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Abstract—Empirical researchers interested in the causal effect of the
endogenous regressor often use instrumental variables. When few valid
instruments are available, they typically estimate restricted specifications
that impose uniform per unit treatment effects, even when these effects are
likely to vary. We show that in these cases, ordinary least squares and instru-
mental variables estimators identify different weighted averages of all per
unit effects, so the traditional Hausman test is uninformative about endo-
geneity. We develop a new exogeneity test that works even when the true
model cannot be estimated using IV methods as long as a single valid instru-
ment is available. We revisit three recent empirical examples to demonstrate
the practical value of our test.

I. Introduction

MANY recent empirical papers seek to estimate causal
relationships using instrumental variables (IV), inclu-

ding two-stage least squares (2SLS) estimators, when con-
cerns about causality arise. A model frequently estimated in
practice has the following form:

yi = siβ
L + x′

iγ
L + νi, (1)

where yi is the outcome of individual i, xi is a k × 1 vec-
tor of exogenous covariates (including an intercept), and si

is the potentially endogenous regressor. For example, the
variable si might reflect different treatment levels of a gov-
ernment training program or different dosage levels for a new
drug treatment. In our empirical examples and much of our
discussion, si reflects years of completed schooling.

Conclusions about exogeneity of si and consistency of the
ordinary least squares (OLS) estimator are typically based
on a comparison of OLS and IV estimates of βL. When
a standard Hausman test (Hausman, 1978) indicates a sig-
nificant difference between OLS and IV estimates, it is
common to conclude that endogeneity of si plays an important
confounding role in OLS.

Yet in many economics applications, the true relationship
between yi and si is unlikely to be linear. In particular, suppose
that the endogenous regressor si ∈ {0, 1, 2, 3, ..., S} is discrete
and the true model has the form

yi =
S∑

j=1

Dijβj + x′
iγ + εi, (2)
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where Dij = 1[si ≥ j] reflects a dummy variable equal to 1
if si ≥ j and 0 otherwise, E(εi) = 0, and E(εixi) = 0. When
si reflects years of schooling, the βj represent grade-specific
effects of moving from j − 1 to j years of schooling.

The difference between the models in equations (1) and
(2) is that the former assumes a uniform per unit or marginal
effect of si across all levels of si while the latter does not. For
example, in the classic case of the return to education, the
model in equation (1) assumes that the effect of an extra year
of elementary school is identical to the effect of the last years
of high school and college, while the model in equation (2)
allows for sheepskin effects and other nonlinearities that are
likely to arise in practice.

While variable per unit treatment effects are likely to be
important in many applications, relatively few studies have
focused on their practical implications when instrumental
variables may be needed.1 The difficulty in estimating a spec-
ification like equation (2) when endogeneity concerns arise
is that there may be many βj parameters to estimate, while
researchers typically have very few valid instruments. In the-
ory, a single continuous instrument may be sufficient for
identification. In practice, there is often insufficient variation
in the instrument to precisely estimate all per unit effects.
Discrete-valued instruments are also common in the litera-
ture. As a consequence, empirical studies commonly estimate
models like equation (1) even when there is no theoretical rea-
son to do so, and in some cases there is prima facie evidence
of important nonlinearities between yi and si.

We demonstrate that when the per unit effects of changes
in si vary over the range of si as in equation (2) but the esti-
mated model assumes that all per unit effects are the same
as in equation (1), OLS and IV methods estimate different
weighted averages of all per unit effects. Building on this
insight, we develop a new exogeneity test that requires only
a single (even binary) instrument and is useful when per unit
treatment effects vary across treatment levels.

We stress that our results do not apply to all nonlinear
models, only to the specific case described in equations (1)
and (2). In particular, we assume (a) a single finite-valued
discrete endogenous regressor, (b) exogenous regressors are
additively separable and enter the equation linearly; and
(c) all coefficients (including per unit treatment effects) are
homogeneous in the population. While these assumptions
are strong, they are common in the applied microeconomics
literature.

We are not the first to point out that estimates from a
misspecified linear model (i.e., constant marginal or per
unit treatment effects) yield weighted averages of each

1 Angrist, Graddy, and Imbens (2000), Lochner and Moretti (2001), and
Mogstad and Wiswall (2010) are notable exceptions.
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marginal/per unit effect. Yitzhaki (1996) derives these
weights in the context of OLS, while Angrist and Imbens
(1995) and Heckman, Urzua, and Vytlacil (2006) derive
weights for IV estimators in the presence of both variable
multivalued treatment effects and parameter heterogeneity.
Angrist and Imbens (1995) show conditions under which
2SLS estimates a local average treatment effect (LATE).2 In
a very general setting, Heckman et al. (2006) discuss ordered
and unordered choice models with unobserved heterogeneity
and nonlinearity, developing weights for treatment effects
using general instruments. Heckman and Vytlacil (2005)
emphasize that in the presence of parameter heterogeneity,
there is no single effect of the regressor on an outcome, and
different estimation strategies provide estimates of differ-
ent parameters of interest or different average effects. While
many studies focus on parameter heterogeneity across indi-
viduals with a uniform marginal effect over values of si (i.e.,
yi is linear in si), we consider the opposite case, assuming a
nonlinear relationship between yi and si that is the same for
all individuals.3 Our setting is a special case of that used by
Heckman et al. (2006); however, our emphasis on varying
per unit treatment effects, and the endogeneity test is novel.

We begin by showing that inappropriately assuming model
(1) when per unit treatment effects vary across treatment lev-
els will generally yield different OLS and IV/2SLS estimates
even in the absence of endogeneity, since these estimators can
be written as weighted averages of causal responses to each
marginal change in the regressor, where the sets of weights
differ for the estimators.4 An appealing feature of our setting
is that the weights have an intuitive interpretation, are func-
tions of observable quantities, and can be easily estimated
under very general assumptions. Therefore, it is possible to
directly compare the OLS and IV weights.

This insight leads to our main contribution: a new exo-
geneity test that can be used to determine the consistency of
the OLS estimator for equation (2). Before describing our
test, first note that the standard Hausman test is of limited
applicability in this context. Since OLS and IV/2SLS identify
different weighted averages of all per unit effects, the Haus-
man test applied to equation (1) is uninformative about the
endogeneity of the regressor when per unit treatment effects
vary across treatment levels. It may reject equality of OLS
and IV/2SLS estimates even when the regressor is exogenous,

2 Intuitively, the LATE reflects the effect of a regressor on outcomes for
individuals induced to change their behavior in response to a change in the
value of the instrument.

3 Studies focused on parameter heterogeneity include Imbens and Angrist
(1994), Wooldridge (1997), Heckman and Vytlacil (1998, 1999, 2005),
Card (1999), Kling (2001), Moffitt (2009), and Carneiro, Heckman, and
Vytlacil (2010).

4 Relative to the existing literature, our models are closer to those typically
estimated in practice. Angrist and Imbens (1995) consider only discrete
regressors that are indicators that place observations into mutually exclusive
categories, and they interact their instrument (also assumed to be discrete)
with each of these regressors to create a large set of effective instruments.
The Heckman et al. (2006) discussion of instrumental variables estima-
tion in ordered-choice models is left implicit on all covariates affecting the
outcome variable.

and it may fail to reject equality when the regressor is endoge-
nous. Alternatively, in order to implement the Hausman test
for equation (2), one would need to estimate all βj parame-
ters using IV methods. In practice, this is often impossible
when there are many treatment levels, since researchers often
have access to only a few valid instruments with limited vari-
ation. Rarely would researchers have instruments capable of
identifying, for example, twenty different grade-specific βj

parameters associated with all potential schooling levels.
The test that we propose can be thought of as a generaliza-

tion of the standard Hausman test and is informative about
the consistency of OLS estimates for all βj effects in equation
(2). Our test reweights OLS estimates of the βjs from equa-
tion (2) using estimated IV/2SLS weights and compares this
with the corresponding IV/2SLS estimator of βL in equation
(1). Under fairly general conditions, our test can be imple-
mented even when only a single valid (binary) instrument is
available.5

Our proposed test has both strengths and weaknesses. The
fact that our test requires only a single instrument should
make it attractive to empirical researchers. In many con-
texts, researchers can easily use OLS to estimate models
like equation (2) (e.g., regressing log wages on a set of
twenty schooling dummies), yet they often have very few
valid instruments with limited variation at their disposal. A
researcher can use our test to establish whether the OLS esti-
mates are consistent without having to estimate the more
general equation (2) using IV/2SLS. If our test fails to reject
exogeneity, researchers can have some confidence in their
OLS estimates. However, if our test rejects, it does not help
in estimating the true model. Our test therefore offers only
a partial solution to the problem of estimating multiple per
unit treatment effects with limited instruments.

Three additional limitations are worth highlighting. First,
it is important to note that we test whether the weighted
average of all OLS β̂j asymptotic biases equals 0. There-
fore, our test has no power against the possibility that some
OLS β̂j estimates are asymptotically biased upward and oth-
ers downward in such a way as to exactly cancel each other
when averaged using the IV/2SLS weights. Still, rejection of
the null implies that OLS estimates are inconsistent. Further-
more, we discuss conditions under which all β̂j asymptotic
biases would be of the same sign, in which case our test
is equivalent to testing whether all OLS β̂j estimates are
consistent. In many applications, economic theory can be
informative about the likely sign of any biases. For example,
in the case of returns to schooling, most models of invest-
ment in human capital predict that OLS estimates of β̂j are
all asymptotically upward biased.

5 Lochner and Moretti (2001) and Mogstad and Wiswall (2010) suggest
that comparing reweighted OLS estimates with IV/2SLS estimates may
be a useful heuristic approach for assessing the importance of nonlinear-
ities. In this paper, we develop a formal econometric test for exogeneity
based on this insight. Our test differs conceptually and practically from
the omnibus specification tests developed by White (1981), which essen-
tially compare different weighted generalized least squares estimators for
a general nonlinear function.
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Second, even if exogeneity cannot be rejected, researchers
should exercise caution when conducting inference using
OLS estimates of equation (2) when the instruments are
not sufficiently strong. Like the Hausman test, our test does
not have much power when instruments are weak. As Wong
(1997) and Guggenberger (2010) demonstrate, this can cause
size problems with inference in a two-stage approach where
the Hausman test is used to determine exogeneity in a first
stage and OLS estimates are used in a second stage when exo-
geneity cannot be rejected.6 Monte Carlo simulations confirm
that similar inference problems can arise when using our test
with insufficiently strong instruments.

Third, our approach assumes that equation (2) reflects the
true model. Misspecification due to, for example, nonsepara-
bilities between si and xi or due to individual-level parameter
heterogeneity would likely invalidate our test, since this
would alter the relationship between OLS and IV estimators
in unaccounted-for ways.

In the last part of the paper, we demonstrate the practical
usefulness of our test by reexamining three recent empiri-
cal papers in which estimated 2SLS effects differ from OLS
effects. In one example, our test suggests that schooling is
exogenous for incarceration among white men. As we dis-
cuss, this is empirically useful since it lends credibility to
OLS estimates that suggest a highly nonlinear relationship
between educational attainment and the probability of impris-
onment. In contrast, our test strongly rejects exogeneity of
schooling for incarceration among black men, while the stan-
dard Hausman test does not. In this case, the endogeneity of
schooling is obscured when nonlinearities between school-
ing and imprisonment are ignored. Our other examples pro-
duce greater concordance between the standard Hausman test
and our exogeneity test, although for different reasons.

The rest of the paper is organized as follows. In section
II, we show conditions under which OLS, IV, and 2SLS
estimates of βL in equation (1) can be written as weighted
averages of the true underlying βj parameters in the more
general model given by equation (2). For expositional pur-
poses, we will refer to si as years of schooling, so the βj

reflect grade-specific marginal or per unit effects. Section
III develops an exogeneity test that can be used to determine
consistency of the OLS estimator for equation (2). Section IV
presents the results from three previous empirical examples,
and section V concludes.

II. Estimating Weighted Average Per Unit Treatment
Effects

In this section, we consider IV/2SLS and OLS estima-
tors when equation (1) is estimated, but the true model is

6 Specifically, Wong (1997) and Guggenberger (2010) provide simula-
tion evidence in a linear regression model like equation (1) for the null
rejection probability of a simple hypothesis test conditional on a standard
Hausman pretest for exogeneity not rejecting. Their findings indicate that
when regressor endogeneity is small, the null rejection probability of the
hypothesis test may be substantially higher than the nominal size if the
instruments are not sufficiently strong.

described by equation (2). We show conditions under which
these estimators converge to a weighted average of each
grade-specific βj effect and discuss the weights. We assume
throughout our analysis that all observations are independent
across i = 1, . . . , N individuals and that standard conditions
for the weak law of large numbers and central limit theorems
apply.7

A. IV Estimation with a Single Instrument

We first consider IV estimation with a single instrument,
discussing OLS as a special case. We study the case where
the potentially endogenous variable si is discrete.8 Through-
out the paper, we assume εi is independent across individuals
with E(εi) = 0, xi is distributed with density Fx(·), and
E(εixi) = 0. The following decomposition is also useful:
si = x′

iδs +ηi, where δs = [E(xix′
i)]−1E(xisi) by construction

and E(xiηi) = 0.
The following IV assumption is standard.

Assumption 1. The instrument is uncorrelated with the
error in the outcome equation, E(εizi) = 0, and correlated
with si after linearly controlling for xi, E(ηizi) �= 0.

Let Mx = I − x(x′x)−1x′ and s̃ = Mxs for any vari-
able s. (We drop the i subscripts when we refer to the
vector or matrix version of a variable that vertically stacks all
individual-specific values.) With a single instrument, 2SLS
estimation of equation (1) is equivalent to the following IV
estimator:

β̂L
IV = (z′Mxs)−1z′Mxy

= (z̃′s̃)−1z̃′
⎛
⎝ S∑

j=1

Djβj

⎞
⎠ + (z̃′s̃)−1z̃′ε

=
S∑

j=1

ω̂IV
j βj + (z̃′s)−1z̃′ε,

where ω̂IV
j = (z̃′s̃)−1z̃′Dj =

(
1
N

N∑
i=1

z̃iDij

) / (
1
N

N∑
i=1

z̃i s̃i

)
.

Since
S∑

j=1
Dij = si, these ω̂IV

j sum to 1 over j = 1, . . . , S. We

refer to them as weights even though they may be negative
for some j.9

One helpful assumption is monotonicity in the effects of
the instrument on si. Although monotonicity is not necessary

7 For example, assume all random variables are independent and have
finite first, second, and third moments. Finite third moments enable appli-
cation of central limit theorems based on independent but not necessarily
identically distributed random variables (e.g., Liapounov).

8 While we study the case of a discrete endogenous regressor, OLS and
IV estimators will also yield different weighted averages of marginal effects
when the regressor is continuous. The insights of Yithzaki (1996) might be
used to develop weights and a related test specifically designed for the
continuous regressor case.

9 When they cannot be shown to be nonnegative, we use “weights” with
quotation marks to distinguish them from cases when they are known to be
proper weights that are both nonnegative and sum to 1.
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for deriving and estimating “weights,” it does help to ensure
that they are nonnegative and simplifies their interpretation.
When si reflects years of schooling, monotonicity implies that
the instrument either causes everyone to weakly increase or
causes everyone to weakly decrease their schooling. Without
loss of generality, we assume that si is weakly increasing in
zi. Define si(ϑ) to be the value of si for individual i when
zi = ϑ.

Assumption 2 (monotonicity). The instrument does not
decrease si: Pr[si(ϑ) < si(ϑ

′)] = 0, for all ϑ > ϑ′.

To facilitate our analysis of β̂L
IV , it is useful to decompose

zi = x′
iδz + ζi where δz = [E(xix′

i)]−1E(xizi) and E(xiζi) = 0.

Proposition 1. If assumption 1 holds, then β̂L
IV

p→
S∑

j=1
ωIV

j βj , where

ωIV
j = Pr(si ≥ j)E(ζi|si ≥ j)

S∑
k=1

[Pr(si ≥ k)E(ζi|si ≥ k)]
(3)

sum to unity over all j = 1, . . . , S. Furthermore, if E(zi|xi) =
x′

iδz and assumption 2 (monotonicity) holds, then the weights
are nonnegative and can be written as

ωIV
j = E{Cov(zi, Dij|xi)}

S∑
k=1

E{Cov(zi, Dik|xi)}
≥ 0. (4)

Proof. See online appendix A.

This result shows that estimating the misspecified linear-
in-schooling model using IV yields a consistent estimate of a
weighted average of all grade-specific βj effects. The weights
on all grade-specific effects are straightforward to estimate.
From a 2SLS regression of Dij on si and xi using zi as an
instrument for si, the coefficient estimate on si equals ω̂IV

j .
When the instrument affects all persons in the same direc-

tion and its expectation conditional on xi is linear (e.g., x’s
are mutually exclusive and exhaustive categorical indicator
variables), the weights are nonnegative and depend on the
strength of the covariance between the instrument and each
schooling transition indicator conditional on other covariates.
In general, different instruments yield estimates of different
“weighted averages,” even if the instruments are all valid.

With assumption 1, E(zi|xi) = x′
iδz, and E(εi|xi) = 0, it

is straightforward to show that the IV estimator converges to
a weighted average of all conditional (on xi) IV estimators,
where the weights are proportional to the covariance between
the instrument and schooling conditional on xi:

β̂L
IV

p→
∫

βIV (φ)h(φ)dFx(φ),

where βIV (φ) = Cov(zi ,yi|xi=φ)

Cov(zi ,si|xi=φ)
is the population analog of

the IV estimator conditional on xi = φ and h(φ) =
Cov(zi ,si|xi=φ)∫

Cov(zi ,si|xi=a)dF(a)
is a weighting function that integrates to

1 for all xi (with h(·) ≥ 0 under assumption 2). Notice

that βIV (φ) =
S∑

j=1
βjω

IV
j (φ), where ωIV

j (φ) = Cov(zi ,Dij |xi=φ)

Cov(zi ,si|xi=φ)

are x-specific IV “weights” for each grade-specific effect,
βj. Each x-specific IV estimator is simply a weighted aver-
age of the grade-specific βj effects, where the weights are
proportional to the covariance between the instrument and
Dij conditional on xi. Some rearranging shows that the
IV weights from equations (3) or (4) can be rewritten as
ωIV

j = ∫
ωIV

j (φ)h(φ)dFx(φ).10

These results complement the IV/2SLS analyses of Angrist
and Imbens (1995) and Heckman et al. (2006), who also con-
sider parameter heterogeneity along with variable per unit
treatment effects. In order to ease interpretation in the pres-
ence of parameter heterogeneity, Angrist and Imbens (1995)
make strong assumptions about the additional xi covari-
ates and how they enter in estimation. Specifically, they
assume that the xi regressors are indicator variables that place
individuals into mutually exclusive categories and that the
instrumental variable (also assumed to be discrete) is inter-
acted with all of these additional covariates. By contrast,
Heckman et al. (2006) consider a very general setting for
ordered and unordered choice models; however, their discus-
sion of IV estimation for these models implicitly conditions
on all covariates xi (deriving IV weights analogous to ωIV

j (φ)

in our setting). Results in this section could therefore be
derived as a special case of their analysis. While our analysis
ignores heterogeneity in the grade-specific effects, it consid-
ers estimation under common assumptions about covariates
and the way they typically enter during estimation. We are
not focused on finding an “economic interpretation” for the
IV estimator, since the weights we consider can easily be esti-
mated. Instead, we are interested in empirically comparing
the OLS and IV weights and deriving a test for whether the
different weights can explain differences between the two
estimators when per unit treatment effects are incorrectly
assumed to be uniform (i.e., linearity between yi and si).

Since OLS is a special case of IV estimation, in the absence
of endogeneity, the OLS estimator for the linear-in-si model
in equation (1) also converges to a weighted average of the
grade-specific effects, βj, where the weights are nonnegative
and sum to 1.

Corollary 1. If E(εisi) = 0 then

β̂L
OLS

p→
S∑

j=1

ωOLS
j βj, (5)

10 In online appendix A, we further show that with a binary instrument, the
ωIV

j (·) weights can be more easily interpreted along the lines of the LATE
analysis of Angrist and Imbens (1995).
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where the

ωOLS
j = Pr(si ≥ j)E(ηi|si ≥ j)

S∑
k=1

Pr(si ≥ k)E(ηi|si ≥ k)

≥ 0 (6)

sum to unity over all j = 1, . . . , S.

Proof. This result largely follows from proposition 1 replac-
ing zi with si. Online appendix A shows that the OLS weights
are always nonnegative.

The empirical counterpart to the OLS weights, ω̂OLS
j

p→
ωOLS

j , is simply the coefficient estimate on si in an OLS regres-
sion of Dij on si and xi. Therefore, only data on xi and si are
needed to construct consistent estimates of the asymptotic
weights. Of course, the weights implied by OLS estimation
will not generally equal the weights implied by IV estima-
tion.11 In section IV, we graph estimated OLS and IV weights
in a few different empirical applications.

Researchers often estimate models like equation (1) rather
than the more general equation (2) because they are lim-
ited in the instrumental variables at their disposal. Yet even
in the absence of endogeneity and individual-level parame-
ter heterogeneity, there is no reason to expect OLS and IV
estimators to be equal for a misspecified linear-in-si model
that assumes uniform per unit treatment effects. As a result,
standard Hausman tests applied to the mis-specified linear-
in-si model may reject the null hypothesis of “exogenous
s” due simply to variable per unit treatment effects. Below,
we develop a chi-square test for whether OLS estimation of
equation (2) yields consistent estimates of the underlying βj

parameters (i.e., whether E(εi|si) = 0) even when only a sin-
gle valid instrumental variable is available. However, we first
generalize our key results to the case of many instruments.

B. 2SLS Estimation with Multiple Instruments

We now generalize the results to the case where we have
I distinct instruments for schooling, zi = (zi1 . . . ziI)

′, but
the researcher still estimates the linear-in-schooling model
(1). Let si = x′

iθx + z′
iθz + ξi, with θ̂x and θ̂z reflecting the

corresponding OLS estimates of θx and θz. Further define the
predicted value of schooling conditional on x and z: ŝi =
x′

i θ̂x + z′
iθ̂z. Then 2SLS estimation of equation (1) yields

11 For example, consider the case with no x regressors (except an intercept).
It is straightforward to show that ωOLS

j+1 − ωOLS
j ∝ (E(si) − j) × Pr(si = j),

which is positive for j < E(si), 0 for j = E(si), and negative when j >
E(si). This implies that OLS estimation of the linear specification places
the most weight on grade-specific βj effects near the mean schooling level.
When schooling is uniformly distributed in the population, the weights
decay symmetrically as one moves away from the mean in either direction.
Contrast this with the IV weights in the case of a binary instrument zi ∈
{0, 1} satisfying the monotonicity assumption. In this case, IV places all the
weight on schooling margins that are affected by the instrument, while the
underlying distribution of schooling in the population is irrelevant.

β̂L
2SLS = (ŝ′Mxŝ)−1ŝ′Mxy =

S∑
j=1

ω̂jβj + (ŝ′Mxŝ)−1ŝ′Mxε,

(7)

where the “weights” ω̂j = (ŝ′Mxŝ)−1ŝ′MxDj =
(θ̂′

zz
′Mxzθ̂z)

−1θ̂′
zz

′MxDj reflect consistent estimates of ωj

from 2SLS estimation of

Dij = siωj + x′
iαj + ψij, ∀j ∈ {1, . . . , S}. (8)

We assume that assumption 1 holds for all zi� instruments
and that we have sufficient variation in zi conditional on xi

for identification. Let ζi = (ζi1, . . . , ζiI)
′ be the I × 1 vector

collecting all ζi� = zi�−x′
iδz�, where δz� = [E(xix′

i)]−1E(xizi�)

was introduced above in the single-instrument case.12

Assumption 3. The covariance matrix for zi after par-
tialling out xi, E(ζiζ

′
i), is full rank.

As with the single-instrument IV estimator, we can show
that the 2SLS estimator for βL in equation (1) converges
in probability to a “weighted” average of all grade-specific
effects. Letting ωIV

j� reflect the grade j “weight” from the
single-instrument IV estimator using zi� as the instrument as
defined by equation (3), the 2SLS estimator “weight” on any
βj is a weighted average of each of these single-instrument
IV estimator “weights”:

Proposition 2. Under assumptions 1 and 3, β̂L
2SLS

p→
S∑

j=1
ωjβj , where ωj =

I∑
�=1

Ω�ω
IV
j� sum to unity over all j =

1, . . . , S and

Ω� =
θz�

S∑
k=1

Pr(si ≥ k)E(ζi�|si ≥ k)

I∑
m=1

θzm

S∑
k=1

Pr(si ≥ k)E(ζim|si ≥ k)

(9)

sum to unity over all � = 1, . . . , I. Furthermore, if each
instrument satisfies assumption 2 and E(zi�|xi) = xiδz�, then
all ωIV

j� , Ω�, and ωj are nonnegative.

Proof. See online appendix A.

Not surprisingly, one can also show that the 2SLS estimator
converges in probability to a weighted average of the proba-
bility limits of all single-instrument IV estimators, where the
weights are given by Ω� in equation (9).13

12 In the case of a single instrument, this analysis reduces to that for IV in
section IIA with β̂L

2SLS = β̂L
IV and ω̂j = ω̂IV

j for all j.
13 If we define βL

IV ,� = plim β̂L
IV ,� where β̂L

IV ,� is the single-instrument IV
estimator using zi� as an instrument for si in estimating equation (1), then

β̂L
2SLS

p→
I∑

�=1
Ω�β

L
IV ,�, where Ω� is defined by equation (9).
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III. A Wald Test for Consistent OLS Estimation
of All βj’s

When at least one valid instrumental variable is avail-
able, the analysis of section II suggests a practical test for
whether OLS estimates of B ≡ (β1, . . . , βS) from equa-
tion (2), B̂, are consistent.14 We now develop a test that
compares the 2SLS estimator from equation (1) with the
weighted sum of the grade-specific OLS estimates of the
βjs from equation (2), using the estimated 2SLS weights
ω̂ ≡ (ω̂1, . . . , ω̂S)

′. Intuitively, if E(εi|si) = 0, so the grade-
specific OLS estimates are consistent, then the reweighted
sum of these OLS estimates (using the 2SLS weights) should
asymptotically equal the 2SLS estimator from equation (1),
that is, β̂L

2SLS −ω̂′B̂
p→ 0. This will not generally be true when

E(εiDij) �= 0 for any j.
Applying 2SLS to equation (8) yields estimates ω̂j and α̂j

for all j. In order to derive our test statistic, we frame esti-
mation of B̂, β̂L

2SLS, and ω̂ as a stacked generalized method of
moments (GMM) problem. This establishes joint normality
of (B̂, β̂L

2SLS, ω̂) and facilitates estimation of the covariance
matrix for all of these estimators. From this, a straightfor-
ward application of the delta method yields the variance of
β̂L

2SLS − ω̂′B̂, which is used in developing a chi-square test
statistic for the null hypothesis that T̂ ≡ β̂L

2SLS − ω̂′B̂
p→ 0.

It is necessary to introduce some additional notation in
order to define the test statistic. We first define the regres-
sors for OLS estimation of equation (2), X1i = (D′

i x′
i), and

the regressors, X2i = (si x′
i), and instruments, Z2i = (z′

i x′
i),

used in 2SLS estimation of equations (1) and (8). Denote the
corresponding matrices for all individuals as X1, X2, and Z2,
respectively. Next, let Θ = (B′ γ′ βL γL′

ω′
1 α′

1 . . . ω′
S α′

S)
′

reflect the full set of parameters to be estimated. Finally, let
Θ̂ denote the corresponding vector of parameter estimates,
where (B′ γ′) is estimated by OLS and (βL γL′

) and all (ω′
j α

′
j)

are estimated via 2SLS.
The variance of Θ can be consistently estimated from

V̂ = ÂΛ̂Â′, (10)

where

Â =
(

[X ′
1X1]−1 0

0 I2 ⊗ [X̂ ′
2X̂2]−1Γ̂′

2

)
, (11)

Γ̂2 = (Z ′
2Z2)

−1Z ′
2X2, X̂2 = Z2Γ̂2, I2 is an S + 1 dimen-

sion identity matrix, and 0 reflects conformable matrices of
zeros.15 Furthermore,

Λ̂ = 1

N

N∑
i=1

×
⎛
⎜⎝

ε̂2
i (X

′
1iX1i) ε̂iν̂i(X ′

1iZ2i) ε̂iΨ̂
′
i ⊗ (X ′

1iZ2i)

ε̂iν̂i(Z ′
2iX1i) ν̂2

i (Z
′
2iZ2i) ν̂iΨ̂

′
i ⊗ (Z ′

2iZ2i)

ε̂iΨ̂i ⊗ (Z ′
2iX1i) ν̂iΨ̂i ⊗ (Z ′

2iZ2i) Ψ̂iΨ̂
′
i ⊗ (Z ′

2iZ2i)

⎞
⎟⎠,

(12)

14 Formally, B̂ = (D′MxD)−1D′Mxy, where Mx and y are defined earlier
and D reflects the stacked N ×S matrix of (Di1, . . . , DiS) for all individuals.

15 See the proof of theorem 1 in online appendix A.

where ε̂i = yi − D′
iB̂ − x′

iγ̂, ν̂i = yi − siβ̂
L
2SLS − x′

iγ̂
L, and

Ψ̂i = (ψ̂1i ψ̂2i . . . ψ̂Si)
′ with ψ̂ij = Dij − siω̂j − α̂′

jxi.
Finally, define T̂ ≡ T(Θ̂) = β̂L

2SLS − ω̂′B̂, and let

Ĝ ≡ ∇T̂ = (−ω̂′ 0′
x 1 0′

x (−β̂1 0′
x) (−β̂2 0′

x) ... (−β̂S 0′
x))

represent the (2S + 1 + (S + 2)K) × 1 jacobian vector for
T(Θ̂) (where 0x is a K × 1 zero vector).

It is now possible to derive a chi-square test statistic:

Theorem 1. Under assumptions 1 and 3, if E(εi|si) = 0,
then

WN = N

[
(β̂L

2SLS − ω̂′B̂)2

ĜV̂ Ĝ′

]
d→ χ2(1). (13)

Proof. See online appendix A.

It is important to note that T̂
p→ 0 need not imply that

B̂
p→ B for two reasons. First, this test cannot tell us anything

about whether β̂j
p→ βj for some grade transition j if ωj = 0.

The test provides information only about the effects of grade
transitions that are affected by the instrument. Second, the
β̂j OLS estimates may be asymptotically biased upward for
some j and downward for others. When E(εi|si) �= 0, B̂

p→
B∗ ≡ B+{E(DiD′

i)−E(Dix′
i)[E(xix′

i)]−1E(xiD′
i)}−1E(Diεi).

Thus, T̂
p→ 0 for any B∗ satisfying ω′(B − B∗) = 0, where

ω ≡ (ω1, . . . , ωS)
′. A test based on theorem 1 would have no

power against these alternatives, although rejection of the
null hypothesis would imply that B̂ does not consistently
estimate B.

Under reasonable conditions, WN can serve as a valid test
statistic for the null hypothesis that B̂

p→ B. If ωj > 0 for
all j (a testable assumption) and if E(εiDij) = E(εi|si ≥ j)
Pr(si ≥ j) were either nonnegative for all j or nonpositive
for all j, then all β̂j would be asymptotically biased in the
same direction and B∗ �= B ⇔ ω′(B − B∗) �= 0. In this case,
testing whether T̂

p→ 0 would be equivalent to testing for
consistency of B̂.16

To better understand these conditions, consider a standard
latent index ordered-choice model for schooling of the form

s∗
i = μ(zi, xi) + vi, (14)

si = j if and only if j ≤ s∗
i < j + 1. (15)

Assume that all x regressors and instruments z are indepen-
dent of both errors: (εi, vi) ⊥⊥ (zi, xi). It is straightforward to
show that if E(εi|vi) is weakly monotonic in vi, then E(εi|si ≥
j) will be either nonpositive or nonnegative for all j.17 Mono-

16 In the case where some ωj = 0, the test would be equivalent to testing
for consistency of all βj with ωj > 0.

17 Strictly speaking, weak monotonicity is required only over the range of
vi covered by j − μ(zi, xi) (i.e., for vi ∈ [1 − μ(zi, xi), S − μ(zi, xi)]), so
behavior in the tails of the distribution is irrelevant. See online appendix A
for details.
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tonicity of E(εi|vi) is trivially satisfied by all joint elliptical
distributions (e.g., bivariate normal or t distributions), which
produce linear conditional expectation functions.

In practice, one is likely to fail to reject the null hypothesis
of T̂

p→ 0 when B∗ �= B only in cases where individuals
with both high and low propensities for education (condi-
tional on observable characteristics) have a higher (or lower)
unobserved εi than individuals with an average propensity
for schooling. In the case of an ordered-choice model, this
would imply a U-shaped (or inverted U-shaped) relationship
for E(εi|vi). In many economic contexts, these perverse cases
seem unlikely.

We also note that if more than one valid instrument is
available, then those instruments can be used in different
combinations to perform separate tests. Because each 2SLS
estimator (distinguished by the set of instruments used) con-
verges to a different weighted average of the true B parameters
(i.e., ω′

ΥB where Υ denotes the set of instruments used), it is
unlikely that one would reject the null of ω′

ΥB = ω′
ΥB∗ for

all sets of instruments unless B = B∗.18

To demonstrate the extent to which varying per unit treat-
ment effects can induce differences between OLS and IV
estimates that our new exogeneity test can account for (while
standard Hausman or Durbin-Wu-Hausman tests applied to
equation (1) cannot), we perform a Monte Carlo simula-
tion exercise based on Card’s (1995) log earnings–schooling
model. In this framework, varying per unit treatment effects
are equivalent to a nonlinear relationship between log earn-
ings and schooling. These results are discussed in detail in
online appendix B; however, we note here that our test (see
theorem 1) performs well in two important respects. First, the
test has nearly identical performance to the standard Haus-
man test, applied to equation (1), when all grade-specific
effects are the same. Thus, there is no cost to using our test
rather than the more traditional Hausman test that assumes a
linear relationship between log earnings and schooling. Sec-
ond, our test has very similar properties regardless of the
extent of nonlinearity between log earnings and schooling,
rejecting equality of the reweighted OLS and IV estimates
at noticeably higher rates for even small deviations from
exogeneity as long as the instruments are sufficiently strong.

Of course, when the instruments are relatively weak, our
test (like the standard Hausman test) has little power to detect
endogeneity since the IV estimates tend to have large standard
errors. In these cases, negligible amounts of endogeneity may
be difficult to detect with our test. This can lead to poor size
properties when conducting inference using OLS estimates of
the βj parameters as discussed by Wong (1997) and Guggen-
berger (2010), who study this issue in the context of linear
models and use of the Hausman test to determine exogeneity.
Monte Carlo results presented in online appendix B suggest
caution when using OLS estimates for inference, even if our

18 Because these test statistics are not generally independent, the criti-
cal values for this type of joint testing procedure are likely to be quite
complicated. We do not address this issue here.

test fails to reject exogeneity, if the instruments are relatively
weak. This is particularly true when the IV and reweighted
OLS estimates are quite different but the IV estimates are
very imprecise.

Another important limitation to keep in mind is that our test
is valid only if equation (2) represents the true model. This
model assumes that the regressors are additively separable
and that the coefficients are the same for all individuals. In
the case of nonseparability or individual heterogeneity in the
model’s coefficients, our model would be misspecified and
our test invalid.

IV. Practical Use of Our Test and Three Empirical
Examples

To demonstrate the practical value of our test, we reexam-
ine three empirical papers on the effects of individual and
maternal schooling that estimated 2SLS effects that differ
nontrivially from their corresponding OLS estimates.19 In all
cases, the econometric specification assumed a linear rela-
tionship between the outcome of interest and educational
attainment as in equation (1).20 Of course, if the true rela-
tionship is nonlinear so grade-specific effects differ, then
differences between OLS and 2SLS weights may explain
at least some of the difference between the two estimates.
For each of the three cases, we examine the extent to which
reweighting the OLS estimates of the βjs helps reconcile
the difference between the potentially misspecified OLS and
2SLS estimates that assume uniform grade-specific effects.
We then test whether schooling is exogenous using both the
standard Hausman test and our proposed test.

Results are reported in table 1.21 Columns 1 and 2 repro-
duce OLS and 2SLS estimates using the same models and
similar data used in the original papers. For example, the
first row indicates that when the Lochner and Moretti (2004)
data for white men are used, a regression of an indicator
for incarceration on years of schooling and controls yields
an OLS coefficient equal to −.0010, and a 2SLS coefficient
equal to −.0011. The 2SLS estimates use as instrumental
variables three indicators for different compulsory schooling
ages. The difference between OLS and 2SLS is reported in
column 3. The 2SLS estimate is about 10% larger than the

19 The instruments used in these examples have been employed in
numerous studies examining a wide array of outcomes. See Lochner (2011).

20 In two of the applications we consider (Lochner & Moretti, 2004; Currie
& Moretti, 2003), the outcome variables are binary, and a linear probability
model is assumed by the authors. Heteroskedasticity of errors does not
pose any problems for our test; however, our assumption of separability
between all regressors and measures of schooling is questionable in more
general binary choice models for well-known reasons. We simply follow
the specifications employed in the earlier studies, assuming the data are
consistent with a linear probability model. This may not be unreasonable in
these applications given the limited range of predicted outcome probabilities
across values of the regressors. Assuming an index model based on equation
(2), the density for the error may be (approximately) linear over the range
of estimated index values.

21 Details regarding samples and estimating specifications are reported in
the bottom of table 1.
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Table 1.—Replication Results and Application of Wald Test for Endogeneity

General Wald Hausman Test DWH Test
Test Statistic Statistic Statistic

β̂L
OLS β̂L

2SLS β̂L
OLS−β̂L

2SLS

∑
j ω̂j β̂j [ p-value] [ p-value] [ p-value]

Lochner and Moretti (2004): Effect of years of schooling on imprisonment
White males −0.0010 −0.0011 −0.0002 −0.0012 0.0225 0.2021 0.1600

(0.0000) (0.0004) (0.0004) (0.0000) [0.8808] [0.6530] [0.6858]
Black males −0.0037 −0.0048 −0.0011 −0.0007 11.9441 0.9757 0.5154

(0.0001) (0.0012) (0.0011) (0.0002) [0.0005] [0.3233] [0.4728]
Currie and Moretti (2003): Effect of maternal education on infant health

Low birth weight −0.0050 −0.0098 −0.0048 −0.0053 1.4376 1.7022 1.5566
(0.0001) (0.0038) (0.0037) (0.0002) [0.2305] [0.1920] [0.2122]

Preterm birth −0.0044 −0.0104 −0.0060 −0.0046 1.7639 2.0472 1.7749
(0.0002) (0.0044) (0.0042) (0.0002) [0.1841] [0.1525] [0.1828]

Acemoglu and Angrist (2001): Private returns to schooling
Annual earnings 0.0822 0.1442 0.0620 0.0832 5.7093 6.0028 6.0218

(0.0003) (0.0256) (0.0253) (0.0017) [0.0169] [0.0143] [0.0141]
The first four columns report estimates for reported parameters with standard errors in parentheses. Columns for general Wald test, Hausman, and Durbin-Wu-Hausman (DWH) test report test statistics (p-values are

in brackets) for the null hypothesis of exogeneity. General Wald test compares β̂L
2SLS and

∑
j ω̂j β̂j as described in theorem 1, while the Hausman and DWH tests compare β̂L

2SLS and β̂OLS
L . Specifications for Lochner

and Moretti (2004) use men ages 20 to 60 from the 1960 to 1980 U.S. Censuses and include indicators for three-year age categories, year, state of birth, and state of residence. Specifications for blacks also include
an indicator for whether the individual turned age 14 after 1957 and was born in the South. Specifications from Currie and Moretti (2003) use first-time white mothers ages 24 to 35 from Vital Statistics Natality
records from 1970 to 1999 and include median county income, percent urban in county when the mother was 17, and indicators for ten-year birth cohorts, mother’s age, and county-specific year of child’s birth effects.
Specifications for Acemoglu and Angrist (2001) results differ slightly from theirs, since we use only compulsory attendance indicators for instruments and do not estimate the social return to schooling. Specifications
use white men 40 to 49 year old from the 1960 to 1980 U.S. Censuses and include indicators for Census year, year of birth, state of birth, and state of residence.

OLS estimate (in absolute value), even though most reason-
able explanations for the endogeneity of schooling suggest
that the OLS estimate should overstate the importance of
schooling. The corresponding OLS and 2SLS estimates for
blacks are −.0037 and −.0048, respectively.

There are several well-understood reasons that one might
find a larger 2SLS estimate (relative to the OLS estimate),
including the presence of measurement error and individual-
level heterogeneity in the effects of schooling. It is also
possible that nonlinearity in the incarceration-schooling rela-
tionship may play a role. This seems particularly relevant
here given the pattern of OLS estimates for the grade-specific
effects βj reported in figures 1 and 2. If the assumption of uni-
form grade-specific effects were correct and these estimates
were consistent, all of the estimated β̂j should be the same.
Instead, the estimated β̂j suggest that the marginal effects of
different grade transitions vary considerably across years of
schooling. Unless there are much stronger biases for some
grades than others, the figures suggest strong nonlineari-
ties in the relationship between imprisonment and schooling,
with the strongest effect for high school graduation (mov-
ing from grade 11 to 12).22 Based on these findings, Lochner
and Moretti (2004) suggest that high school graduation is an
important margin for incarceration among men, but they are
hesitant to draw strong conclusions from these OLS estimates
due to concerns about endogeneity.

The lines in figures 1 and 2 report estimates of the OLS
and 2SLS weights, as defined in section II. These weights
are clearly very different for white men: the OLS weights
are high between 12 and 16 years of schooling, while the

22 Standard errors for the βj estimates are all less than 0.001 (0.003)
for whites (blacks) except for the first two grade levels. Estimates along
with their standard errors are reported in online appendix table C1. For
comparison, we also report average marginal effects from analogous logit
specifications in online appendix table C2. The pattern of effects is quite
similar.

Figure 1.—Effects of Schooling on the Probability of Incarceration

for White Males (OLS Estimates and Weights)

Figure 2.—Effects of Schooling on the Probability of Incarceration

for Black Males (OLS Estimates and Weights)

2SLS weights are highest at 12 years of schooling, implying
that the effect of moving from 11 to 12 years of school-
ing figures prominently in the 2SLS estimates. This is not
surprising since the instruments adopted (compulsory school-
ing laws) are most effective at shifting schooling levels just
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before or at high school graduation. For black men, the effect
of compulsory schooling is strong at earlier grades, so that
the weights are more shifted to the left. In column 4 of table
1, we reweight the estimated grade-specific effects (β̂j) using
the 2SLS weights in figure 1.23 For whites, the reweighted
OLS estimates are −0.0012, larger than the 2SLS estimates.
The reweighted OLS estimates are larger, because 2SLS puts
more weight on the large βj associated with moving from 11
to 12 years of schooling. For blacks, the reweighted OLS esti-
mate is smaller, because the 2SLS weights are more shifted
to the left and therefore put less weight on larger βj.

The last three columns of table 1 are the most impor-
tant, since they report on different tests for the exogeneity
of schooling. Column 5 presents test statistics and associated
p-values for our proposed test of exogeneity (see theorem
1), which is valid even when the effects of schooling differ
across grades. Columns 6 and 7 present results from the stan-
dard Hausman test and the Durbin-Wu-Hausman test (applied
to the linear-in-schooling specification), respectively, which
are both incorrect when the grade-specific effects differ. For
white men, our test fails to reject, which is quite important
in practice, since it suggests that our OLS estimates of the βj

in figure 1 are consistent. Given a high first-stage F-statistic
of 1,000.3 and the fact that the reweighted OLS estimate is
very close to the 2SLS estimate (a difference of less than
10 percent), it seems reasonable to conclude from our OLS
estimates of βj that high school completion has the strongest
effect on incarceration rates, while college attendance has
much weaker effects.24 This is extremely useful, since with
our limited set of instruments, it is impossible to estimate all
20 βj parameters using 2SLS. Indeed, 2SLS estimates from
highly restricted two-parameter models that relax linearity in
schooling are very imprecise. Fortunately, our test suggests
that IV methods are not necessary in this case.

The case of incarceration for black men is different: our
test strongly rejects the hypothesis that the reweighted OLS
and 2SLS estimates are the same (p-value of .0005), while
the standard Hausman test fails to reject. Reweighting the
OLS estimates for the βj parameters reveals that the OLS
estimates are significantly biased toward 0, on average, since
the reweighted OLS estimate is −.0007 compared to the
2SLS estimate of −.0048. In this case, we cannot draw any
strong conclusions about the relative importance of different
grades due to these biases. These findings empirically demon-
strate that when grade-specific effects may differ, the standard
Hausman test can fail to detect an endogeneity problem when
one exists.

In the second panel, we turn to estimates of the effect of
maternal schooling on infant health from Currie and Moretti

23 The standard error for this reweighted effect is derived using the delta
method and the estimated covariance matrix V̂ defined in section III.

24 See online appendix table C1 for coefficient estimates and their stan-
dard errors. While it is possible that some β̂j are biased upward and others
downward so as to perfectly offset when the 2SLS weights are applied,
this seems highly unlikely given the economics of the problem (see, e.g.,
Lochner & Moretti, 2004).

Figure 3.—Effects of Maternal Schooling on the Probability of Low

Birth Weight (OLS Estimates and Weights)

Figure 4.—Effects of Maternal Schooling on the Probability of

Preterm Birth (OLS Estimates and Weights)

(2003). The instrument in this case is an indicator for college
proximity. (First-stage F-statistics for the instruments are
398.7.) In this case, the reweighted OLS estimates (column 4)
are generally quite similar to the OLS estimates (column 1).
Looking at figures 3 and 4, it is clear why: the OLS and 2SLS
weights are nearly identical. Not surprisingly, our test and
the standard Hausman test produce very similar test statistics
and the same conclusions: exogeneity cannot be rejected for
either child health outcome.

Finally, in the bottom panel, we turn to estimates of the pri-
vate return to schooling using three dummies for compulsory
schooling as instruments. While this analysis is based on that
of Acemoglu and Angrist (2001), we consider the effects of
schooling on log annual earnings rather than weekly wages
for white men in their 40s. Figure 5 reports the OLS estimates
of the βj parameters as well as the OLS and 2SLS weights.
OLS estimates indicate that an additional year of schooling
translates into an 8.2 percent increase in annual earnings,
while the 2SLS estimates suggest a much larger return.
The reweighted OLS estimates fall in between the OLS and
2SLS estimates, although they are much closer to the OLS
estimates. The effect of reweighting is minor despite sub-
stantially different OLS and 2SLS weights. Our test rejects
the hypothesis that the reweighted OLS and 2SLS estimates
are equal, even though the instruments are not particularly
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Figure 5.—Effects of Schooling on Log Annual Earnings for Men

(OLS Estimates and Weights)

strong in this application (the first-stage F-statistic for the
instruments is only 29.5).

V. Conclusion

In applied work, OLS and IV estimates often differ. In
many cases, the sign of the difference is surprising given eco-
nomic theory and plausible assumptions about the direction
of endogeneity bias. Influential work by Imbens & Angrist
(1994), Angrist & Imbens (1995), and Heckman and Vytlacil
(2005) has clarified the interpretation of IV estimates as a
local average treatment effect when the regression parameter
of interest varies across individuals. Our work complements
the existing understanding of the differences between IV and
OLS estimates when the model is misspecified.

We consider a specific class of models with a single finite-
valued discrete endogenous regressor, exogenous regressors
that are additively separable and enter linearly, and coeffi-
cients that do not vary across individuals. Models of this type
are widely used in empirical research to study the effects
of multivalued program treatments, drug dosage levels, and
schooling attainment. We focus attention on the possibility
that per unit treatment effects vary across levels of treatment.

The growing focus on identification of causal effects in
economics has led many researchers to estimate models of
this type using IV methods. Yet due to the limited availabil-
ity of valid instruments, it is common to estimate models
that assume uniform per unit treatment effects even when
those effects are likely to vary across treatment levels, as fre-
quently suggested by more general specifications estimated
using OLS. We show that in this case, OLS and IV/2SLS
estimators identify different weighted averages of all per
unit effects, which can lead to incorrect conclusions about
endogeneity when using a standard Hausman test.25

25 Other important concerns include the strength and exogeneity of
the instrument(s). Our approach abstracts from instrument-related prob-
lems’ instead addressing problems associated with misspecification in the
structural equation if at least one exogenous instrument is available.

The main contribution of this paper is to develop a simple
generalization of the Hausman test to assess whether differ-
ential weighting and variable per unit treatment effects can
explain the difference between OLS and IV/2SLS estima-
tors. Within the class of models under consideration, this
serves as a specification test for exogeneity under reason-
able conditions. Conveniently, this test requires only a single
instrument, making it useful in many applications.
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