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Abstract

Many decisions involve both imprecise probabilities and intractable states of the world. Ob-
jective expected utility assumes unambiguous probabilities; subjective expected utility assumes
a completely specified state space. This paper analyzes a third domain of preference: sets of
consequential lotteries. Using this domain, we develop a theory of Knightian ambiguity without
explicitly invoking any state space. We characterize a representation that integrates a monotone
transformation of first order expected utility with respect to a second order measure. The con-
cavity of the transformation and the weighting of the measure capture ambiguity aversion.
We propose a definition for comparative ambiguity aversion and uniquely characterize absolute
ambiguity neutrality.
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1 Introduction

Consider a terminally ill patient whose doctor suggests two treatments. The first is an established
pharmaceutical. Numerous published studies concur that this drug is successful in thirty percent
of cases. The second is a new experimental surgery. Its preliminary trials suggest a success rate
between twenty and forty-five percent. The two treatments are mutually exclusive, so the patient
must choose between them. Can we help the patient by framing her problem with either the von
Neumann–Morgenstern (1944) or Savage (1954) theory of choice under uncertainty?

We cannot frame the patient’s problem in the standard von Neumann–Morgenstern (henceforth
vNM) setting; the surgery is associated with an ambiguous range of possible success rates. This
deficiency in the primitives, the tacit assumption of precise probability, cannot be salvaged by
relaxing axioms. The subjective theory of Savage (1954) does not assume the probabilities of
different outcomes are exogenously precise.1 On the other hand, to invoke the Savage machinery,
our patient must be able to: first, determine the relevant states of nature; second, decide how each
choice assigns consequences to these states.

She fails both counts and cannot frame her problem using subjective utility theory. Regarding
the state space, the patient has no medical training and does not understand what the relevant
states are. She knows only the information presented by her physician, expressed entirely in the
space of probabilities over consequences. Even given a comprehensive list of states, the designers
of the experimental surgery are unsure which states would make the surgery more likely to be
successful. Studies are needed exactly because the mapping from states to outcomes that actually
represents this new medical procedure is still unknown. More generally, an inability to correctly
formulate the state space or the acts is often the cause of the ambiguity in a decision problem. As
with objective vNM theory, the deficiency is not any particular subjective utility representation,
but is fundamental to the structure of an act.

The machinery of vNM is too simple to express the patient’s problem; the machinery of Savage
is too complicated. This paper studies an alternative framework to analyze such decisions under
ambiguity: sets of lotteries over consequences. This domain incorporates ambiguity without ap-
pealing to any state space, thus avoiding the technology of states and acts. Each set captures
the possible distributions on consequences associated with a particular option. By enriching the
domain of preference, we can introduce ambiguity in an objective setting. We can then express
the patient’s decision problem in formal terms: the established drug is represented as the singleton
lottery that yields success with probability 0.3 and the experimental surgery as the set of lotteries
that yield success with probabilities between 0.2 and 0.45.

Even without understanding the states underlying her choices, the decision maker may still
understand how her choices affect consequences, which are the ultimate objects of her utility. She
can understand how an option might make her feel, without understanding the causal mechanism
or act that delivers that feeling. Without access to a state space, the agent forms some boundaries

1An important variation is the model of Anscombe and Aumann (1963), where the consequences are a mixture
space, which we subsume in our discussion of general subjective Savage theory.
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on the possible consequential probabilities associated with each choice. These restrictions are
captured as sets of lotteries. Such restrictions on the space of consequential uncertainty seem
especially plausible when summary information is given to the decision maker by an expert, like
the doctor in our introduction.

The standard subjective approach does not assume exogenous ambiguity. Insofar as ambiguity
exists, it is meaningful only in the mind of the agent. This austere view makes no additional
assumptions of the world outside the agent’s mind. While such parsimony is theoretically elegant,
we believe there are compelling reasons to allow objective ambiguity.

Introducing objective ambiguity as a set of lotteries arms us with more detail, and this detail
can capture realistic features of the decision problem. Fully subjective theories provide no device
for the agent to incorporate outside information, or lack thereof, about uncertainty into her decision
making. For example, the information provided by her doctor comprises an important part of our
decision maker’s problem.

Subjective utility theory also has difficulty distinguishing situations without any ambiguity
and situations where the decision maker resolves ambiguity by selecting a single probability. For
example, the maxmin expected utility model (Gilboa and Schmeidler 1989) represents attitude
towards ambiguity by a set of multiple priors. The same set of priors also represents the existence of
ambiguity. This confounds the presence of ambiguity with the agent’s resolution of that ambiguity.
If the agent is unsophisticated, we cannot distinguish whether ambiguity or some other factor
causing her irrational assessment. If she obeys the Savage axioms, we cannot distinguish whether
ambiguity was resolved in a probabilistically sophisticated manner or there was never any ambiguity
to be resolved in the first place. These features are difficult to separate in a purely subjective model,
where the existence of and attitude towards ambiguity are identified simultaneously, but are easily
separated in a model where the the existence of ambiguity is exogenous and independent of its
resolution. By starting with assumed sets of lotteries, our model forces this separation by fiat.

Roughly speaking, we propose the following utility representation U(A) for a set A of lotteries:

U(A) =

∫
A φ ◦ u dµ
µ(A)

,

where u is a standard affine expected utility function on single lotteries, µ is a probability measure on
sets of lotteries, and φ is an increasing transformation applied to u. This decision maker considers
all of the relevant lotteries in A when making her decision, and their relative consideration is
fixed across sets by a measure over all lotteries. Her attitude to ambiguity is captured by the
transformation φ and her weighting µ.

This paper contributes to a recent literature which equips the decision problem with exogenous
ambiguity through sets of lotteries or priors. Jaffray (1989) first introduced exogenous ambiguity
over lotteries by defining preferences over non-additive belief functions. He imposes the mixture
space axioms and characterizes a generalization of expected utility. More recently, two papers,
independent of and contemporaneous with this one, also use sets of objective lotteries to model
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ambiguity, but arrive at distinct utility representations. Olszewski (2003) extends the axioms of
Dekel (1986), most notably betweenness and dominance, to sets of lotteries and characterizes a
generalized form of α-maxmin utility, which evaluates a set by a convex combination of its minimal
and maximal elements and is further discussed in Section 2. Stinchcombe (2003) presents a novel
dual formulation of the Expected Utility Theorem on the mixture space of sets, invoking the
standard Archimedean and independence conditions. An advantage of these linear approaches is
that the resulting representations are well defined over lower dimensional sets, which our measure
theoretic approach must finesse. Finally, Ghirardato (2001), Jaffray and Jeleva (2004), and Nehring
(1999) consider multi-valued acts which map states of the world to sets of consequences.

Another recent strand of research enriches the subjective model with exogenous information
about the priors on the state space. Gajdos, Tallon, and Vergnaud (2004a) and Hayashi (2003)
consider preferences defined on act-set pairs, where the set captures the possible probabilities on
the state space. Gajdos, Tallon, and Vergnaud (2004b) and Wang (2003) further enrich the prob-
lem with reference or anchor priors, and consider preference over act-set-anchor triples. A possible
technical reconciliation between our approach and these is a generalized form of probabilistic sophis-
tication, where an ambiguous act is evaluated by its induced set of distributions over consequences.
This reconciliation and its limitations are further discussed when the model is formally introduced
in Section 2. These models take the set of lotteries or priors as exogenous; Ghirardato, Maccheroni,
and Marinacci (2004), Nehring (2001), and Siniscalchi (forthcoming) suggest various behavioral
methods to identify the perceived priors in subjective models.

Defining preference over sets has a rich tradition in the economic literature of choice under
ignorance, starting with Arrow and Hurwicz (1972). There, the decision maker chooses between
finite sets of sure consequences, but has no further control as to which alternatives are eventually
selected from these sets. This interpretation is closely related to ours, since the decision maker
knows only that some set of objects or lotteries is possible and has no further information on how
nature will select a particular object in the set. On the other hand, Kreps (1979) uses sets of sure
consequences as a way of identifying a preference for flexibility. He interprets as menus; the decision
maker will eventually choose an available option from the menu. A desire for larger menus suggests
a desire to keep one’s options open.

More recently, Dekel, Lipman, and Rustichini (2001) and Gul and Pesendorfer (2001) use menus
of lotteries to model flexibility and commitment. However, their interpretation of sets is funda-
mentally different from ours. They view sets as menus of stochastic choices; at an implicit second
stage, the agent chooses a single lottery from the menu. They extend the interpretation over sets
due to Kreps (1979); we extend the interpretation due to Arrow and Hurwicz (1972). For us, a
set reflects objective information about the risks involved in a decision—there is no implicit second
stage of choice. The set of lotteries represents the possible risks associated with the first stage of
choice. For example, in the Ellsberg urn, the subject knows that a bet on yellow is associated with
a range of lotteries, but has no further information beyond that range. She certainly cannot select
the distribution of colors in the urn at some later stage. The utility representations between these
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papers and ours are not nested; it is straightforward to construct utility functions that satisfy our
axioms but violate axioms in either Dekel, Lipman, and Rustichini (2001) or Gul and Pesendorfer
(2001), and vice versa. Most notably, the independence conditions of these two papers are not
imposed in our main representation.

Dekel, Lipman, and Rustichini do share our reservations with Savage’s state space, in the context
of unforeseen contingencies. Using menus of lotteries, they identify subjective states which capture
perceived taste uncertainty over final outcomes. Our interpretation of sets as informative boundaries
on risk is more blunt, but we feel it speaks more directly to ambiguity, while Dekel, Lipman, and
Rustichini speak more directly to flexibility and unforeseen contingencies. Their decision maker is
additively separable or probabilistically sophisticated over her subjectively comprehensive list of
possible tastes, precluding ambiguity.2 In the end, we feel that the appropriate interpretation of
sets, either as menus or as information, depends on the specific application at hand; a broad view
of models and interpretations seems in keeping with the motivations of both papers.

Our representation has formal and interpretive antecedents. A version of a general representa-
tion for conditional expectation was already proven and applied to Jeffrey’s (1965) syntactic theory
of decision by Bolker (1966, 1967), who deserves original credit for the mathematical result.3 While
the mathematical domain of Bolker’s result is somewhat different than ours, the substantive as-
sumptions are essentially similar. The technical differences between Bolker’s result and ours will
be explained more comprehensively when we present our theorem.

Our interpretation of the mathematical result differs from Jeffrey’s theory of joint desirability
and probability over logical propositions or sentences, which is not a treatment of ambiguity. While
seemingly established in formal philosophy, Jeffrey’s framework is less familiar in economics. It does
not immediately translate to standard formulations, as it is unclear whether Jeffrey’s propositions
should be interpreted as consequences, as states, or as acts.4 Jeffrey’s probability on propositions
is the only mechanic carrier of uncertainty in the model and is not allowed to vary, whereas we
consider the space of all possible lotteries on consequences. Perhaps our theory can be viewed as
a form of Jeffrey’s that considers “propositions” regarding risk: both theories have preferences for
information, captured as a sentence about the world or as a set of lotteries, and both implement
some form of conditional expectation. That said, we suspect Jeffrey might object to our basic
model and primitives: “I take it to be the principal virtue of the present theory, that it makes no
use of the notion of a gamble or of any other causal notion (Jeffrey 1965, p. 147).”

Our expression of ambiguity aversion through nonlinear aggregation of expected utilities is
closely related to the literature which links ambiguity aversion to second order risk aversion. Segal
(1987, 1990) first modeled ambiguity using objective two-stage lotteries and pioneered the concep-
tualization of ambiguity aversion as a failure to reduce compound lotteries. More recently, Segal’s

2A recent paper by Epstein and Marinacci (2005) allows a set of priors on the subjective states which is resolved
through maxmin expected utility.

3We are extremely indebted to Larry Epstein for bringing Bolker’s work to our attention, and thank Chris Cham-
bers for subsequent references on the Jeffrey model.

4Nonetheless, there is at least one application of the theory to welfare economics (Broome 1990).
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approach has inspired extensions to subjective settings (Ergin and Gul 2004, Klibanoff, Marinacci,
and Mukerji 2005, Nau 2003), where first and second order uncertainties are modeled as the two
dimensions of a product state space. These papers’ representations also feature transformations of
expected utility functions. The spirit of Segal’s approach is also present in Halevy and Feltkamp
(2005), who propose that ambiguous prospects may be perceived as bundles of correlated risky
prospects. Halevy (2004) presents experimental evidence that suggests a connection between am-
biguity aversion and reduction of compound lotteries; he also provides a nice categorization and
comparative testing of the different proposed forms of compounding.

While our representation and its associated interpretation are complementary, our domain is
distinct from these studies. We examine sets of lotteries, not two-stage lotteries over lotteries.
Referring back to the Ellsberg urn, for example, the subject’s given information is perhaps more
transparently modeled as a set of possible distributions of colors (“between zero and sixty yellow
balls”) than as a compound process of distributions over distributions of colors.

We include no explicit or verifiable second order uncertainty of any sort; the decision maker
is not asked to rank bets on which lottery actually generates risk. Since they are outside our
purview, we have nothing directly to say about reduction of compound lotteries. This is arguably
a comparative virtue: the uncertainty over lotteries is produced without appeal to second order
measurement devices. For example, we do not allow bets on the measure over lotteries or over
which lottery actually obtains, and cannot elicit information about ambiguity by isolating and
varying outcomes on which lottery represents the fundamental uncertainty. Insofar as “second
order” uncertainty exists, it is as an artifact of the suggested utility representation, rather than as
a primitive assumption of the model’s domain. This benefit comes at a cost. The use of direct second
order measurement identifies the nonlinear aggregator φmodulo positive affine transformations with
two parameters of freedom. Dropping this direct measurement and working with sets of lotteries,
we cannot achieve this level of uniqueness and are forced to allow a third degree of freedom.

In the next section, we formally introduce the primitives of our theory. Section 3 contains our
main representation: the decision maker integrates a transformed expected utility with respect to a
second order measure, conditioning on the objective set of lotteries. Section 4 discusses comparative
and absolute ambiguity aversion and conducts some comparative statics.

2 An objective model of ambiguity

We introduce the domain of preference, a special family of sets of objective lotteries. Preferences
over somewhat different familiees of sets of lotteries are also studied by Olszewski (2003), who
considers convex polyhedra, and Stinchcombe (2003), who consider closed convex sets. Neither
family is a superset or subset of the family we introduce here.

The finite set X denotes the set of deterministic outcomes. ∆X is the set of lotteries on X,
endowed with the topology of weak convergence, which is induced by the Euclidean metric when
∆X is represented as ∆X = {x ∈ R|X|−1

+ :
∑|X|−1

i=1 xi ≤ 1}. ∆2X = ∆(∆X) is the set of Borel
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probability measures on ∆X, or second order measures on X. We refer to elements of ∆X as
“lotteries,” and reserve the term “measures” for elements of ∆2X.

A set is regular is it is equal to the closure of its interior. Our domain of choice is the family of
nonempty regular and singleton subsets of ∆X, denoted

K∗(∆X) = {A ⊆ ∆X : int(A) = A or |A| = 1} \ ∅.

This domain restriction is a significant one. It excludes, for example, all finite subsets with more
than one element. The decision maker must either face ambiguity regarding the probabilities of
all consequences or face no ambiguity at all; she cannot know precisely the probabilities of some
outcomes but not of others.5 While regular sets are dense in the family of closed subsets, a weakness
of our utility representation is that conditional expectation is not defined on null sets. We could
include such sets in our domain, but our measure-theoretic representation would have no bite on
them.6 Their ability to put structure on such sets is a comparative strength of the linear approaches
of Olszewski (2003) and Stinchcombe (2003).

Any singleton is unambiguous, because the risk is known and precise. We view this simple
definition as a strength of the theory, but also acknowledge it is an artifact of the exogenous nature
of ambiguity in the model.

We maintain throughout that % is a complete and transitive binary relation on K∗(∆X), with
� and ∼ having the standard definitions.

Given a probability assessment µ over states, each act f is naturally associated with its induced
distribution over consequences: ν = µ◦f−1. If the decision maker is probabilistically sophisticated,
in the sense of Machina and Schmeidler (1992), these image lotteries completely characterize her
preference. Then an act contains more structure than is required for decision making; all payoff
relevant information is captured by its distribution. Similarly, the sets of consequential lotteries
might be viewed as reduced formulations of ambiguity in a Savage setting if the relevant informa-
tion is captured by the set of possible distributions induced by an act, given a set of probability
assessments over states. For example, in the Ellsberg urn, such a reduction implies that the agent
treats yellow and black symmetrically and is indifferent between betting on either. This imposed
symmetry seems reasonable in many cases. Ellsberg himself reported, “In our examples, actual
subjects do tend to be indifferent between betting on [yellow or black]. . . . the reasons, if any,
to favor one or the other balanced out subjectively so that the possibilities entered into their final
decisions weighted equivalently (Ellsberg 1961, p. 658).”

In other cases, the translation is more tenuous. The following example due to Hayashi (2003).
Consider two urns: the first contains 100 red or green balls, the second contains 100 red, green,
or yellow balls. No further information regarding these urns is known. If the decision maker uses

5Another way of thinking about the restriction, pointed out to us by Wojciech Olszewski, is that these sets are of
the same dimension as ∆X.

6Another facile alternative would be to impose the following axioms separately on lower dimensional components
of ∆X, for example each face or edge of ∆X. While this would provide structure on comparing two subsets of the
same face, it would not restrict preference across faces.
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only the induced distributions of acts, then betting on a red ball from the first urn induces the
same lotteries as betting on a red ball from the second urn, yet she may prefer to bet on the first
urn because there are fewer possible colors. This suggests that some important information might
be lost in reducing ambiguous acts to their distributions. The association of ambiguous acts in
subjective settings to ambiguous sets in our objective model is a delicate one. A relaxation of
distributional reduction is proposed by Gajdos, Tallon, and Vergnaud (2004a).

Finally, this model sharply delineates ambiguity as a closed set of lotteries. In reality, the
decision maker may not have such crisp boundaries on the possible lotteries. Instead, she may
think a variety of sets may represent the actual ambiguity, and have a belief on the likelihood of
these sets, an element of ∆(K(∆X)). Moreover, if the agent can hold ambiguous beliefs about
the consequences ∆X, then she may also hold ambiguous beliefs about the ambiguity, captured
as K(∆(K(∆X))). Iterative applications of risk ∆(·) and ambiguity K(·) produce infinite levels of
ambiguity about ambiguity. If these levels of higher order ambiguity collapse to a single expanded
space of consequences, then the model loses no generality if the consequence space is properly
constructed. We prove the hypothesis in another paper, which constructs a universal type space of
ambiguous beliefs that also provides a universal consequence space for this model (Ahn 2003).

3 Representation

One possible resolution of ambiguity is to focus on the worst possible lottery. Let u : ∆X → R be
a utility function on single lotteries and consider the following utility function for a set A:

U(A) = min
a∈A

u(a).

This translates the seminal representation of Gilboa and Schmeidler (1989) to our setting.
Maxmin utility has a clean functional form and crisp axiomatic characterizations. Nonetheless,

aside from the minimal lottery, the objective form of this representation ignores all the other
lotteries included in a set A. Indeeed, Ellsberg anticipated with dissatisfaction: “In almost no
cases . . . will the only fact worth noting about a prospective action be its ‘security level’: the
‘worst’ of the expectations associated with reasonably possible probability distributions. To choose
on a ‘maxmin’ criterion alone would be to ignore entirely those probability judgments for which
there is evidence (Ellsberg 1961, p. 662).”

Partly to mitigate this extreme form of ambiguity aversion, α-maxmin utility takes a weighted
combination of the worst and best distributions in a set, and is characterized by Ghirardato,
Maccheroni, and Marinacci (2004) in a subjective setting and by Olszewski (2003) in an objective
setting similar to ours. While α-maxmin utility improves simple maxmin, it retains some problems.
For example, α-maxmin utility still ignores almost all of the information contained in the set of
priors or the set of lotteries; preferences are completely characterized by minimal and maximal
elements. Take the lotteries over $0 and $100, represented on [0, 1] by their probabilities for
$100. Then α-maxmin utility is indifferent between [0, 0.5] ∪ [0.9, 1] and [0, 0.1] ∪ [0.5, 1], while
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the latter might be more intuitively appealing. For an example involving convex sets, consider a
decision maker facing three consequences X = {a, b, c} and evaluates sets using α-maxmin expected
utility with index u(a) = 8, u(b) = 4, and u(c) = 0 and with α = 3/4. Her utility for the set
A = {x ∈ ∆X : x(b) ≤ 1/2}, the lotteries where b is less likely that not, is 3

4 · 0 + 1
4 · 8 = 2. Her

utility for the set B = {x ∈ ∆X : x(b) ≥ 1/2}, the lotteries where b is more likely than not, is
3
4 · 2 + 1

4 · 6 = 3. Hence B is strictly preferred to A. Her utility for their union ∆X is 2, so she is
indifferent between A and ∆X, seemingly ignoring the good information, relative to A, embedded
in ∆X with B.

We suggest an alternative representation. Consider a utility function u on the single lotteries
and a probability measure µ on the Borel subsets of ∆X. We propose the following resolution of
ambiguity:

U(A) =

∫
A u dµ

µ(A)
.

The agent conditions her utility on a second order measure, given the information that the set A
of lotteries obtains. This incorporates every lottery in A, weighted by the measure µ.

Ideally, the utility function should be continuous and the measure µ should be nonatomic.
Hausdorff continuity of the preference would provide both conditions. Unfortunately, the proposed
utility violates continuity when defined over all closed sets of lotteries. Suppose the lotteries are
over two outcomes, winning $0 or $100. This set of lotteries can be represented as [0, 1], indexed
by the probability of winning $100. Set u(x) = x and µ to the Lebesgue measure. Then the sets
Aδ = [14 − δ,

1
4 + δ] ∪ [34 − 2δ, 3

4 + 2δ] and Bδ = [14 − 2δ, 1
4 + 2δ] ∪ [34 − δ,

3
4 + δ] both converge to the

doubleton {1
4 ,

3
4} as δ → 0. Yet U(Aδ) = 7

12 and U(Bδ) = 5
12 for all δ, so continuity fails. The main

problem is that {1
4 ,

3
4} is a Lebesgue null set, so its conditional expectation is undefined.

This motivates our construction of K∗, which limits attention to regular sets and singletons and
excludes pathological sets like {1

4 ,
3
4}. Of course, we include the singletons to retain unambiguous

choices. The decision maker must have either ambiguous marginals across all dimensions or else
face no ambiguity at all; she cannot know precisely the probabilities of some outcomes but not of
others.7 Throughout this section, we will restrict % to be a binary relation on K∗, rather than K.8

Our representation involves measures, so we need closure under standard set theoretic opera-
tions. Regular sets are not closed under these operations: consider the intersection of two regular
sets that meet only at their boundaries. Regular sets are closed under the regularized set operations,

7Another way of thinking about the restriction, pointed out to us by Wojciech Olszewski, is that regular sets are
of the same dimension as ∆X.

8Rather than refining the domain of choice, a different approach might invoke a lexicographic probability system
(Blume, Brandenburger, and Dekel 1991) of measures. Such an approach would be technically involved, since the
number of null sets is very large.
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defined as:

A ∪′ B = int(A ∪B);

A ∩′ B = int(A ∩B);

A \′ B = int(A \B).

We slightly abuse notation and drop the primes: all subsequent set operations are regularized. We
can now introduce the axioms.

Axiom 1 (Downward Hausdorff continuity). Suppose An converges to {a} in the Hausdorff metric.
An % B for all n implies {a} % B and An - B for all n implies {a} - B.

This axiom is somewhat weaker than the standard Hausdorff continuity condition, which as-
sumes the implication for all Hausdorff convergent sequences of sets. Here, it is assumed only for
sequences which are decreasing to a point.

We now introduce some notation. Let λ denote the Lebesgue measure on ∆X. If µ is absolutely
continuous with respect to Lebesgue measure, this will be denoted µ� λ. Symmetric set difference
is noted by A4B = (A∪B) \ (A∩B) = (A \B)∪ (B \A). The next condition asserts that, as the
measure of the difference of two sets converges to zero, the sets also converge in preference.

Axiom 2 (Lebesgue continuity). Suppose λ(A) > 0 and λ(An4A) → 0. An % B for all n implies
A % B and B % An for all n implies B % A.9

Lebesgue continuity is different than Hausdorff continuity; there are sequences of sets which
converge in Lebesgue measure but do not converge in Hausdorff distance, and vice versa. Since our
representation is measure-theoretic in nature, this topology is more appropriate for our purposes.
Olszewski (2003) does not require any form of continuity, and argues that Hausdorff continuity
is questionable in the context of ambiguity, and offers an example, similar to the one given when
we motivated our domain restriction, of a sequence of finite sets which might plausibly violate
continuity. Our domain, K∗, excludes such pathologies. This is not offered as a justification the
original restriction to regular sets, but only to argue that Lebesgue continuity is reasonable given
that restriction.

Axiom 3 (Disjoint set betweenness). Suppose A,B are regular and disjoint. A % B implies
A % A ∪B % B and A � B implies A � A ∪B � B.

Gul and Pesendorfer (2001) assume a similar axiom in their work on temptation and self control.
Our axiom is technically weaker in one sense, applying only to disjoint unions; it is stronger in
another, preserving both weak and strict preference. More importantly, set betweenness carries a
distinct substantive interpretation in our model. Gul and Pesendorfer think of set betweenness in
the context of temptation and menus: unchosen or suboptimal elements of a menu may carry a

9Lebesgue continuity replaces a divisibility axiom which was assumed in an earlier version of this paper.

9



disutility of temptation. Our sets are not menus, but provide information about possible lotteries.
In the context of temptation, set betweenness relaxes the following modularity condition: A % B

implies A ∼ A∪B, which is satisfied by a decision maker who exhibits no preference for commitment.
In the context of ambiguity, set betweenness relaxes exactly the opposite direction, implied by
maxmin utility: A % B implies A ∪B ∼ B.

Maxmin utility barely fails our version of set betweenness. Instead, it implies the following:
if A � B, then A � A ∪ B ∼ B. In evaluating A ∪ B, maxmin utility pessmistically ignores the
better set A, and pays attention only to the worse set B. While maxmin utility passes the weak
part of the axiom, it fails the strict part. This strict component of the axiom distinguishes our
representation from maxmin utility by forcing the agent to pay attention to good news.

Similarly, α-maxmin utility also fails the strict part of the axiom. The example given earlier
demonstrates this: X = {a, b, c}, α = 3/4, u(a) = 8, u(b) = 4, and u(c) = 0. Consider A = {x ∈
∆X : x(b) ≤ 1/2} and B = {x ∈ ∆X : x(b) ≥ 1/2}. These sets are disjoint, in the regularized sense,
and A � B, yet A ∼ A ∪ B, violating the strict part of our axiom. In words, this decision maker
is ignoring the good information, relative to A, that is included in B when evaluating their union.
On the other hand, like maxmin utility, α-maxmin utility does satisfy the weak form of the disjoint
set betweenness. In fact, Olszewski (2003) shows that a more general class of utilities satisfies
a strengthened form of weak set betweenness, which he coins “strong generalized betweenness.”
However, as the example demonstrates, strong generalized betweenness implies only the weak, but
not the strict, component of this axiom.10

These comparisons suggest that the strict part of the axiom is particularly biting. If a strictly
preferred set B of lotteries is added to the set A, then the decision maker must feel strictly better
off. A failure suggests that the better component of a union of sets is irrelevant to her preference.

Axiom 4 (Balancedness). Suppose A,B,C,D are regular with [A∪B]∩ [C ∪D] = ∅ and A ∼ B �
C,D (or A ∼ B ≺ C,D). A ∪ C % B ∪ C implies A ∪D % B ∪D.

Balancedness has the flavor of Savage’s second postulate, the Sure-Thing Principle (Savage 1954,
Section 2.7). Consider the sets A∪C and B ∪C in the hypothesis. These two unions share C and
differ only in that one has A and the other has B. Then, if we replace C with another set D which
shares C’s preference relation with A, this preference is preserved. The only data that matter in
evaluating these types of unions are their set differences, namely A and B. Their intersection, D in
the conclusion, does not affect their relative desirability. Similar intuitions, that two objects should
be compared by where they are different, are provided to justify independence and monotonicity in
other models. Our axiom is weaker because we add the additional restriction that A ∼ B. Although
loosely related, balancedness is not the same as the Sure-Thing Principle. The indifference and
disjointedness assumptions really have no analog in the Savage setting. Conversely, the Sure-Thing
Principle has no direct translation in our setting.

This axiom is technically similar to the classic structural property of qualitative probability:
if A ∪ C is more likely than B ∪ C, then A ∪ D is more likely than B ∪ D, for any C,D disjoint

10The strict part of disjoint set betweenness is not always violated by maxmin utility either. For example, if
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from A,B. In proving the eventual utility representation, it analogously guarantees the consistency
of a likelihood relation which is directly constructed from preference. So, although on face more
similar to the sure-thing principle, the technical value of balancedness is actually closer to Savage’s
fourth postulate, Weak Comparative Probability. The Sure-Thing Principle is generally regarded
as a restriction on utility, while Weak Comparative Probability is regarded as a restriction on
likelihood. Here, balancedness has connections to both, because the same space carries both utility
and probability in our setting.

We note that maxmin utility is balanced in a somewhat vacuous manner: A ∪ B ∼ B ∪ C
whenever A ∼ B � C.

These four axioms are necessary and sufficient for the proposed utility representation.

Theorem 1. A preference relation % on K∗ satisfies Axioms 1–4 if and only if there exist a
continuous u : ∆X → R and a probability measure µ� λ on ∆X with full support such that

U(A) =


∫
A u dµ
µ(A) if A is regular

u(x) if A = {x}

is a utility representation of %.
Moreover, suppose there exists such a utility representation by (u, µ). Then (v, ν) also represent

% if and only if

v(x) =
au(x) + b

cu(x) + d
;

ν(B) = µ(B)[c
∫
B u dµ+ d].

for some numbers a, b, c, d ∈ R such that ad− bc > 0 and d = 1− c
∫
∆X u dµ.

Proof. See Appendix A.1.

Theorem 1 does not conclude that the utility function u on lotteries is affine. No form of
independence is imposed, accommodating behavior under risk like the Allais paradox. To our
knowledge, our allowance for nonlinear preferences over singletons is unique in the literature on
preferences over sets of lotteries or priors. We consider this an important advantage of this measure-
theoretic approach. Of course, adding singleton independence, as we will do shortly, provides
additional structure.

As mentioned in the introduction, the technical content of the theorem rediscovers a mathe-
matical result that was proven earlier by and should be credited to Bolker (1966), who provided
a functional characterization for quotients of measures on complete nonatomic Boolean algebras.
While the motivations, formal hypotheses, and proofs are different, we do not want to claim any
significant technical novelty. At the same time, there are some important formal differences in the
results. Bolker begins with a nonatomic algebra: this excludes the singletons and would force the
existence of ambiguity in our setting. This exclusion might be natural in a propositional Boolean
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model for logic or syntax, but the inclusion of atoms is essential in our interpretation of sets as
ambiguity to formalize unambiguous choices and to get a handle on the the form of the utility
function u. To allow for atoms, we require the additional continuity assumptions. We also provide
more structure on the functional equation: the Radon–Nikodym derivative, which becomes u in
our setting, is continuous and µ is absolutely continuous with full support. Within this narrower
class, our continuity conditions become necessary, as well as sufficient, for the representation.

While a detailed proof is in the appendix, we briefly outline the main ideas here. Our proof is
presented in the case that it might be more transparent than Bolker’s original arguments to decision
theorists. First, let ΛA denote the family of regular subsets of A which are indifferent to A. ΛA is λ-
system, being closed under complementation and disjoint unions, both by disjoint set betweenness.
Such systems are recently emphasized in the literature on ambiguity (Epstein 1999, Epstein and
Zhang 2001, Zhang 1999). The balancedness axiom provides a natural likelihood relation �` on
ΛA: S �` T if and only if S ∪ B % T ∪ B for some disjoint B ≺ A. The likelihood relation
satisfies sufficient conditions, due to Zhang (1999), for the existence of a quantitative probability
measure PA which represents �l. The measure can be uniquely extended to the entire class of
regular subsets indifferent to A. We then use the extended PA to construct a signed measure νA on
all of the regular subsets of ∆X such that the sign of νA(S) identifies whether an arbitrary regular
set S is preferred to A: νA(S) ≥ 0 if and only if S % A.

Each νA provides information about the underlying preference with respect to a fixed set A, serv-
ing as a partial representation of the preference. The next step is to connect these signed measures
together to construct a complete representation. Take any three regular sets such that A � B � C

and consider the vector-valued measure νABC = (νA, νB, νC) taking values in R3. Exploiting the
constructed representation properties of the measures’ signs, an application of Lyapunov Convexity
Theorem demonstrates that the image of νABC is spanned by two vectors.11 This implies that νC

is linearly determined by νA and νB. Then the family of signed measures M = {νA : A is regular}
is spanned by two of its elements, ν and µ. Furthermore, the cone generated by M is convex. This
convexity implies that M is contained in a half space of the vector space of signed measures. Let
ν∗ be the measure orthogonal to the boundary of this half space. Some simple algebra demon-
strates that the fraction ν∗(A)/µ(A) is a utility representation over the regular sets. Then the
Radon–Nikodym Theorem implies there exists a measurable real-valued function u on ∆X such
that ν∗(A) =

∫
A u dµ. This demonstrates the utility representation for regular sets; the represen-

tation for singletons is the consequence of a technical convergence lemma and downward Hausdorff
continuity.

Finally, the nonparametric domain of choice ∆X considers arbitrary distributions on X and
makes no restrictive assumptions on the shape of risk. However, the proof only assumes that ∆X
is a compact Polish mixture space. The characterization remains valid when restricted to a family
of parameterized distributions, provided the parameter space is a compact Polish mixture space.
This is true even if the consequence space X is not compact or Polish. For example, if the decision

11A form of the Lyapunov Convexity Theorem was also invoked to similar effect by Bolker (1966).
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maker knows that the risk is normal over all levels of wealth, we can define preference over closed
subsets of a compact rectangle M×V ⊂ R2, associated with normal distributions of different means
M and variances V , while X = R is not compact.

As mentioned, adding independence over unambiguous singletons further refines the represen-
tation. The following is standard.

Axiom 5 (Singleton independence). For all a, b, c ∈ ∆X and α ∈ (0, 1), {a} % {b} if and only if
{αa+ (1− α)c} % {αb+ (1− α)c}.

This assumption provides a two step evaluation of a set of lotteries: first each lottery is linearly
aggregated by expected utility, then the entire set is nonlinearly aggregated by µ. This is reminiscent
of the compounding approach to ambiguity aversion forwarded by Uzi Segal (1987, 1990).

Corollary 2. A preference relation % on K∗ satisfies Axioms 1–5 if and only if there exist an affine
u : ∆X → R, a strictly increasing and continuous φ : R → R, and a probability measure µ� λ on
∆X with full support such that

U(A) =


∫
A φ ◦ u dµ
µ(A) if A is regular,

φ(u(x)) if A = {x}

is a utility representation of %.
Moreover, suppose there exists such a utility representation by (u, φ, µ). Then (v, ψ, ν) also

represent % if and only if

v(x) = αu(x) + β;

ψ(z) =
aφ(z) + b

cφ(z) + d
;

ν(B) = µ(B)[c
∫
B u dµ+ d].

for some numbers α, β, a, b, c, d ∈ R such that α, ad− bc > 0 and d = 1− c
∫
∆X u dµ.

Imposing singleton independence, we retain standard expected utility as a special case on the
unambiguous singletons. The utility u is a standard affine expected utility function, and φ is a
transformation that retains the ordinal independence condition on preferences; both u and φ ◦ u
produce linear indifference curves on single lotteries. The classic vNM Expected Utility Theorem
states there exists some affine utility representation, but not that all utility representations must be
affine. There are nonlinear utility representations of independent preference, as shown in Figures 1
and 2. The classic theory is cardinal with respect to the value function on deterministic outcomes
X (up to scale transformations), but is only ordinal with respect to the utility function on lotteries
∆X. A nonlinear monotone transformation is irrelevant in comparing one lottery to another, but
becomes very relevant in comparing sets of lotteries. The functional form of utility used to represent
preferences over single lotteries is important when we integrate that form over sets of lotteries.
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Figure 1: Linear expected utility (u)
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Figure 2: Nonlinear “expected” utility (φ ◦ u)

In Figure 1, the simplex of probability distributions ∆X lies on the ground, and the linear expected utility
curve u(∆X) floats above it. Since u represents independent preference, it has linear indifference curves.
Figure 2 shows the same independent preference, except now the linear utility representation u is transformed
by some concave function φ : R → R. Notice that the transformed utility retains the same linear indifference
curves.
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Although related, the curvature of utility in our model is not induced in the traditional sense
of direct second order risk aversion on compound or two-stage lotteries. This would suggest a
relaxation of the reduction axiom in the space of compound lotteries, about which we have nothing
to say. The domain of our model is sets of simple lotteries, rather than lotteries of simple lotteries.
The measure µ over lotteries is fixed by the representation; it is not assumed as a primitive of
the theory, nor is it allowed to vary to reflect different second order uncertainties. Instead, the
cardinality of φ ◦ u is induced by the agent’s preferences over subsets of ∆X.

Thus one part of an agent’s attitude towards ambiguity is the transformation φ, which captures
a cardinal intensity of preference for one type of lottery compared to another. This intensity is
important because the utility integrates this intensity with respect to the fixed measure µ. The
manifestation of ambiguity aversion as a departure from linearity should be comforting, since it
resonates the traditional analysis of risk aversion. We develop this metaphor more carefully later.

The second part of her attitude is determined by her weighting µ. One interpretation of our
setting is a game against nature, where nature decides which lottery is actually realized.12 Then
µ is the agent’s belief about nature’s mixed strategy. If the agent thinks µ puts more probability
on worse lotteries, she thinks nature will more likely choose a bad lottery. The measure µ can
be interpreted as an agent’s assessment of her “luck” in ambiguous situations. The more weight
she places on better lotteries, the luckier she believes herself to be. Two agents can share a
common utility function u and transformation φ, but still have different preferences because one
thinks of herself as luckier than the other. The maxmin utility is an extreme case where the
agent pessimistically believes that nature always chooses the minimal element of a set.13 Here, our
decision maker weights all the possible lotteries in a set by µ, using all of the available information.

Another interpretation of µ is less wedded to the statistical view of the decision problem as a
game against nature. We can interpret µ as a measure of salience or how much attention the agent
pays to the various lotteries. Worse lotteries loom larger in the minds of those with a distaste
for ambiguity. The measure µ then corresponds to the personal attention given to the possible
lotteries, normalized so µ(∆X) = 1. Then µ captures the psychological, rather than statistical,
weight the decision maker attaches to the various lotteries.

Similar concepts of luck cannot be formalized in a subjective model where the agent takes a fixed
weighted average over her priors over states. This is because whether the weighting is optimistic
or pessimistic depends on the act being evaluated. For example, if she holds a bet on yellow in the
Ellsberg urn, placing more weight on distributions with many yellow balls is optimistic. On the
other hand, if she holds a bet on black, the same weighting would be considered pessimistic. Only
by putting the second order beliefs directly on consequences can the decision maker be considered
optimistic or pessimistic.

The uniqueness of u modulo affine transformations is standard. The uniqueness of the trans-
formation φ and the probability measure µ are strictly weaker than that achieved in some other

12This interpretation is advanced more explicitly by Olszewski (2003).
13Of course, this extreme sense of bad luck cannot actually be defined as a probability measure over nature’s

behavior.
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representations. This is due to the different kind of information being elicited. Since we view the
direct measurement of second order beliefs as artificial, we do not allow bets on the space ∆X and
have no method to directly elicit the decision maker’s second order belief. In contrast, the models
of Ergin and Gul (2004) and Klibanoff, Marinacci, and Mukerji (2005) identify an exact second
order measure µ on first order priors. But this identification is at least partially an artifact of these
models’ primitives, which ask the decision maker to assess bets on the correct prior. In contrast,
we do not access this full range of bets to identify beliefs; the decision maker’s probabilistic payoff
under lottery x is never supplemented or changed. For example, our decision maker is not asked
to compare betting a dollar on the event that the actual lottery generating outcomes is in the
set A to betting on the event that the lottery is in another set B. Demanding such hypothetical
comparisons would provide another measurement device that we suspect would obtain uniqueness,
but one of our motivations for developing this domain is the artificiality of such contingent compar-
isons. We feel one of the model’s strengths is the lack of such forced comparisons. We believe that
deriving the second order uncertainty purely as an artifact of the utility representation, rather than
embedding it into the primitives of the model, is a comparative strength. On the other hand, as
mentioned in the introduction, this comes at some cost in terms of identification. Instead of linear
transformations, which have two degrees of freedom, we allow fractional linear transformations with
three degrees of freedom, since d is defined as a function of c. Moreover, the second order belief is
not identified uniquely, but allowed a degree of freedom, for similar reasons. At a technical level,
this suggests that the form of uniqueness in the second order prior model depends on the form of
the elicitation.

4 Ambiguity aversion

4.1 Comparative ambiguity aversion

From here on, we take the representation of Corollary 2 as given. In this section, we develop tools
to discuss ambiguity aversion in our objective setting. We first introduce concepts to compare
ambiguity aversion across individuals.

Definition 1. The relation %1 is locally more ambiguity averse at A than %2 if

A %1 {a} ⇒ A %2 {a}

and
A �1 {a} ⇒ A �2 {a},

for all a ∈ ∆X.
The relation %1 is (globally) more ambiguity averse than %2 if it is locally more ambiguity

averse at all A ∈ K∗.

This definition is analogous to Epstein’s (1999) definition of comparative ambiguity aversion.
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He considers %1 more ambiguity averse than %2 if for every arbitrary act f and any unambiguous
act g, f %1 g implies f %2 g and f �1 g implies f �2 g, where an act is considered unambiguous if
it is measurable with respect to a λ-system of unambiguous events. The definition by Ghirardato
and Marinacci (2002) is identical, except they further restrict g in the hypothesis to be a constant
function. The two definitions disagree on what exactly constitutes an unambiguous act. Here,
singleton lotteries directly replace place of λ-measurable or constant acts, allowing us to finesse
the issue. With the subjective definitions proposed by Epstein and by Ghirardato and Marinacci,
our definition shares the virtue of being applicable across different utility representations for the
decision maker.

While the local definition of ambiguity aversion does not reference the cardinal utilities of the
decision makers over X, a consequence of the global definition is that if one decision maker is
globally more ambiguity averse than another, then both share the same restricted preferences on
singleton lotteries. If X represents levels of wealth, if we can compare two agents’ global ambiguity
attitudes, the agents must have the same cardinal utility for wealth. So the ordering of ambiguity
aversion is coarser than the ordering of risk aversion.

Proposition 3. If %1 is globally more ambiguity averse than %2, then %1|∆X=%2|∆X

Proof. This follows directly from restricting the definition to singletons.

If two decision makers disagree on the desirability of uncertain prospects, it is because they have
different cardinal tastes over the sure consequences or because they have different reactions to the
size of ambiguity. Our definition of comparative ambiguity aversion separates the effects of risk and
ambiguity on decision making by fiat. Ghirardato and Marinacci consider such separation desirable
and carefully delineate conditions where it is implied by their definition in a Savage framework. The
immediacy of the separation here is a mechanical consequence of our objective domain of lotteries,
where we have a rich linear structure not immediately available in a Savage domain.

Given that two agents share risk preferences, we can consider a1 and a2 their respective
ambiguity-free equivalents to A if {a1} ∼1 A and {a2} ∼2 A.14 Ambiguity-free equivalents are
conceptually similar to certainty equivalents in the theory of risk aversion. An agent is more risk
averse than another if the other’s monetary certainty equivalent for a lottery is greater than her
own certainty equivalent. Here, we replace the natural ordering on money with the preference
ordering on singletons. Then the first is more ambiguity averse at A than the second if she prefers
the second’s ambiguity-free equivalent a2 to her own equivalent a1: {a2} %1 {a1}. She can be more
ambiguity averse for some sets but less ambiguity averse for others, in the same way she can be
more risk or less risk averse for different lotteries.

We mentioned in Section 3 that maxmin utility nearly meets the axioms of Theorem 1. Specif-
ically, it only barely fails to meet disjoint set-betweenness. We now show that maxmin utility is a
limit case of our representation. To consider limits in the space of possible preferences, we define

14More generally, we can consider the entire set {a ∈ ∆X : {a} ∼ A} as the ambiguity-free equivalent. This set is
the restriction of a hyperplane to ∆X if % meets singleton independence.
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a topology on the space of preferences. For a fixed set A ∈ K∗, let

dA(%,%′) = d({a : {a} ∼ A}, {a : {a} ∼′ A})

recalling d is the Hausdorff distance.15 We now say %n→% if dA(%n,%) → 0 for all A ∈ K∗. So,
a sequence of preferences converges if the respective ambiguity-free equivalents for A converge for
any set A ∈ Z.16

Remember our discussion of the two sides of ambiguity aversion: the transformation φ reflecting
a cardinal utility towards gambles and the probability assessment µ reflecting an attitude about
one’s luck. To conduct comparative statics, we isolate each effect by keeping the other fixed.
We begin by fixing the measure µ and comparing the curvature of φ. In the theory of risk, more
curvature corresponds to more risk aversion. Similarly, in our theory more curvature corresponds to
more ambiguity aversion. For a fixed risk profile, we let %MMEU refer to the corresponding maxmin
expected utility. Given similar results in the theory of risk, the following is hardly surprising;
moreover, analogous results for definitions of comparative ambiguity aversion in subjective settings
are provided by Klibanoff, Marinacci, and Mukerji (2005)

Proposition 4. Suppose % and %′ have representations (u, φ, µ) and (u, φ′, µ). Then % is more
ambiguity averse than %′ if and only if φ = h◦φ′ for some concave and strictly increasing h : R → R.

Moreover, suppose {%n} have representations {(u, φn, µ)}. If each φn is twice differentiable
and, for all x ∈ ∆X,

min
x
−φ

′′
n(x)
φ′n(x)

→∞,

as n→∞, then %n→%MMEU.

Proof. The first part of the proposition follows almost directly from Jensen’s Inequality. For the
second part, make u positive by adding a sufficiently large constant. The result follows by taking
a subsequence φn(m) with φn(m) a concave transformation of −e−mx, then taking m→∞.

The fraction −φ′′
i (x)

φ′
i(x)

strongly resembles the standard Arrow–Pratt coefficient of absolute risk
aversion. Fixing a probability µ, we can construct a similar quantitative measure to compare
ambiguity aversion. As with risk, the ratio of the second to the first derivative provides a measure
of curvature and captures the level of ambiguity aversion for the agent. As this measure approaches
infinity, the agent’s preferences get closer to maxmin utility. Her relative distaste for worse lotteries
increases, and she wishes more and more to avoid sets that include such lotteries.

Now we fix the transformation φ and vary the probability µ. Recall µ captures the agent’s
perception of her luck. The partial order of stochastic dominance formalizes what it means for
one agent to consider herself “luckier” than another. A measure stochastically dominates another
precisely if it puts more weight on more desirable lotteries. We let ∆A = {µ ∈ ∆X : µ(A) = 1} for

15The arguments in d are compact by continuity of the preferences and dA is a semimetric on the the space of
preferences.

16Notice that this convergence need not be uniform across A.
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any set A ⊆ X. Since u is continuous, the set of maximizers over a compact set A is closed. When
µ(A) > 0, µ|A is the conditional probability defined by [µ|A](S) = µ(A∩S)

µ(A) .17

Proposition 5. Suppose % and %′ have representation {u, φ, µ} and {u, φ, µ′}. If µ|A stochastically
dominates µ′|A with respect to the lattice % |A, then % is locally more ambiguity averse at A than
%′.18

Moreover, suppose {%n} have representations {(u, φ, µn)}. If, for all measurable A ⊆ ∆X,
µn|A converges weakly to ∆(arg minx∈A u(x)), as n→∞, then %n→%MMEU.

Proof. This follows directly from definitions.

This is another way maxmin utility is a limit case of our representation. The more unlucky
an agent considers herself, the closer her behavior is to maxmin preference. She focuses more and
more of her attention on the worse lotteries, until the worst lottery becomes the sole criterion for
comparison.

4.2 Absolute ambiguity neutrality

Having established these relative definitions, we introduce an absolute benchmark for ambiguity
neutrality. In the subjective literature, there is a natural benchmark of probabilistic sophistication.
In our setting, probabilistic sophistication reduces the domain to the standard vNM setting of
singleton lotteries. So, we should note that it is hardly obvious if “ambiguity neutrality” has any
significance here. Nonetheless, there are arguably reasonable benchmarks for ambiguity neutrality.
In the theory of risk aversion, risk neutrality is identified by a linearity in the Bernoulli utility
function for money. Here, we also propose various types of linearity, adjusted to our special decision
setting with subsets.

The first kind of linearity we impose is on the transformation φ. Since it measures cardinal
attitudes on the space of lotteries, it can be interpreted as a measure of second order risk aversion.
In other words, if φ really is nonlinear, then the agent might treat compound lotteries differently
than their reductions. So consider the following.

Axiom 6 (Linearity). If (φ, u, µ) is a representation of %, then φ(z) = az+b
cz+d for some ad− bc > 0.

This axiom essentially assumes there exists some representation where φ is linear. By itself,
linearity of φ does not identify a single preference, because µ could be one of many possible measures.
While this assumption is somewhat unsatisfying because it is imposed on an artifact φ of preference
rather than on % directly, this is the best that can be achieved given the lack of a second order
measurement device.

We need more axioms to identify an ambiguity neutral probability assessment. While it is
obvious what the ambiguity neutral transformation φ should be, we still need to characterize an

17Since µ has full support, this fraction is always well defined for regular sets.
18A measure µ stochastically dominates ν with respect to the lattice % if

R
f dµ ≥

R
f dν for any function f that

is monotone with respect to %.
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“ambiguity neutral” weighting µ. Define αA + (1 − α)B = {αa + (1 − α)b : a ∈ A, b ∈ B}. The
definition of singleton independence can be expanded to include an ambiguous set on one side.

Axiom 7 (Singleton-set independence). For all a, x ∈ ∆X, A ⊆ ∆X, and α ∈ (0, 1), {a} % A if
and only if {αa+ (1− α)x} % αA+ (1− α){x}.

The axiom states that the agent is neutral to mixtures between a set and a singleton. This is
similar to the standard “hedging” axiom in subjective theories of ambiguity. The spirit of these
axioms is that the agent prefers a mixture of two acts to either of the acts separately; the mixture
“hedges” the ambiguity of the acts. For example, in Gilboa and Schmeidler (1989), the key axiom
characterizing ambiguity aversion is that αf + (1 − α)g % f for any two indifferent acts f ∼ g,
while αf + (1 − α)g ∼ f characterizes ambiguity neutrality. Our condition is that if the agent is
indifferent between an unambiguous singleton a and any set A, then she will retain that indifference
when these choices are mixed with another unambiguous choice x. One feature which distinguishes
our main representation is that no form of affine independence over sets is assumed at all, since
none of the main axioms take any convex combinations of non-singleton sets. Such combinations
are required only to characterize a special subclass of the representation.

A stronger notion of independence between sets is that A % B if and only if αA+ (1− α)C %

αB+(1−α)C for any sets A,B,C; this is invoked by Stinchcombe (2003) for sets of lotteries and by
Gajdos, Tallon, and Vergnaud (2004a) for sets of priors over a state space. The justification for this
stronger assumption is usually tied to the temporal resolution of uncertainty. In this interpretation,
the mixture αA+ (1− α)C is viewed as the lottery where the set A is realized with probability α
and C is realized with probability 1 − α. If the decision maker is indifferent to when uncertainty
resolves, she should retain her preference of A to B when they are mixed with another set C.
Our representation precludes this view, since the relative likelihoods of A and C are fixed by the
probability measure µ. The probabilistic interpretation of set mixtures is at odds the agent’s own
assessment of the relative probabilities of these sets, determined by µ(A) and µ(C). Indeed, it is
easy to find examples of preferences that meet our axioms and violate set independence.

Since % is assumed to be a weak order, hence complete, singleton-set independence can be
expressed as the conjunction of two implications, strict and indifferent: first, if {a} � A, then
{αa+(1−α)x} � αA+(1−α){x}; second, if {a} ∼ A, then {αa+(1−α)x} ∼ αA+(1−α){x}. A
weaker variant of such an independence condition which only assumes the strict implication is used
by Hayashi (2003) for sets of priors and noted by Gul and Pesendorfer (2001) and Dekel, Lipman,
and Rustichini (2001) for menus of lotteries, with similar intuitions: for all convex A,B,C ⊆ ∆X,
A � B implies αA + (1 − α)C � αB + (1 − α)C. On one hand, the required implication is
weaker because it is only asserted for strict preference, and not for indifference. On the other
and, we believe, more important hand, the domain of our singleton-set independence assumption
is considerably smaller; the implications are imposed only when the sets A and C are singletons.

The corrected form of Weak Independence required by Dekel, Lipman, and Rustichini (2001) to
derive ordinal expected utility is stronger than singleton-set independence: for all convex A,B,C ⊆
∆X: if A ⊆ B, then for all α ∈ (0, 1), A % B if and only if αA + (1 − α)C % αB + (1 − α)C
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(Dekel, Lipman, Rustichini, and Sarver 2005). On the domain of convex subsets, singleton-set
independence can be replaced with the assertion that for all a, c ∈ ∆X and convex B ⊆ ∆X,
if a ∈ B, then for all α ∈ (0, 1), {a} % B if and only if {αa + (1 − α)c} % αB + (1 − α){c}.
This is because, given our utility representation, if A is convex, there exists some a ∈ A such that
{a} ∼ A. So singleton-set independence relaxes new Weak Independence by narrowing the domain
of application to A and C which are singletons.

Dekel (1986) introduced a betweenness axiom for single lotteries which weakens independence:
A % B if and only if A % αA+(1−α)B % B. This betweenness property is extended by Olszewski
(2003) for sets of lotteries: if A % B, then for any set of scalars P ⊆ [0, 1], A % PA+(1−P )B % B,
where PA + (1 − P ) is the union of the convex combinations of A and B by any scalar in the set
P . This strong generalized betweenness property yields, as a special case, the weak form of disjoint
set betweenness by setting P = {0, 1}.

A well known consequence of the Haar Measure Theorem is that Lebesgue measure is the
essentially unique translation invariant measure on R|X|−1, in the sense that λ(A) = λ(A + y).
Lebesgue measure is a particular measure-theoretic restriction on what the decision maker would
consider the “average” lottery from a set without further information. Translation invariance is
arguably a “neutral” feature, since the relative weight of different sets does not vary if we make the
sets uniformly better or worse. In any case, translation invariance of the measure is mathematically
implied by linearity and singleton-set independence. A geometric notion of the average as the
Steiner point is characterized by Gajdos, Tallon, and Vergnaud (2004a) and Hayashi (2003) for sets
of priors over states and suggested by Stinchcombe (2003) for sets of lotteries over consequences.

Theorem 6. % meets Axioms 6 and 7 if and only if there exists a representation (φ, u, µ) where φ
is the identity function and µ = λ.19

Proof. See Appendix A.2.

Since ambiguity neutrality is uniquely identified, we can now naturally identify ambiguity aver-
sion with any preference which is more ambiguity averse than the representation of Theorem 6.

A Appendix

A.1 Proof of Theorem 1

Recall that λ denotes the (|X|−1)-dimensional Lebesgue probability measure on ∆X. We begin by proving a
useful technical lemma. The lemma is used in the proof of Theorem 6 in Appendix A.2 and makes Corollary 2
an immediate consequence of Theorem 1.

19This is the only result in the paper that invokes the finite cardinality of X. When ∆X is infinite-dimensional,
its open subsets admit no nontrivial translations. We are very grateful to Bob Anderson, Oleh Nykyforchyn, Chris
Shannon, Max Stinchcombe, and especially Bill Zame for pointing out an important error in an earlier draft and
many helpful conversations on its resolution.
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Lemma 7. There is a version f = dµ
dλ (λ–almost everywhere) of the Radon–Nikodym derivative of µ with

respect to λ that is continuous at a if and only if µ(An)
λ(An) → f(a) whenever An → {a} in the Hausdorff metric

topology and λ(An) > 0.

Proof. We first prove sufficiency by contradiction. Suppose µ(An)
λ(An) → f(a) if An → {a} and f(x) is discontin-

uous at a for any version f . Then either max{f(x), f(a)} or min{f(x), f(a)} is discontinuous at a; without
loss of generality assume the former. Then there exists some ε > 0 such that

Dn =
{
x : ‖x− a‖ < 1

n
and f(a)− f(x) > ε

}
is nonempty for all n. Furthermore, λ(Dn) > 0 for all n, otherwise we can find a version g = f almost
everywhere with respect to λ with g continuous at a. Then∫

Dn
f dλ

λ(Dn)
< f(a)− ε

for all Dn while Dn → {a}. This contradicts our assumption that µ(An)
λ(An) → f(a) whenever An → {a}.

For necessity, suppose there exists a version f that is continuous at a and take any sequence An → {a}.
Fix ε > 0. There is a corresponding δ > 0 such that |f(x)− f(a)| < ε whenever ‖x− a‖ < δ. As An → {a},
there exists some N such that if n > N , then ‖x− a‖ < δ for any x ∈ An. Then for all n > N ,∣∣∣∣µ(An)

λ(An)
− f(a)

∣∣∣∣ =

∣∣∣∣∣
∫

An
f dλ

λ(An)
− f(a)

∣∣∣∣∣
≤

∫
An
|f(x)− f(a)| dλ
λ(An)

<

∫
An

ε dλ

λ(An)
= ε.

The routine verification of necessity is omitted. The uniqueness claim follows readily from Bolker (1966).
We now provide a proof of sufficiency. We begin by demonstrating the existence of a utility function.

Lemma 8. If % is downward Hausdorff continuous and satisfies disjoint set betweenness, then for each A,
there exists a singleton {x} ∼ A.

Proof. Fix an arbitrary regular set A. We first prove there exists some x∗ such that {x∗} % A. Let Πi
n

denote the regular partition or grid of A induced by the lattice of points whose dimensions are multiples
of 2−n. By repeated applications of disjoint set betweenness, at least one element B1 of the partition Π1

satisfies B1 % A. If an element Bn of Πn satisfies Bn % A, then a subset Bn+1 ⊂ Bn with Bn+1 ∈ Πn+1 must
satisfy Bn+1 % Bn. Thus there exists a sequence of sets Bn such that Bn % A for all n. Since the elements
of this sequence are decreasing and have arbitrarily small radius, they converge in the Hausdorff metric to
a point {x∗}. By decreasing Hausdorff continuity, {x∗} % A. Similarly, there also exists some {x∗} - A.
Decreasing Hausdorff continuity also implies that the restriction of % to the singletons is continuous. Then
there must exist some point x with {x∗} % {x} % {x∗} such that {x} ∼ A.

Therefore, each A has an ambiguity-free equivalent {x} ∼ A. Moreover, by Debreu’s Theorem, there
exists a utility representation u on the singletons, which can be extended to K∗ through Lemma 8 by setting
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V (A) = u({xA}), the utility of its ambiguity-free equivalent. We extend % to a larger family of sets. We
will consider the family of Borel sets modulo λ.20 Details of the following constructions can be found in
(Halmos 1974, pp. 166–169). We write symmetric set difference as A4B = (A \ B) ∪ (B \ A). Let Z ′ refer
to the quotient B(∆X)/N , where N is the family of Borel sets with Lebesgue measure zero. So, if two
sets differ only on a set of Lebesgue measure zero, λ(A4B) = 0, then they are considered part of the same
equivalence class in Z ′. We will remove the equivalence class of the empty set, to make Z = Z ′ \ [∅]. At
times, we abuse notation and refer to the equivalence class [A] by a representative element A; this should not
cause any confusion. Let π(A,B) = λ(A4B), providing a separable metric on Z Halmos (1974, Theorem
B, p. 168).

Lemma 9. Let A be a Borel subset of ∆X. If ε > 0, there exists a regular set K such that λ(K4A) < ε.

Proof. Fix a Borel set A and ε > 0. Since λ is an outer regular measure, there exists an open set O ⊇ A

such that λ(O \A) < ε/2. Let A denote the family of all closed cubes contained in O. This family is a Vitali
covering of A.21 By the Vitali Covering Theorem (Dunford and Schwartz 1957, Theorem 3, p. 212), there
exists a sequence of disjoint sets A1, A2, . . . such that λ(A \

⋃∞
i=1Ai) = 0. Then there exists a finite index n

such that λ(A \
⋃n

i=1Ai) < ε/2. Let K =
⋃n

i=1Ai. K is a finite union of regular sets, hence regular. Since
K ⊆ O, λ(K \A) ≤ λ(O \A) < ε/2. Thus λ(A4K) = λ(K \A) + λ(A \K) < ε.

Lemma 10. There exists a π-continuous extension of % to Z.

Proof. Fix a nonnull Borel set B. By Lemma 9, there exists a sequence An converging to B in Lebesgue
measure. Let V (B) = limV (An). This sequence is convergent as u is continuous and the Lebesgue measure
metric is complete. The Lebesgue continuity axiom makes the selection of any particular sequence inessential.
Lebesgue continuity also implies π-continuity of this extension.

Adding the singletons to Z, when necessary, is done in the natural fashion. At times, we will move
between the spaces with and without the singletons appended, but this should not cause any confusion.

We will prove that the axioms on the extended preference are sufficient for the utility representation on
all of Z. Then the utility will also represent the original % on the restricted domain K∗.

To prove sufficiency, we reference the theory of probability representation on λ-systems of subsets. This
theory was developed conceptually in the mathematical foundations of quantum mechanics by Birkhoff and
von Neumann (1936) and von Neumann (1955). More recently, such structure is exploited by Zhang (1999)
and Epstein and Zhang (2001) to define the algebraic properties of unambiguous events in the Savage state
space.

Definition 2. A family Λ of subsets of X is a λ-system if:

1. X ∈ Λ,

2. S ∈ Λ implies S{ ∈ Λ, and

3. if A1, A2, . . . ∈ Λ are pairwise disjoint, then
⋃∞

n=1An ∈ Λ.

The family of indifferent subsets of A, notated as ΛA, is conveniently a λ-system.

Lemma 11. The family ΛA = {S ⊆ A : S ∼ A} is a λ-system (relative to A).

20The particular use of Lebesgue measure here is inessential; any nonatomic measure with full support will suffice.
21In R|X|, a family A of closed sets is a Vitali covering of A if each set has strictly positive Lebesgue measure and

every point in A is contained in sets of A with arbitrarily small diameter.
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Proof. The first condition follows from completeness of %. If S ∈ ΛA, then its (relative) complementA\S ∼ A

to satisfy disjoint set betweenness. Closure under finite disjoint unions follows directly from disjoint set
betweenness. For any countable disjoint sequence {An}∞n=1, λ(

⋃N
n=1An) converges to λ(

⋃∞
n=1An) as N goes

to infinity because λ(
⋃∞

n=1An) is finite. Then the third condition holds by applying disjoint set betweenness
to the finite unions

⋃N
n=1An, then passing the limit to the preferences using Lebesgue continuity.

There are various results that find sufficient conditions on a qualitative likelihood ranking �` on a λ-
system for the existence of a consistent probability measure, for example (Suppes 1966, Theorem 3) or
(Krantz, Luce, Suppes, and Tversky 1971, p. 215). We state a recent version by Zhang (1999), which we
find to be the most intuitive and transparent. The symbols �` and ∼` carry their natural meanings.

Theorem 12 (Zhang). There exists a unique finitely additive, convex-ranged22 probability measure P on Λ
such that A �` B ⇔ P (A) ≥ P (B) for all A,B ∈ Λ if and only if �` satisfies:

1. A �` ∅ for any A ∈ Λ.

2. X �` ∅.

3. �` is a weak order.

4. If A,B,C ∈ Λ and A ∩ C = B ∩ C = ∅, then A �` B if and only if A ∪ C �` B ∪ C.

5. For any two uniform partitions {Ai}n
i=1 and {Bi}n

i=1 of S in Λ,
⋃

i∈I Ai ∼`

⋃
i∈J Bj if |I| = |J |.23

6. (a) If A ∈ Λ and A �` ∅, there is a finite partition {A1, . . . , An} of X in Λ such that:

i. Ai ⊆ A or Ai ⊆ A{ for all Ai, and

ii. A �` Ai for all Ai.

(b) If A,B,C �` ∅, A ∪ C = ∅, and B �` A, then there is a finite partition {C1, . . . , Cn} of C in Λ
such that B �` A ∪ Ci for all Ci.

7. If {An} is a decreasing sequence in Λ and A∗ �`

⋂
nAn �` A∗ for some A∗ and A∗ in Λ, then there

exists N such that A∗ �` An �` A∗ for all n ≥ N .

We can apply this theorem to ΛA and the resulting quantitative probability has some nice properties in
terms of representing % on a restricted domain. We begin by proving a technical step.

Lemma 13. For all A ⊆ X, there exists A0, A1 ⊂ A such that A0∩A1 = ∅, A0∪A1 = A, and A0∪B ∼ A1∪B
for any B � A.

Proof. Let A = {x ∈ A : {x} % A} and A = {x ∈ A : A � {x}}. Then, by an argument similar to the proof
of Lemma 8, A � A. Fix some x ∈ A and x ∈ A. Let Aα = α{x} + (1 − α)A and Aα = α{x} + (1 − α)A.
Since A \ Aβ ≺ A, disjoint set betweenness forces A ∪ Aβ � A. Fix β ∈ [0, 1]. By construction, A � A.
Then Lebesgue continuity implies there exists some α ∈ [0, 1] such that Aα(β) ∪ Aβ ∼ A. Moreover, this
α is unique by disjoint set betweenness. Let the function α(β) : [0, 1] → [0, 1] denote this assignment for
each β, which is continuous by Lebesgue continuity. Thus Aα(β) ∪ Aβ ∼ A. By disjoint set betweenness,
A \ [Aα(β) ∪Aβ ] ∼ A as well.

Recall f(A) is a Lebesgue continuous utility representation of %. Fix B ≺ A; the argument for B � A

is parallel. Let F (β) = f(Aα(β) ∪ Aβ ∪ B) and G(β) = f(A \ [Aα(β)) ∪ Aβ ] ∪ B). By construction, G(0) =

22A set function P on Λ is convex-ranged if for all A ∈ Λ and 0 < α < 1, there exists some B ⊂ A such that
P (B) = αP (A). Notice this is much stronger than asserting that P (Λ) is convex.

23A partition {Ai}n
i=1 is uniform if Ai ∼` Aj for all i, j.
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f(A ∪ B), G(1) = f(B), F (0) = f(B), and F (1) = f(A ∪ B). Letting H(β) = G(β) − F (β), we have
H(0) = f(A ∪B)− f(B) > 0 > f(B)− f(A ∪B) = H(1). As H is continuous in α, the Intermediate Value
Theorem implies there exists β∗ such that H(α∗) = 0, i.e. Aα(β∗) ∪Aβ∗ ∪B ∼ (A \ [Aα(β∗) ∪Aβ∗ ]) ∪B. By
balancedness, showing this indifference relation for a particular B proves it for all such B.

Lemma 14. Take any A � B with A∩B = ∅. There exist finitely additive, convex-ranged, tight24 probability
measures PA and PB on ΛA and ΛB such that:

1. u(S ∪B) = PA(S) is a utility representation of % on {S ∪B : S ∈ ΛA}; and

2. u(A ∪ T ) = −PB(T ) is a utility representation of % on {A ∪ T : T ∈ ΛB}.

Furthermore, PA is robust to choice of B ≺ A and PB is robust to choice of A � B.

Proof. Define the likelihood ordering �` on ΛA by S1 �` S2 if and only if S1 ∪B % S2 ∪B and similarly for
ΛB .

Step 1: Conditions 1, 2, 3, and 4. Conditions 1 and 2 are immediate consequences of disjoint set
betweenness. Condition 3 follows since % is a weak order. Condition 4 follows immediately from balancedness.

Step 2: If A0 is a strict subset of A1, then A1 �` A0. Since ΛA is closed under disjoint unions, A1\A0 ∼ A.
We have A ∼ A0 � B, so disjoint set betweenness implies A � A0 ∪ B. Also by disjoint set betweenness,
A1 \A0 � A0 ∪B implies A1 ∪B = (A1 \A0) ∪A0 ∪B � A0 ∪B. By definition, this means A1 �` A0.

Step 3: Suppose A1 ∩A2 = A′1 ∩A′2 = ∅, A1 ∼ A2, and A′1 ∼ A′2. If A1 �` A
′
1, then A1 ∪A2 �` A

′
1 ∪A′2.

By divisibility, there exists disjoint B1, B2 such that B1 ∪B2 = B and A1 ∪B1 ∼ A1 ∪B2. By balancedness
on B1, B2, this implies A2∪B1 ∼ A2∪B2. The definition of �` implies A1∪B ∼ A2∪B. Then balancedness
on A1, A2 implies A1 ∪ B1 ∼ A2 ∪ B1. Transitivity of % on the previous indifference relations implies
A1 ∪ B1 ∼ A2 ∪ B2. Then disjoint set betweenness forces A1 ∪ B1 ∪ A2 ∪ B2 = A1 ∪ A2 ∪ B ∼ A1 ∪ B1. A
parallel argument establishes that A′1 ∪ A′2 ∪ B ∼ A′1 ∪ B1. Since A1 �` A

′
1, we have A1 ∪ B � A′1 � B.

Then balancedness implies A1 ∪B1 � A′1 ∪B1. Thus A1 ∪A2 ∪B � A′1 ∪A′2 ∪B, i.e. A1 ∪A2 �` A
′
1 ∪A′2.

Step 4: For any n, there exists a uniform partition {Bi}2
n

i=1 of B. The proof is by induction. By
divisibility, there exists a partition {B1, B2} of cardinality 2. Now, suppose there exists a uniform partition
{B1, . . . , B2n}. By applying divisibility to each Bk, we can produce a two-element partition {B1

k, B
2
k} of

Bk such that B1
k ∪ A ∼ B2

k ∪ A, i.e. B1
k ∼` B

2
k. Step 3 implies B1

k ∼` B
1
m for all k,m; B1

k �` B
1
m would

imply Bk �` Bm, which would contradict Bk ∼` Bm. Thus, {B1
1 , B

2
1 , . . . , B

1
2n , B2

2n} is a uniform partition
of cardinality 2n+1.

Step 5: Condition 5. Suppose {Ai}n
i=1 and {A′i}n

j=1 are uniform partitions of A. By the previous step,
there exists a sequence of disjoint subsets B1, . . . , Bn of B such that Bi ∼ B and Bi ∼` Bj for all i, j. Let
B0 =

⋃n
i=1Bi.

We first prove that Ai ∼ A′j for all i, j. To the contrary, assume without loss of generality that A1 �` A
′
1.

Then Ai ∼` A1 �` A
′
1 ∼` A

′
j . By two applications of balancedness, A1∪B1 ∼ Ai∪B1 ∼ Ai∪Bi and similarly

A′1 ∪B1 ∼ A′j ∪Bj . By construction, A ∪B0 =
⋃n

i=1Ai ∪Bi =
⋃n

j=1A
′
j ∪Bj . But disjoint set betweenness

iteratively applied to Ai ∪Bi � A′i ∪Bi implies
⋃n

i=1Ai ∪Bi �
⋃n

j=1A
′
j ∪Bj , a contradiction.

Now consider
⋃m

i=1Ai and
⋃m

j=1A
′
j for some m ≤ n. We have just shown that Ai ∼` A

′
i for all i. Then

disjoint set betweenness iteratively applied to Ai ∪ Bi ∼ A′i ∪ Bi implies
⋃m

i=1 (Ai ∪Bi) ∼
⋃m

j=1

(
A′j ∪Bj

)
,

i.e. (
⋃m

i=1Ai)∪ (
⋃m

i=1) ∼ (
⋃m

j=1A
′
j)∪ (

⋃m
j=1Bj). Then balancedness implies (

⋃m
i=1Ai)∪B ∼ (

⋃m
j=1A

′
i)∪B.

By definition, this means
⋃m

i=1Ai ∼`

⋃m
j=1A

′
j .

24A set function P is tight if for every set A ∈ Λ, P (A) = sup{P (K) : K ∈ Λ, K compact, K ⊆ A}.
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Step 6: Condition 6. We first prove part (a). Fix A0 ⊆ ΛA such that A0 6= ∅ and let A1 = A \ A0. It
suffices to show that there exists a finite partition {A1, . . . , An} of A such that Ai ⊆ A0 or Ai ⊆ A1 and that
Ai �` A

0, A1. If A1 ∼` A0, we can use divisibility to split both sets and we are done. So, without loss of
generality, suppose A1 �` A

0. By Step 4, for any m, we can find a uniform partition A(m) = {A1, . . . , A2m}
of A1. By additivity of measure, there must exist A1

i ∈ A(m) with λ(Ai) < 2−m. Then there exists a
sequence of uniform partitions A(1),A(2) . . . of A1 such that λ(A(m)

1 ) → 0. Suppose A(m)
1 �` A

0 for all m.
Then, by Condition 4, A(m)

1 ∪ (A1 \A(m)
1 ) �` A

0 ∪ (A \A(m)
1 ). But the left side of the relation is exactly A1

and the right hand side converges in λ to A. Then Lebesgue continuity implies A1 �` A, a contradiction of
Step 2. So, there exists a uniform partition {A1

1, . . . , A
1
m} such that A0 � A1

i for all i. The same argument,
applied to A(m)

1 and A0, provides a uniform partition {A0
1, . . . , A

0
n} of A0 such that A(m)

1 �` A
0
1, a fortiori

that A1 �` A
0
1. Then the union of the two partitions is the required partition of ∆X.

Part (b) similarly follows from Lebesgue continuity and Step 4.
Step 7: Condition 7. This following immediately from Lebesgue continuity.

Later in the proof, we require a weighting on all sets indifferent to A. This step is not immediate because
the family of all sets indifferent to A does not contain a superset to use as X. We now extend PA to the
entire level set.

The first application of Lemma 14 is in proving an intermediate preference result. In words, if A is
preferred to B, we can “calibrate” preference by taking subsets of either the better set A or the worse set B.

Lemma 15. Suppose A % B and A ∩ B = ∅. If A % C % A ∪ B, then there exists B′ ∈ ΛB such that
A ∪B′ ∼ C. If A ∪B % C % B, then there exists A′ ∈ ΛA such that A′ ∪B ∼ C.

Proof. If A ∼ B, the result follows immediately from disjoint set-betweenness using A,B as A′, B′. So take
A � B and assume the first case, A � C � A ∪B. Let PB refer to the measure provided by Lemma 14 and
the corresponding representation u. Take any continuous utility representation f of % over all Z, normalized
so f = u on {A∪ T : T ∈ ΛB}. Then f(A) = 0; f(A∪B) = −1; and −1 ≤ f(C) ≤ 0. Recall that Lemma 14
also states that u(A∪ T ) = −PB(T ) for any T ∈ ΛB . Since PB is convex-valued, there exists some B′ ∈ ΛB

such that PB(B′) = −f(C). Then f(A ∪B′) = u(A ∪B′) = −PB = f(C), which proves the first statement
of the Lemma. The proof of the second statement is symmetric.

Lemma 16. There exists a finitely additive set function that extends PA to the level set of A, which is
unique up to a scale transformation.

Proof. Fix A ∈ Z. If A ∼ ∆X, then the extension is already provided by P∆X . So, we may assume
that A � ∆X. We assume A � ∆X, the case A ≺ ∆X is entirely analogous. Suppose B ∼ A. Case 1:
There exists b ∈ B such that {b} ∼ B. Then, since A � ∆X, by downward Hausdorff continuity we can
assume that there exists a set B′ ⊆ B containing b such that λ(B′) > 0. Moreover, by π-continuity, since
either b ∈ A or b /∈ A, we can assume without loss of generality that B′ ⊆ A or B′ ∩ A = ∅. If it is the
former, set PA(B) = PA(B′)

PB(B′) . If it is the latter, then B′ ∪ A ∼ A by disjoint set betweenness. Then set

PA(B) = PB(B′)
PA∪B′ (B′)PA∪B′ (A) . Case 2: There exists some b /∈ B such that {b} ∼ B. By downward Hausdorff

continuity, we can assume there exists a set B′ disjoint from B and containing b such that B′ ∼ B. Then
find PA(B′ ∪B) by Case 1. Set PA(B) = PB′∪B(B)PA(B′ ∪B). To observe finite additivity, observe that if
B1 and B2 are disjoint and B1 ∼ B2 ∼ A, then B1 ∪ B2 ∼ A by disjoint set betweenness and additivity of
PA then follows from the additivity of PB1∪B2 .
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In Lemma 14, we constructed a measure that represents preference between certain unions of a fixed set
S and the members of ΛA. We now construct a signed measure whose sign indicates preference relative to
a fixed set A.

Lemma 17. If A ∈ Z, then there exists a nonatomic, finitely additive, tight signed measure νA on Z such
that: νA(S) ≥ 0 if and only if S % A.

Proof. For a fixed A, let L̄ = {l ∈ ∆X : l ≺ A} and L = {L ∈ Z : L ⊆ L̄}. Similarly, let Ū = {l ∈ ∆X : l �
A} and U = {U ∈ Z : U ⊆ Ū}. Then L and U are respectively σ–algebras of L̄ and Ū , after appending the
empty set. Either A % ∆X or A - ∆X. We will assume the former; the argument for the second case is
similar.

Fix any U ∈ U . By our intermediate calibration result, Lemma 15, there exists some L ∈ ΛL̄ such that
U ∪ L ∼ A. Set ν(U) = PL̄(L), where PL̄ is produced by Lemma 14. By the construction of PL̄, ν(U) is
robust to our choice of L, hence uniquely defined.

Select U1, U2 ∈ Z with U1 ∩ U2 = ∅. There exists some L12 ∈ ΛL̄ such that L12 ∪ U1 ∪ U2 ∼ A, by
Lemma 15. Without loss of generality, assume U1 % U2. By disjoint set betweenness, L12 ∪ U1 % A. Then
we can apply Lemma 15 again to L12 to find L1 ⊂ L12 with L1 ∪ U2 ∼ A. Set L2 = L12 \ L1. Another
application of disjoint set betweenness forces U2∪L2 ∼ A, since L1∪L2∪U1∪U2 = (L1∪U1)∪(L2∪U2) ∼ A

and L1 ∪ U1 ∼ A. Therefore, ν inherits disjoint additivity from PL̄. We now have a finitely additive signed
measure ν on U .

Now take any L ∈ L. If there exists some U ∈ U such that L ∪ U ∼ A, let ν(L) = −ν(U). On the other
hand, if there is no U ∈ U with L ∪ U ∼ A, we can use Lemma 15 to produce a subset L′ ∈ ΛL such that
there exists U ′ ∈ U with L′ ∪ U ′ ∼ A. Let PL refer to the measure on ΛL produced by Lemma 14. Set
ν(L) = ν(U ′)

PL(L′) . The measure ν inherits disjoint additivity on L from U by its construction. This extends ν
to L.

We move to any arbitrary S ∈ Z. If s ∼ A for all s ∈ S, set ν(S) = 0. Otherwise, we can express this
set as S = L ∪ U for some L ∈ L and U ∈ U . Set ν(A) = ν(L) + ν(U). Additivity is immediately inherited
from L and U . We have now extended ν to all of Z.

Verifying the representation claim, suppose S % A. Then (S ∩ L̄) ∪ (S ∩ Ū) % A. By Lemma 15, we
can find a subset U ′ ∈ ΛS∩Ū with (S ∩ L̄) ∪ U ′ ∼ A. Since U ′ ⊆ S ∩ Ū , ν(U ′) ≤ ν(S ∩ Ū). Recalling the
construction, ν(S) = ν(S∩ L̄)+ν(S∩ Ū) = ν(S∩ Ū)−ν(U ′) ≥ 0. Similar arguments establish that ν(S) > 0
only if S � A.

The measure νA is convex-ranged, hence nonatomic. Tightness is inherited from PA by construction.

Up to this point, we have only considered finitely additive measures, sometimes called charges. We now
show that they are also countably additive, which is intuitively a consequence of Lebesgue continuity.

Lemma 18. The measure νA is countably additive.

Proof. Each νA is finite and ∆X is a Hausdorff space. Since νA is tight by Lebesgue continuity, (Aliprantis
and Border 1999, Theorem 10.4) implies νA is countably additive.

Now consider ca(Z), the set of all countably additive finite (signed) measures on Z, which is a topological
vector space under the topology of weak convergence. The representation features of νA are robust to positive
scalar transformations, i.e. ανA has the same properties whenever α > 0. The measures constructed in
Lemma 17 live in ca(Z). The next result shows that these measures can be spanned by two elements of
ca(Z). This base will become the critical part of the representation.
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Figure 3: Lemma 19
This three-dimensional space is supposed to capture the infinite-dimensional space ca(Z). Drawn with
heavier lines, the plane cutting through the origin is the span of ν and µ. The measures νA, drawn as the
dotted curve, live inside that span. A particular νA is labelled inside the curve.

Lemma 19. The family {νA : A ∈ Z} is spanned by two measures ν, µ, with µ a probability measure.

Proof. Take any A,B,C which are not indifferent to each other. We lose no generality by ordering them
A � B � C. All the measures νA are nonatomic. We can invoke the Lyapunov Convexity Theorem: the
range of the vector-valued measure [νA, νB , νC ],

[νA, νB , νC ](Z) = {(νA(S), νB(S), νC(S)) ∈ R3 : S ∈ Z},

is convex.25 Take any S with νA(S) = 0. By construction, νB(S) > 0 and νC(S) > 0. By using Lemma 15,
we can find S∗ ∈ ΛS with S∗ ∪ L1 ∼ B and S∗ ∪ L2 ∼ C for some L1, L2 disjoint from S∗. Recalling the
representation condition in Lemma 17, νB(S∗) + νB(L1) = νB(S∗ ∪L1) = 0; similarly νC(S∗) + νC(L1) = 0.
Now take any other T with νA(T ) = 0, and assume without loss of generality that T ∩S∗ = 0. Then, suppose
νB(T ) ≥ νB(S∗). Then νC(T ) ≥ νC(S∗), by disjoint set betweenness and the representation condition
applied again. The same arguments hold for the strict inequality as well. Therefore νB and νC induce the
same ordering on {S : S ∼ A}. Applying Lemma 16 and the uniqueness claim of Theorem 12, this ordering
completely determines νB and νC on this restricted domain up to a scale transformation, i.e. νB(S) = cνC(S)
for a positive constant c, across any S with νA(S) = 0. Then {x ∈ R3 : x1 = 0}∩ [νA, νB , νC ](Z) is contained
in the ray {(0, ct, t) : t ≥ 0}.

Since νA has strictly positive components (namely the strict upper contour set of A), the set

{x ∈ [νA, νB , νC ](Z) : x1 > 0}

is nonempty. Therefore, we can select vectors x0 ∈ [νA, νB , νC ](Z) such that x0
1 = 0 and x1 ∈ [νA, νB , νC ](Z)

such that x1
1 > 0. We show that the two vectors x0, x1 together span [νA, νB , νC ](Z). Let x∗ ∈ [νA, νB , νC ](Z).

We proceed by cases.

25We thank Yossi Feinberg for suggesting the Lyapunov Convexity Theorem, which simplified an earlier proof.
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Case 1: Suppose x∗1 = 0. Since {x ∈ R3 : x1 = 0} ∩ [νA, νB , νC ](Z) is a ray, x∗ = cx0.
Case 2: Suppose x∗1 < 0. Since x1

1 > 0 is nonempty, we can find a convex combination x′ = αx∗+(1−α)x1

with x′1 = 0. The vector x′ is in the range of the vector-valued measure [νA, νB , νC ], because it is a convex
combination of two elements. But, applying Case 1 to x′, we conclude x′ is spanned by x0. x∗ is spanned
by x′ and x1, while x′ is a multiple of x0. So x∗ is spanned by x0 and x1.

Case 3: Suppose x∗1 > 0. Apply Case 2 to −x∗1.
Hence, there exist constants α, β such that νA = ανB + βνC . This suffices to show the entire space

{νA : A ∈ Z} can be spanned by any two of its measures, since the selection of A,B,C in the proof was
arbitrary.

We finally show this span contains a strictly positive measure. Rescale each νA so ||νA|| = 1. The space
of probability measures ∆(Z) is a closed subset of ca(Z), while νA approaches ∆(Z) as A approaches the
%–minimal element a∗ in the order topology of %, which is coarser than the Euclidean topology by continuity.
Since any subspace of ca(Z) is closed, the span contains a probability measure, which we can use as µ.

Lemma 20. The set {ανA : A ∈ Z, α > 0} is a convex positive cone.

Proof. Take νA, νB . If A ∼ B, then νA = ανB for some constant α > 0 and any convex combination of
νA and νB is immediately in {ανA : A ∈ Z, α > 0}. So assume that A � B. Then νA and νB are linearly
independent and can serve as a basis for span(ν, µ). Let να = αν(A) + (1− α)νB .

There exists some C such that να(C) = 0. Since νA ≥ 0, νB(C) > 0 whenever C % A and νB(C) ≤
0, νA(C) < 0 whenever C - B, it must be the case that A � C � B. Then νB , νC are linearly independent
and can serve as a basis for span(ν, µ). Pick γ < νC(A)

νB(A) . Notice γ > 0 since νC(A), νB(A) > 0. Since νB , νC

are linearly independent, γνC , νB are also linearly independent and can serve as a basis for span(ν, µ). Let
(q, r) denote the coordinates for νA with respect to this basis.

Since νA(A) = 0 we have q(νB(A)) + r(γνC(A)) = νA(A) = 0. By our selection of γ, we have q < 0 < r.
Let c = 1/rγ > 0 and d = −q/rγ > 0. Then νC = cνA + dνB . Let β = c/(c+ d) > 0. Simple algebra verifies
that να = βνC .

Lemma 21. There exists some ν∗ in span(ν, µ) such that ν∗(A)
µ(A) is a utility representation.

Proof. For any γ ∈ span(µ, ν), let α(γ), β(γ) solve α(γ)ν + β(γ)µ = γ. Take any B % C. If B ∼ C,
then νB = νC . If B � C, there exists some D with B � D � C, implying νB(D) > 0 and νC(D) < 0.
Since νB(A) > 0 and νC(A) > 0, there exists no α > 0 such that νB = −ανC . In either case, it is
impossible for νB = −ανC for any α > 0. As B,C are arbitrary and {γνS : S ∈ Z, γ > 0} is a convex
positive cone by Lemma 20, there exists some half space H in ca(Z) such that {νS : S ∈ Z} ⊆ H.
Let H∗ = H ∩ span(µ, ν). This H∗ is a two-dimensional half space of span(µ, ν), so H∗ is defined by
{γ ∈ span(µ, ν) : aα(γ) + bβ(γ) + c = 0} for some constants a, b, c.

Furthermore, for any S ∈ Z, there exists T � S, for which νS(T ) > 0 and µ(T ) ≥ 0. Therefore, there
exists no α > 0 or νS such that νS = −αµ. Therefore, we may proceed without loss of generality by assuming
aα(µ)+ bβ(µ)+ c = 0. Pick ν∗ ∈ span(µ, ν) such that aα(ν∗)+ bβ(ν∗) > 0. Obviously, µ and ν∗ are linearly
independent. Therefore, we can find α∗(A), β∗(A) such that α∗(A)ν∗ + β∗(A)µ = νA. By the selection of
ν∗, we must have α∗(νA) > 0 to satisfy the inequality α(νA) + β(νB) + c ≥ 0.

Let α(A) = α∗(νA) and β(A) = −β∗(νA). By construction,

α(A)ν∗(A)− β(A)µ(A) = 0 = νA(A).
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Figure 4: Constructions in the proof of Lemma 21
This two-dimensional figure shows the span of ν and µ, laying the plane in Figure 3 flat against the page.
The line ∂H is the border that defines the half space H in which all of the νA’s live; ν is normal to that
border. The coefficients α(A) and β(A) on ν and µ are shown for a particular set A; the coefficients are
defined by νA = α(A)µ− β(A)ν.

Then
β(A)
α(A)

=
ν∗(A)
µ(A)

,

so it suffices to show that the left hand side is a representation for %. Take A % B. By construction,

νB(A) ≥ 0 = νA(A).

Also, our selection of α(A) and β(A) implies

ν(A)− β(A)
α(A)

µ(A) =
1

α(A)
[α(A)ν∗(A)− β(A)µ(A)]

=
νB(A)
α(A)

≥ 0,

the last inequality following from α(A) > 0. Similarly,

ν∗(A)− β(B)
α(B)

µ(A) ≤ 0.

Together these two inequalities imply
β(A)
α(A)

≥ β(B)
α(B)

.

The argument when A � B is identical, replacing weak inequalities with strict inequalities.

Proof of Theorem. Invoking the Radon–Nikodym Theorem, we can rewrite ν∗(A) of Lemma 21 as
∫

A
u dµ,

where u is the Radon–Nikodym derivative of ν with respect to µ. The absolute continuity condition on
these measures holds because µ(A) > 0 for any A ∈ Z by disjoint set betweenness. The continuity of u is
guaranteed by the downward Hausdorff continuity axiom and Lemma 7. the full support of µ follows from
the strict part of disjoint set betweenness. This proves the sufficiency of the axioms for the representation
on the regular sets. The representation for singletons follows immediately from Lemma 7.
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A.2 Proof of Theorem 6

We begin by introducing some useful notation. Let A + y = {a + y : a ∈ A} for any signed measure y on
∆X. Then A+ y is a translation of A within ∆X if y(∆X) = 0 and each a+ y ∈ A+ y is positive, because
any mass taken away from sets by y will be assigned to other sets, preserving total mass at unity. We first
prove that, in our model, singleton-set independence implies a form of translation invariance.

Axiom 8 (Translation independence). For any regular A ⊆ ∆X, a ∈⊆ ∆X, and signed measure y on ∆X
such that {a+ y}, A+ y ∈ K∗, A ∼ {a} if and only if {a+ y} ∼ A+ y.

Lemma 22. If % is singleton-set independent, then % is translation independent.

Proof. Take a ∼ A and y with a+ y,A+ y ∈ K∗(∆X). Simple algebra verifies

(1− α)A+ α(a+ y) = α[(1− α)a+ α(a+ y)] + (1− α)[A+ αy].

Then reflexivity implies

(1− α)A+ α(a+ y) ∼ α[(1− α)a+ α(a+ y)] + (1− α)[A+ αy].

By singleton-set independence,

(1− α)A+ α(a+ y) ∼ (1− α)a+ α(a+ y).

These two indifference relations and another application of singleton-set independence force

(1− α)a+ α(a+ y) ∼ A+ αy.

Then, taking α→ 1 and invoking Lebesgue continuity obtains a+ y ∼ A+ y. The other direction is similar,
expressing A = (A+ y) + (−y).

Fix the representation (φ, u, µ) delivered by the linearity axiom. The space of probability measures spans
the space of all signed measures. So there is a unique extension of φ ◦ u to the space of all signed measures
since φ is linear. We work with this extension and denote U(y) = φ(u(y)). Furthermore, f refers to the
Radon–Nikodym derivative dµ

dλ where λ is the (|X| − 1)-dimensional Lebesgue probability measure on ∆X.
We first show this derivative exists.

Lemma 23. The Radon–Nikodym derivative f = dµ
dλ exists.

Proof. Lemma 10 of Appendix A.1 shows that the extended preference is continuous with respect to the π
metric generated by λ on the measure σ-algebra B(∆X)/N . Then µ must be absolutely continuous with
respect to λ. If not, there exists a set A with λ(A) > 0 and a disjoint set B � A such that A ∪B ≺ B. But
λ([A ∪B]∆B) = 0, and this contradicts continuity of the extended preference.

Lemma 24.
U(αA+ (1− α)x) = αU(A) + (1− α)U({x})

and
U(A+ y) = U(A) + U(y).
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Proof. The ambiguity-free equivalent of a set A is identified as any point x with U({x}) = U(A). Since
φ is strictly increasing and linear, it has an inverse, so we can equivalently write u(x) = φ−1(U({x})).
Singleton-set independence implies

φ−1[U(αA+ (1− α)x)] = αφ−1[U(A)] + (1− α)φ−1[U({x})].

Applying φ to both sides of the equation yields

U(αA+ (1− α)x) = φ
(
αφ−1[U(A)] + (1− α)φ−1[U({x})]

)
= αU(A) + (1− α)U({x}),

where the last step follows from linearity, which allows us to distribute φ across the mixture. By Lemma 22,

φ−1U(A+ y) = φ−1U(A) + φ−1U(y).

Similarly, this implies U(A+ y) = U(A) + U(y).

Lemma 25.
µ(A)

µ(A+ y)
=

µ(B)
µ(B + y)

.

Proof. Take any ambiguous sets A and B with A � B and any signed measure y with U(y) 6= 0. We can
assume they are disjoint without loss of generality, by splitting their union into A \ B, B \ A, and A ∩ B.
Then

U(A ∪B) =
µ(A)

µ(A ∪B)
U(A) +

µ(B)
µ(A ∪B)

U(B).

By the second half of Lemma 24:

U(A ∪B) + U(y) = U([A ∪B] + y)

= U([A+ y] ∪ [B + y])

=
µ(A+ y)

µ([A ∪B] + y)
U(A+ y) +

µ(B + y)
µ([A ∪B] + y)

U(B + y)

=
[

µ(A+ y)
µ([A ∪B] + y)

U(A) +
µ(B + y)

µ([A ∪B] + y)
U(B)

]
+ U(y).

Then
U(A ∪B) =

µ(A+ y)
µ([A ∪B] + y)

U(A) +
µ(B + y)

µ([A ∪B] + y)
U(B).

These two equations imply that the weighting on U(A) in both convex combinations must be equal:

µ(A)
µ(A ∪B)

=
µ(A+ y)

µ([A ∪B] + y)
.

Rearranging terms,
µ(A)

µ(A+ y)
=

µ(A ∪B)
µ([A ∪B] + y)

.

Symmetrically,
µ(B)

µ(B + y)
=

µ(A ∪B)
µ([A ∪B] + y)

.
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Therefore,
µ(A)

µ(A+ y)
=

µ(B)
µ(B + y)

.

Lemma 26.
µ(A)

µ(αA+ (1− α)x)
=

µ(B)
µ(αB + (1− α)x)

.

Proof. Again take A,B disjoint. The first half of Lemma 24 implies:

αU(A ∪B) + (1− α)U(x)

= U(α[A ∪B] + (1− α)x)

= U([αA+ (1− α)x] ∪ [αB + (1− α)x])

=
µ(αA+ (1− α)x)

µ(α[A ∪B] + (1− α)x)
U(αA+ (1− α)x) +

µ(αB + (1− α)x)
µ(α[A ∪B] + (1− α)x)

U(αB + (1− α)x)

= α

[
µ(αA+ (1− α)x)

µ(α[A ∪B] + (1− α)x)
U(A) +

µ(αB + (1− α)x)
µ(α[A ∪B] + (1− α)x)

U(B)
]

+ (1− α)U(x).

Then an argument similar to the end of the proof of Lemma 25 delivers the result.

Lemma 27. If f is continuous at any point a, it is continuous everywhere.

Proof. Suppose f is continuous at a. Pick a sequence An → {a}. By Lemma 7 in Appendix A.1, µ(An)
λ(An) →

f(a). Any b ∈ ∆X can be expressed as the translation x + yb for some signed measure yb and some
x ∈ int(∆X). Letting Bn = An + yb, we show µ(Bn)

λ(Bn) converges for any b. The numerator is a fixed multiple

of µ(An) because the ratio µ(Bn)
µ(An) = µ(An+yb)

µ(An) is constant by Lemma 25; denote this constant by β. The
denominator λ(Bn) = λ(An + y) = λ(An), by the translation invariance of Lebesgue measure on ∆X. So
µ(Bn)
λ(Bn) → β

(
lim µ(An)

λ(An)

)
. Then, we can consider the function f(b) = lim µ(Bn)

λ(Bn) and this limit is robust for any
sequence Bn → {b}. Now take a sequence of measurable partitions Πn of ∆X such that for any b ∈ ∆X,
there exists some Bn ∈ Πn with Bn → {b}; for example, the partitions defined by finer grids in the Euclidean
metric. Consider the simple functions defined by fn(x) = µ(Bn)

λ(Bn) for all x ∈ Bn ∈ Πn. The definition of the
Lebesgue integral implies f ′ = lim fn is a version of the Radon–Nikodym derivative. f ′ is continuous by
construction in view of Lemma 7. So, if f is continuous at a we may take without loss of generality that f is
continuous everywhere, as there is a version f ′ = f almost everywhere with f ′ continuous everywhere.

Lemma 28. f is continuous.

Proof. We begin by demonstrating Lemma 25 implies that almost surely either f(a) ≥ f(a + y) or f(a) ≥
f(a− y) for all directions y. Suppose not. Then there is a set A and a direction y with f(a+ y) > f(a) for
a ∈ A µ–almost surely and a set B with f(b+ y) < f(b) for b ∈ B µ–almost surely with µ(A), µ(B) > 0. By
translation invariance of Lebesgue measure, µ(A+ y) =

∫
A+y

f(x) dλ =
∫

A
f(x+ y) dλ >

∫
A
f(x) dλ = µ(A).

Similarly, µ(B + y) < µ(B). Then
µ(A)

µ(A+ y)
< 1 <

µ(B)
µ(B + y)

,

which contradicts Lemma 25.
This shows that, almost surely, f is monotone in all directions y of arbitrary length. Then, f is differen-

tiable almost everywhere, hence continuous almost everywhere. Since this implies there exists at least one
point where f is continuous, Lemma 27 implies f is continuous everywhere.
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Proof of Theorem. Necessity is omitted and all functional equations are almost sure. Since f is continuous
by Lemma 28, we can invoke Lemma 7 from Appendix A.1. It implies f(a) = lim µ(An)

λ(An) . Taking the limit of
a sequence An → {a} and using Lemma 26:

f(a)
f(αa+ (1− α)x)

=
f(b)

f(αb+ (1− α)x)
.

Lemma 25 similarly implies
f(a)

f(a+ y)
=

f(b)
f(b+ y)

.

Translating both a and a+ y by y yields

f(a)
f(a+ y)

=
f(a+ y)
f(a+ 2y)

.

Taking the convex combinations of 1
2a+ 1

2 (a+ 2y) = a+ y and 1
2 (a+ y) + 1

2 (a+ 2y) = a+ 3
2y yields

f(a)
f(a+ y)

=
f(a+ y)
f(a+ 3

2y)
.

Translating a+ y and a+ 3
2y by 1

2y yields

f(a+ y)
f(a+ 3

2y)
=
f(a+ 3

2y)
f(a+ 2y)

.

Combining these equalities:

f(a)
f(a+ y)

=
f(a+ y)
f(a+ 2y)

=
f(a+ y)
f(a+ 3

2y)
·
f(a+ 3

2y)
f(a+ 2y)

=
[
f(a+ y)
f(a+ 3

2y)

]2

=
[

f(a)
f(a+ y)

]2

This forces f(a) = f(a + y). Since this is for arbitrary a, y and any point b can be expressed as a + y for
some y, we conclude f(a) = f(b) for all a, b. Then the Radon–Nikodym derivative dµ

dλ = f is constant, so µ
differs from λ only by a constant scaling. As µ and λ are both probability measures, this suffices to show
µ = λ.
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