1990–2010 1990–2010 1990–2010 1990–2010 1990–2010
Number of states 50 50 37 28 46
Number of observations 1050 1050 777 588 966

Panel B: Spatial weighting matrix based on inverse-distance between each pair of states
Contemporaneous effects
Biotech incentive 14.264 1.721 1.245� 1.822�� 3.843

(8.948) (2.100) (.669) (.740) (1.511)
R&D user cost �76.448��� �18.017�� �7.959�� �8.945� �5.946

(28.542) (7.651) (3.529) (4.599) (4.068)

Spatial lag
Biotech incentive �12.415 �6.709 �2.006 0.996 �1.905

(20.250) (6.294) (1.527) (1.412) (4.544)
R&D user cost �252.065 �152.247�� �3.416 0.517 �57.970

(238.878) (66.725) (17.642) (25.051) (47.213)
Pre-biotech-incentive-adoption mean 100.667 26.556 8.043 5.792 21.701
Pre-credit-adoption mean 40.158 12.248 7.698 6.495 10.611
Percent effect of biotech incentives 14.169 6.482 15.483 31.462 17.707
Percent effect of R&D user cost 21.920 16.938 11.905 15.858 6.452
Sample period 1990–2010 1990–2010 1990–2010 1990–2010 1990–2010
Number of states 50 50 37 28 46
Number of observations 1050 1050 777 588 966

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. In panel A, the spatial weighting matrix is based on interstate population flows. In
panel B, the spatial weighting matrix based on inverse-distance between each pair of states.
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arise either because state incentives foster more start up creation,
or because established companies open new facilities in a state.

In Table 9 we report the effect on number of establishments. In-
creases in the number of establishments may arise either because
state incentives foster more start up creation, or because estab-
lished companies open new facilities in a state.

We find a significant effect of biotech incentives on the num-
ber of establishments in both Pharmaceutical Manufacturing and
the R&D industry. The percent effects are between 10% and 18%.
By contrast, we find no significant effect of declines in the user
cost of R&D on number of establishments in Pharmaceutical
Manufacturing but we find a significant increase in Scientific
R&D establishments. We find that a 10% reduction in the user
cost of R&D is associated with about a 14% increase in R&D
establishments, and the effect appears to grow slightly over
time.

The analysis so far has focused on the inputs used by biotech
firms. We now examine one measure of output: biotech patents.
Given that we find an increase in employment and in star scientists
– arguably important inputs in the production of innovation – one
might expect a significant increase in number of patents filed –
arguably a good proxy for output in the process of innovation.
The findings, shown in Table 10, are mixed. On the one hand, we
fail to find a statistically significant effect of biotech incentives
on biotech patents, though the point estimate implies a fairly large
percentage effect (about 14%). On the other hand, we find a
significant effect of R&D user costs, indicating that variation in
R&D user costs has a more immediate effect on patent filings.
The percentage effect of a 10% reduction in the R&D user cost is
found to be 27.8%. In Appendix Table A2 we include of four re-
gion-specific trends and 9 division specific trends. Our point esti-
mates appear robust to the inclusion of these controls.

We also look at biotech patent counts broken out by those pat-
ented by individuals versus universities versus corporations and
other non-academic institutions. The estimated percentage effects
are similar across the three categories. As with total patents, the
biotech incentives have no statistically significant effect while
reductions in the R&D user cost increase patents for each category
by roughly 25%.

4.6. Models with spatial lags

We now turn to the question of whether the provision of local
incentives is a zero sum game across jurisdictions, or whether it in-
creases aggregate biotech activity. Previous work on state tax
incentives (not specific to biotech) have tended to find negative,
or ‘‘beggar thy neighbor,’’ effects of own-state incentives on other
states and a zero-sum game nationally (Wilson, 2009; Chirinko and
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Wilson, 2008; Goolsbee and Maydew, 2000). We cannot directly
evaluate this question, but we provide some indirect evidence by
testing whether the provision of incentives results in a decline
(or increase) in star scientists and employment in nearby states
(see Eq. (4)).29

We measure proximity using either a geographical definition
or an economic one. In panel A of Table 11 we measure distance
using a spatial weighting matrix based on population flows be-
tween states. In particular, population flows between state i and
state j is defined as the average between the annual percent of
population moving from state i to state j, and the annual percent
of population moving from state j to state i, based on Census Bu-
reau data. For the biotech incentive, which is expected to have a
positive in-state effect on star scientists, a positive coefficient on
the spatial lag would imply a positive spillover of one state’s
incentives to star scientist employment in ‘‘nearby’’ states while
a negative coefficient implies a negative or ‘‘beggar thy neighbor’’
effect. For the R&D user cost, increases in which are expected to
lower the number of star scientists, a negative coefficient implies
a positive spillover while a positive coefficient implies a ‘‘beggar
thy neighbor’’ effect.

The table indicates that for the total stock of stars, there is a
significant negative effect of one state’s incentives on neighboring
states. The magnitude of the out-of-state effect is roughly similar
to that of the own state effect, suggesting a zero-sum game
nationally. However, we should note that the point estimates
on the spatial lags are imprecisely estimated. Hence, we are hes-
itant to make definitive statements about the net effect of the
incentives nationally. In contrast to this finding for the stock of
star scientists, we find no evidence of spatial spillovers for entry
of new stars or total employment in biotech industries. For the
R&D user cost, we find no evidence of statistically significant spa-
tial spillovers except for the flow of new star scientist for which
we find a positive spillover.30 That is, a reduction in the R&D user
cost in one state appears to increase the flow of new star scientists
to both that state and its neighbors. This positive spillover could re-
flect regional agglomeration forming as a result of one state reduc-
ing R&D costs.

The results are quite similar if we use a spatial weighting matrix
based on geographical proximity. Panel B shows estimates from
model that use a distance-based weighting matrix based on the in-
verse of the distance between each pair of states. It includes only
those states with non-missing data for the particular dependent
variable in that particular regression.31

The point estimates using a distance-based spatial lag are very
similar to estimates in panel B, although the standard errors are
higher. The two statistically significant cells in panel A are no
longer significant. Overall, the findings of panel A and B points
to some displacement, but are not precise enough to draw firm
conclusions.
29 Kline and Moretti (2013) provide a model-based approach to estimating the
aggregate effects of place based policies.

30 The lack of significant negative spillovers from R&D tax incentives on biotech
stars and employment contrasts with the negative spillovers of such incentives on
R&D spending found in Wilson (2009). It is possible that spillovers are more negative
outside of the biotech sector where positive agglomeration-related spillovers could be
more prevalent. Another possible explanation is that R&D spending is much more
geographically mobile than is employment. Part of the spending mobility may reflect
increases in salaries of R&D workers in tax-advantaged states. Part of it could also
reflect corporations relabeling R&D spending from one location to another in response
to differentials in R&D tax incentives.

31 One obvious alternative measure of distance would be an indicator for contiguity.
A contiguity-based spatial weighting matrix is appealing in theory, but it is unfeasible
in our setting. For employment, salaries, and establishments, there are states with
missing data. This makes the contiguity weighting matrix unmeasurable for many
states.
4.7. The effect of early adoption

Finally, we test whether the effect of adopting biotech incen-
tives is stronger for earlier adopters, as one would expect in the
presence of strong agglomeration forces. To do so, we add an
interaction between the biotech incentive dummy and an indica-
tor for whether the state is one of the first four adopters of bio-
tech incentives (see Eq. (5)).32 Similarly, we include an interaction
between the R&D user cost and an indicator for whether the state
is one of the first four adopters of an R&D tax credit. We focus on
the effects on stars, new stars, and employment in each of the
three biotech-related industries.

Our estimates in Appendix Table A4 point to a generally small
effect of biotech incentives for earlier adopters. For each of the
five outcomes, it appears that the effect for earlier adopters is
virtually zero (as the interaction effects roughly cancels out the
total effects), while the effect for later adopters is stronger. For
R&D tax credits, we find that early credit adopters experienced
larger pharmaceutical employment gains from the resulting
drops in the R&D user cost than did later adopters. However,
for star scientists and R&D employment, we find no significant
difference in the R&D user cost effect between early and later
adopters.33

Overall, there is little evidence that early adopters enjoy larger
benefits from adoption. We caution, however, that we cannot
draw strong conclusions from this test, as the magnitude of the
biotech incentives is unknown, and may have been set endoge-
nously by states. In the presence of agglomeration economies,
for example, late adopters face stronger incentives to overcome
the early adopters’ advantage, and may provide more generous
subsidies.

5. Conclusions

States spend billions of dollars to attract R&D activity to their
jurisdiction. We shed light on how effective these policies are at
attracting jobs in biotech. We find significant increases in the
number of star scientists, the number of biotech workers and
the number of establishments, but limited effects on salaries
and patents. While we think that the timing of the variation in
the incentive levels is largely driven by idiosyncratic political fac-
tors, we cannot rule out the possibility that it may be
endogenous.

We stress that the finding that subsidies to biotech R&D raise
biotech employment in a state does not tell us whether those sub-
sidies are economically justified. Knowledge of the magnitude, the
geographical scope and the direction of localized spillovers is a
prerequisite for an appropriate design of an efficient innovation
policy.
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Table A1
Description of state biotech incentives.

State Year Credit type

Maryland 2008–present Income Tax Credit for early-stage biotech companies
Massachusetts 2009–present ‘‘Life Sciences Tax Incentive Program’’: Investment tax credit, special sales tax exemptions, refundable research tax credit
New Jersey 1996–present ‘‘Business Employment Incentive Program’’ (BEIP). Broad-based grant for job creation, with a lower job-creation qualifying threshold

for biotech and ‘‘emerging high technology.’’ Also provides financial assistance for companies in these sectors
Arkansas 2003–present JCTC, Sales tax refunds, and R&D Tax credits with higher subsidies for ‘‘targetted businesses,’’ which consists of: (i) Advanced

materials and manufacturing systems; (ii) Agriculture, food and environmental sciences; (iii) Biotechnology, bioengineering and life
sciences; (iv) Information technology; (v) Transportation logistics; and (vi) Bio-based products’’

Colorado 1999–present Biotech Sales and Use Tax Refund
Washington 2004–present High Tech Business & Organization Credit for R&D Spending, Includes the ‘‘Biotechnology & Medical Device Manufacturing Sales &

Use Tax Deferral/Waiver’’
Maine 1997–present Sales tax exemption on machinery, equipment, instruments, and supplies for biotech research
Missouri 1999–2003 State & local sales or use tax exemption for life sciences companies (which is just slightly broader than the sales and use tax

exemptions available to most manufacturers)
Florida 2002–present Specialized incentives and tax credits, (more technically, the biomedical industry was re-classified as ‘‘high-impact’’, so that qualified

companies could be eligible for the state’s preexisting capital investment tax credits and the High Impact Performance Incentive (a
JCTC-type program)

North
Carolina

1984–present Has the North Carolina Biotechnology Center which make low interest loans to biotech start-ups

California 2004–present California Stem Cell Research and Cures Act, which provides biotech research grants

Table A2
Estimates conditional on region and division trends.

Region trends Division trends

Biotech
incentive

R&D user
cost

Biotech
incentive

R&D user
cost

Contemporaneous effects
Stars 13.174�� �73.117�� 9.043 �50.335�

(7.663) (30.817) (6.524) (29.934)
New stars 1.428 �4.673 1.025 �2.238

(.886) (3.498) (.753) (3.547)
Employment – Pharmaceutical and Medicine Manufacturing (3254) 1075.857� �9435.284�� 432.613 �8904.278���

(565.127) (3754.774) (455.727) (3352.449)
Employment – Pharmaceutical Preparation Manufacturing (325412) 1353.251�� �9473.389�� 739.146 �10285.490��

(645.549) (4637.265) (544.011) (4262.766)
Employment – Research & Development in the Physical, Engineering, and Life Sciences (54171) 3672.225��� �3510.039 3252.809��� �303.420

(1363.094) (4290.760) (1219.043) (4326.328)
Wages – Pharmaceutical and Medicine Manufacturing (3254) 0.001 �0.030� 0.001 �0.032��

(.003) (.016) (.003) (.016)
Wages – Pharmaceutical Preparation Manufacturing (325412) 0.002 �0.031� 0.001 �0.033�

(.004) (.019) (.004) (.020)
Wages – Research & Development in the Physical, Engineering, and Life Sciences (54171) 0.006�� �0.001 0.006�� �0.004

(.003) (.020) (.003) (.020)
Establishments – Pharmaceutical and Medicine Manufacturing (3254) 7.706��� �7.425 5.872��� 6.548

(2.825) (11.111) (2.220) (12.109)
Establishments – Pharmaceutical Preparation Manufacturing (325412) 4.385�� �10.182 3.011� �11.234

(2.122) (9.242) (1.624) (8.968)
Establishments – Research & Development in the Physical, Engineering, and Life Sciences (54171) 104.825�� �319.254��� 96.439��� �231.389�

(42.757) (123.663) (36.592) (119.521)
Patents 32.862 �256.727�� 20.083 �178.617

(28.534) (120.816) (24.622) (115.070)

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Regressions estimated via OLS. Standard errors based on Newey–West VC
estimator with within-state AR(2) errors. There are 4 Census regions and 9 Census divisions.

Table A3
R&D tax credit rate replacing R&D user cost.

Stars
(95th percentile)

New stars
(95th percentile)

Pharmaceutical
and medicine
manufacturing (3254)

Pharmaceutical
Preparation
Manufacturing (325412)

Research & Development
in the Physical, Engineering,
and Life Sciences (54171)

(1) (2) (3) (4) (5)

Contemporaneous effects
Biotech incentive 14.759� 1.662� 1.301�� 1.758�� 3.928���

(8.405) (.967) (.656) (.738) (1.479)
R&D user cost 65.072�� 4.450 5.993�� 6.025 3.572

(25.572) (2.927) (2.997) (3.842) (3.467)
Sample period 1990–2010 1990–2010 1990–2009 1990–2009 1990–2009
Number of states 51 51 38 28 47
Number of observations 1071 1071 798 588 987

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Employment in columns 3–5 is measured in thousands. Regressions estimated via
OLS. Standard errors based on Newey–West VC estimator with within-state AR(2) errors.
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Table A4
Effect of early adoption on star scientists and employment.

Stars
(95th percentile)

New stars
(95th percentile)

Pharmaceutical
and Medicine
Manufacturing (3254)

Pharmaceutical
Preparation
Manufacturing (325412)

Research & Development
in the Physical, Engineering,
and Life Sciences (54171)

(1) (2) (3) (4) (5)

Contemporaneous effects
Biotech incentive 23.987� 3.577 3.036��� 3.110��� 6.460���

(13.285) (3.080) (1.004) (1.019) (2.180)
R&D user cost �82.554��� �19.567�� �8.621�� �8.690�� �6.882

(29.979) (8.125) (3.450) (4.274) (4.245)

First4adopters � Incentive
Biotech incentive �24.761� �4.449 �3.927��� �3.484��� �6.660���

(14.040) (3.319) (1.049) (1.054) (2.262)
R&D tax credit 46.141 17.031 �10.295� �11.753 3.899

(40.038) (12.525) (5.360) (6.180) (4.154)
Pre-biotech-incentive-adoption mean 100.667 26.556 8.043 5.792 21.701
Pre-credit-adoption mean 40.158 12.248 7.698 6.495 10.611
Percent effect of biotech incentives 23.828 13.469 37.743 53.698 29.771
Percent effect of R&D user cost 23.671 18.395 12.894 15.406 7.468
Sample period 1990–2010 1990–2010 1990–2009 1990–2009 1990–2009
Number of states 51 51 38 28 47
Number of observations 1071 1071 798 588 987

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Employment in columns 3–5 is measured in thousands. Regressions estimated via
OLS. Standard errors based on Newey–West VC estimator with within-state AR(2) errors.
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Appendix A

See Tables A1 and A4.
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