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DAVID BATES
ROGER CRAINE

Valuing the Futures Market Clearinghouse’s Default
Exposure during the 1987 Crash

Futures market clearinghouses are intermediaries that make large-volume trading be-
tween anonymous parties feasible. During the market crash in October 1987 rumors
spread that a clearinghouse might fail. This paper presents estimates of three measures
of the default exposure. We estimate the traditional summary statistic for risk exposure:
the tail probabilities. We also estimate two economic measures: the expected value of
the payoffs in the tails, and expected value of the payoffs in the tails conditional on land-
ing in the tail. Our estimates indicate the market thought another crash was unlikely, but
that if one occurred it would be large.

FUTURES AND FORWARD CONTRACTS are agreements between
two parties to buy or sell an asset at a future date at a price set today. Futures contracts,
unlike forward contracts, trade on organized exchanges. Futures market clearing-
houses are intermediaries that make large-volume trading between anonymous par-
ties feasible by guaranteeing performance on all trades between clearing members.
Nonmembers execute trades through a clearing member. Clearinghouse intermedia-
tion makes futures contracts liquid and isolates traders from individual counterparty
default risk.!

The margin system is the clearinghouse’s first line of defense against default risk.
Margin collection and administration are organized in a pyramid structure described
in Edwards (1983). The clearinghouse, at the top of the pyramid, collects margins
from clearing members. The clearinghouse demands a performance bond (initial mar-
gin) when a contract is opened. Thereafter, the clearinghouse “marks” member ac-
counts “to market” to prevent losses from accumulating. It collects funds (variation
margin) from clearing members who hold contracts that had a capital loss and distrib-
utes funds (also called variation margin) to members who hold contracts that had a
capital gain. Clearing member futures commission merchants (FCMs) collect mar-
gins from (and distribute gains to) nonclearing FCMs who execute their trades
through the clearing member. At the base of the pyramid all FCMs collect margins

1. See Hull (1997, p. 3). Forward contracts are over-the-counter instruments traded between principals
with established credit—usually large banks. Forward contracts are not liquid; most forward contracts ter-
minate in delivery. In contrast, 98 percent of futures contracts are terminated with an offsetting position; see
Fabozzi, Modigliani, and Ferri (1997, p. 507).
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from and distribute gains to their customers. If the losers don’t meet the variation mar-
gin call, then the clearinghouse must come up with the funds from its own reserves, or
assess the remaining solvent clearing members, or default.

On Monday, October 19, 1987, the S&P 500 futures price declined by 29 percent—
the largest one-day price change since trading began. On that day the Chicago Mer-
cantile Exchange (CME) clearinghouse issued variation margin calls for a record $2.5
billion. The Commodity Futures Trading Commission (the regulatory board for the
futures markets) disclosed that during October fourteen FCMs became undersegre-
gated (the FCM had less than the required cash in consumer accounts) and three firms
were undercapitalized. In addition eleven firms, including six CME members, had
margin calls to a single customer that exceeded their capital. Traders feared that a de-
fault by a large customer would trigger a cascade collapsing the pyramid. Rumors
spread that a major clearinghouse might fail.?

The clearinghouse’s default exposure depends on the probability distribution of
changes in the futures price. The traditional measure of risk is the probability that a
price change will exceed the margin. Figlewski (1984), Gay, Hunter, and Kolb
(1986), Hsieh (1993), Kupiec (1994), and others estimate the tail probabilities. How-
ever, this measure is somewhat limited in ignoring the consequences of a futures price
move that exhausts posted margin. We present two additional methods of assessing
clearinghouse exposure, and use them along with tail probability estimates to examine
the CME’s exposure in late 1987 on the popular S&P 500 futures contract.

The first additional measure of default exposure is the expected value of the addi-
tional funds required to ensure performance on all futures contracts. If evaluated using
asset-pricing techniques, this expectation is the premium a clearinghouse would pay
for a hypothetical insurance policy that would cover the additional funds. As in some
previous examinations of default risk, pricing this insurance draws upon option theory.>

Second, we estimate the expected additional funds requirement conditional on a fu-
tures move exhausting the posted margin. Conceptually, this is the expected amount
that must be met by other resources: the remaining assets of losing customers, the as-
sets of the clearinghouse and FCMs, potentially even the willingness of the central
bank to intervene. To our knowledge, this measure has not been previously used in ex-
amining clearinghouse exposure. Its magnitude relative to available secondary “re-
serves” is a key determinant of whether the clearinghouse is likely to survive a futures
price move that exceeds the margin requirement.

We use two methods to estimate the parameters of the conditional distribution, and
to evaluate the three measures of clearinghouse exposure. From time series data on fu-
tures prices we estimate an EGARCH-jump process whose features include volatility
persistence, a negative correlation between market returns and volatility shocks, and
substantial daily excess kurtosis and/or skewness. We incorporate various informa-

2. See Bernanke (1990) and the Report of the Presidential Task Force on Market Mechanisms (1988,
section 6).

3. Merton (1974) represented the default risk on risky debt as a put option, while Merton (1977) used put
option prices to evaluate the fair price of bank deposit insurance. Previous applications of option pricing to
clearinghouse exposure include Craine (1997) and Day and Lewis (1997).
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tional sources into the conditional variance assessments: lagged shocks, volatilities
inferred from the prices of traded options, and intraday high-low price ranges. Since
jumps are especially important for default risk, we also condition the current jump
probability on the information variables. The model builds upon much previous work
in time series econometrics, although some features (for example, time-varying jump
risk) appear to be new.

Second, prices of options on S&P 500 futures contain substantial information re-
garding traders’ assessments of future S&P 500 futures returns. As discussed by Bates
(1991), the distributions implicit in S&P 500 futures options exhibited substantial
skewness and/or excess kurtosis during the year preceding the stock market crash of
October 19, 1987. We use the implicit jump-diffusion parameter estimation approach
of Bates (1991) to obtain a second estimate of the conditional distribution of futures
price changes from the prices of traded options. We also infer the parameters of a log-
normal distribution (no jumps or fat tails) implied by the classic Black-Scholes (1973)
model for comparison.

The two additional measures of risk indicate that the tail probability approach can
offer a misleading picture of postcrash CME exposure. Judging only from tail proba-
bilities, the CME’s aggressive margin requirement increases in October 1987 com-
bined with shifting conditional distributions reduced clearinghouse exposure to
precrash levels by or before the end of November. However, the consequences of a fu-
tures price move in excess of margin were estimated at one to two orders of magnitude
higher than precrash levels, given postcrash time series and option-based estimates of
substantial jump risk. Low-probability large-magnitude jumps do not especially show
up in tail probabilities, but do show up in the other risk measures. According to S&P
500 futures options prices, clearinghouse exposure peaked on October 20, when sec-
ondary reserves adequate to cover an expected additional $10.4 billion were required
to weather another crash. On October 20 the Federal Reserve announced it stood
ready to supply the necessary liquidity.

The paper is organized as follows: Section 1 presents the measures of risk exposure.
Section 2 gives the specification of the jump-diffusion model and presents the param-
eters inferred from traded option prices and estimated from time-series data on the
S&P 500 futures contract. Section 3 presents estimates of the measures of risk expo-
sure for October and November of 1987. Section 4 concludes.

1. MEASURES OF THE EXPOSURE

This section presents the three measures of exposure associated with a single fu-
tures position. For concreteness, we focus on the margin system for clearing members
of the CME in 1987. At that time, the CME was one of only two clearinghouses that
used a gross margining system, under which margins were required for each contract.
Other clearinghouses used a net margining system in which offsetting positions (a
long and a short) required no margin. In 1988 the CME moved to a system of margins
against a portfolio held by the clearing member; see Kupiec (1994) for details.*

4. Margins for customer accounts are much more complicated; see Edwards (1983) and Rutz (1989).
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It should be emphasized that the measures of exposure presented here do not de-
pend on the particular margining system, nor upon the particular position held. They
are general measures that could be used to characterize the risk associated with any
position, or portfolio of positions, that is partially secured by a margin requirement.
The principles used in assessing the clearinghouse’s guarantee of futures positions
could equally be used in assessing the clearinghouse’s guarantee of written options.

Margins

The exchange clearinghouse demands that clearing members post a performance
bond (initial margin) of M, when they enter a futures contract® on behalf of customers
or on their own account. To prevent losses from accumulating the clearinghouse
“marks” members’ accounts “to market” at intervals 1 and forces them to realize the
capital loss, or gain, on their position. The clearinghouse demands “variation margin”
equal to the change in the market value of the contract, AF = F,, _— F,, where F, de-
notes the price of the contract at time ¢. If the price of the futures contract goes up, the
short seller must add variation margin equal to the loss in market value of the contract.
If the price of the futures contract goes down, the clearinghouse credits the variation
margin to the short seller’s account and he can withdraw the funds. The variation mar-
gin for a long position is the negative of the variation margin for a short position.

Exposure

The clearinghouse credits the accounts of positions with a gain and debits the ac-
counts of positions with a loss. If the losers don’t come up with the variation margin,
the clearinghouse must draw down reserves, or assess solvent clearing members, or
default. The clearinghouse holds initial margin against each contract. Assuming both
sides of the transaction post equal margin M, the clearinghouse’s net exposure ex post
equals the absolute value of the futures price change minus the margin, or zero,

V(AF, M) = max[0, | AF | - M]. )

In this article we focus on the uncollateralized additional funds requirement V that
must be raised in some fashion to ensure performance on futures positions. The funds
may come from customers, or the capital or reserves of FCMs or the clearinghouse.
Who pays is not addressed here; our focus is on how much someone will need to stump
up in additional resources.

Figure 1 plots the funds that must be raised as a function of the futures price. For fu-
tures price changes smaller (in absolute value) than the margin no additional funds
have to be raised. The clearinghouse credits the account of the member with a capital

5. In 1987 clearing members actually posted initial margin on any new positions taken during the day
(and still open when the exchange closed) before the next business day. When the clearinghouse raises the
initial margin requirement, as it did four times in October, the clearing member must post additional initial
margin for all open contracts.

6. In 1987 the normal interval for the CME was daily. On March 1, 1988, the CME began realizing capi-
tal gains or losses on positions twice a day: at noon and at the close. Since June 26, 1992, the noon settle-
ment has been accompanied by a variation margin call.
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FIG. 1. Uncollateralized Additional Funds Requirement per Futures Contract, as a Function of the End-of-Period Fu-
tures Price F,

gain. If the member with the capital loss fails to make the variation margin payment
the clearinghouse takes the payment out of the initial margin and liquidates the posi-
tion. For futures price changes greater than the margin, additional funds must be
raised, or the clearinghouse defaults.

Measures of Exposure

1.p = Prob t(|AF | > M). The tail probability p is the conditional probability that ad-
ditional funds must be raised. This is the typical measure used to evaluate risk expo-
sure in the futures market. See, for example, the excellent postcrash survey by
Warshawsky (1989).

2.8(F,, M) = E [V(AF, M)]. The expected value of the additional funds that must be
raised. If evaluated using a “risk-neutral” expectation operator E*, this is the daily
premium on an insurance policy that would cover the funds if they were needed. To
see this, note that equation (1) and Figure 1 are the gross payoff function on a portfo-
lio of options: an “out-of-the-money” put option with strike price X ,=F,-M below
the current futures price, and an out-of-the-money call option with strike price X_ = F,
+ M above the current futures price. This option portfolio is known as a strangle (Hull
1997); the market price of the strangle is the insurance premium.

Options have been used to price default risk in finance for some time. Merton
(1974) represented the default premium on risky debt as a put option. In 1977 he
showed that the fair price of bank deposit insurance was the value of the put option. In
this paper we use the option price to assign an economic measure to the funds that
must be raised if the change in the futures price exceeds the margin.”

3. R = E[V(AF, M)|V > 0]. The expected value of the additional required funds
conditional on additional funds being needed. While this measure is not commonly

7. The strangle price S is a summary statistic that measures the economic significance of the exposure
just as the tail probability, p, is a summary statistic measuring the likelihood of the exposure. Neither im-
plies default will actually occur when the change in the futures price exceeds the margin.
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used to assess default risk in finance or in the futures market, it is arguably quite rele-
vant given the multi-tiered nature of clearinghouse defenses against default. )i gives
ameasure of the average value of secondary reserves that would be required when the
price change exceeds the margin. Could an additional amount, R, be raised quickly if
it were needed?

The clearinghouse would obviously prefer that customers meet any additional
funds requirements. But from a default risk perspective, the relevant secondary re-
serves for ensuring performance on futures contracts include customers’ liquid re-
serves (lines of credit anc} assets), the reserves of the FCMs and clearinghouse, and
potentially even the readiness of the Federal Reserve to intervene. Some of these mag-
nitudes can be measured or estimated; others are perforce highly conjectural. Having
an explicit estimate of additional expected required funds conditional upon posted
margin being exhausted provides a useful benchmark for assessing the adequacy of a
clearinghouse’s secondary lines of defense against default.

The above three measures of exposure are interrelated. Since V is either positive or
zero, the strangle price can be written as

S=E[V |V > 0]Prob][V > 0]
= R+ p*, 2)

where i* and p* are variants of SR and p evaluated under the risk-neutral probability
measure used in asset pricing, rather than under the conditional probability measure
from a time series model. Thus, any two measures suffice to identify the third. The
relationship between actual and risk-neutral conditional distributions is discussed
below.

2. ESTIMATES OF THE CONDITIONAL DISTRIBUTION

This section presents estimates of the conditional distribution of the price of the
S&P 500 futures contract. The S&P 500 futures contract is a high-volume contract
that was popular with index arbitragers and portfolio insurers. At the beginning of Oc-
tober open interest was roughly 115,000 with a notional value of almost $20 billion.®
Daily volume ran at approximately eighty thousand contracts.

The three measures of exposure depend critically on the conditional distribution of
the change in the futures price. Estimating the conditional distribution can be difficult
even under normal circumstances. Such estimation is especially difficult during the
period following the stock market crash of October 19, 1987, given that the 1987
crash registered by far the largest daily percentage movements in U.S. stock prices
since the beginning of accurate record keeping.® But even precrash data exhibit sub-

8. The actual price of an S&P futures contract is $500 times the index quote: Price, = $500*F,.

9. Shiller (1994) notes that the S&P 500 index fell 20.46 percent on October 19, 1987, from the preced-
ing Friday’s close. The next largest daily movements, of 10—13 percent in magnitude, occurred in 1929—
32; for example, the —12.34 percent, —10.16 percent, and +12.53 percent moves on October 2830, 1929
and the 12.36 percent increase on October 6, 1931.
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FiG. 2. Distribution of Daily Returns on S&P 500 Futures: January 2, 1985 through September 30, 1987. Observed fre-
quencies, and theoretical normal.

stantial abnormalities. As shown in Figure 2, the empirical distribution of daily fu-
tures returns on the S&P 500 contract (difference of the log of prices) over January 2,
1985, through September, 30, 1987, were substantially negatively skewed and lep-
tokurtic, with a Shapiro-Wilks test rejecting normality at a P-value of .0001. The 5.7
percent decline on September 11, 1986, was partially but not fully responsible for the
observed negative skewness and excess kurtosis.

We consequently employ two approaches for assessing futures return distributions
conditional upon contemporaneous information, each with particular strengths and
weaknesses. We infer conditional distributions from options on S&P 500 index fu-
tures. Traded options are forward-looking assets that reflect the market information
set. The prices are sensitive to salient distributional characteristics: conditional
volatility, skewness, and excess kurtosis. Furthermore, observed option prices incor-
porate the relevant required compensation for assorted untraded risks (jump risk,
volatility risk), and therefore in principle could be used to directly price the exposure;
that is, the price of the strangle option portfolio. The major difficulty is the mismatch
between the monthly/quarterly maturities of traded options'® and the standard one-
day interval for marking accounts to market and collecting variation margin.

10. Options on the S&P 500 futures contract traded on the CME span the succeeding six months and ex-
pire on the third Friday of the month. The October 1987 S&P 500 futures options expired on October 16—
the Friday before the crash.
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We also directly estimate the parameters of the conditional distribution of daily
S&P 500 futures returns from the time series of returns. Such estimates are tailored to
daily frequencies, and there are many statistical techniques that can be employed in
estimating conditional distributions. On the other hand, time series—based estimates
are intrinsically backward-looking, are conditioned on an information set that is
smaller than the market information set, and have difficulties when an “outlier” of the
magnitude of October 19, 1987, is included in the data base.

The time series analysis proceeds in two steps. First, we analyze precrash daily fu-
tures returns over the period January 2, 1985, through September 30, 1987, and iden-
tify those informational variables most useful in forecasting return distributions.
Second, we update conditional distribution estimates on a daily basis over October
and November 1987, using a nonlinear “rolling regression” methodology.

Assumed Distribution

We assume the data-generating process is well approximated by the jump-diffusion
process,

dInF = (u, — A, Y)dt + 6,dW + v dq (3)

where

u, — A,y is the drift in the Brownian motion;

W is a Weiner process;

o, is the instantaneous volatility conditional upon no jumps;

q is a Poisson counter with instantaneous intensity A, Prob(dq = 1) = A dr;
and the jump size y is normally distributed with mean 4 and variance &2.

The jump-diffusion process is a flexible specification that can accommodate most of

the features observed in the data. If there are no jumps and the parameters are not time

varying, then the process collapses to the popular geometric Brownian motion speci-

fication assumed by Black and Scholes (1973). Jumps produce a distribution with fat-

ter tails, and an asymmetric jump process (¥ # 0) introduces skewness. Time-varying,
volatility also generates a fat-tailed unconditional distribution, but has little impact on

the higher moments of one-day conditional distributions.

Options-based Implicit Distributions

Bates (1991, 1996) develops formulas for pricing options on jump-diffusion
processes with constant parameters 6 = (o, A*, k*, 8). Following Bates (1991), we in-
fer daily implicit jump-diffusion parameters from all recorded intradaily call and put
transaction prices for December 1987 S&P 500 futures options, using nonlinear least
squares:

A

N,
0, = arg(;mnE”=1

Oi — O(F;,
-0,

4

2
7;, Xi; 9)]
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where O, is the ith observed call or put price on date ¢; O(-) is the corresponding value
from Bates’ American option pricing formulas [his section 2, equations (13) and (16)]
given the underlying futures price F,,maturity 7T, strike price X, and parameters 6;
and N, is the number of options data on date ¢. Starred parameters indicate parameters
of the “risk-neutral” process.

The divergence of the risk-neutral parameters A* and ¥* from the parameters A and
¥ of the true jump-diffusion process of equation (3) reflect required compensation for
systematic jump risk. Representative-agent models with complete markets suggest
little divergence between the two sets of parameters; see, for example, the calibration
in Bates (1991, p. 1034).!! However, it is conceivable that financial intermediation of
jump risk through the stock index options markets became less efficient after the
crash, creating a substantial gap between the implicit price A* of jump insurance in-
ferred from option prices and the actual rate A at which jumps arrive.

Time Series—based Conditional Distributions: Model Selection

We also estimate the conditional distribution of daily returns using time series data.
The discrete time analogue to the jump-diffusion process in equation (3) is a stochas-
tic mixture of normals, randomized over the number of jumps n occurring within a
given time interval:

In(F,,,/F) | n jumps ~ Ni(a, + a,6; — M)t + n¥,00tl, + nd®]
At

e A
n!

Ay = Al = (o + Mo Aoy Ay 2 0; 5)

Prob(n jumps) =

where

N(m, s?) is a Normal distribution with mean m and variance s2;
012 is a conditional variance state variable;
¥ and &2 are the mean and variance of the normally distributed jump sizes; and

T,,, is the time interval between futures observations on dates ¢ and ¢ + 1, in days.

We assume the conditional variance o2 affects the drift as in GARCH-in-mean mod-
els. Following Engle, Kane, and Noh (1993), ¢, | is a variable time scale that parsi-
moniously captures the impact of weekends and holidays upon the conditional

distribution of returns. A value of d equal to zero implies weekdays and weekends are

11. Bates (1991) prices jump risk using a representative agent with time-separable power utility. Under
the assumptions that jumps occur only in equity prices, that equity constitutes 50 percent of wealth, and that
relative risk aversion equals 2, actual and risk-neutral parameters are quite close. The risk aversion para-
meter is roughly equal to Friend and Blume’s (1975) wealth-based estimate. Alternate estimates from con-
sumption-based asset pricing models require substantially higher risk aversion to explain the equity
premium; see, for example, Campbell, Lo, and MacKinlay (1997, ch. 8). However, the fact that U.S. con-
sumption of nondurables and services responded very little to the crash of 1987 indicates that equity and
consumption jump risks are essentially uncorrelated. A consumption-based asset pricing model would con-
sequently yield virtually identical actual and risk-neutral parameters.
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equivalent, while d = 1 implies that three-day weekends have three times the variance
and roughly three times the jump risk of weekdays.

In the spirit of Day and Lewis (1992) and Lamoureux and Lastrapes (1993), the
conditional variance state variable 62 is modeled as an augmented EGARCH process
that nests various informational sources:

Ino? = a; + a,DUM, + a5{|ztl - \j% + a6zt}
+ aylnoZ, + aglnHL, + apln BSIV? ©)

where

DUM, is a dummy variable indicating a maturity switch in the S&P 500 futures
contract used;

z, = In(F,/F,_;)/\Jo% 1 is the previous day’s normalized residual;
HL, is the ratio of the day’s high to day’s low; and
BSIV is the per day volatility inferred from pooled intradaily one—four month

quarterly S&P 500 futures options using a Black-Scholes American option pricing
formula.!?

Day and Lewis (1992) found that the Black-Scholes implicit volatilities inferred from
the S&P 100 index options were almost unbiased estimates of subsequent weekly in-
dex volatility over 1983 -89, but that GARCH and EGARCH volatility estimates pro-
vided additional information. We include the Black-Scholes implicit volatility BSIV
inferred from S&P 500 futures options as a simple summary measure to incorporate
information from the option market. Parkinson (1980) and Garman and Klass (1980)
argue that the informational content of an asset’s open, high, low, and close consider-
ably exceeds that of the squared daily return. And Chen (1995) shows that the high-
low range provides useful additional information within an EGARCH framework.
We include the log of the high-low ratio, InHL, to capture that information.

The conditional variance state variable 67 is also allowed to affect conditional dis-
tributions through the jump frequency A, = A, + A,07—a specification Bates (1997)
found useful in describing the evolution of distributions implicit in post-’87 S&P 500
futures options. Positive values for A, imply that periods with high conditional volatil-
ity are also periods with high jump risk. Because of nonnegativity constraints on jump
risk, negative values for A, and A, were precluded through exponential transforma-
tions in the estimation procedure.

We tested on various specifications on precrash daily log-differenced S&P 500 fu-
tures settlement prices over January 2, 1985, through September 30, 1987. We select-
ed the shortest futures maturity available with at least one week to expiration, that
being typically the contract with greatest open interest. The model and various sub-

12. More precisely, we used the Barone-Adesi and Whaley (1987) formulas for pricing American op-
tions on futures. Those formulas maintain the Black and Scholes (1973) and Black (1976) assumption of
geometric Brownian motion for the underlying asset price.



258 : MONEY, CREDIT, AND BANKING

TABLE 1
PERFORMANCE (LOG LIKELIHOOD) OF ALTERNATE MODELS
log likelihood

Number of

parameters conditionally jumps jumps
Model (Gaussian) Gaussian (A, = 0) A=0,N\ =0 Aph =0
iid. 4 2,232.45 2,263.65
HL 6 2,236.45 2,264.07 2,265.52
BSIV 6 2,262.30 2,275.66 2,279.00
EGARCH 9 2,244.63 2,268.26 2,269.33
HL-EGARCH 10 2,252.14 2,273.93 2,276.69
BSIV-EGARCH 10 2,262.79 2,278.91 2,281.87
HL-BSIV 7 2,262.71 2,275.68 2,279.44

Nores: HL: ag # 0; BSIV: a, * 0; EGARCH: a, a, a,, In a%, =+ 0. The first fat-tailed distribution adds three more parameters to the Gaussian
specification; the second addgs afourth parameter.
5 percent significance levels for InL,.— InL: 1.92 (1 restriction), 3.00 (2), 3.90 (3), 4.74 (4).

models were estimated by a maximum likelihood methodology described in the ap-
pendix of Jorion (1988).13

Tables 1 and 2 summarize the precrash model selection results. Using only the
Black-Scholes implicit volatility from traded options to assess conditional volatility
and jump risk was unambiguously the best of the models considered in terms of parsi-
mony and informational content. Somewhat unexpectedly, the implicit volatility ap-
pears to be a sufficient statistic for precrash conditional distributions. Although the
high-low range does contribute additional information to an EGARCH specification,
as in Chen (1995), neither high-low nor EGARCH provided statistically significant
additional information after conditioning on the Black-Scholes implicit volatility
from one- to four-month quarterly S&P 500 futures options.

High-frequency low-amplitude jump processes were estimated for all models, with
typical precrash mean jump size ¥ =~ 0 and jump standard deviation & = 1 percent.
While it is not easy to test formally for an absence of jump risk given nonlinear iden-
tification issues discussed in Hansen (1992), allowing for conditionally leptokurtic
distributions through nonzero jump frequencies strongly increased log likelihoods for
all models during the precrash period. This, plus the asymmetry of equally out-of-the-
money put and call prices presented by Bates (1991) and the estimate of a negatively
skewed and leptokurtic unconditional distribution strongly suggest a jump compo-
nent is present even in precrash data. Furthermore, likelihood ratio test comparisons
of the last two columns of Table 1 indicate that time-varying jump risk (A, > 0) was
statistically significant for four out of six models. A, converged to its near-zero con-
straint whenever A, > 0 was permitted. The estimates imply that periods of high
volatility were historically also periods with higher jump risk—that is, with a higher
proportion of outliers.

The initial conditionally Gaussian estimates in Table 2 (a, = 0, a, = 1) indicate the
Black-Scholes implicit volatility was close to an unbiased predictor of future volatili-

13. For models with EGARCH terms, the log of the initial conditional variance, Inc2, was also estimat-
ed. Followmg Ball and Torous (1985) and Jorion (1988), we chose ten as the maximum fea31ble number of
jumps in any day.
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TABLE2
DiSTRIBUTION ESTIMATION CONDITIONAL UPON THE BLACK-SCHOLES IMPLICIT VOLATILITY (BSIV)
Model a, a, d a, a, a, A v 3 InL
BSIV .001 -.70 224 —-.631 —1.527 911 0 0 0 2262.30
(.000) (5.41) (.118)  (1.084) (.445)  (.112)
JD- .000 13.85 218  —3.338 —-.931 705 11434 —.001 .010 2279.00

BSIV  (.001) (22.49) (.130) (1.379) (.445)  (.134)  (10926) (.001)  (.002)

Nortes: Log-differenced S&P 500 futures settlement prices, January 2, 1985 through September 30, 1987. See equations (5) and (6) for defintions of pa-
rameters. Standard errors are in parentheses.

ty. This was also true for jump-diffusion conditional distributions, with the average
precrash annualized implicit standard deviation of 16.7 percent implying a condition-
al volatility forecast of 18.4 percent.'# Typical estimates of d =~ .20—.25 indicate that
three-day weekends had roughly 25-30 percent higher variance than a typical week-
day. In no case was the conditional mean of log-differenced futures prices significant-
ly different from zero.

Estimates for October and November of 1987

The specification using only the Black-Scholes implicit volatility from traded op-
tions to assess conditional volatility and jump risk was unambiguously the best of the
models considered in terms of parsimony and informational content. We selected the
JD-BSIV model for assessing conditional distributions over October and November
of 1987, with A set to zero. To fully exploit all available information, the relationship
between BSIV and conditional distributions was reestimated daily via nonlinear
“rolling regressions” (JD-RR), using a 692-day (34-month) moving data window.

In addition, one-day conditional distributions were inferred from December 1987
S&P 500 futures option prices under two specifications for the underlying driving
process: the Black-Scholes option pricing model, which assumes geometric Brown-
ian motion, and the Bates (1991) model, which assumes a jump-diffusion process.

Table 3 shows the daily parameter estimates from the three approaches:

1. Black-Scholes implicit volatility (BSIV) inferred from option prices assuming
lognormality;

2. implicit jump-diffusion parameters (JD-options) inferred assuming a jump-
diffusion; and

3. jump-diffusion parameters (JD-RR) estimated from daily futures returns condi-
tional upon observed BSIVs, using the model and rolling-regression methodol-
ogy described above.

Conceptually, the latter two estimates could diverge because of jump risk premia, be-
cause jump-diffusion parameters inferred from option prices reflect assessed jump
risk over the lifetime of the option rather than over the next day, or because options

14. The annualized weekday conditional variance is 365¢7[1 + xl(iz + 8?)], including jump risk,
where 012 = expld, + d, InBSI V2] and BSIV is the daily Black-Scholes implicit volatility.
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TABLE 3
ONE-DAY CONDITIONAL DISTRIBUTION FORECASTS
Implicit jump-diffusion (JD-options) Rolling-regression (JD-RR)
BSIV o A* ¥* 3 v o X ¥ 3 v S.eb

870930 1.06% 1.06% 0.000 —-80.7% 4.8% 1.07% 0.76% 0.662 —0.1% 1.0% 1.10% 0.06%
871001 1.05% 1.02% 0.000 —20.0% 5.7% 1.06% 0.76% 0.652 —0.1% 1.0% 1.09% 0.05%
871002 1.04% 1.00% 0.001 —-94% 58% 105% 0.75% 0.642 —01% 1.0% 1.08% 0.05%
871005 1.04% 094% 0.017 -3.0% 19% 104% 0.75% 0.634 —0.1% 1.0% 1.08% 0.05%
871006 1.04% 1.02% 0.000 —34.6% 232% 1.09% 0.76% 0596 —-0.1% 1.0% 1.10% 0.06%
871007 1.09% 025% 0.112 —-04% 32% 1.11% 0.79% 0593 —-02% 1.0% 1.13% 0.06%
871008 1.07% - 1.01% 0.003 —57% 3.4% 1.08% 0.78% 0598 —-02% 1.0% 1.12% 0.06%
871009 1.09% 0.09% 0.231 —-02% 23% 1.10% 0.79% 0.638 —0.1% 1.0% 1.14% 0.06%
871012 1.12% 0.04% 0.165 —02% 2.8% 1.13% 0.81% 0661 —0.1% 1.0% 1.16% 0.06%
871013 1.11% 0.02% 0.123 —-02% 32% 1.12% 0.81% 0.624 —02% 1.0% 1.15% 0.06%
871014 1.12% 0.05% 0.177 —0.1% 27% 1.13% 0.83% 059 -02% 1.1% 1.18% 0.06%
871015 1.16% 0.16% 0.096 —02% 38% 1.18% 0.86% 0.647 —02% 1.0% 121% 0.07%
1016 1.34% 23 4014% 2.1% 130% 1.03% 0537 —=03% 12% 139% 0.10%
871019 221% 130% 0.002 —-203% 56.4% 3.03% 229% 0.043 —97% 11.8% 3.89% 1.01%
871020 5.58% 1.72% 0.009 —1004% 0.0% 9.71% 6.40% 0.335 —9.1% 12.0% 10.81% 3.39%
871021 3.23% 227% 0.004 —524% 25.0% 4.48% 4.00% 0.124 —84% 124% 6.62% 1.93%
871022 3.66% 1.56% 0.008 —550% 0.0% 5.08% 4.66% 0.170 —-7.9% 12.5% 7.67% 1.85%
871023 329% 1.74% 0.005 —62.0% 0.0% 4.85% 4.06% 0.130 —7.6% 12.6% 6.67% 1.60%
871026 424% 1.64% 0.010 -523% 7.0% 554% 552% 0253 —7.1% 124% 9.07% 2.25%
871027 3.80% 2.05% 0.010 -433% 222% 5.19% 4.84% 0.188 —73% 122% 785% 1.85%
871028 3.37% 2.11% 0.006 —48.6% 0.0% 4.20% 4.16% 0.138 —72% 122% 6.72% 1.55%
871029 2.86% 1.81% 0.004 -49.6% 00% 3.61% 3.52% 0095 —-7.7% 12.0% 5.61% 1.14%
871030 2.46% 1.60% 0.003 -51.1% 55% 3.19% 3.01% 0067 —7.9% 11.8% 4.76% 0.93%
871102 2.52% 1.65% 0.004 —44.1% 212% 3.33% 3.08% 0070 —-7.9% 11.9% 4.86% 0.94%
871103 2.66% 1.55% 0.007 -29.7% 21.3% 3.35% 327% 0078 —7.7% 12.0% 5.14% 1.16%
871104 2.66% 1.54% 0.004 —-452% 11.5% 3.39% 3.22% 0.076 —-7.6% 120% 5.08% 1.01%
871105 2.49% 137% 0.007 —-243% 23.8% 3.16% 2.98% 0065 —7.7% 11.9% 4.69% 0.93%
871106 2.31% 1.17% 0.008 —209% 23.1% 2.99% 2.74% 0.055 —-7.5% 12.0% 4.30% 0.87%
871109 2.67% 156% 0.007 —27.9% 229% 3.30% 3.19% 0.074 —7.4% 12.1% 5.00% 1.05%
871110 2.65% 1.72% 0.006 —30.5% 19.6% 3.26% 3.16% 0.073 —-7.1% 122% 4.95% 1.06%
871111 2.44% 1.56% 0.008 —194% 192% 295% 2.86% 0.060 —7.1% 122% 4.49% 0.92%
871112 2.29% 1.51% 0.008 -17.5% 168% 2.69% 2.67% 0.052 —73% 12.1% 4.18% 0.82%
871113 221% 1.65% 0.003 —-38.0% 3.9% 265% 255% 0.047 —7.1% 122% 3.99% 0.86%
871116 221% 128% 0.016 —113% 13.6% 2.55% 2.53% 0.047 -7.1% 122% 3.96% 0.80%
871117 231% 1.32% 0.016 —-124% 132% 2.64% 2.65% 0.051 —69% 123% 4.15% 1.05%
871118 2.19% 1.24% 0.016 —122% 12.5% 2.55% 2.48% 0.045 —-69% 12.3% 3.88% 0.79%
871119 2.14% 1.41% 0.008 —218% 7.4% 251% 243% 0043 —6.7% 124% 3.79% 0.76%
871120 2.28% 132% 0.017 —12.1% 12.0% 2.59% 2.59% 0.049 —68% 12.4% 4.04% 0.82%
871123 2.09% 1.54% 0.005 —25.0% 3.7% 240% 2.03% 0.030 —67% 124% 3.17% 0.63%
871124 1.83% 1.41% 0.004 -25.1% 3.7% 2.09% 1.87% 0.026 —6.7% 123% 2.93% 0.61%
871125 1.66% 1.26% 0.004 —-232% 3.0% 195% 1.79% 0.024 —6.6% 12.4% 2.80% 0.58%
871127 1.78% 1.34% 0.005 -21.7% 0.0% 2.03% 1.84% 0.025 —65% 125% 2.87% 0.59%
871130 2.30% 1.36% 0.025 —10.0% 10.5% 2.64% 2.11% 0032 —63% 12.6% 3.30% 0.67%
Post-crashavg:  1.55% 0.008 -33.6% 12.6% 3.46% 3.15% 0.086 —7.4% 122% 5.04%

NoTEs: All parameters are in daily units.
ay2= g2 + \ (32 + 32) i the estimated conditional variance per day, including jump risk.
bAsymptotic standard error of v.

markets are forward-looking whereas time series estimates are perforce conditioned
upon past returns.

Comparing the Estimated Distributions

For the measures of default risk exposure the conditional volatility v and the frac-
tion f of conditional variance due to jump risk are two important statistics of condi-
tional distributions:
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v = +6% + AT + 82)

f= M7+ )1V @)

For the Black-Scholes model, which has no jump component, the conditional volatil-
ity is the implicit volatility BSIV, and f = 0.

As the conditional volatility increases, ceteris paribus, all risk measures increase:
the probability of a futures move in excess of margin, the expected value of addition-
al required funds, and the liquid reserves needed to cover potential margin calls.
However, this statistic alone is insufficient to summarize the risks facing the clearing-
house. The allocation of risk between “normal” market moves and jumps affects tail
probability estimates, and has especially strong implications for the consequences of
a margin-exhausting futures price move. Low-probability, large-magnitude jumps
generate realizations far out in the tails, which dramatically increases the reserves re-
quired to defend against default risk.

As shown in Figure 3, the three different estimates of conditional distributions
show extraordinary unanimity prior to the crash regarding conditional variance. All
three assess variance in the 1.04 percent—1.34 percent range in the first half of Octo-
ber 1987, with the maximum deviation across forecasts less than .1 percent. The crash
on October 19 and the accompanying sharp increase in implicit volatilities generated
substantially higher postcrash assessments of conditional volatilities, with the time
series model (JD-RR) generating the highest of the three volatility estimates. Owing
to considerable difficulty in estimating jump-related variance over a 692-day sample
that includes the crash, the deviation between the JD-RR and JD-options volatility es-
timates is not generally statistically significant at the 5 percent level on any given day.
(The shaded area in Figure 3 is the 95 percent confidence band for the JD-RR model,
estimated using the delta method approach described in Lo (1986).) The three volatil-
ity estimates roughly reconverge by the end of November.

Figure 4 shows the fraction of the conditional variance due to jump risk. Prior to the
crash, the JD-RR estimates in Table 3 attribute roughly 50 percent of the conditional
variance to high-frequency, low-amplitude jumps: .4—.6 jumps per day, with a slight-
ly negative mean and a standard deviation about 1 percent. Such low-amplitude jump
risk is virtually indistinguishable from Brownian motion at the two-month horizon of
the contemporaneous December 1987 S&P 500 futures options. As noted in Bates
(1991, Figure 11), prices of these options did in fact deviate very little from Black-
Scholes prices during the two months immediately preceding the crash—in contrast
to more substantial deviations observed earlier in the year.!>

Following the crash, time series—based estimates and option prices rapidly incor-
porated a jump component into the conditional distributions. However, the two ap-
proaches fundamentally differ in the form of estimated jump risk. The average
postcrash implicit parameter estimates for the JD-options model indicated jumps of

15. While implicit jump risk from the JD-options estimates typically accounts for almost all of the im-
plicit variance over October 7—15, excluding October 8, the relatively high implicit jump frequency (.1-.2
jumps/day) and low implicit jump magnitudes (mean roughly 0; standard deviation less than 5 percent) im-
ply near-lognormal distributions at the two-month horizon.
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TABLE 4
S&P 500 FUTURES SETTLEMENT PRICES, MARGINS, VOLUME, AND OPEN INTEREST
Open
Date F %change Margin (%) Volume Interest

870930 325.85 $5,000 3.1% 82,444 114,182
871001 331.70 1.8% $5,000 3.0% 85,128 113,808
871002 331.35 —=0.1% $5,000 3.0% 67,427 113,788
871005 330.80 —0.2% $5,000 3.0% 69,085 115,312
871006 319.85 —-3.3% $5,000 3.1% 96,869 114,286
871007 320.65 0.3% $5,000 3.1% 99,673 116,664
871008 315.80 —1.5% $5,000 3.2% 99,191 119,176
871009 312.20 —1.1% $5,000 3.2% 76,186 120,728
871012 311.60 —0.2% $5,000 3.2% 79,907 123,064
871013 315.65 1.3% $5,000 3.2% 82,040 119,880
871014 305.00 —3.4% $5,000 3.3% 109,750 127,582
871015 298.25 —2.2% $5,000 3.4% 124,810 133,696
871016 282.25 —5.4% 5.000 3.5% 135,344 146,653
871019 201.50 —28.6% $7,500 7.4% 162,022 172,178
871020 216.25 7.3% $7,500 6.9% 126,562 174,184
871021 258.25 19.4% $7,500 5.8% 91,802 169,934
871022 244.50 —=5.3% $10,000 8.2% 57,726 158,774
871023 241.00 —1.4% $10,000 8.3% 41,945 156,650
871026 220.25 —8.6% $10,000 9.1% 35,170 158,715
871027 228.60 3.8% $10,000 8.7% 32,241 157,071
871028 231.25 1.2% $12,500 10.8% 38,517 156,374
871029 245.70 6.2% $15,000 12.2% 38,670 153,449
871030 259.35 5.6% $15,000 11.6% 35,249 152,340
871102 257.75 —0.6% $15,000 11.6% 33,551 148,164
871103 250.15 —2.9% $15,000 12.0% 50,335 146,820
871104 250.15 0.0% $15,000 12.0% 44,268 145,688
871105 255.40 2.1% $15,000 11.7% 44,978 141,077
871106 249.10 —2.5% $15,000 12.0% 37,989 140,944
871109 245.60 —1.4% $15,000 12.2% 43,351 140,388
871110 239.40 —2.5% $15,000 12.5% 51,590 139,932
871111 242.20 1.2% $15,000 12.4% 31,745 139,138
871112 249.60 3.1% $15,000 12.0% 41,769 137,599
871113 247.60 —0.8% $15,000 12.1% 24,369 138,116
871116 248.20 0.2% $15,000 12.1% 38,727 139,276
871117 242.70 —2.2% $15,000 12.4% 48,333 138,508
871118 246.55 1.6% $15,000 12.2% 56,262 140,462
871119 238.80 —-3.1% $15,000 12.6% 61,291 139,711
871120 241.90 1.3% $15,000 12.4% 60,725 141,133
871123 244.10 0.9% $15,000 12.3% 41,218 140,643
871124 246.15 0.8% $15,000 12.2% 56,396 141,528
871125 244.30 —0.8% $15,000 12.3% 27,371 141,819
871127 237.00 —3.0% $15,000 12.7% 17,804 140,352
871130 232.00 —2.1% $15,000 12.9% 79,552 139,887

Nores: Settlement prices are for December 1987 future contracts; volume and open interest are for all S&P 500 future contracts.

mean —33.6 percent and standard deviation 12.6 percent occurring with a frequency
of .009 jumps per day (three jumps/year). Implicit parameters changed substantially
over late October and November—especially the jump distribution parameters y*
and &2,

By contrast, the average postcrash time series estimates (JD-RR) were of more fre-
quent (.087 jumps/day, or 32 jumps/year) but smaller jumps: mean size —7.3 percent
and standard deviation 12.2 percent. The estimated jump distribution parameters
¥ and & were relatively stable postcrash, but the assessed daily jump frequency
A, =\, 62 =\, exp(d, + dg In BSIV?) changed considerably over time. This jump fre-
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quency was substantially affected not only by the extreme 28.6 percent market decline
on October 19, 1987, but also by the 7.3 percent and 19.4 percent rebounds on Octo-
ber 20 and 21; see Table 4. These moves, which were far larger than the daily moves
observed during the preceding thirty-four months, led to substantial revisions inA |,
d,, and d,. After October 21, parameter estimates remained relatively stable. By the
end of November, declining implicit volatilities reduced jump risk assessments, and
parameter estimates from the JD-RR and JD-options approaches were substantially in
agreement.

3. ESTIMATES OF THE CLEARINGHOUSE EXPOSURE

The Chicago Mercantile Exchange responded aggressively to perceptions of in-
creased default risk on October 19 and in the days that followed. As discussed by Fenn
and Kupiec (1993), extraordinary intradaily margin calls occurred three times on Oc-
tober 19, and ten more times in the remainder of October. Furthermore, margin re-
quirements were rapidly raised. Whereas the margin requirement per futures contract
stood at $5,000 on October 18, it was raised to $7,500 on October 19, to $10,000 on
October 22, to $12,500 on October 28, to $15,000 on October 28; see Table 4. Com-
bined with lower futures prices following the crash, the margin requirements effec-
tively went from 3.5 percent of the futures settlement price on October 16 to 12.2
percent on October 29. The margin requirements were not lowered again until De-
cember 18, to $10,000.

This section applies the three measures of exposure, and the three methods consid-
ered above for estimating that exposure, to the S&P 500 futures contract during Octo-
ber and November of 1987. Judging only from the traditional tail probability
estimates, the CME’s aggressive response was entirely successful in reducing the dai-
ly postcrash probability of further margin-exhausting futures price moves to a level
comparable to or lower than precrash levels. However, conditional distributions that
incorporate jump risk indicate substantially higher levels of the other two forms of ex-
posure following the crash. The difference in risk assessments is attributable to the
failure of the tail probability approach to assess the likely consequences of a futures
move in excess of posted margin.

A. The Probability That Additional Funds Will be Required: p = Prob(|AF| > M)

The probability that the absolute change in the futures prices exceeds the margin is
the probability that additional funds will be required. The jump-diffusion processes
postulated in section 2 model the conditional distribution of one-day log-differenced
futures prices as a probability-weighted mixture of normal distributions, with the
weights reflecting assessed probabilities of n jumps occurring within a single day. As-
suming the expected futures price change is zero, the upper tail probability is

o —\T n
P, = ProblF,, > X, = ZO &

q)(dZn) (8)
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where

®(e) is the standard normal distribution function,

dy, = {In(F/X,) - M55 = 1) + Y% 62]t + n7}/y/0%T + nd?
X, =F+ M, andt =1 day.

Similarly, the lower tail probability is P, =1 — Prob[F, > X)), where X =
F-M.

Relevant daily parameter inputs for the time series—based JD-RR model and the op-
tions-based JD-options arid BSIV are reported above in Table 3. The JD-options mod-
el uses the risk-neutral implicit parameter estimates A* and y* instead of A and . The
lognormal Black-Scholes model has no jump risk (A = 0); the infinite sum (8) col-
lapses to the first term ®(d,,) for this model, with n equal to zero.

Figure 5 shows the tail probability estimates p = Pup + P, .. from the three mod-
els, and the 95 percent confidence interval (shaded area) for JD-RR estimates. For ex-
positional clarity, we compute all tail probabilities using the standard settlement
interval of one day: t = 1.16

The three tail probability estimates diverge, painting a conflicting picture of the
risk. Precrash, all models agreed on conditional standard deviation estimates of
around 1 percent per day. However, diverging estimates of the extent of the jump risk
generated divergent estimates of the probability of a futures move in excess of the 3
3% percent margin requirement. JD-RR time series estimates indicated roughly 1 per-
cent tail probabilities, which may reflect the histogram-based tail probability orienta-
tion of the CME margin committee (Kupiec 1994). JD-options daily tail probability
estimates inferred from three-month December options were more volatile, getting as
high as 3—4 percent in the week preceding the crash. The BSIV lognormal estimates
perforce assigned a low probability to observing a 3—3% standard deviation move.

Postcrash divergences in estimated jump risk created sharp divergences between
the JD-RR and JD-options tail probability estimates. Immediately following the
crash, S&P 500 futures options prices implicitly attributed most futures price risk
to low-frequency large movements; see Figure 4 and Table 3. Consequently, post-
crash JD-options tail probability estimates were quite low. By contrast, the rolling-
regression estimates were affected by the large moves in futures prices on October 19,
20, and 21, and consequently estimated a higher-frequency but lower-magnitude
jump component. The JD-RR estimates of another margin-exhausting futures move
peaked at 42 percent on October 20 and exceeded 10 percent until October 28. By the
end of November, the estimates from the jump-diffusion option model and the jump-
diffusion rolling-regression converged at roughly a 1 percent daily chance of another
margin-exhausting futures move.

The Black-Scholes tail probability estimates also peaked the day after the crash,
when daily implicit volatilities of 5.58 percent (107 percent annualized!) implied a 21
percent probability that the price change would exceed the margin the following day.

16. The appropriate computations for weekends and holidays involves replacing t by 14 in the above
formulas.
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FiG. 5. Probability of a Margin-Exhausting Futures Move: Alternate Estimates

Subsequent declines in daily implied volatilities to around 2 percent combined with
margin increases to a 12 percent effective level reduced the lognormal tail probability
estimates to negligible levels by the end of October.

B. Expected Value of Additional Funds: S(F,, M) = E*[max(0, |AF| — M)]

The expected value of price changes that exceed the margin is the price of an option
written on the absolute value of the change in the futures price with a strike price equal
to the margin. The price of the option gives the current market value of an insurance
contract that provides the additional funds if needed.

Option valuations for the jump diffusion processes in section 2 are a probability-
weighted average of Black-Scholes prices, as discussed by Merton (1976) and Bates
(1991). The JD-RR estimates are

oF,t,X,) = z Prob,(n jumps) E,[max(F,,, — X, 0) | n jumps]

n=0
o ~AT n 2
-3 %[Fexpw (™ _1)axd,,) — X.0(d,, )]
n=0 *
p(F,t X,) =c(F, t X,) + (X, - F) &)

where d,,, X , and X are defined in (8) above, d,, = d,, + Vo2t + nd2 and © = one
day. The relevant strangle price is S = ¢ + p. The JD-options estimates use the A* and
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FiG. 6. Daily Insurance Premium, as a Percentage of the Futures Price

¥* parameters inferred from S&P 500 futures prices instead of the A and ¥ estimates
from time series.

Figure 6 shows the price of the option portfolio as a percentage of the futures price
for the three models, and the 95 percent confidence interval for the JD-RR model. The
substantial postcrash increase in hypothetical insurance premia indicate the funda-
mentally higher levels of risk faced by the clearinghouse following the crash. While
precrash estimates put this value at less than 0.1 percent of the futures price, crash-
related revisions in conditional distributions raised these estimates by two to three or-
ders of magnitude. Subsequent declines of JD-RR and JD-options estimates to only an
order of magnitude greater than precrash values were attributable to two factors: the
four CME margin increases in October, and declining assessments of jump risk. Had
the CME left the margin requirement at the $5,000 level of October 16, JD-RR esti-
mates of insurance premia at the end of November would have been over three times
larger.

The degree of unanimity across postcrash jump-based estimates of insurance pre-
mia is quite striking. The options-based JD-options model and the time series-based
JD-RR model estimate quite different jump processes, with lower frequency jumps of
substantially larger magnitudes estimated for the former. Yet the two premia esti-
mates behave quite similarly over the postcrash period, and typically do not diverge
significantly in November. This comparable behavior reflects the relative insensitivi-
ty of insurance premia to the frequency/magnitude trade-off in jump risk. As indicat-
ed in equation (2), the insurance premia depend upon the product of the tail
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probabilities and the expected consequences of futures price moves in excess of mar-
gin. Varying the frequency and jump risk magnitudes while keeping the conditional
variance roughly constant across models (see Figure 3) has roughly offsetting effects
on these two terms, leaving insurance premia comparable across models.

Black-Scholes estimates of daily insurance premia are negligible following the
four margin increases in October. Under the hypothesized (and implausible) lognor-
mal distribution, the combination of a minuscule probability of exceeding the margin
and the negligible expected consequences of such a futures move yield small estimat-
ed insurance premia.

C. Conditionally Expected Additional Funds Requirement:
R = EX(|AF| — M| |AF| > M)

The expected magnitude of the additional funds requirement conditional on addi-
tional funds being needed, R = S/p, is a relevant measure of risk exposure. These
funds have not been secured by posted margin, and must be raised, possibly under cri-
sis conditions, from the losing (and potentially bankrupt) customers, the lines of cred-
it of the FCMs and clearinghouse, or other sources.

A dollar value to this expected “hit” can be assigned by multiplying R by the total
open interest on all S&P 500 futures contracts. Under the gross margining system
used by the CME in 1987, this is the expected magnitude of additional funds that the
losing side of the futures positions will have to post with the clearinghouse if the fu-
tures price move exceeds the margin, in order to ensure performance.

Figure 7 shows estimates of i from the three specifications. The JD-options esti-
mates clearly reflects the crash fears that haunted the options market on and following
the crash. The fears of infrequent but large further crashes necessary to match ob-
served transactions prices for S&P 500 futures options on October 20 imply $10.4 bil-
lion in additional resources (or 55 percent of the futures price) would be needed to
weather another futures price move in excess of margin. The estimates remained in
the $5-7 billion range for the remainder of October, and gradually declined to about
$1 billion by the end of November.

The JD-RR model estimated jump distributions of lower magnitudes than those in-
ferred from option prices, based essentially upon observed price movements over Oc-
tober 19-21. The resulting estimate of the expected additional funds requirement
conditional on a margin-exhausting move consequently remained relatively stable at
approximately $1.2 billion throughout October and November. In contrast, the log-
normal BSIV model predicts that any futures price move in excess of margin is not
likely to exceed it by very much.

Since the two jump-diffusion estimates differ by an order of magnitude in the sec-
ond half of October, which estimate is preferable as an assessment of the expected ad-
ditional funds that would have to be raised if the futures price change again exhausted
posted margin? The JD-RR jump distribution estimates for October and November
are substantially extrapolating from the experiences of October 19-21: observed
large negative and positive future price changes that mostly occurred when implicit
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timates

volatilities were high. The JD-options estimates by contrast are based on forward-
looking options prices, which in principle should incorporate other sources of infor-
mation as well, for instance, the rapid credit expansion by the Federal Reserve in
response to the crash.

On the other hand, the degree to which options prices immediately after the crash
rationally reflected future conditional distributions is open to doubt. Implicit volatili-
ties from some near-the-money S&P 500 futures options were above 200 percent an-
nualized in the morning of October 20, and the late-October implicit jump parameters
in Table 3 achieved magnitudes incommensurate with U.S. stock market history. It
seems likely that only the most risk-averse investors were buying put options at these
prices, implying a major postcrash gap between the risk-neutral distribution inferred
from option prices and the actual conditional distribution relevant for assessing clear-
inghouse default risk.

Furthermore, whether $1 billion or $10 billion in conditionally expected additional
required funds represents a substantial risk of clearinghouse default cannot be deter-
mined without some knowledge of the remaining liquid assets of the losing customers
as well as knowledge of the assets of the FCMs and clearinghouse. However, some
perspective comes from considering the margin already posted. The CME’s tripling
of margin requirements over October implied that the longs and the shorts at end-
November had each posted $15,000/contract X 139,887 open interest = $2.1 billion
in margin. Both the JD-options and JD-RR approaches consequently estimate that at
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end-November, roughly 50 percent in additional margin would be required above and
beyond what is already posted, conditional upon another margin-exhausting S&P 500
futures move occurring.

4. SUMMARY AND CONCLUSIONS

This article presented two new measures for assessing the clearinghouse exposure
associated with any given margin policy. An application to CME margin policy dur-
ing October and Novembeér 1987 using two alternate estimates of jump-diffusion
processes reveals that the earlier focus on the probability of a margin-exhausting fu-
tures price move can generate a quite misleading assessment of a clearinghouse’s ex-
posure. While postcrash declining risk assessments and the CME’s margin
requirement increases had reduced tail probabilities to precrash levels by the end of
November, estimated clearinghouse exposure remained an order of magnitude higher
than precrash levels. The difference is our approaches also take into account how
much in additional funds will be required conditional upon a large move occurring,
and end-November estimates of conditionally required funds from both approaches
were an order of magnitude higher than precrash levels. Both methods agreed by late
November regarding future jump risk, although risk assessments diverged substan-
tially during the weeks immediately following the crash.

The Chicago Mercantile Exchange’s margin policy has changed substantially from
the system that was in place in 1987. On March 1, 1988, and June 26, 1992, the CME
implemented steps to make settlement and variation margin calls at noon as well as at
end of day, in contrast to the daily frequency characteristic of pre-1988. Furthermore,
the SPAN system introduced in 1988 more explicitly addresses the issue of appropri-
ate margins on potentially offsetting portfolios of positions, such as options positions
hedged by futures positions. Kupiec (1994, p. 793) notes that “margins on S&P 500
products have been set more conservatively than on other CME products since the Oc-
tober 1987 stock market crash.”

Yet it is striking the degree to which CME margin policy is still based upon tail
probability estimates. As described in Kupiec (1994), margins are set at levels suffi-
cient to cover the consequences of the sort of futures price moves observed 95-99
percent of the time. Those critical futures moves are estimated by the CME margin
committee based upon histograms of price changes over the preceding sixty-day, 120-
day, and one-year window. Kupiec finds that S&P 500 futures price moves exceeded
posted margin less than 0.5 percent of the time between December 16, 1988, and De-
cember 10, 1992.

It may be that current CME margin policy is perfectly adequate. The CME did, af-
ter all, survive the crash of 1987 (with some help from the Federal Reserve), as well as
substantially smaller drops on January 8, 1988, October 13, 1989, and October 27,
1997. But focussing on tail probabilities alone is an inadequate criterion for survival,
and for clearinghouse regulation. The consequences of a substantial futures price
move in excess of margin must also be considered.
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