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I assess the magnitude of human capital spillovers by estimating production func- 
tions using a unique firm-worker matched data set. Productivity of plants in cities 
that experience large increases in the share of college graduates rises more than the 
productivity of similar plants in cities that experience small increases in the share 
of college graduates. These productivity gains are offset by increased labor costs. 
Using three alternative measures of economic distance-input-output flows, tech- 
nological specialization, and patent citations-I find that within a city, spillovers 
between industries that are economically close are larger than spillovers between 
industries that are economically distant. (JEL J30, L60, 040) 

Human capital externalities may arise if the 
presence of educated workers makes other 
workers more productive. Alfred Marshall 
(1890) is among the first to recognize that social 
interactions among workers create learning op- 
portunities that enhance productivity. A grow- 
ing theoretical literature has since then built on 
this idea and proposed models where human 
capital externalities are the main engine of eco- 
nomic growth. In an influential paper, Robert E. 
Lucas, Jr. (1988) argues that human capital ex- 
ternalities in the form of learning spillovers may 
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be large enough to explain long-run income 
differences between rich and poor countries. 

Empirical evidence indicates that spillovers 
may be important in some high-tech industries.l 
Yet, despite significant policy implications, 
there is little systematic empirical evidence on 
the magnitude of human capital spillovers. Only 
recently have some authors attempted to esti- 
mate the size of spillovers from education by 
comparing the wages of otherwise similar indi- 
viduals who work in cities or states with differ- 
ent average levels of education (James E. 
Rauch, 1993; Daron Acemoglu and Joshua An- 
grist, 2000; Antonio Ciccone and Giovanni 
Peri, 2002; Moretti, 2004). 

In this paper, I take a more direct approach to 
the estimation of human capital externalities 
and focus on the productivity of manufacturing 
plants. The idea is quite simple. If externalities 
exist, we should see that plants located in cities 
with high levels of human capital can produce a 
greater output with the same inputs than other- 
wise similar plants located in cities with low 
levels of human capital. To test this hypothesis, 
I estimate plant-level production functions us- 

1 For example, patient citations are more likely to come 
from the same state or metropolitan area as the originating 
patent; see Adam Jaffe et al. (1993). The entry decisions of 
new biotechnology firms in a city depends on the stock of 
human capital of outstanding scientists there, as measured 
by the number of relevant academic publications (Lynne G. 
Zucker et al., 1998). 
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ing a unique firm-worker matched data set, 
obtained by combining the Census of Manufac- 
turers with the Census of Population. 

For each plant and city, I define the overall 
level of human capital in the city by calculat- 
ing the fraction of college-educated workers 
among all workers in the city outside the 
plant. After controlling for a plant's own hu- 
man capital, I find that the productivity of 
plants located in cities that experience in- 
creases in the overall level of human capital 
rises more than the productivity of otherwise 
similar plants located in cities where the over- 
all level of human capital is constant. The key 
econometric issue in comparing the produc- 
tivity of plants across metropolitan areas with 
different overall levels of human capital is the 
possible presence of unobserved factors that 
raise productivity and attract a more skilled 
labor force to a city. It is possible that more 
productive plants are located in cities with a 
better-educated labor force for reasons inde- 
pendent of human capital spillovers. 

A benefit of using longitudinal, plant-level 
data is that I can deal with some of the most 
relevant endogeneity and selectivity issues. By 
looking at changes over time, I control for per- 
manent unobserved characteristics of plants and 
cities that might bias a simpler cross-sectional 
specification. It is still possible that time- 
varying productivity shocks are correlated with 
changes in the overall level of human capital in 
an area. For example, if southern states that 
have low levels of productivity at the beginning 
of the period catch up, and this modernization 
process in turn attracts a better-educated labor 
force to the South, then the estimated spillover 
will be too large. To lessen any fear that overall 
college share is correlated with time-varying 
unobserved factors, I control for state x indus- 
try X year effects. Identification comes by com- 
paring changes over time in the productivity of 
plants that are in the same state and industry, 
but in different cities. 

According to the most robust estimates, a 
1-percent increase in the city share of col- 
lege graduates is associated with a 0.5- 
0.6-percentage-point increase in output. This 
estimate is remarkably robust across specifica- 
tions. Different assumptions on technology, 
omitted variables, and variable definitions all 
yield similar results. Even after controlling for 

plant fixed effects, industry-specific transitory 
shocks, and state-specific transitory shocks, it is 
still possible that part of the correlation between 
plants' productivity and aggregate human capi- 
tal reflects changes in time-varying unobserved 
characteristics of cities. I cannot completely 
rule out this possibility, but I do provide several 
additional pieces of evidence to further investi- 
gate the validity of my conclusions. 

I test whether the documented spillovers be- 
tween two industries that are located in the same 
city and are economically close are larger than 
the spillovers between two industries that are 
located in the same city and are economically 
distant. Consistent with the view that measured 
spillovers represent the transmission of knowl- 
edge across related sectors, I find that spillovers 
generally decline with economic distance. For 
example, I find that aggregate human capital in 
the high-tech sector of the city matters more for 
high-tech plants than aggregate human capital 
in the low-tech sector of the city; and aggregate 
human capital in the low-tech sector matters 
more for low-tech plants than aggregate human 
capital in high-tech plants.2 

I probe the relationship between economic 
distance and spillovers using three direct mea- 
sures of economic distance. First, I use input- 
output tables and assume that the economic 
distance between manufacturing and other in- 
dustries is proportional to the value of inputs 
that each industry provides to manufacturing. 
Second, I use an index of technological distance- 
first proposed by Jaffe (1986)-based on the 
distribution of patents across technological 
fields. According to this metric, two industries 
are close if the distribution of patents across 
technologies is similar. Third, I use a metric 
based on linkages revealed by patents citations 
(Jaffe et al., 1993). According to this metric, an 
industry is close to manufacturing if manufac- 
turing patents frequently cite that industry's pat- 
ents. Using these three metrics, I find that the 
magnitude of the estimated spillover tends to 
decline with economic distance, although this 
relationship is by no means monotonic. 

I provide several other specification tests of 

2 Similarly, human capital in the same 2-digit industry 
has a larger effect than human capital in the entire manu- 
facturing sector. 
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the estimated spillover effects. Most impor- 
tantly, I test whether the stock of physical cap- 
ital in a city outside a plant is associated with 
increased productivity in the plant. If my esti- 
mate of human capital spillovers are spurious, 
or attributable to agglomeration effects rather 
than human capital externalities, then I may find 
a similar "spillover" from physical capital. The 
results show no evidence of such physical cap- 
ital spillover. 

I also use an instrumental variable ap- 
proach based on the fraction of large plant 
openings among all the plant openings in a 
city excluding the relevant 3-digit industry as 
an instrument for college share in other in- 
dustries. Openings of large new plants are an 
important determinant of changes in the ag- 
gregate education level of manufacturing 
workers, explaining 11-18 percent of the 
changes in the fraction of college-educated 
workers. Instrumental variable estimates are gen- 
erally consistent with ordinary least-squares 
(OLS) estimates, although less precise. 

In the last section of the paper, I assess the 
plausibility of the estimated spillover effect by 
comparing it to the difference in labor costs 
between cities with high and low levels of hu- 
man capital. In equilibrium, if firms are really 
more productive in cities with high levels of 
human capital, we should observe proportion- 
ally higher wages in those cities. Otherwise, 
firms would relocate from cities with low hu- 
man capital to cities with high human capital. I 
find that the estimated productivity differences 
generated by human capital spillovers are 
roughly offset by increased labor costs. 

Overall, I cannot reject the existence of hu- 
man capital spillovers in U.S. manufacturing. 
However, because the stock of human capital 
grows slowly over time, the contribution of 
human capital spillovers to economic growth is 
not large. The most robust estimates in this 
paper indicate that human capital spillovers are 
responsible for an average of 0.1-percent in- 
crease in output per year during the 1980's. 

The paper is organized as follows. In Section 
I, I present a simple general-equilibrium frame- 
work with spillovers. In Section II, I describe 
the econometric specification adopted and I dis- 
cuss the potential sources of bias. In Section III, 
I describe the data. Sections IV, V, and VI 
present the empirical results. In Section VII, I 

compare the estimated spillover effects with 
wage differences across cities. Section VIII 
concludes. 

I. Equilibrium with Spillovers 

In this section I present a simple general- 
equilibrium framework to illustrate the nature 
of a spatial equilibrium in the presence of hu- 
man capital spillovers. The model is adapted 
from a well-known model by Jennifer Roback 
(1982, 1988). The intuition is simple. Firms are 
more productive in cities with high overall lev- 
els of human capital, because of spillovers. In 
equilibrium, firms are indifferent between cities 
because wages are higher in cities with a higher 
overall level of human capital, so that unit 
costs are the same everywhere. Workers are 
indifferent because housing prices are higher in 
cities with a higher overall level of human cap- 
ital. The model indicates that there are two ways 
to empirically measure human capital external- 
ities: by comparing the output of firms located 
in cities with high and low levels of human 
capital; and by comparing the wages of workers 
located in cities with high and low levels of 
human capital. In this paper, I take the former 
approach. In Section VII, I show that the esti- 
mated productivity differences between cities 
with high and low levels of human capital are 
consistent with observed wage differences be- 
tween cities with high and low levels of human 
capital. 

Consider two cities and two types of labor, 
educated and uneducated workers. There are 
two types of goods, a composite good y- 
nationally traded-and land h-locally traded. 
Each city is a competitive economy that pro- 
duces y using a Cobb-Douglas technology: y = 
AH"HL"LKO, where H and L are the hours 
worked by skilled and unskilled workers, re- 
spectively, and K is capital. To introduce the 
possibility of human capital spillovers in the 
model, I allow the productivity of plants in a city 
to depend on the aggregate level of human 
capital in the city: A f(S). In the empirical part 
of the paper, for each firm and city, I measure S 
using the fraction of college-educated workers 
in the city, outside the firm. In the absence 
of human capital spillovers from education, 

. In this case, productivity of a firm S - 0. In this case, productivity of a firm 5S 
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Rent-p 

C(w ,wz p, S) = 

wage w* wage w. 
in A in B 

HIGH FOICATnON 

wage w'> wage 
in A in B 

LOW EDUCATION 

FIGURE 1. EQUILIBRIUM WAGES AND RENT IN TWO CITIES 

Notes: Point 1 is the equilibrium in city A. Point 2 is the equilibrium in city B without externality. Point 3 is the equilibrium 
in city B with externality. The dashed lines in both panels are the isocost curves in city B without externality. wH and WL are 
the nominal wages of educated and uneducated workers, respectively. 

increases if more skilled workers are employed in 
the firm, but holding constant the firm's labor 
force, increases in the share of educated workers 
in the city have no effect on productivity. On the 
other hand, if the college share in a city generates 
positive human capital spillovers, a rise in college 
share raises productivity of all plants in the city: 
f 5 > 0. Different mechanisms for human capital 
exteralities have been proposed in the theoretical 
literature, and the model proposed here is consis- 
tent with most of these.3 

3 Marshall (1890) is often quoted as arguing that social 
interactions among workers in the same industry and loca- 
tion create learning opportunities that enhance productivity. 
More recently, an influential paper by Lucas (1988) focuses 
on the benefits associated with urban areas that come from 
firms acquiring ideas from their neighbors. In Lucas' words: 
"We know that there are group interactions that are central 
to individual productivity. [...] We know that this kind of 
external effect is common to all the arts and sciences." The 
external effect of human capital, Lucas adds, is not limited 
to art and science. "Much of economic life is creative in 
much the same way as is art and science." Lucas argues that 
long-run income differences across countries can be ex- 
plained by human capital externalities in the form of learn- 
ing spillovers. In other models of learning, individuals 
augment their human capital through exchanges of ideas in 
meetings with more skilled neighbors (Boyan Jovanovic 
and Rafael Rob, 1989; Edward Glaeser, 1999). Acemoglu 
(1996) proposes an alternative model where human capital 

Because the composite good, y, is traded, its 
price is the same everywhere. Variation in the 
cost of living depends only on variation in cost 
of land, p, which is the same for all workers in 
a city. Workers maximize utility subject to a 
budget constraint by choosing quantities of the 
composite good and residential land. Workers 
and firms are perfectly mobile, and profits are 
assumed to be zero. Equilibrium is obtained 
when the utilities of workers in all cities are 
equal and firms in different cities have equal 
unit costs. 

The equilibrium for the simple case of only 
two cities, A and B, is described in Figure 
1. The upward-sloping lines in each panel 
represent indifference curves for the two edu- 
cation groups. Indirect utility of skilled and 
unskilled workers-VH(WH, p) and VL(wL, p), 
respectively-is a function of nominal wages 
and cost of land. The downward-sloping lines 
show combinations of wages and rents that hold 
constant firms' unit costs: C(wH, WL, p, r, S) = 1, 
where r is the price of capital, which is assumed 

externalities arise even without learning externalities. The 
goal of this paper is to test whether spillovers are empiri- 
cally relevant. Testing which of the explanations proposed 
in the theoretical literature is valid is beyond the scope of 
this paper. 

Rcnt-p 
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to be constant across cities. If human capital 
externalities exist, S enters the cost function. In 
cities with more human capital, firms can pro- 
duce the same level of output with less labor 
and capital. In equilibrium, utility of workers is 
equalized across locations: VH(WH, p) = kH and 
VL(WL, p) = kL for educated and uneducated 
workers, respectively. A zero-profit condition 
for the firm assures that production must take 
place along the downward-sloping curve. Thus 
the model has three equations (unit cost and 
indirect utility for each skill group) in three 
unknowns (wH, WL, and p). Point 1 in the left 
panel of Figure 1 represents the equilibrium 
combination of wage of educated workers and 
cost of land in city A. Point 1 in the right panel 
represents the same combination for uneducated 
workers.4 

Consider what happens if the share of 
college-educated workers is higher in city B 
than in city A. For example, suppose that, be- 
cause of technological differences, skilled 
workers are particularly productive in city B 
and demand for them is high. Skilled workers 
move to B, attracted by higher wages. Even 
without spillovers, wages are higher. Point 2 
represents the equilibrium in city B if there are 
no spillovers.5 If the spillover exists, then the 
isocost curve shifts further to the right. The 
magnitude of the spillover is the distance from 
2 to 3. 

In equilibrium, firms in city B are more pro- 
ductive than firms in city A. Since firms are free 
to relocate from A to B, why is productivity not 
driven to equality? Wages (and rent) are higher 
in city B, making firms indifferent between cit- 
ies. If the cost of land is not very important for 
firms, the increased productivity in B relative to 
A should be offset by increased labor costs in B 
relative to A. I will come back to this point in 
Section VII, where I compare my estimates of 
the difference in productivity between cities 

4 I follow Roback (1988) and take the level of utility kH 
and kL as parameters for simplicity. Closure of the model 
would require that the level of utility is made endogenous. 
This would complicate the model, without making it more 
insightful. 5 In the absence of externalities, the wage of educated 
workers is higher in B because they are more productive. 
The wage of uneducated workers is higher because of 
complementarity (imperfect substitution). 

with high and low human capital with existing 
differences in labor costs. 

II. Econometric Framework 

The model in Section I indicates that, if hu- 
man capital spillovers exist, firms in cities with 
higher overall level of human capital S will be 
more productive. This paper estimates produc- 
tion functions to assess the magnitude of the 
productivity gains that are generated by human 
capital spillovers. The fundamental problem in 
estimating spillovers is the presence of unob- 
servable factors that affect productivity and are 
correlated with the overall level of human cap- 
ital across cities. It is possible that more pro- 
ductive firms are located in areas with higher 
levels of human capital for reasons independent 
of human capital externalities. I begin this sec- 
tion by introducing heterogeneity into the 
model described in the previous section. I then 
describe the econometric specification adopted, 
and discuss under what conditions human cap- 
ital spillovers can be empirically identified. 

A. Empirical Specification 

To see the implications of unmeasured pro- 
ductivity shocks, assume, as before, that tech- 
nology can be described by the following Cobb- 
Douglas production function: 

=\A M ;"Lj 1(tKP (1) Ypjct = pjct pjHctLpjctpjct 

where ypjct is output of plant p, belonging to 
industry j, in city c, and year t; j indexes 3-digit 
industries; Hpjct is the number of hours worked 
by skilled workers in the plant; Lpjct is the 
number of hours worked by unskilled workers; 
Kpjct is capital. Assume that Apjct is a function of 
the fraction of college-educated workers outside 
the firm in the same city. In addition, assume 
that productivity depends on various industry, 
city, and time components: 

(2) In Ajc,, = yS-j,, + Ep + Ej + Et + eC 

+ Ejt + ect + Est + Epjct 

where S_jet is the share of college graduates 
among all manufacturing workers in city c with 
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the exception of workers in industry j; and the 
E's are unobserved productivity shocks at the 
plant, city, state, industry, and year level (s 
indexes the state where city c is located). Equa- 
tion (2) captures only spillovers that occur 
within a city across 3-digit industries. It does 
not capture potential spillovers that occur 
within a plant, which are likely to be internal- 
ized. Nor does it capture spillovers that occur 
between plants in the same 3-digit industry, 
because estimation of these types of spillovers 
is not empirically feasible due to data limita- 
tions. To the extent that spillovers between 
plants in the same 3-digit industry are large, 
estimates of y are to be interpreted as a lower 
bound on the magnitude of total spillovers.6 For 
now, equation (2) captures only spillovers gen- 
erated within manufacturing. Later, I generalize 
this assumption and I include the college share 
in other industries. 

In logs the production function becomes 

(3) In y,jc = yS-jct + aHjln Hpjct + aLjln Lpjc, 

+ /3,ln Kpj,, + p + E + E, + Ec 

+ Ejt E + e + et + Epjct. 

The main concern in estimating the key co- 
efficient y is the presence of unobservable pro- 
ductivity shocks that are correlated with college 
share. Any positive correlation between the E's 
and S_jct will result in overestimates of y.7 

6 In theory, a more general specification would allow for 
spillovers between plants in the same 3-digit industry. This 
alternative specification would replace S_jct in equation (2) 
with S_pjct, which is the college share in all manufacturing 
plants in city c with the exception of plant p. As it will be 
clear below, this is not feasible because of data limitations. 
Note, however, that the 3-digit industry classification is very 
detailed, and in many cases there is only one plant per city 
in each 3-digit industry, so that S-jc = 

S-pjct 7 For example, the term Ep captures unmeasured plant 
characteristics that do not change over time, such as the 
quality of machines, patents, quality of management, and 
the culture within the firm; ec captures permanent city 
characteristics, such as public infrastructure, weather con- 
ditions, the presence of research universities, and efficiency 
of local authorities; et captures general trends in technology 
that affect all plants as well as variation in productivity over 
the business cycle; ej captures fixed industry characteristics; 
Ect is a time-specific shock that affects productivity of all 
plants in city c, irrespective of the industry, such as the 
opening of an airport, the construction of a rail link or a 

A major advantage of using a longitudinal 
plant-level data set is that I am able to control 
for many permanent and time-varying factors 
that may affect both productivity and overall 
college share. Specifically, I estimate a produc- 
tion function that includes plant fixed effects 
(dp), industry X year effects (dj), and state X 
year effects (dst): 

(4) In Ypjst = yS-jc + ln Hpjc + Ljln Lpjct 

+ jln Kpjct + dp + djt + ds + Ect + epjct. 

Equation (4) is the basis of the empirical 
analysis in this paper. The coefficients on cap- 
ital and labor are allowed to vary across indus- 
tries, reflecting technological differences. Plant 
fixed effects fully absorb any permanent het- 
erogeneity at the plant, city, or industry level 
(ep, Ec, and ej). Because of the inclusion of plant 
fixed effects, identification is based on changes 
over time in the external college share. State x 
year effects absorb any state-specific time- 
varying shocks that are shared by all plants in 
the same state (Est). Similarly, industry x year 
absorb any industry-specific time-varying shocks 
(ejt). In the most robust models, I also include 
industry x state X year effects (djst). In these 
models, identification comes from changes over 
time within a state and industry. To account for 
at least some time-varying city-specific hetero- 
geneity, in some specifications I control for city 
characteristics that are potentially correlated 
with college share, such as city population, un- 
employment rate, and racial composition. 

The main source of heterogeneity that is not 
controlled for in equation (4) is the time- 
varying, city-specific shock: ct. The possible 
correlation between Ect and college share in all 
other industries in the same city, S-jct, is a 
concern. Note that correlation between Ect and 
college share in the same industry, Sjt, would 
not, in itself, result in biased estimates. 

freeway; Ej, captures industry and year-specific shocks, such 
as the introduction of an industry-specific new technology; 
E,t captures state- and time-specific shocks. 

8 In theory one might think to absorb Ec, with city X year 
effects. In practice, though, this is not feasible, because such 
a model would be almost completely saturated. Since 
3-digit industries are small, most of the variation in S-jc, is 
at the city X year level. 
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B. Threats to Identification 

The key identifying assumption is that after 
controlling for plant effects, industry X state X 
year effects and time-varying city-observable 
characteristics, the fraction of college graduates 
S-jct is uncorrelated with unobserved citywide 
shocks Ect One example where this assumption 
is valid is if differences in residual changes in 
college share across cities are driven by changes 
in tastes of more-educated people. 

What are examples of situations that would 
violate my identifying assumption? The possi- 
bility that plants with better machines or better 
management are located in areas with higher 
college shares is unlikely to constitute a major 
problem here, as plant fixed effects absorb both 
plant- and city-specific permanent heterogene- 
ity. Changes in local business-cycle conditions 
could in theory affect both productivity changes 
and changes in college share. However, it seems 
unlikely that differences in the business cycle 
could constitute a major problem here, since 
most of the variation in business cycle is ab- 
sorbed by the state X year and industry X year 
dummies. Furthermore, in some specifications, I 
control for state X industry X year dummies. 

Many types of skill-biased technological 
shocks are also unlikely to violate my assump- 
tion. One example could be the introduction of 
computers. If computers are adopted equally by 
all firms, the productivity of skilled workers 
will increase in all industries and cities relative 
to the productivity of unskilled workers. Be- 
cause I control for skilled and unskilled labor in 
each plant, this type of shock should not bias 
my estimates.9 Similarly, industrywide skill- 
biased technological shocks are unlikely to pose 
a major threat to my empirical design, because 
I control for the distribution of skills in each 
plant and the coefficients on skilled labor and 
unskilled labor are allowed to vary by indus- 
try.10 A similar conclusion holds in the case of 

9 The only effect should be an increase in the coefficient 
on skilled labor. Empirically, I find that, consistent with a 
skill-biased technical change story, the coefficient on skilled 
workers does increase in 1990 relative to 1980. 

10 For example, a skill-biased technology shock that af- 
fects the computer industry will result in a larger coefficient 
on skilled labor for plants in that industry. Furthermore, it is 
plausible that most computer producers across the nation or 

a skill-biased technological shock that is spe- 
cific to all plants in one industry in one city. For 
example, consider a shock to the computer in- 
dustry in San Jose that does not affect the com- 
puter industry in San Francisco. If the shock is 
not transmitted to other industries in San Jose, 
this shock would not affect college share in 
other industries, and therefore would not result 
in biased estimates.1t 

In general, in order for a shock to induce 
spurious correlation in equation (4), the produc- 
tivity shock must be (1) citywide, (2) time- 
varying, and (3) must be correlated with college 
share across cities within a state and industry. 
One potential example of such shock is the 
opening of an airport or a freeway. If the new 
infrastructure raises the productivity of all ex- 
isting manufacturing plants in the city, and at 

at least in California would be experiencing similar in- 
creases in productivity, so that industry X year x state 
effects would absorb most of this unobserved shock. 

1 On the other hand, a city-specific skill-biased techno- 
logical shock that is shared by all plants could be problem- 
atic. This could be the case, for example, if plants tend to 
borrow technologies from other industries in the same city. 
If this type of shock affects all manufacturing plants in some 
cities but not in other cities in the same state and also raise 
the aggregate stock of skilled workers in those cities, then 
my estimates would overstate the magnitude of human 
capital spillovers. 

Another case where my strategy would fail to fully 
account for skill-biased technological shocks is the case of 
endogenous technological change-where firms choose 
their technology based on the number of skilled workers in 
the city. Suppose that a new technology is introduced that 
raises the productivity of skilled workers, and that there are 
different intensities of adoption available to firms. Assume 
also that firms choose the intensity of adoption based both 
on the skill intensity in the firm and on the overall stock of 
skilled workers in their local economy. In particular, assume 
that, holding constant the skill intensity in the firm, firms 
located in cities with a larger fraction of skilled workers 
choose the version of the technology which has the largest 
effect on productivity. In this case, two identical firms, 
employing the same number of skilled and unskilled work- 
ers, would experience different unobserved productivity 
shocks, and these shocks would be proportional to the stock 
of skilled workers in each city. This scenario depends on the 
assumption that technology adoption depends not only on 
the skill intensity inside the firm, but also on the fraction of 
skilled workers outside the firm in the same city. Although 
there are theoretical models built on this or similar assump- 
tions (Acemoglu, 1996), I am not aware of any empirical 
study that investigates this hypothesis for U.S. cities. 
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the same time attracts more college graduates to 
the city, estimates of y will be too large. These 
kinds of shocks are not likely to be very impor- 
tant in my sample period. 

Perhaps a more plausible source of bias is 
changes in the unobserved quality of workers. 
Although I control for the skill level of workers 
in each plant, it is in theory possible that work- 
ers of higher unmeasured ability move to cities 
that experience larger increases in college share. 
I discuss this issue in greater length in Section 
VI, subsection B, providing some evidence that 
heterogeneity in workers' quality is not in fact 
driving my results [see equation (7)]. 

In sum, while I cannot completely rule out 
the possibility that at least some of the estimated 
effect reflects citywide, time-varying productiv- 
ity shocks, it appears that many plausible 
sources of spurious correlation are accounted 
for. In Sections V and VI, I describe additional 
specification tests that may help in assessing the 
validity of my assumptions. 

A final concern is that capital and labor inputs 
should in theory be treated as endogenous. Un- 
like the usual case of estimation of production 
functions, here the focus is not on estimating the 
coefficients on capital and labor, but it is on 
estimating y. Endogeneity of capital and labor 
is an issue only to the extent that it results in 
biased estimates of y. Throughout the paper, I 
assume that, after controlling for plant effects, 
industry X year effects, and state X year ef- 
fects, endogeneity of capital and labor does not 
significantly bias estimates of y. This assump- 
tion is potentially problematic.12 To assess the 
sensitivity of my results to this assumption, in 
Section VI, subsection B, I directly measure 
total factor productivity (TFP) and then explain 
changes in TFP as a function of changes in S. 
This strategy does not involve estimating the 
production function, but it relies on the assump- 
tion that factor prices equal marginal products. 
Results are generally consistent with results 
from the main specification obtained by directly 
estimating the production function, suggesting 
that endogeneity of capital and labor does not 
introduce a large bias in the main specification. 

12 For example, the work by Steven Davis and John 
Haltiwanger (1999) suggests that industry-state shocks do 
not explain microfluctuations in labor. 

III. Data 

The data come from a unique match between 
plant records from the Census of Manufacturing 
in 1982 and 1992 and worker characteristics 
from the Census of Population. The Census of 
Manufacturers is a longitudinal data set that 
covers the universe of manufacturing establish- 
ments with one paid employee or more. The 
unit of observation in the Census of Manufac- 
turers is the plant.13 Two important advantages 
of the Census of Manufacturers are its panel 
structure, and that it has a sample size large 
enough to allow a disaggregation of the data by 
metropolitan area. 

Although the Census of Manufacturers con- 
tains detailed information on the number of 
hours worked in each plant, information on the 
education level of workers is not reported. To 
obtain data on workers' education, I match 
workers in the 1980 and 1990 Censuses of Pop- 
ulation to firms in the Census of Manufacturers, 
by industry and city. Specifically, I assign each 
plant in the Census of Manufacturers and each 
worker in the Census of Population to a city- 
industry cell based on the metropolitan area 
code and a 3-digit industry definition. The 
3-digit industry definition is quite detailed, so 
the cells are narrow. Examples of 3-digit indus- 
tries include: iron and steel foundries (SIC 332); 
engines and turbines (SIC 351); electronic com- 
puting equipment (SIC 357); soaps and cosmet- 
ics (SIC 284). For each city-industry cell, I use 
the Census of Population to calculate the frac- 
tion of hours worked by individuals with college, 
some college, high school, and less than high 
school. I combine this information with plant- 
level information on the total number of hours 
worked from the Census of Manufacturers to im- 
pute the number of hours worked by each educa- 
tion group in each plant. This imputation strategy 
is similar (although not identical) to the one 
adopted by Judith K. Hellerstein et al. (1999). 

For city-industry cells for which there is only 
one plant, the matching is exact. In some cells, 
however, there is more than one plant. One 
example is "Motor Vehicles and Passenger Car 
Bodies" (SIC 371) in Detroit. For cells for 

13 A company operating at more than one location is 
required to file a separate report for each location. 
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TABLE 1-SUMMARY STATISTICS 

1982 1992 

Standard Standard 
Mean deviation Mean deviation 

(1) (2) (3) (4) 
Value of output (X1,000) 19,944.0 163,592.5 20,938.7 174,087.5 
Added value ( 1,000) 8,019.1 55,307.8 9,412.53 69,566.91 
Capital (X1,000) 7,042.1 62,003.4 8,007.13 62,502.58 
Hours worked (X 1,000) 223.2 432.4 222.7 435.7 
Hours worked by college 38.9 309.5 39.0 310.8 

graduates (X 1,000) 
Hours worked by workers with 43.5 338.6 67.7 333.7 

some college ( 1,000) 
Hours worked by high school 90.4 342.4 73.7 310.0 

graduates (X 1,000) 
Hours worked by high school 50.2 249.4 42.4 136.8 

dropouts (X 1,000) 
High tech 0.099 0.298 0.099 0.298 
Average hourly wage 13.54 5.50 13.73 5.40 
Belong to multiunit firm 0.25 0.43 0.29 0.45 
College share in other industries 0.161 0.042 0.191 0.061 
Number of plants 40,281 40,81 

Note: Monetary values are in 1992 dollars. 

which there are more than one plant, the impu- 
tation is based on the assumption that the frac- 
tion of hours worked by each education group is 
the same for all plants in the same cell. In the 
Detroit example, this assumption allows "Motor 
Vehicles and Passenger Car Bodies" plants in 
Detroit to have different number of hours worked, 
but requires the fraction of hours worked by col- 
lege graduates, individuals with some college, 
high school graduates and high school dropouts 
to be the same for all plants in that industry in 
Detroit. The Data Appendix provides a detailed 
description of the Census of Population and 
Census of Manufacturers and the matching al- 
gorithm. The matched sample is a balanced 
panel with 40,281 plants. Descriptive statistics 
for the matched sample are reported in Table 1. 

In the preferred specification, I estimate 
equation (4) controlling for the number of hours 
worked by individuals belonging to two educa- 
tion groups: high school or less [L in equation 
(4)]; and some college or more [H in equation 
(4)]. Since plants in cities with a more-educated 
labor force are more likely to employ educated 
workers, obtaining a good estimate of the skill 
distribution in each plant is particularly impor- 
tant. Failing to adequately control for the skill 
level of workers in the plant may result in an 
upward bias in the estimated spillover. 

To assess whether this is an issue, I test 
whether my results are robust to a finer charac- 
terization of the education distribution of work- 
ers in the plant. For example, I control for hours 
worked by three education groups: high school 
or less, some college, college or more. In other 
models, I also exploit the information available 
in the Census of Manufacturers on the number 
of hours worked by production and nonproduc- 
tion workers in each plant-basically hours 
worked by blue and white collar workers. These 
models separately control for hours worked by 
production workers belonging to two (in some 
cases three) education groups and hours worked 
by nonproduction workers belonging to two (in 
some cases three) education groups.14 Empiri- 

141 impute hours worked in the plant by production and 
nonproduction workers belonging to different education 
groups using a strategy similar to the one just described. For 
each city-3-digit industry cell, I use the Census of Popula- 
tion to calculate the fraction of hours worked by production 
and nonproduction workers based on occupation. I assume 
that workers who in the Census of Population have blue- 
collar occupations are production workers, and workers who 
have white-collar occupations are nonproduction workers. I 
combine this information with plant-level information on 
the total number of hours worked by production and non- 
production workers from the Census of Manufacturers to 
impute the number of hours worked by each education- 
occupation group in each plant. 
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cally, I find that my estimates are not sensitive 
to different ways of accounting for the distribu- 
tion of human capital inside the plant. 

As a way to check the reliability of the matched 
worker-firm data, I estimate plant-level wage 
equations. If the matching is correct and measure- 
ment error is not too large, I expect wage equation 
coefficients to be close to the ones usually found 
in the wage equation literature. I show in the 
Appendix that this in fact seems to be the case. 

In interpreting the results I present below, it 
is important to bear in mind a limitation of the 
data. The longitudinal data set that I use is not 
necessarily representative of the full population 
of plants, because it only includes plants that are 
observed both in 1982 and 1992. One conse- 
quence is that large plants are more likely to be 
in the sample. In some models, I reweight the 
observations so that the distribution of plant size 
and other observable plant characteristics repro- 
duces the distribution in the original population 
(see Section VI, subsection B). Note, also, that 
by controlling for capital and labor inputs, all 
models effectively control for plant size.15 

The key independent variable is college share 
in the city outside the industry, S_j t. I use the 
Census of Population to obtain an estimate of 
S_jct. An alternative specification would be to 
use average years of schooling instead of col- 
lege share. There is no obvious a priori reason 
to choose one measure of aggregate human cap- 
ital over the other.16 I re-estimated all the mod- 
els using average schooling instead of college 
share, and obtained results that are qualitatively 
similar to the one presented here.17 

IV. Estimates of Human Capital Spillovers 

I now turn to the empirical results. As depen- 
dent variables, I can use either value of ship- 
ments or value added, which is value of 

15 I have also looked at whether the probability that a 
plant exists in 1982 but not in 1992 is correlated with the 
change in the city college share. I find that this is not the case. 

16 In previous work I have used college share (Moretti, 2004). 
17 It is important to note that spillovers may arise not 

only from the share of college graduates in an area, but also 
from their total number or their density. In this paper, I 
focus on spillovers that arise from the share of college 
graduates. I do not capture spillovers arising from density of 
human capital. When I control for changes in city popula- 
tion, my estimates do not change significantly. 

shipments minus cost of materials. Previous lit- 
erature suggests that neither measure is per- 
fect.18 I present results based on value added, 
but I have reestimated all the models using 
value of shipments and obtained similar results. 
I report results based on value of shipments in 
Table 8 below. 

Cross-Sectional Estimates.-I begin by pre- 
senting cross-sectional estimates of plant-level 
production functions. Columns (1) and (2) in 
Table 2 refer to a specification where technol- 
ogy is Cobb-Douglas. The coefficient y on col- 
lege share outside the industry in columns (1) 
and (2) is 0.84 in 1992 and 0.81 in 1982, indi- 
cating that a one-percentage-point increase in 
the overall share of college graduates in the city 
(excluding the industry a plant belongs to) is 
associated with an increase in productivity by 
0.8 percent. Through the paper, standard errors 
are corrected for city-year clustering. 

The models control for capital stock, hours 
worked by skilled and unskilled labor, a dummy 
equal to one if the plant belongs to a multiunit 
firm, and 3-digit industry dummies. Capital 
stock for equipment and structures is measured 
from the book values deflated by capital stock 
deflators.19 Hours worked by unskilled workers 
are hours worked by workers who have a high 
school degree or less. Hours worked by skilled 
workers are hours worked by college graduates 
or workers with some college. Columns (3) and 
(4) refer to a specification where technology is 
translog. The coefficient on college share is 
invariant to this change.20 

Longitudinal Estimates.-I now turn to lon- 
gitudinal models. Table 3 reports estimates of 

18 Hellerstein et al. (1999) point out that value added has 
two advantages over value of shipments. First, a value- 
added specification can be derived from polar production 
functions: one in which the elasticity of substitution be- 
tween materials and value added is infinite; and one in 
which this elasticity of substitution is zero. Second, a value 
of shipment specification requires one to include value of 
materials on the right-hand side. This specification may be 
problematic given the potential endogeneity of materials. 

19 Because capital enters in log, the deflator is fully 
absorbed when industry dummies are included. 

20 The coefficients on capital and labor appear to vary 
significantly between 1982 and 1992. I do not have a good 
explanation for this change. 
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TABLE 2-ESTIMATES OF PRODUCTION FUNCTIONS: CROSS-SECTIONAL SPECIFICATION 

Cobb-Douglas 
1992 1982 
(1) (2) 

Translog 
1992 1982 
(3) (4) 

College share in other industries 

In Capital 

In Unskilled labor 

In Skilled labor 

In Unskilled labor squared 

In Skilled labor squared 

In Capital squared 

In Unskilled X In skilled 

In Unskilled x In capital 

In Skilled X In capital 

Multiunit 

Industry effects 
R2 

0.846 
(0.102) 
0.178 

(0.004) 
0.470 

(0.014) 
0.382 

(0.015) 

0.150 
(0.008) 

Yes 
0.89 

0.812 
(0.113) 
0.476 

(0.010) 
0.333 

(0.012) 
0.196 

(0.010) 

0.073 
(0.011) 

Yes 
0.89 

0.834 
(0.107) 
0.501 

(0.050) 
0.606 

(0.040) 
0.465 

(0.039) 
0.098 

(0.011) 
0.068 

(0.011) 
0.048 

(0.002) 
-0.111 
(0.018) 

-0.075 
(0.010) 

-0.028 
(0.011) 
0.122 

(0.012) 
Yes 

0.91 

0.807 
(0.133) 
0.657 

(0.057) 
0.332 

(0.050) 
0.265 

(0.060) 
0.096 

(0.010) 
0.053 

(0.012) 
0.024 

(0.002) 
-0.022 
(0.014) 

-0.095 
(0.016) 

-0.047 
(0.016) 
0.069 

(0.012) 
Yes 

0.90 

Notes: Standard errors adjusted for clustering are in parentheses. Each column is a separate 
regression. All labor inputs are measured in number of hours worked. Specifically, unskilled 
labor is hours worked by workers who have a high school degree or less; skilled labor is hours 
worked by college graduates or workers with some college. Industry effects are dummies for 
3-digit industries. N = 40,281. See text for details. 

variants of equation (4). The rows of the table 
differ in the way the regressions control for the 
level of human capital of workers within the 
firm. Like in Table 2, models in row 1 control 
for hours worked by workers who have a high 
school degree or less and for hours worked by 
workers with at least some college. Column (1) 
is analogous to the models in Table 2 but adds 
plant fixed effects. Identification of the spillover 
comes from changes in productivity and college 
share between 1982 and 1992. The coefficient 
on college share in column (1) is 0.74.21 Plant 
fixed effects purge estimates of permanent plant 
and city unobserved heterogeneity. The fixed- 
effects estimator may still be biased if there are 

21 The coefficients on log capital, log skilled labor, and 
log unskilled labor are, respectively: 0.185 (0.005), 0.492 
(0.013), 0.384 (0.011). R2 is 0.95. 

transitory unobserved factors that affect both 
changes in college share and changes in produc- 
tivity. In the specifications in columns (2), (3), 
and (4), I include, respectively, industry X year 
dummies, state X year dummies, and indus- 
try X state X year dummies. The coefficients 
are between 0.51 and 0.77. 

In the specification used in columns (1) to 
(4), the intercept of the production function is 
allowed to vary across plants, but the slope 
coefficients are constrained to be the same. In 
reality, however, it is possible that the relative 
importance of capital and labor varies across 
industries. In column (5), I relax the restriction 
that technology is the same across industries 
and allow the slope coefficients on capital and 
labor to vary by 2-digit industry. The coefficient 
in column (5) is slightly smaller than the one in 
column (4). 

In columns (6) to (10), the assumption of 
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TABLE 3-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL SPILLOVERS 

Cobb-Douglas Translog 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Panel A 

(1) Controlling for Two Education Groups Inside Plant 
College share in other industries 0.743 0.510 0.734 0.777 0.702 0.672 0.457 0.660 0.711 0.604 

(0.183) (0.160) (0.226) (0.226) (0.220) (0.172) (0.154) (0.212) (0.215) (0.211) 

(2) Controlling for Three Education Groups Inside Plant 
College share in other industries 0.684 0.511 0.688 0.736 0.694 0.584 0.441 0.593 0.656 0.539 

(0.195) (0.171) (0.245) (0.207) (0.221) (0.181) (0.225) (0.225) (0.210) (0.211) 

Panel B 

(3) Controlling for Two Education Groups for PW + Two Education Groups for Non-PW 
College share in other industries 0.847 0.595 0.834 0.883 0.914 0.747 0.498 0.724 0.757 0.719 

(0.181) (0.160) (0.231) (0.222) (0.211) (0.169) (0.152) (0.211) (0.214) (0.212) 

(4) Controlling for Three Education Groups for PW + Three Education Groups for Non-PW 
College share in other industries 0.687 0.557 0.669 0.795 0.888 0.603 0.464 0.568 0.671 0.589 

(0.215) (0.194) (0.259) (0.254) (0.235) (0.202) (0.182) (0.232) (0.237) (0.236) 

Establishment effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Industry X year effects Yes Yes 
State X year effects Yes Yes 
Industry X state X year Yes Yes Yes Yes 
Technology varies by industry Yes Yes 

Notes: Standard errors adjusted for clustering are in parentheses. The equation estimated is variants of equation (4). In row 
1, models control for hours worked inside the plant by two education groups (high school or less, some college or more). In 
row 2, models control for hours worked inside the plant by three education groups (high school or less, some college, college). 
In row 3, models control for hours worked inside the plant by production workers belonging to two education groups and for 
hours worked inside the plant by nonproduction workers belonging to two education groups (high school or less, some college 
or more). In row 4, models control for hours worked inside the plant by production workers belonging to three education 
groups and for hours worked inside the plant by nonproduction workers belonging to three education groups (high school or 
less, some college, college). All models also control for capital. Models in columns (6) to (10) also control for capital squared, 
hours worked by each education group squared, and all the interactions. Each entry is a separate regression. There are 40,281 
plants, observed in both 1982 and 1992. 

Cobb-Douglas technology is relaxed and a more 
general translog production function is esti- 
mated. The coefficient on college share is gen- 
erally lower, but not statistically different from 
the one obtained from the corresponding Cobb- 
Douglas specification. 

From the results in row 1, I conclude that 
estimates of the coefficient on college share 
outside the industry are generally robust to dif- 
ferent specifications. After controlling for a 
plant's own level of human capital, plants lo- 
cated in areas where the overall level of human 
capital increased became more productive than 
similar plants located in areas where the overall 
level of human capital did not change. This 
increased productivity does not seem to be 
driven by industry-specific or state-specific 

shocks because it is robust to the inclusion of 
state X year and industry X year dummies. 

According to the most robust estimate in col- 
umns (5) and (10), an increase of one percentage 
point in college share outside the industry is asso- 
ciated with a productivity increase equal to 0.6- 
0.7 percent. To help interpret the magnitude of the 
coefficient, consider that the average yearly in- 
crease in college share between 1982 and 1992 
was about 0.2 percentage points. According to my 
estimate, an increase in college share of 0.2 per- 
centage points would be associated with an in- 
crease in output by about 0.12-0.14 percent. For 
the average plant in the United States, this 
amounts to about $10,000 per year. I discuss the 
magnitude of the estimated effect in Section VII. 

A key question is whether variation in college 
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share outside the plant's industry is proxying for 
variation in the education of workers in the 
plant. The specification adopted in row 1 con- 
trols for education of workers in the plant by 
conditioning on the imputed number of hours 
worked by employees with a high school degree 
or less and the number of hours worked by 
employees with some college or more. It is in 
theory possible that the characterization of the 
education distribution of workers in the plant 
based on these two education groups is not fine 
enough. In particular, it is possible that the 
educational achievement of workers inside the 
plant within each education group is not con- 
stant across cities. For example, the composi- 
tion of the group of plant employees that I call 
"skilled"-those with some college or more- 
may differ across cities, and may be systemat- 
ically correlated with the overall level of human 
capital in the city. In other words, the group of 
plant employees with some college or more 
could have relatively more college graduates 
than community college graduates in cities 
where aggregate college share outside the 
plant's industry is high. In this case, the esti- 
mates of the spillover presented in row 1 would 
be biased, because they would reflect the corre- 
lation between workers' education in the plant 
and workers' education outside the plant. 

I test whether my estimates are sensitive to a 
finer characterization of the education distribu- 
tion of workers in the plant. The model in row 
2 controls for hours worked by three education 
groups: high school or less, some college, col- 
lege or more. If the group of plant employees 
with some college or more has relatively more 
college graduates than community college grad- 
uates in cities with high aggregate human cap- 
ital, then estimates in row 2 should be lower than 
estimates in row 1. I find that estimates in row 2 
are slightly lower than estimates in row 1, but that 
the difference is not statistically significant. 

In Panel B, I allow for an even finer charac- 
terization of the education distribution of work- 
ers in the plant by using the information 
available on production and nonproduction 
workers. Simply controlling for hours worked 
by production and nonproduction workers it is 
not enough to adequately control for human 
capital in the plant. Although nonproduction 
workers tend to have higher education than pro- 
duction workers, the correlation is by no means 

perfect. Mark Doms et al. (1997) report that 
only 40 percent of nonproduction workers in the 
Census of Manufacturers have a college degree 
and more than 27 percent of production workers 
have a community college degree. For this rea- 
son, in Panel B I control not only for the number 
of hours worked by production and nonproduc- 
tion workers, but also for the imputed educa- 
tional achievement of workers in the two 
groups. Specifically, models in row 2 control for 
imputed hours worked by production workers 
with a high school degree or less, imputed hours 
worked by production workers with some col- 
lege or more, imputed hours worked by nonpro- 
duction workers with a high school degree or 
less, and imputed hours worked by nonproduc- 
tion workers with some college or more. Mod- 
els in row 4 push this specification even further 
by allowing for three education groups for pro- 
duction workers and three for nonproduction 
workers. Results in rows 3 and 4 are generally 
consistent with those in Panel A. 

Overall, I conclude that my estimates are not 
very sensitive to different ways to control for 
human capital of workers in the plant. In the 
remainder of the paper, I report results based on 
the most parsimonious specification of row 1 
(two education groups inside the plant), al- 
though results do not change significantly when 
I use alternative specifications. 

High Tech vs. Low Tech.-As a first specifi- 
cation test, I test whether human capital spill- 
overs matter more for the production of 
advanced, high-tech products (computers, sci- 
entific equipment, biotech, or pharmaceutical) 
than for the production of mature, low-tech 
products (cement, steel, or lumber). If I find that 
human capital spillovers were more important 
for cement plants than for computer or biotech 
plants, then that would cast doubt on the inter- 
pretation of the spillovers. More importantly, I 
test whether human capital in the high-tech sec- 
tor of the city matters more for high-tech plants 
than human capital in the low-tech sector of the 
city; and whether human capital in the low-tech 
sector matters more for low-tech plants than hu- 
man capital in high tech. Just as I expect people 
in computers to benefit more from human cap- 
ital spillovers, I expect them to benefit more 
from educated people in electronics than from 
educated people working in the textile sector. 
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TABLE 4-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL SPILLOVERS, 
BY HIGH-TECH STATUS 

Plant is high tech 
(1) 

Plant is low tech 
(2) 

Regression A: Cobb-Douglas 
College share in high tech outside relevant 1.70 0.14 

3-digit industry (0.31) (0.22) 
College share in low tech outside relevant 0.22 0.80 

3-digit industry (0.88) (0.50) 

Regression B: Translog 
College share in high tech outside relevant 1.60 0.07 

3-digit industry (0.30) (0.22) 
College share in low tech outside relevant 0.26 0.89 

3-digit industry (0.87) (0.53) 

Establishment effects Yes Yes 
Industry X state X year Yes Yes 

Notes: Standard errors adjusted for clustering are in parentheses. Both models control for 
capital, hours worked by skilled and unskilled workers. All entries in each panel are from the 
same regression. For example, the entry in row 1, column (1) is the coefficient on college 
share in high-tech industries (outside relevant 3-digit industry) interacted with a dummy equal 
to one if the relevant plant is high tech. The entry in row 1, column (2) is the coefficient on 
college share in high-tech industries (outside relevant 3-digit industry) interacted with a 
dummy equal to one if the relevant plant is low tech. There are 40,281 plants, observed in both 
1982 and 1992. See text for details. 

The top panel in Table 4 reports estimates 
from a regression that includes both aggregate 
college share in the high-tech sector and aggre- 
gate college share in the low-tech sector (ex- 
cluding the relevent 3-digit industry), separately 
for high-tech plants and low-tech plants. Entries 
in each panel come from one regression. For 
example, the entry in row 1, column (1) is the 
coefficient on college share in high-tech indus- 
tries (outside relevant 3-digit industry) inter- 
acted with a dummy equal to one if the relevant 
plant is high tech. To classify productions as 
high tech or low tech, I used the definition of 
high-tech industries provided by the American 
Electronic Association (1997) based on 45 
4-digit SIC codes.22 

The coefficient on high-tech college share for 
high-tech plants is 1.70, more than double the 
coefficient on low-tech college share for low- 

22 The definition includes computers and office equip- 
ment, consumer electronics, communication equipment, 
electronic components, semiconductors, industrial electron- 
ics, photonics, defense electronics, electromedical equip- 
ment, software and computer-related services, and 
telecommunication services. According to this definition, 
about 10 percent of the plants in the sample are high tech. 

tech plants. This indicates that high-tech plants 
benefit from spillovers more than low-tech plants. 
The off-diagonal elements are smaller, indicating 
that aggregate human capital in high-tech indus- 
tries has little effect on productivity in low-tech 
plants, and aggregate human capital in high-tech 
industries has little effect on productivity in low- 
tech plants. Estimates in the lower panel, based on 
a translog specification, are similar. 

Spillovers at the 1-Digit and 2-Digit Industry 
Level.-The estimates reported so far are a 
measure of the spillover generated by college 
share in the entire manufacturing sector in the 
relevant city (excluding the relevant 3-digit in- 
dustry). I now refine the analysis by investigat- 
ing how the magnitude of the estimated 
spillover varies when I consider a finer industry 
breakdown. In particular, I compare the effect 
of the share of college graduates in the city and 
2-digit industry a plant belongs to (excluding 
the relevant 3-digit industry) with the effect of 
the share of college graduates in the entire man- 
ufacturing sector in the city (excluding the rel- 
evant 2-digit industry). Spillovers between 
plants that belong to similar industries should 
be larger than spillovers between plants that 
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TABLE 5-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL SPILLOVERS AT THE 2-DIGIT AND 
1-DIGIT INDUSTRY LEVEL 

Cobb-Douglas Translog 

(1) (2) (3) (4) 

College share in 2-digit industry excluding 1.008 0.956 0.917 0.879 
relevant 3-digit indusry (0.300) (0.315) (0.304) (0.310) 

College share in manufacturing excluding 0.751 0.683 0.632 0.579 
relevant 2-digit industry (0.242) (0.293) (0.271) (0.286) 

Establishment effects Yes Yes Yes Yes 
Industry X state X year Yes Yes Yes Yes 
Technology varies by industry Yes Yes 

Notes: Standard errors adjusted for clustering are in parentheses. Row 1 reports the coeffi- 
cients on the share of college graduates in 2-digit industry the plant belongs to, calculated 
excluding the 3-digit industry the plant belongs to. Row 2 reports the coefficients on the share 
of college graduates in manufacturing, calculated excluding the 2-digit industry the plant 
belongs to. All models control for capital, hours worked by skilled and unskilled workers, and 
establishment effects. Each column is a separate regression. There are 40,281 plants, observed 
in both 1982 and 1992. 

belong to industries that are different. Finding that 
the latter effect is larger than the former effect 
would cast doubt on the validity of my estimates. 

Estimates in columns (1) and (2) of Table 
5 indicate that the coefficient on the share of 
college graduates in the 2-digit industry a plant 
belongs to (excluding the relevant 3-digit indus- 
try) is about 0.95-1.00, or about 30 percent 
larger than the coefficient on the share of col- 
lege graduates in the entire manufacturing sec- 
tor (excluding the relevant 2-digit industry). 
Estimates in columns (3) and (4) based on a 
translog specification, yield a similar conclusion. 

I try to push this exercise even further by 
experimenting with a measure of spillovers at 
the 3-digit industry level. In theory, spillovers 
should be larger when measured at the 3-digit 
level than when measured at the 2-digit or 
1-digit level. However, this comparison is made 
difficult by data limitations. I cannot estimate a 
model that includes college share at the 3-digit 
industry level because, at that level of disaggre- 
gation, I cannot distinguish between education 
in the plant and outside the plant. Instead, I use 
the 3-digit share of nonproduction workers (ex- 
cluding the relevant plant) as a proxy for the 
3-digit share of college graduates outside the 
plant.23 Estimates of models similar to the ones 

23 To facilitate the comparison with Table 3, I normalize 
the share of nonproduction workers so that it has the same 
mean and standard deviation as the share of college graduates. 

in columns (4) and (5) in Table 3 are 0.667 
(0.478) and 0.746 (0.502), respectively. A direct 
comparison with estimates in Tables 3 and 5 is 
not possible, because the share of nonproduc- 
tion workers is an imperfect proxy for the share 
of college educated. Although nonproduction 
workers do tend to be more educated than pro- 
duction workers, only 40 percent of nonproduc- 
tion workers are college educated (Doms et al., 
1997). Because of attenuation bias, the esti- 
mated parameters are lower than the parameters 
one would obtain if it were possible to estimate 
the same models substituting the 3-digit share of 
nonproduction workers with the 3-digit share of 
college graduates. 

V. Do Human Capital Spillovers Decline with 
Economic and Technological Distance? 

The findings on high-tech plants in Table 
4 and 2-digit industries in Table 5 provide a first 
piece of evidence that, within a city, the mag- 
nitude of the spillover depends on economic 
proximity. In this section, I use three alternative 
measures of economic distance to investigate 
more directly the relationship between eco- 
nomic distance and spillovers. Specifically, I 
investigate whether human capital spillovers 
within a city between industries that are eco- 
nomically close are larger than spillovers be- 
tween industries that are economically distant. 
Finding that human capital spillovers are large 
between industries that are located in the same 
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city but are economically distant would be sur- 
prising and would cast doubt on the validity of 
my results. 

I modify equation (4) to include college share in 
Manufacturing, as well as college share in Trans- 
portation, Communication and Utilities; Trade (re- 
tail and wholesale); Services; Finance, Real Estate 
and Insurance; Mining; and Construction: 

(5) In Ypjcst-Z YkSkct + aHjln HpctaLln Lpjct 
k 

+ pj3ln Kpjct + d jt d + + E,t + Epjct 

where Skct is now college share in industry k, 
city c, and year t; and k indexes all 1-digit 
industries (when k = Manufacturing, I calculate 
college share excluding 3-digit industry j). 
Equation (5) yields estimates of seven ' s- one 
for each 1-digit industry. Once I have estimates 
of the y's, I can test whether the magnitude of 
each industry's y coefficient depends on the 
economic distance between that industry and 
manufacturing. Because 1-digit industries are 
very broad, I also repeat the analysis at the 
2-digit industry level. 

The three measures of distance that I use 
capture alternative but not mutually exclusive 
notions of economic and technological distance 
between industries. The first measure is based 
on input-output tables and tries to capture inter- 
actions between industries that arise from ex- 
changing goods and services during the 
production process. According to this metric, 
the economic distance between manufacturing 
and each of the 1-digit industries is proportional 
to the value of inputs that each industry pro- 
vides to manufacturing. For example, the indus- 
try "transportation, communication, and utilities" 
is closer to manufacturing than "finance" because 
the value of inputs from "transportation, commu- 
nication, and utilities" that are used in manufac- 
turing is larger than the value of inputs from 
"finance." One limitation of the input-output met- 
ric is that it may confound human capital spill- 
overs with pecuniary externalities. The literature 
on R&D spillovers has preferred measures of 
technological distance based on patents.24 

24 See, for example, Jaffe (1986), Jaffe et al. (1993), 
Branstetter (2001), and Jaffe et al. (2002). 

The second measure of distance tries to cap- 
ture similarities in the distribution of R&D in- 
vestment and technological expertise across 
different technical fields, as measured by the 
number of patents in each field. The U.S. Patent 
and Trademark Office has developed a highly 
elaborate classification system for technologies 
to which patented invention belong. By count- 
ing the number of patents held by an industry in 
a technological field, I can obtain a quantitative 
measure of the industry's level of expertise in 
that field (Jaffe, 1986; Branstetter, 2001). Ac- 
cording to this metric, two industries are close if 
the distribution of patents across technological 
fields is similar. 

As a third metric, I use an index based on 
industry linkages revealed by patent citations. 
Patent citations serve an important legal func- 
tion, since they delimit the scope of the property 
rights awarded by the patent. Thus, if patent B 
cites patent A, it implies that patent A repre- 
sents a piece of previously existing knowledge 
upon which patent B builds. The presumption is 
that citations are informative of links between 
patented innovations. The third index of dis- 
tance is based on the notion that if industry x 
cites industry's y patents more frequently than 
industry's z patents, x is closer to y than to z. 
Patent citations have been used by other authors 
to document spillovers.25 

Input-Output Tables.-I rank nonmanufac- 
turing industries by distance from manufactur- 
ing based on the value of the inputs that each 
industry provides to manufacturing. The value 
of inputs provided by each industry to manu- 
facturing is shown in column (2) of Appendix 
Table Al (top panel).26 The third column in 
Table Al (top panel) shows estimates of the Yk 
coefficients in equation (5). The coefficient is 
largest for Manufacturing and smallest for 

25 For example, in an influential paper, Jaffe et al. (1993) 
compare the geographic location of patent citations with 
that of the cited patents to measure the extent to which 
knowledge spillovers are geographically localized. See also 
Jaffe et al. (2002). 

26 The I-O tables are based on national data. I use the 
"Use" Table, which shows the inputs to industry production 
and the commodities that are consumed by final users. The 
Use table is the most frequently requested table because of 
its applications to the estimates of GDP. Source: www. 
bea.gov/bea/industry/iotables/prod/tablelist.cfm?anon = 394. 
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FIGURE 2. THE SPILLOVER EFFECT OF COLLEGE SHARE IN 
1-DIGIT AND 2-DIGIT INDUSTRIES, BY ECONOMIC DISTANCE 

(DISTANCE BASED ON INPUT-OUTPUT TABLES) 

Notes: Top panel: The figure plots the estimated coefficients 
on college share in each 1-digit industry [from Table Al, 
column (3)] on the y-axis against the rank in value of inputs, 
on the x-axis [from Table Al, column (1)]. For example, 
manufacturing has rank 1, because the value of inputs is 
highest for manufacturing. Transportation has rank 2, trade 
has rank 3, etc. The OLS fitted line is superimposed. The 
slope (standard error) of the line is -0.109 (0.042). R2 is 
0.57. 
Bottom panel: The figure plots the estimated coefficients on 
college share in each 2-digit industry group [from Table Al, 
column (3)] on the y-axis against the rank in value of inputs, 
on the x-axis [from Table Al, column (1)]. The OLS fitted 
line is superimposed. The slope (standard error) of the line 
is -0.015 (0.002). R2 is 0.85. 

Finance, Real Estate, and Insurance. Although 
the relationship between the coefficient in col- 
umn (3) and economic distance in column (2) is 
by no means monotonic, the estimated co- 
efficients do tend to decrease as we move to- 
ward industries that provide fewer inputs into 
manufacturing. 

The negative relationship between the esti- 
mated coefficient and economic distance can be 
better seen in Figure 2 (top panel), which plots 
the coefficients against the rank based on value 

of inputs. The OLS fitted line is superimposed. 
The OLS slope (standard error) is -0.109 
(0.042), and R2 is 0.54. (A similar figure is 
obtained if one plots the coefficients against the 
log value of inputs.) Figure 2 indicates that 
human capital in industries that are economi- 
cally close to manufacturing (and presumably 
interact more with manufacturing) benefits 
manufacturing plants more than human capital 
in industries that are economically far from 
manufacturing (and presumably interact less 
with manufacturing). 

This finding is based on 1-digit industries. I 
repeat the analysis using a more disaggregated 
industry definition. Instead of looking at 1-digit 
industries, I look at 2-digit industries. Every- 
thing else remains the same. As before, I rank 
industries based on value of inputs. Column (3) 
in the bottom panel of Table Al shows esti- 
mates of a model where the coefficient on col- 
lege share varies depending on the distance 
between 2-digit industries. Because there are so 
many 2-digit industries, I group them in sets of 
five. In other words, I force the coefficient on 
college share to be the same for the closest five 
industries, the next five, and so on. Note that the 
industry composition in each five-industry 
group is different for each plant. For example, 
the entry in column (3), row 1 is the coefficient 
on college share in the five 2-digit industries 
that are closest to the relevant plant. 

Estimates of the yk coefficients show a ten- 
dency to decrease as we move from close in- 
dustries to industries further away. The negative 
relationship between estimated coefficients and 
economic distance is more easily seen in Figure 
2 (bottom panel), that plots the estimated coef- 
ficients against the rank based on value of in- 
puts. The OLS fitted line is superimposed. The 
slope (standard error) of the line is -0.015 
(0.002). R2 is 0.85. 

Distribution of Patents Across Technological 
Groups.-I now repeat the analysis using a 
measure of economic distance based on the 
distribution of patents over technological fields. 
I first divide the patents into 36 technological 
fields defined in Jaffe et al. (2002, pp. 452- 
454). For each industry j, I construct the vector 
of shares of industry patents in each technolog- 
ical field Sj = (Sjl, sj2, . . Sj36). For each pair of 
industries (j, k), I calculate the uncentered cor- 
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relation coefficient between vector sj and Sk as 
follows: 

E h=36 (Sjh Skh) 
(6) Pjk - 2 36 36 2h V\ h=I Sjhh= I Skh 

The uncentered correlation is the angular dis- 
tance between vectors: two industries with iden- 
tical distribution of patents across technological 
fields have a correlation of one, two industries 
with orthogonal distributions of patents have a 
correlation of zero. See the Data Appendix for 
details on the patent data set. 

Column (2) in Table A2 shows the uncen- 
tered correlation coefficient p at the 1-digit in- 
dustry level (top panel) and 2-digit industry 
level (bottom panel), and column (3) shows the 
corresponding estimates of the Yk coefficients in 
equation (5).27 The relationship between the 
coefficient in column (3) and economic distance 
in column (2) is not monotonic, but the esti- 
mated coefficients do tend to decrease as we 
move toward pairs of industries with lower p. 
The negative relationship between estimated 
coefficients and economic distance is more eas- 
ily seen in Figure 3, where I plot the estimated 
coefficients against the rank based on p. In the 
top panel (1-digit industry level), the slope of 
the fitted line is -0.095 (0.048). R2 is 0.43. In 
the bottom panel (2-digit industry level), the 
slope of the fitted line is -0.016 (0.005). R2 is 
0.65. 

Patent Citations.-Finally, I repeat the anal- 
ysis using a measure of economic distance 
based on the frequency of patent citations. For 
each pair of industries (j, k), I calculate the 
frequency that a patent assigned to industry j 
cites a patent assigned to industry k.28 Column 
(2) in Table A3 shows the frequency of citations 
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FIGURE 3. THE SPILLOVER EFFECT OF COLLEGE SHARE IN 
1-DIGIT AND 2-DIGIT INDUSTRIES, BY ECONOMIC DISTANCE 

(DISTANCE BASED ON THE DISTRIBUTION OF PATENTS 
ACROSS TECHNOLOGICAL GROUPS) 

Notes: Top panel: The figure plots the estimated coeffi- 
cients on college share in each industry [from Table A2, 
column (3)] on the y-axis against the rank in the uncentered 
correlation coefficient based on differences in the distribu- 
tion of patents across technological groups, on the x-axis 
[from Table A2, column (1)]. For example, manufacturing 
has rank 1, because the uncentered correlation coefficient 
is highest for manufacturing. Trade has rank 2, mining 
has rank 3, etc. The OLS fitted line is superimposed. The 
slope (standard error) of the line is -0.095 (0.048). R2 
is 0.43. 
Bottom panel: The figure plots the estimated coefficients 
on college share in each industry group [from Table A2, 
column (3)] on the y-axis against the rank in the uncen- 
tered correlation coefficient based on differences in the 
distribution of patents across technological groups, on the 
x-axis [from Table A2, column (1)]. The OLS fitted line 
is superimposed. The slope (standard error) of the line is 
-0.016 (0.005). R2 is 0.65. 

27 While the 1-digit yk coefficients are the same as in 
Table Al, the 2-digits are not, because I group 2-digit 
industries in groups of five. Since this grouping depends on 
the specific measure of distance used, the groups are obvi- 
ously different in Table Al and A2. 

28 Unlike uncentered correlation, this index of distance is 
not symmetric, because the frequency that a patent assigned 
to industry j cites a patent assigned to industry k is not the 
same as the frequency that a patent assigned to k cites a 
patent assigned to j. In calculating the index, I do not 
include self-citations. 

at the 1-digit industry level (top panel) and 
2-digit industry level (bottom panel). For exam- 
ple, the first and second entry in column (2) 
show that manufacturing patents cite manufac- 
turing patents and services patents with fre- 
quency equal 74 percent and 13 percent, 
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respectively.29 Column (3) shows the corre- 
sponding estimates of the Yk coefficients. 

The relationship between estimated coeffi- 
cients and economic distance is shown in Figure 
4, where I plot the estimated coefficients against 
the rank based on frequency of citations. In the 
top panel (1-digit industry level), the slope of 
the fitted line is -0.086 (0.051). R2 is 0.35. In 
the bottom panel (2-digit industry level), the 
slope of the fitted line is -0.007 (0.004). Nei- 
ther slope is statistically different from zero. R2 
is 0.29. The relationship between spillovers and 
distance as measured by patent citations appears 
to be somewhat weaker than the relationship 
between spillovers and distance as measured by 
the uncentered correlation coefficient. 

VI. Additional Results 

The results presented in Table 3 are generally 
consistent with the notion that changes in the 
aggregate stock of human capital are associated 
with increased productivity of manufacturing 
plants. Yet, without a randomized experiment, it 
is difficult to be completely certain that the 
estimated parameters are causal. It is always 
possible that the estimates reflect, at least in 
part, the presence of citywide, time-varying pro- 
ductivity shocks correlated with S. However, 
findings in Table 3 show that the estimates of 
the spillover are robust to a wide variety of 
assumptions on technology and demand shocks. 
Moreover, results in Section V-based on three 
alternative measures of economic distance-as 
well as results in Tables 4 and 5, indicate that, 
within a city, the magnitude of the spillovers 
decline with economic distance. These results 
are consistent with the interpretation of my es- 
timates as human capital spillovers. If the doc- 
umented correlation between college share and 
productivity were completely spurious, one 
would not expect to find such a consistent pat- 
tern based on economic distance. 

29 Frequencies in the bottom panel [column (2)] are 
lower because 2-digit industries are smaller than 1-digit 
industries. For example, the first entry in the bottom panel is 
the average frequency of citations for the five 2-digit indus- 
tries that receive the most citations by the relevant 2-digit 
industry. Because entries are an average for five industries, 
they do not sum up to one. 
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FIGURE 4. THE SPILLOVER EFFECT OF COLLEGE SHARE IN 
1-DIGIT AND 2-DIGIT INDUSTRIES, BY ECONOMIC DISTANCE 

(DISTANCE BASED ON PATENT CITATIONS) 

Notes: Top panel: The figure plots the estimated coefficients 
on college share in each 1-digit industry [from Table A3, 
column (3)] on the y-axis against the rank in the frequency 
of patent citations, on the x-axis [from Table A3, column 
(1)]. For example, manufacturing has rank 1, because the 
frequency of patent citations is highest for manufacturing. 
Services has rank 2, communication has rank 3, etc. The 
OLS fitted line is superimposed. The slope (standard error) 
of the line is -0.086 (0.051). R2 is 0.35. 
Bottom panel: The figure plots the estimated coefficients on 
college share in each 2-digit industry group [from Table A3, 
column (3)] on the y-axis against the rank in frequency of 
patent citations, on the x-axis [from Table A3, column (1)]. 
The OLS fitted line is superimposed. The slope (standard 
error) of the line is -0.007 (0.004). R2 is 0.29. 

In this section, I present several additional 
pieces of evidence to further investigate the 
validity of my estimates. I begin by presenting a 
specification check based on physical capital. In 
subsection B, I present estimates from a number 
of alternative specifications intended to probe 
the robustness of the results in Table 3. In 
subsection C, I experiment with an instrumental 
variable strategy. Taken together, results in this 
section lend further support to the view that the 
estimates of the spillovers are not completely 
spurious. 

674 JUNE 2004 



MORE7TI: EDUCATION, SPILLOVERS, AND PRODUCTIVITY 

TABLE 6-THE EFFECT OF PHYSICAL CAPITAL OUTSIDE THE PLANT ON PLANT PRODUCTIVITY 

Cross section 

1982 1992 Panel 

(1) (2) (3) (4) (5) 

Model 1: 
Coefficient on In average capital 0.349 -0.150 0.012 0.007 0.007 

outside plant (0.067) (0.065) (0.017) (0.017) (0.018) 
Model 2: 
Coefficient on In average capital 1.871 -0.724 -0.005 -0.006 -0.004 

per worker outside plant (0.661) (0.404) (0.021) (0.021) (0.022) 
Establishment effects Yes Yes Yes 
State X year effects Yes 
Industry X year effects Yes 

Notes: Standard errors adjusted for clustering are in parentheses. Each entry is from a separate 
regression. The equation estimated is equation (4), where human capital S is substituted with 
a measure of physical capital. Entries in row 1 are the coefficients on the log of average 
physical capital outside the plant in a city. Entries in row 2 are the coefficients on the log of 
per worker average physical capital outside the plant in the city. All models control for capital 
in the plant and hours worked by skilled and unskilled workers in the plant. There are 40,281 
plants, observed in both 1982 and 1992. 

A. A Specification Check 

As a specification check, I estimate equation 
(4) substituting human capital with a measure of 
overall physical capital outside a plant. If my 
estimate of human capital spillovers are spuri- 
ous, or if they can be explained by agglomera- 
tion effects other than human capital 
externalities, then I may find that plants located 
in cities where the overall level of physical 
capital is high are more productive than similar 
plants located in cities where the overall level of 
physical capital is low. On the contrary, if my 
estimates are capturing only human capital ex- 
ternalities, there is no reason why physical cap- 
ital in one plant should be correlated with 
productivity in other plants. 

For each plant and city, I use two alternative 
measures of density of physical capital: the log 
of average physical capital outside the plant in 
the city and the log of per worker average 
physical capital outside the plant in the city. 
Cross-sectional estimates in Table 6 suggest 
that average capital is correlated with produc- 
tivity, although the sign is positive in 1982 and 
negative in 1992. However, when plant fixed 
effects are included the coefficient becomes in- 
significant, suggesting that plant-level heteroge- 
neity may bias cross-sectional estimates. When 
state X year effects are added [column (4)] or 

industry x year effects are added [column (5)], 
the coefficients drop to virtually zero. I con- 
clude that overall level of physical capital out- 
side the plant does not have an effect on plants' 
productivity similar to the one generated by 
human capital. 

B. Robustness Checks 

In this subsection, I investigate the robustness 
of the estimates in Table 3 to different 
assumptions. 

Regional vs. National Industries.-One of 
the assumptions of the model is that the price of 
output is constant across locations. This is prob- 
ably a reasonable assumption for many manu- 
factured goods, because they are traded on the 
national market. However, some manufactured 
goods have a more regional distribution, and the 
assumption of one national price may not be 
realistic for them.30 The concern is that the 
output price of regional industries reflects local 
production costs, and locations with higher 

30 Mark Roberts and Dylan Supina (1997) find consid- 
erable price dispersion in Census of Manufacturing data 
across a range of industries. 
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production costs also have higher college share. 
In this case, my estimates would be biased 
upward. 

I test whether the estimated spillover is 
different for regional industries and national 
industries. I define regional industries based 
on whether the average distance traveled by 
output is less than 500 (or 300) miles.31 Ex- 
amples of regional industries are: hydraulic 
cement, iron and steel products, metal scrap 
and waste tailings, ice cream and related fro- 
zen desserts, prepared feed for animals, and 
prefabricated wooden buildings. I find that the 
estimated spillover is lower for regional in- 
dustries, although the difference is not statis- 
tically significant. This finding suggests that 
unobserved differences in the cost of produc- 
tion are unlikely to introduce upper bias in my 
estimates.32 

Estimates Based on TFP.-I now turn to es- 
timates of the spillover based on a total factor 
productivity (TFP) specification. First, I esti- 
mate TFP under the assumptions that (1) tech- 
nology is Cobb-Douglas; (2) factor prices equal 
marginal products; and (3) there are constant 
return to scale to capital and labor. The labor 
elasticity is measured at the plant level as the 
plant-specific ratio of total wages over total 
output. Having estimated TFP, I then regress 
TFP on college share in other industries. The 
advantage of the TFP specification relative to 
the specifications in Table 3 is that it does not 
require estimating the production function, and 
therefore it does not rely on the assumption that 
capital and labor inputs are exogenous. The 

31 The information on distance is from the Appendix in 
Leonard W. Weiss (1972). Distance varies between 52 and 
1337, with a mean of 498. 

32 The parameters on external college share and on ex- 
ternal college share X the regional dummy are, respectively, 
1.15 (0.39) and -0.52 (0.45) in Cobb-Douglas models that 
include establishment effects and industry X state x year 
effects, when the regional dummy is equal to one if the plant 
belongs to an industry where the average distance traveled 
by output is less than 500 miles. When the regional dummy 
is equal to 1 if the plant belongs to an industry where the 
distance traveled by output is less than 300 miles, the 
corresponding parameters are 0.91 (0.21) and -1.31 (0.92). 
Translog models yield similar estimates. One possible ex- 
planation for the fact the coefficient is lower for regional 
industries is that regional industries are mostly low tech, and 
low-tech industries seem to enjoy lower spillovers. 

TABLE 7-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL 
SPILLOVERS BASED ON TFP 

(1) (2) (3) (4) 

College share in other 0.461 0.255 0.636 0.693 
industries (0.245) (0.241) (0.295) (0.311) 

Establishment effects Yes Yes Yes Yes 
Industry x year Yes 

effects 
State X year effects Yes 
Industry X state X Yes 

year 

Notes: Standard errors adjusted for clustering are in paren- 
theses. Estimates are obtained as follows. First TPF is 
estimated under the assumptions that (1) technology is 
Cobb-Douglas; (2) factor prices equal marginal products; 
(3) there are constant returns to scale. The labor elasticity is 
measured at the plant level as the ratio of total wages over 
total output. The capital elasticity is one minus the labor 
elasticity. Second, TFP is regressed on college share in 
other industries. Each column is a separate regression. 
There are 40,281 plants, observed in both 1982 and 1992. 

disadvantage is that estimates of TFP rely on the 
assumption that factor prices are paid their mar- 
ginal product, and that there are constant return 
to scale.33 

Estimates in Table 7 show that the estimated 
spillover varies between 0.255 and 0.693. The 
most robust specification, in column (4), is not 
significantly different from the corresponding 
specification in Table 3, although the standard 
error is larger. 

More Robustness Checks.-I conclude this 
subsection by presenting estimates from a num- 
ber of alternative specifications intended to 
probe the robustness of the results in Table 
3. The first row in Table 8 reproduces the esti- 
mate for the base specification in Table 3, col- 
umn (1), row 1. The remaining rows present 
estimates of variants of the base model. The 
second row reports the estimate from a specifi- 
cation similar to the base specification, where 
the dependent variable is value of shipments, 
not value added. The coefficient increases to 
0.86. 

33 Under constant returns to scale to K and L, the capital 
elasticity is simply one minus the labor elasticity. This 
assumption is useful because, while I observe the capital 
stock, I do not observe capital elasticity or the rental price 
of capital at the plant level. 
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TABLE 8-ROBUSTNESS CHECKS 

Coefficient on college share 
in other industries 

(1) Base specification 0.743 
(0.183) 

(2) Shipments 0.866 
(0.198) 

(3) Number of colleges 0.715 
(0.184) 

(4) Number of college degrees awarded 0.747 
(0.188) 

(5) Number of colleges + degrees awarded 0.750 
(0.189) 

(6) Drop ASM plants 0.860 
(0.280) 

(7) Drop computer plants 0.723 
(0.175) 

(8) Weighted regression 0.694 
(0.202) 

(9) Small plants (1-10 workers) 0.692 
(0.259) 

(10) Medium plants (11-50 workers) 0.816 
(0.206) 

(11) Large plants (51 + workers) 0.755 
(0.319) 

(12) Coefficient on labor inputs vary across cities, time 0.501 
(0.202) 

(13) City density 0.731 
(0.187) 

(14) City pop. + other city characteristics 0.703 
(0.188) 

(15) Single-unit plants 0.919 
(0.178) 

(16) Multiunit plants 0.428 
(0.323) 

Notes: Standard errors adjusted for clustering are in parentheses. Each entry is a separate 
regression. 

(1) The base case is from Table 3, column (1). 
(2) The dependent variable is value of shipments. 
(3) Model controls for number of colleges in city. 
(4) Model controls for number of college degrees awarded. 
(5) Model controls for number of colleges and number of degrees. 
(6) Sample does not include plants in Annual Survey of Manufacturers. 
(7) Sample does not include computer and computer accessories plants. 
(8) Weights are based on the distribution of plant size in the 1982 population. 
(9) Sample includes only plants with ten workers or less. 
(10) Sample includes only plants with 11-50 workers. 
(11) Sample includes only plants with more than 50 workers. 
(12) The coefficient on skilled and unskilled labor can vary across cities and over time. 
(13) Model controls for city density. 
(14) Model controls for population, percent unemployed, black, immigrant, and female. 
(15) Sample includes only single-unit plants. 
(16) Sample includes only multiunit plants. 

One concern is that college share is picking versities is correlated with college share. To 
up not only human capital spillovers, but also investigate this possibility, I have reestimated 
university spillovers, since the density of uni- my models controlling for a number of colleges 
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and universities in each city.34 Variation in the 
number of institutions between 1982 and 1992 
is limited, so the results in row 3 are quite similar 
to the base-case estimates. I have also reestimated 
my models controlling for the total number of 
college degrees awarded (row 4) and for both the 
number of universities and the number of degrees 
awarded (row 5). My estimates are not very sen- 
sitive to these additional controls.35 

A limitation of the data is that capital stock is 
imputed for plants that are not part of the An- 
nual Survey of Manufacturers in 1982. This is a 
concern, because it could imply that my models 
do not adequately control for capital stock. To 
address this concern, I have reestimated my 
models dropping ASM plants. Estimates in row 
6 based on non-ASM plants are similar to my 
main estimates, indicating that my results are 
not very sensitive to the imputation. 

A second data limitation is that output in the 
computer industry is not easily measured. The 
Bureau of Labor Statistics (BLS) output deflator 
use a hedonic approach and shows a steep fall in 
recent years. In row 7, I show that when I 
reestimate my models excluding plants belong- 
ing to the computer industry (electronic com- 
puters, SIC 3571; computer terminals, SIC 3572; 
computer peripheral equipment, SIC 3577), my 
estimates do not change significantly. 

In Section III, I pointed out that results in this 
paper are based on a selected sample of plants 
that are observed both in 1982 and 1992. Plants 
in the selected sample are larger than plants in 
the population. In row 8, I reweight the sample 
to make the plant size distribution look like the 
distribution in the 1982 population. I assign 
weights based on plant size: smaller plants re- 
ceive more weight than larger plants.3 After the 
reweighting, both plant size and other observ- 
able characteristics of plants are similar to those 

34 Data on colleges and universities are from CASPAR, 
which is made available by the NSF. 35 Including additional controls has little effect on the 
coefficients. For example, estimating the model in row 5 
conditioning on industry X year effects, state X year ef- 
fects, or industry X state X year effects yields, respectively, 
0.504 (0.197), 0.721 (0.236), 0.755 (0.240). 

36 divide the sample into ten groups, based on the 
number of workers: less than ten, between ten and 20, 
20-30, etc. I assign a weight to each plant in the longitu- 
dinal sample based on the frequency of that plant's group in 
the 1982 Census of Manufacturers population. 

of the population in 1982. The coefficient from 
the weighted regression is 0.694 (row 8).37 In 
the next three rows, I run separate regressions 
based on plant size. (These regressions are not 
weighted.) No clear pattern emerges. For small 
plants (less than ten workers), the coefficient is 
0.69. It increases to 0.81 for medium-sized plants 
(between 11 and 50 workers), and decreases to 
0.75 for large plants (above 50 workers). 

Next, I try to address the concern that 
changes in workers' unobserved ability are cor- 
related with changes in college share. It is in 
theory possible that workers of higher ability 
move to cities that experience larger increases 
in college share. If this is the case, the estimated 
spillover would reflect higher ability of edu- 
cated workers in the plant, not higher produc- 
tivity. By imposing some additional 
assumptions, it is possible to account for work- 
ers' heterogeneity in models where the coeffi- 
cients on skilled and unskilled labor are allowed 
to vary across cities and time. To see this, 
assume that the production function is Ypjct = 
APJCtH%~a / L* ILK3' where H%/( and are Apj 

c p jLctpj c t, where Hct and Lpjct are 
the true but unobserved skilled and unskilled 
labor inputs, respectively. Unlike equation (4), 
here acH, aL, and , are assumed to be constant 
across industries. Assume that the true labor 
inputs are equal to hours worked inflated by an 
ability coefficient that can vary across cities and 
over time: H* = HJc, where H is hours pjct pjcts 
worked (which are observed), and OHct is aver- 
age ability of skilled workers in city c at time t 
(unobserved). A larger Olt implies higher abil- 
ity. Similarly, Lpjc = LLCt, where OLt is aver- 
age ability of unskilled workers. When 
estimating a production function that includes H 
and L (not H* and L*), the concern is that 
changes in unobserved ability, OHct or OLct are 
correlated with changes in S-jct. The production 
function becomes In Ypicst = yS-jct + 

37 To further investigate the issue of sample selection, I 
have also tested whether the probability that a plant exists in 
1982 but not in 1992 is correlated with changes in the level 
of human capital in a city, and I found little correlation. 
Specifically, I divide the cities in the sample into four 
quartiles, according to the change in college share between 
1982 and 1992. The average probability that a plant exists in 
1982 and not in 1992 for the first quartile, which is the 
group of cities with the smallest increase in college share is 
0.511. The corresponding figures for the second, third, and 
fourth quartile are, respectively, 0.515, 0.512, and 0.544. 
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(aHOHct)ln Hpjct + (aLOt)ln pjct + 3 In 
Kpjct + dp + djt + ds + Et + Epjct. Under these 
assumptions, one way to account for worker 
heterogeneity is to estimate models where the 
coefficients on skilled and unskilled labor vary 
by city and over time: 

(7) In Ypjcst = yS-jct + aHctln Hpjct + aL tln Lpjct 

+ + In Kpjct + dp + djt + dst + Ect + Epjct 

where aO = a HHct and a' = aLOLc. 
Note that one can think of the Os not only as 

unobserved ability, but also as unobserved 
skill-biased, city-specific technological 
shocks. In this case, one can interpret H* and 
L* as effective labor inputs, i.e., hours 
worked by skilled and unskilled workers in- 
flated by a technology coefficient that allows 
workers in a given skill group to be more 
productive in some cities than in other cities. 
Row 12 reports an estimate of equation (7). 
The coefficient is 0.50, lower than the esti- 
mate of the more restrictive model where the 
coefficients on skilled and unskilled labor do 
not vary across cities, but still positive.38 

The model in row 13 controls for city density. 
The coefficient of interest does not change sig- 
nificantly. Including population, unemployment 
rate, percent black, percent immigrant, and per- 
cent female also has little effect (row 14). 

As a last specification check, in the last two 
rows, I test whether the magnitude of the esti- 
mated spillover varies by multiunit status. Mul- 
tiunit establishments are plants that are part of 
larger firms with establishments in more than 
one location. Vernon Henderson (2001) argues 
that single-unit plants should be more sensitive 
to the characteristics of their local environment 
than plants that belong to large firms with es- 
tablishments in several locations. According to 
this view, plants that belong to multiestablish- 
ment firms depend more on internal-firm net- 

38 This finding is consistent with my previous work that 
uses longitudinal worker-level data to address the issue of 
unobserved worker quality (Moretti, 2004). 

39 One reason why it is important to control for popula- 
tion is that larger cities may make firms more productive 
because they allow for more subcontracting. If return to 
specialization are important, it is in theory possible that 
plants in larger cities are more productive. 

works and therefore are more insulated from 
local external environments than single-unit 
plants. For example, while many of the factors 
that affect the productivity of a General Motors' 
plant located in St. Louis are probably deter- 
mined in the General Motors' headquarters in 
Detroit, all the factors that affect the productiv- 
ity of a single-unit plant in St. Louis are deter- 
mined in St. Louis. Spillovers should therefore 
be larger for single-unit plants than multiunit 
plants. I find that the coefficient on college 
share is 0.91 (0.17) for single-unit plants and 
only 0.42 (0.32) for multiunit plants. 

C. Instrumental Variable Estimates 

In this subsection I try to further investigate 
the validity of my estimates by using an instru- 
mental variable approach. A valid instrument is 
correlated with changes in S in other industries 
and is orthogonal to unobserved productivity 
shocks. I propose an instrument based on large 
plant openings. Specifically, the instrumental 
variable is the fraction of large plant openings 
among all the plant openings in a city excluding 
the relevant 3-digit industry. Large plant open- 
ings are defined as plants that exist in 1992 and 
did not exist in 1982 and that have 1,000 or 
more employees (in some models, I try 500+). 
Columns (1) and (2) in Table 9 show the num- 
ber of new plants in 1992 and the total employ- 
ment in these plants, by size. Although large 
plants are only a small fraction of new plants, 
they account for 18 percent of employment gen- 
erated by new plants. 

Large plants have a higher share of skilled 
workers. The correlation between total employ- 
ment and share of nonproduction workers at the 
plant level is 0.09. Openings of large plants 
appear to be an important determinant of 
changes in the aggregate education level of 
manufacturing workers. Column (3) in Table 
9 reports the correlation between the fraction of 
new plants in a given size group among all new 
plants in a city (excluding the relevant 3-digit 
industry) and the 1982-1992 change in manu- 
facturing college share in the city (excluding the 
relevant 3-digit industry). This correlation is 
calculated for the sample of 40,281 plants that is 
used in all the models in this paper. Entries in 
column (3) suggest that plant openings have a 

679 VOL. 94 NO. 3 



THE AMERICAN ECONOMIC REVIEW 

TABLE 9-THE SIZE DISTRIBUTION OF NEW PLANTS IN 1992 AND THEIR IMPACT ON CHANGES 
IN THE AGGREGATE COLLEGE SHARE 

Correlation with 
changes in 

Number of new Total college share in 
plants in 1992 employment other industries Coefficient 

(1) (2) (3) (4) 
1-10 workers 144,645 483,515 0.02 0.013 

(0.011) 
11-100 workers 65,347 2,026,164 -0.07 -0.054 

(0.012) 
101-500 workers 9,278 1,797,210 0.05 0.102 

(0.039) 
501-1,000 workers 773 522,462 0.13 1.329 

(0.189) 
1,000+ workers 413 969,952 0.19 2.249 

(0.325) 

Notes: Entries in columns (1) and (2) refer to all the plants in the LRD that exist in 1992 but 
did not exist in 1982. For columns (3) and (4) the fraction of new plants in a given size group 
among all new plants in a city (excluding the relevant 3-digit industry) was assigned to each 
of the plants in the sample of 40,281 plants used for all the regressions in this paper. Column 
(3) reports the correlation between the fraction of new plants in a given size group among all 
new plants in a city in 1992 (excluding the relevant 3-digit industry) and the 1982-1992 
change in manufacturing college share in the city (excluding the relevant 3-digit industry) in 
the sample of 40,281 plants. Column (4) reports the coefficient on the fraction of new plants 
in a given size group among all new plants in a city (excluding the relevant 3-digit industry) 
in a regression of 1982-1992 changes in manufacturing college share in a city (excluding the 
relevant 3-digit industry) on the fraction of new plants in a given size group among all new 
plants in a city (excluding the relevant 3-digit industry) in the sample of 40,281 plants. 

differential impact on aggregate human capital 
depending on the size of the new plant. While 
the fraction of small and medium-sized plants is 
not positively correlated with college share in 
other industries, the fraction of plants with at 
least 500 workers and the fraction of plants with 
at least 1,000 workers are positively correlated 
with college share in other industries.40 Column 

40 The ten cities with the largest fraction of new plants 
with at least 1,000 workers are: Lafayette, IN; Pine Bluff, 
AR; Bloomington, IL; Trenton, NJ; Wilmington, DE; 
Waco, TX; Waterloo-Cedar Falls, IA; Racine, WI; Flint, 
MI. The ten cities with the smallest fraction of new plants 
with at least 1,000 workers are: Yakima, WA; Omaha, NE; 
New Bedford, MA; Nashville, TN; Duluth, MN; Daytona 
Beach, FL; Monroe, AL; Utica-Rome, NY; Stockton, CA. 
Examples of cities with a fraction of new plants that is close 
to the sample average are: Toledo, OH; El Paso, TX; Rock- 
ford, IL; Akron, OH. In the following five Census divisions 
the fraction of large plant openings is above average: New 
England, Middle Atlantic, East North Central, West North 
Central, South Atlantic. In the following four Census divi- 
sions the fraction of large plant openings is below average: 
East South Central, West South Central, Mountain, Pacific. 

(4) reports the corresponding regression 
coefficients.41 

Is the fraction of new large plants a valid 
instrument? The instrument is valid if the size 
distribution of new plants in a city in industries 
other than the relevant 3-digit industry is or- 
thogonal to the productivity changes in the rel- 
evant plant. Note that the instrument is based on 
openings outside the plant's industry. The in- 
strument is not valid if changes in unobserved 
determinants of plant productivity are corre- 
lated with the size distribution of new plants 
outside the plant's industry. 

To investigate the validity of the exclusion 
restriction, I regress the instrument on 1982 

41 Specifically, column (4) reports the coefficient on the 
fraction of new plants in a given size group among all new 
plants in a city (excluding the relevant 3-digit industry) in a 
regression of 1982-1992 changes in manufacturing college 
share in a city (excluding the relevant 3-digit industry) on 
fraction of new plants in a given size group among all new 
plants in a city (excluding the relevant 3-digit industry) in 
the sample of 40,281 plants. 
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TFP. Finding that the instrument is correlated 
with the 1982 level of TFP would cast doubt 
on the validity of the instrument, since the 
level of productivity in 1982 and the 1982- 
1992 changes in productivity could be corre- 
lated. The coefficient is 0.030 (0.026) and not 
statistically significant. I also regress the in- 
strument on the number of employees in the 
relevant plant in 1982 and on the 1982-1992 
change in the number of employees in the 
relevant plant. The concern is that large plant 
openings may occur close to other large 
plants (or in areas where plant size is grow- 
ing), and, at the same time, plants of different 
size may experience different trends in pro- 
ductivity. If both these facts were true, they 
would invalidate the instrument. The coeffi- 
cients on 1982 plant size and on the 1982- 
1992 changes in plant size are, respectively, 
0.123 (0.101) and 0.897 (0.941). 

Another possible concern is that the fraction 
of large plant openings is higher in areas that 
experience many openings of any size. This 
could be a problem if areas that experience a 
large number of openings enjoy positive pro- 
ductivity shocks that make them particularly 
attractive (for example: the opening of a port 
or an airport). To assess this possibility, I 
regress the instrument on the absolute number 
of new openings, and the per capita number of 
new openings. Finding that the fraction of 
large plant openings is higher in areas that ex- 
perience a large number of openings would cast 
doubt on the validity of the instrument. The 
coefficient on the absolute number of new open- 
ings is -1.18 (0.26); the coefficient on the 
absolute number of new openings normalized 
by 1982 city population is -0.06 (0.02). This 
suggests that the fraction of new large plants is 
higher in cities that experience fewer openings 
of any size. 

I also regress the instrument on the average 
1982 wage in the relevant plant. The coefficient 
is 0.102 (0.021). This last result is problematic, 
because it indicates that the fraction of new 
large plants outside the relevant industry is pos- 
itively correlated with the level of wages in 
1982. If the level of wages in 1982 is correlated 
with the 1982-1992 change in productivity, this 
would indicate that the instrument is not 
exogenous. 

Table 10 reports instrumental variable esti- 

mates.42 Two-stage least-squares (2SLS) esti- 
mates in rows 1 and 3 seem to be generally 
consistent with the corresponding OLS esti- 
mates, although standard errors are large and 
preclude definitive conclusions. The first-stage 
coefficients in row 2 are between 2.22 and 3.34. 
To help in interpreting the first-stage estimates, 
consider that the instrument has a mean (stan- 
dard deviation) of 0.0025 (0.0024). For the av- 
erage city-industry, the fraction of large plant 
openings accounts for a 0.005-0.008-percentage- 
point increase in the aggregate college share 
outside the relevant industry, or about 11-18 
percent of the typical increase in college share 
experienced over a ten-year period.43 

VII. Human Capital Spillovers and Wages 

The most robust estimates of the spillover 
indicate that, on average, a one-percentage- 
point increase in city college share is associated 
with a 0.5-0.7-percent increase in productivity. 
(The average yearly increase in college share is 
0.2 percent.) Is this a plausible magnitude? One 
way to assess the plausibility of the estimated 
effect is to compare it with the difference in 
labor costs between cities with high and low 
human capital. In equilibrium, if firms are really 
more productive in cities with high levels of 
human capital, production costs should also be 
higher. Otherwise, firms would relocate from 
cities with low human capital to cities with high 
human capital (see Section I). The difference in 
labor costs between cities with high and low 
human capital is therefore a useful benchmark 
against which to compare the estimated effect of 
human capital spillovers on productivity. Find- 
ing that the productivity differences between 
cities with high human capital and low human 

42 Because the instrument affects changes in aggregate 
college share, models in Table 10 estimate equation (4) in 
differences. Specifically: A In ypcs = yAS-jc + aHln 
AHpjc + aLjA In Lpjc + jA In Kpjc + dij + Epjc, where A 
represents the 1982-1992 change. Column (1) is equivalent 
to column (2) in Table 3, column (2) is equivalent to column 
(3) in Table 3, etc. 

43 Alternatively, compare a city-industry at the 25 per- 
centile with a city-industry at the 75 percentile in terms of 
fraction of large plant openings. Based on the first-stage 
estimates, the latter has a 0.005-0.008-percentage-point 
increase in the aggregate college share more than the former. 
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TABLE 10-INSTRUMENTAL VARIABLE ESTIMATES OF HUMAN CAPITAL SPILLOVERS 

Cobb-Douglas Translog 

(1) (2) (3) (4) (5) (6) (7) (8) 

(1) IV is Based on Fraction of New Plants with 1,000 or More Workers 
(1) College share in other industries 0.84 1.03 1.28 1.21 0.95 0.87 1.29 1.15 

(0.66) (0.62) (0.57) (0.57) (0.62) (0.66) (0.56) (0.57) 
(2) First stage 2.23 3.39 3.24 3.23 3.37 2.22 3.23 3.21 

(0.29) (0.28) (0.30) (0.29) (0.29) (0.28) (0.29) (0.29) 

(2) IV is Based on Fraction of New Plants with 500 or More Workers 
(3) College share in other industries 0.85 0.87 1.59 1.43 0.88 0.79 1.59 1.32 

(0.70) (0.72) (0.64) (0.65) (0.71) (0.69) (0.64) (0.65) 
(4) First stage 1.15 1.57 1.55 1.54 1.56 1.15 1.55 1.53 

(0.15) (0.13) (0.15) (0.15) (0.15) (0.14) (0.15) (0.15) 

Industry effects Yes Yes 
State effects Yes Yes 
Industry X state Yes Yes Yes Yes 
Technology varies by industry Yes Yes 

Notes: Standard errors adjusted for clustering are in parentheses. The equation estimated is equation (4) is in differences. 
Specifically: A In Ypj,, = yAS-jc + aHin AHpjc + aLjA In L+jc + +A In Kjc + djs + Epjc. [Column (1) is equivalent to column 
(2) in Table 3; column (2) is equivalent to column (3) in Table 3; etc.] The instrumental variable is the fraction of large plant 
openings among all the plant openings in a city excluding the relevant 3-digit industry. In the top panel, large plant openings 
are defined as openings of plants with 1,000 workers or more. There are 413 such openings, and they account for 18 percent 
of employment in new plants. In the bottom panel, large plant openings are defined as plant openings with 500 workers or 
more. There are 1,186 such openings, and they account for 26 percent of employment in new plants. The dependent variable 
in the first stage is the college share in other industries. Each entry is a separate regression. There are 40,281 plants in the 
sample, observed in both 1982 and 1992. 

capital are larger than the differences in labor 
costs (adjusted for the fraction of labor cost to 
total costs), would suggest that the estimated 
productivity gains from spillovers are too large, 
and would cast doubt on the findings in Section 
IV.44 

Manufacturing wages are indeed higher in 
cities where the number of college graduates is 
high, even after controlling for individual 
schooling. Compare a city with a large stock of 
skilled workers like Seattle, WA, with a city 
with a much smaller stock of skilled workers, 
like El Paso, TX. The share of college graduates 
in the Seattle labor force is 0.31, almost double 
the share of college graduates in El Paso, 0.16. 
After controlling for individual schooling, and 

44I am abstracting from the cost of capital because it 
does not vary much across cities. If a substantial part of 
production costs of manufacturing firms come from land 
prices, and if cities with higher college share have more 
expensive land, then it would be possible to find that pro- 
ductivity differences between cities with high human capital 
and low human capital are larger than the differences in 
labor costs. 

other workers' characteristics, average manu- 
facturing wages in Seattle are 20 percent higher 
than in El Paso. This implies that an extra 
percentage point in college share is associated 
with 1.3 percentage points in higher wages, 
after controlling for individual observables. As 
it turns out, the corresponding figure for all U.S. 
cities is 1.1, not very different. 

In equilibrium, this wage difference must re- 
flect productivity differences. Because manu- 
facturing firms produce goods that are traded on 
the national market, if workers were not more 
productive in high-wage cities, manufacturing 

45 This figure comes from an individual-level OLS re- 
gression of log wage on city college share, a vector of 
individual characteristics including education, sex, race, 
Hispanic origin, U.S. citizenship, a quadratic term in work 
experience, AFQT score, a vector of family background 
characteristics, and city and year fixed effects. The coeffi- 
cient (standard error) on college share is 1.1 (0.21). The 
sample includes all manufacturing workers in the NLSY. 
Instrumental variable estimates and panel data estimates 
that control for individual fixed effects yield similar coef- 
ficients. Estimates based on Census data yield similar re- 
sults. See Moretti (2004) for details. 
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firms would leave and relocate to low-wage 
cities. Specifically, we should observe that 
the productivity increase associated with a one- 
percentage-point increase in college share is 
roughly 1.1 * 0.7 - 0.75, where 0.7 is the share 
of output that is typically assumed to go to labor 
(the remaining 0.3 goes to capital). In other 
words, this back-of-the-envelope calculation 
suggests that, in equilibrium, a regression of log 
output on college share (holding constant other 
inputs) should yield a coefficient not very far 
from 0.75.46 

My most robust estimates in Table 3 place 
the spillover effect at around 0.5-0.7. I con- 
clude that the estimated productivity differ- 
ences between cities with high and low levels 
of human capital are consistent with differ- 
ences in labor costs that are typically ob- 
served between cities with high and low level 
of human capital. 

VIII. Conclusion 

Economists have long speculated that human 
capital may generate significant spillovers. Lu- 
cas (1988), among others, argues that human 
capital externalities are large enough to explain 
differences between poor and rich countries in 
long-run growth rates. Yet, despite significant 
policy implications, systematic empirical evi- 
dence on the actual magnitude of externalities is 
just beginning to emerge. Previous work has 
focused on differences in education and wages 
across metropolitan areas. 

In this paper, I take a more direct approach by 
focusing on the productivity of manufacturing 
establishments. I start from a very simple ob- 
servation: if human capital spillovers actually 
exist, then we should observe that plants in 
cities with a large stock of human capital are 
more productive than otherwise similar plants 
in cities with a smaller stock of human capital. 
My findings suggest that, after controlling for a 

46 To see this more formally, consider the simplest pos- 
sible technology: y = AL"Kl -. It is easy to see that unit 
costs are In c = -ln A + In w + (1 - a)ln r + constant. 
In Roback's model, the price of capital is constant across 
cities. If in equilibrium unit costs are constant across cities, 
this equation says that any increase in A needs to be offset 
by a similar increase in a times wages. 

plant's own level of human capital, plants lo- 
cated in cities where the fraction of college 
graduates grew faster experienced large in- 
creases in productivity than similar plants in 
cities where the fraction of college graduates 
grew more slowly. 

Interestingly, the estimated productivity dif- 
ferences between cities with high and low levels 
of human capital are consistent with differences 
in manufacturing wages that are typically ob- 
served between cities with high and low levels 
of human capital. Consistent with a model that 
includes both standard general-equilibrium 
forces and spillovers, the productivity gains 
generated by human capital spillover appear to 
be offset by increased labor costs. 

Although I control for permanent plant char- 
acteristics and state and industry time-varying 
productivity shocks, I cannot completely rule 
out the possibility that unobserved city hetero- 
geneity may explain part of the estimated effect. 
However, several pieces of evidence lend cred- 
ibility to the conclusion that the estimated effect 
is not completely spurious. 

First, the estimated coefficient is remarkably 
robust across specifications. Different assump- 
tions on technology, omitted variables, and 
variable definitions all yield similar results. 

Second, aggregate human capital in the high- 
tech sector of the city matters more for high- 
tech plants than aggregate human capital in the 
low-tech sector of the city; and aggregate hu- 
man capital in the low-tech sector matters more 
for low-tech plants than aggregate human cap- 
ital in the high-tech sector. More importantly, 
when I use three direct measures of economic 
distance, I find that, within a city, manufactur- 
ing plants benefit more from human capital in 
industries that are geographically and econom- 
ically close to manufacturing than from human 
capital in industries that are geographically 
close but economically far. This result supports 
the view that spillovers are related to the 
amount of interactions between workers in dif- 
ferent industries. 

Third, unlike density of human capital, den- 
sity of physical capital outside a plant has no 
effect on the plant productivity. This indicates 
that what I am estimating is not simply an 
agglomeration effect generated by density of 
economic activity. Finally, an instrumental vari- 
able strategy based on the number of large plant 
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openings in the relevant city but outside the capital spillovers, one important direction for 
relevant 3-digit industry yields estimates that are future research should be the investigation of 
generally consistent with OLS estimates. the exact mechanisms through which spillovers 

Having established the existence of human arise. 

DATA APPENDIX 

CENSUS OF MANUFACTURERS: Plant-level data on output, capital, hours worked, industry, 
and metropolitan area are from the Census of Manufacturers. The Census of Manufacturers covers 
the universe of manufacturing plants with one or more employees. Since Standard Metropolitan 
Statistical Area (SMSA) codes in different years are based on different definitions of metropolitan 
areas, I correct the 1992 SMSA codes to be consistent with the 1982 definition. I delete all the 
SMSAs that are new to the 1992 sample and were not part of another SMSA in 1982.47 Because the 
metropolitan area definition was changed after 1982, I also redefine 1992 SMSAs to match the 1982 
boundaries. I do this in two steps. First, I make the definition of counties consistent over time because 
some counties have changed their boundaries during the 1980's and there are coding errors in the 
Census of Manufacturers county codes. To do so, I use a program written by Randy Becker provided 
by the CES. Only five urban counties are affected (they are located in Georgia, Virginia, Arizona, 
New Mexico, and California). To make sure that all county changes have been captured, I use the 
County Group Equivalency files. I find seven more changes in Virginia counties that are not included 
in the CES program. Once I have a county code that is consistent over time, I use the County Group 
Equivalency files to identify SMSA boundary changes in the 1992 Census of Manufacturers. In 1982 
and 1992 263 SMSAs are identified. 

I assign each plant to an industry-city cell based on its 3-digit SIC code and SMSA code. Although 
4-digit SIC codes are available, I choose 3-digit industries to maximize consistency with the Census 
of Population industry classification. For production workers, both the number of workers and the 
number of hours worked is reported in the Census of Manufacturers. For nonproduction workers, the 
number of workers is known, but the number of hours worked is not reported. The number of hours 
of nonproduction workers is imputed by assuming that production and nonproduction workers in the 
same plant work the same number of hours per capita. 

CENSUS OF POPULATION: Data on the skill level of workers in each plant and on the share 
of college graduates outside the industry come from the 1980 and 1990 Censuses of Population. To 
maximize sample size, I use the 5-percent version of the Public Use MicrodataSample (PUMS). The 
Census industry classification is not the SIC one, but has a similar level of detail as the 3-digit SIC 
codes. Using the name of the industry, I match the Census industry classification to the SIC one. 

As in the Census of Manufacturers, metropolitan area definitions are not consistent across years. 
To make the 1990 SMSA codes consistent with the 1980 definition, I adopt a procedure consistent 
with the one described above for the Census of Manufacturers.48 Years of education are assigned to 

47 I also delete Dayton because it was combined with Springfield, OH, and there is not a good way to separate them and/or 
to define either one so that it resembles its form in 1982. 

48 Specifically, I assign individuals a metropolitan area on the basis of two geographical identifiers, Public Use Microdata 
Areas (PUMAs) and metropolitan area codes. The finest geographic units identified in the 5-percent samples are PUMAs, 
which are arbitrary geographic divisions that contain no less than 100,000 people each. Most individuals who live in 
metropolitan areas are also assigned a metropolitan area identifier. However, some PUMAs straddle the boundary of two or 
more SMSAs and in these "mixed" PUMAs an SMSA code is not assigned. These "mixed" PUMAs are assigned a SMSA 
code on the basis of the County Group Equivalency files. The methodology used to assign SMSA codes and to match MSA 
across Censuses is identical to the one in Moretti (2004). If over 50 percent of the PUMA population is attributable to a single 
MSA, I then assign all individuals in that PUMA to the majority MSA. Since the MSA definition was changed after the 1980 
Census, I redefine 1990 SMSAs to match the 1980 boundaries. The County Group Equivalency files are used to identify 
PUMAs that contain the affected counties in the 1990 Census. If the counties in question comprise more than half of the 
PUMAs population, all respondents are assigned to the pertinent SMSA. If more than 10 percent of a SMSAs 1990 population 
is affected by the boundary changes and is unrecoverable from the County Equivalency files, I drop the city from the analysis. 
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the education codes used in 1990 Census following Table 1 in Kominsky and Siegel (1994). Since 
1982 and 1992 are not Census of Population years, linear interpolation is used to estimate the college 
share for 1982 and 1992.49 

MATCHING CENSUS OF MANUFACTURERS TO CENSUS OF POPULATION: Plant- 
level data from the Census of Manufacturers are matched with Census of Population data on 
workers' education by industry and city. I assign each plant in the Census of Manufacturers and each 
worker in the Census of Population to a city-industry cell based on the metropolitan area code and 
a 3-digit industry definition. To minimize the amount of measurement error, I exclude all industry- 
city cells with less than ten workers. There are a total of 3,441 cells. The average number of workers 
in a cell is 546 in 1980 and 387 in 1990. About 18 percent of the cells contain only one plant. (The 
fraction of cells that include only one plant is calculated for the balanced panel used for regressions, 
not for the population of plants.) The median cell in 1992 includes 100 workers and 4 plants.50 

The Census of Manufacturers has 381,773 plants in 1982 and 348,385 in 1992. To build the 
balanced panel used in this paper, I first exclude all plants that do not appear both in 1982 and 1992. 
A total of 161,321 plants exist in both years. I then delete plants for which some of the relevant 
variables are missing in at least one year. I also exclude from the sample all plants that have capital 
or production hours or nonproduction hours equal zero. With Cobb-Douglas or Translog production 
functions, output is zero for any plants where one of the inputs is zero. Finally, I delete industry-city 
cells with less than ten workers from the Census of Population. The resulting balanced panel sample 
has 40,281 plants in 1982 and 1992. This sample covers approximately 24 percent of average annual 
manufacturing employment over the period from 1982 to 1992. Large plants are overrepresented in 
the worker-firm matched sample. For example, the average number of hours worked by all plants in 
1982 is 105.2, less than half than the average number of hours worked by plants in the matched 
sample. Similarly, output, value added, value of capital, and wages are lower in the population than 
in my sample. The average output, value added, capital, and wages in the population of plants in 
1982 are, respectively: 9,018; 3,828; 3,336; 12.2. However, the nonrepresentativeness of the 
worker-firm matched sample does not seem to bias the estimates in any significant way (see Section 
VI, subsection B). 

In theory, the Worker Establishment Characteristics Database (WECD) could have been used 
instead of the sample used here. WECD matches the Census of Manufacturers to the Census of 
Population using a more precise algorithm that requires eliminating from the sample all observations 
located in cells with more than one plant (Hellerstein et al., 1999). The main reason why I do not 
use WECD is that it is available only for 1992 and does not allow for a longitudinal analysis. 

PLANT-LEVEL WAGE EQUATIONS: In order to assess the quality of the match between 
workers and plants, I have estimated plant-level wage equations. Although the focus of this paper is 
not on wages, plant-level wage equations provide an indirect test of the quality of the matching. If 
the matching is correct and measurement error is not too large, one would expect wage equation 
coefficients to be close to the ones usually found in the wage-equation literature.51 Data on wages, 
from the Census of Manufacturers, are plant averages obtained by dividing the total wage bill by the 

Dayton and Springfield, Ohio, are the only such cities. Two hundred eighty-two SMSAs are identified in 1980 and 1990. The 
computer code for this assignment is available on request. 

49 An alternative would have been to use averages obtained yearly from the Current Population Survey. Given the smaller 
sample size of the CPS, results obtained by interpolating Census averages turn out to be more precise than results obtained 
from CPS averages. 

50 There is a wide variation in cell size across industries. For example, Petroleum Refining (SIC 291) and Engine and 
Turbines (SIC 351) have typically only one plant per cell, while Plastic Products (SIC 308) and Scientific Instruments (SIC 
381, 382) have seven plants per cell. Not all industries are present in all cities. For example, Office and Accounting Machines 
(SIC 357) plants are present in only 29 cities, while there are Electrical Machinery (SIC 361, 362, 364, 367, 369) plants in 
197 different cities. 

51 Hellerstein et al. (1999) show that plant-level wage equations represent the aggregation of individual-level wage 
equations over workers employed in a plant and hence should provide coefficients similar to the ones obtained from their 
individual-level counterparts. 

685 VOL. 94 NO. 3 



THE AMERICAN ECONOMIC REVIEW 

number of hours worked. Data on workers are cell averages from the Census of Population. For 
example, "percentage female" is the fraction of women in the industry and city to which the plant 
belongs. The coefficients are roughly similar to the ones found in the literature based on individual- 
level regressions and the ones found in Hellerstein et al. (1999), based on a plant-level regression. 
For example, the coefficients on years of schooling are 0.078 (0.004) and 0.086 (0.006) for 1992 and 
1982, respectively. These coefficients are slightly smaller-probably because of measurement 
error-but not completely different from the standard estimates of the return to education obtained 
from worker-level data.52 Women and blacks are paid less, and older workers more. The coefficients 
on female, black, and age in 1992 are, respectively: -0.304 (0.029), -0.123 (0.056), 0.011 (0.001). 
The coefficients on female, black, and age in 1982 are, respectively: -0.449 (0.026), -0.026 
(0.058), 0.012 (0.001). 

I conclude that the matched worker-firm sample contains some measurement error, but can 
roughly reproduce standard individual-level wage equation results. 

PATENTS: To construct the two measures of economic distance based on patents, I use the 
NBER patent data set. I use all patents granted after 1970. For the index based on patent citations, 
I exclude self-citations. A major problem in linking patents to the Census of Manufacturers is that 
patents are not directly assigned industry codes. I use the concordance that links the International 
Patent Classification (IPC) system to the SIC system at the 4-digit SIC level developed by Brian 
Silverman. The concordance has been used by various scholars to assess the specific industries in 
which firms have technological strength (Brian S. Silverman, 1999), patenting activity through the 
industry life cycle (Anita McGahan and Silverman, 2001), and industry-specific effects in university- 
industry technology transfer (David Mowery and Arvids Ziedonis, 2001). The concordance and a 
detailed explanation on how it was constructed are available at www.rotman.utoronto.ca/silverman. 
In interpreting my results, it is important to keep in mind that the patent-SIC code is not one-to-one. 
Silverman's concordance assigns multiple SIC codes to each patent. I use the variable usefreq to 
select the SIC code that is most important for each patent, and ignore all the other SIC codes. This 
is likely to introduce some measurement error, which could bias downward the documented 
relationship between spillovers and the two measures of economic distance based on patents. 

52 One difference is that the 1992 estimates are usually found to be larger than the 1982 ones. 
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TABLE Al-THE SPILLOVER EFFECT OF COLLEGE SHARE IN 1-DIGIT AND 2-DIGIT INDUSTRIES, 
BY ECONOMIC DISTANCE 

(Distance Based on Input-Output Tables) 

Coefficient on college 
Distance Inputs in manufacturing share in specified 
(Rank) (billions of dollars) industry 

(1) (2) (3) 

Model A: 1-Digit Industries 
Manufacturing 1 841 0.802 

(0.192) 
Transportation, 2 122 0.488 

Communication, Utilities (0.213) 
Trade 3 119 0.705 

(0.335) 
Services 4 112 0.213 

(0.284) 
Mining 5 93 -0.004 

(0.042) 
Finance 6 29 0.048 

(0.154) 
Construction 7 14 0.273 

(0.339) 

Model B: 2-Digit Industries 
1-5 30.7 0.577 

(0.187) 
6-10 9.8 0.314 

(0.233) 
11-15 4.2 0.413 

(0.182) 
16-20 2.6 0.230 

(0.186) 
21-25 1.8 0.232 

(0.161) 
26-30 1.1 0.076 

(0.119) 
30+ 0.9 0.083 

(0.074) 

Notes: Model A: Column (1) reports the rank based on the value of inputs used in manufac- 
turing from the specified 1-digit industry. Column (2) reports the value of inputs used in 
manufacturing from the specified industry. Entries in column (3) are the 'k coefficients in 
equation (5), where k indexes 1-digit industries. (When k = Manufacturing, I calculate college 
share excluding the relevant 3-digit industry.) Figure 2 (top panel) plots column (3) against 
column (1). Model B: Column (1) reports the rank based on the value of inputs used in the 
relevant 2-digit industry from the specified 2-digit industry group. Column (2) reports the 
average value of inputs used in the relevant 2-digit industry from the specified 2-digit industry 
group. Entries in column (3) are the yk coefficients in equation (5), where k indexes 2-digit 
industries. For example, the entry in row 1 is the coefficient on college share in the five 2-digit 
industries that are closest to the relevant plant. Figure 2 (bottom panel) plots column (3) 
against column (1). Both models control for capital, hours worked by skilled and unskilled 
workers, establishment effects, industry x year, and state x year effects. There are 40,281 
plants in the sample, observed in both 1982 and 1992. 
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TABLE A2-THE SPILLOVER EFFECT OF COLLEGE SHARE IN 1-DIGIT AND 2-DIGIT INDUSTRIES, 
BY ECONOMIC DISTANCE 

(Distance Based on the Distribution of Patents Across Technological Groups) 

Uncentered Coefficient on college 
Distance correlation share in specified 
(Rank) coefficient industry 

P 
(1) (2) (3) 

Model A: 1-Digit Industries 
Manufacturing 1 1 0.802 

(0.192) 
Trade 2 0.618 0.705 

(0.335) 
Mining 3 0.577 -0.004 

(0.042) 
Construction 4 0.450 0.273 

(0.339) 
Transportation, Communication, 5 0.398 0.488 

Utilities (0.213) 
Finance 6 0.363 0.048 

(0.154) 
Services 7 0.345 0.213 

(0.284) 
Model B: 2-Digit Industries 

1-5 0.694 0.760 
(0.180) 

6-10 0.461 0.407 
(0.187) 

11-15 0.402 0.313 
(0.178) 

16-20 0.360 0.388 
(0.205) 

21-25 0.229 0.225 
(0.303) 

26-30 0.106 0.369 
(0.371) 

30+ 0.063 0.076 
(0.356) 

Notes: Model A: Column (1) reports the rank based on the uncentered correlation coefficient 
between manufacturing and the specified 1-digit industry. Column (2) reports the uncentered 
correlation coefficient between manufacturing and the specified 1-digit industry. The uncen- 
tered correlation coefficient is defined in equation (6). Entries in column (3) are the yk 
coefficients in equation (5), where k indexes 1-digit industries. (When k = Manufacturing, I 
calculate college share excluding the relevant 3-digit industry.) Figure 3 (top panel) plots 
column (3) against column (1). Model B: Column (1) reports the rank based on the uncentered 
correlation coefficient. Column (2) reports the uncentered correlation coefficient between the 
specified 2-digit industry group and the relevant 2-digit industry. Entries in column (3) are the 
yk coefficients in equation (5), where k indexes 2-digit industries. For example, the entry in 
row 1 is the coefficient on college share in the five 2-digit industries that are closest to the 
relevant plant. Figure 3 (bottom panel) plots column (3) against column (1). Both models 
control for capital, hours worked by skilled and unskilled workers, establishment effects, 
industry X year, and state X year effects. There are 40,281 plants in the sample, observed in 
both 1982 and 1992. 
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TABLE A3-THE SPILLOVER EFFECT OF COLLEGE SHARE IN 1-DIGIT AND 2-DIGIT INDUSTRIES, 
BY ECONOMIC DISTANCE 

(Distance Based on Patent Citations) 

Coefficient on college 
Distance Frequency of share in specified 
(Rank) patent citations industry 

(1) (2) (3) 

Model A: 1-Digit Industries 
Manufacturing 1 0.743 0.802 

(0.192) 
Services 2 0.134 0.213 

(0.284) 
Transportation, Communication, 3 0.064 0.488 

Utilities (0.213) 
Construction 4 0.029 0.273 

(0.339) 
Trade 5 0.016 0.705 

(0.335) 
Mining 6 0.010 -0.004 

(0.042) 
Finance 7 0.009 0.048 

(0.154) 

Model B: 2-Digit Industries 
1-5 0.091 0.337 

(0.122) 
6-10 0.043 0.249 

(0.180) 
11-15 0.032 0.213 

(0.208) 
16-20 0.020 -0.032 

(0.185) 
21-25 0.009 0.033 

(0.208) 
26-30 0.002 0.260 

(0.196) 
30+ 0.0002 0.071 

(0.269) 

Notes: Model A: Column (1) reports the rank based on the frequency of patent citations 
between the manufacturing and the relevant 1-digit industry. Column (2) reports the proba- 
bility that patents assigned to manufacturing firms cite patents assigned to firms in the 
specified industry. Entries in column (3) are the yk coefficients in equation (5), where k 
indexes 1-digit industries. (When k = Manufacturing, I calculate college share excluding the 
relevant 3-digit industry.) Figure 4 plots column (3) against column (1). Model B: Column (1) 
reports the rank based on the frequency of patent citations between the specified 2-digit 
industry group and the relevant 2-digit industry. Column (2) reports the frequency that the 
relevant 2-digit industry cites patents assigned to the specified group. Entries in column (3) 
are the yk coefficients in equation (5), where k indexes 2-digit industries. For example, the 
entry in row 1 is the coefficient on college share in the five 2-digit industries that are closest 
to the relevant plant. Figure 4 (bottom panel) plots column (3) against column (1). Both 
models control for capital, hours worked by skilled and unskilled workers, establishment 
effects, industry X year, and state X year effects. There are 40,281 plants in the sample, 
observed in both 1982 and 1992. 
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