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Abstract

Nearly all observational learning models assume that individuals
can observe all the decisions that have previously been made. In reality,
such perfect information is rarely available. To explore the difference
between observational learning under perfect and imperfect informa-
tion, this paper takes an experimental look at a situation in which
individuals learn by observing the behavior of their immediate prede-
cessors. Our experimental design uses the procedures of Çelen and
Kariv (2004a) and is based on the theory of Çelen and Kariv (2004b).
We find that imitation is much less frequent when subjects have imper-
fect information, even less frequent than the theory predicts. Further,
while we find strong evidence that under perfect information a form of
generalized Bayesian behavior adequately explains behavior in the lab-
oratory, under imperfect information behavior is not consistent even
with this generalization of Bayesian behavior.(JEL C92, D8).
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1 Introduction

Consider a sequence of individuals who make a once-in-a-lifetime decision
under incomplete and asymmetric information. If each decision is announced
publicly, and thus is known to all successors, despite the asymmetry of infor-
mation, eventually individuals will imitate their predecessor’s behavior even
if it conflicts with their private information. In other words, individuals
‘ignore’ their own information and follow a herd. Furthermore, since ac-
tions aggregate information poorly, the prediction of the theory, which was
matched in many experiments, is that herds are likely to form and adopt a
suboptimal action. These are the main results of the observational learning
literature introduced by Banerjee (1992) and Bikhchandani, Hirshleifer, and
Welch (1992).1

A central assumption of nearly all observational learning models is perfect
information: everyone is assumed to be informed about the entire history of
actions that have already been taken. In reality, individuals have imperfect
information. If each individual observes the actions of only a small number
of other individuals, it is not clear that herd behavior will arise. In Çelen and
Kariv (2004b), we abandon the perfect-information assumption and explore
behavior when each individual observes only her immediate predecessor’s
decision.

Our imperfect-information model provides outcomes that are quite dis-
tinct from and in some ways more extreme than the perfect-information
model. We predict longer and longer periods of uniform behavior, punc-
tuated by (increasingly rare) switches. Thus, the perfect- and imperfect-
information versions of the model share the conclusion that individuals can,
for a long time, make the same choice. The important difference is that,
whereas in the perfect-information model a herd is an absorbing state, in
the imperfect-information model, there are continued, occasional and sharp
shifts in behavior.

It is the goal of this paper to explore behavior under imperfect informa-
tion experimentally and to provide a comparison with the results obtained
under perfect information by Çelen and Kariv (2004a). To this end, we use
an experimental design, that allows an environment richer and more flexible

1See Chamley (2003). For excellent surveys see, Gale (1996) and Bikhchandani, Hir-
shleifer and Welch (1998), which also provide examples and applications of observational
learning in economic contexts. There are further extensions to the theory, notably, Lee
(1993), Chamley and Gale (1994), Gul and Lundholm (1995), and Smith and Sørensen
(2000).
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than the one in the existing literature.2

In the experiment, a sequence of subjects draw private signals from a uni-
form distribution over [−10, 10]. The decision problem is to predict whether
the sum of all subjects’ signals is positive or negative and to choose an ap-
propriate action, A or B. A is the profitable action when this sum is positive
and B if it is not. However, instead of choosing action A or B directly, after
being informed about the decision of the preceding subject and before ob-
serving their own private signals, subjects are asked to select a cutoff such
that action A will be chosen if the signal received is greater than the cut-
off and action B will be selected otherwise. Only after a subject reports
her cutoff, is she informed of her private signal, and her action is recorded
accordingly.

Aside from the information structure, this experimental design is iden-
tical to the one employed in Çelen and Kariv (2004a). That is, both ex-
periments employ the same procedures but the histories of actions observed
by subjects are different, in fact, at the opposite extreme. For comparison
purposes, our new results will be presented along with the results of Çelen
and Kariv (2004a). Thus, this paper offers two contributions to methodol-
ogy: First, it shows how to deal with the case in which each subject can
observe only her immediate predecessor’s decision, an information structure
hitherto unexplored in experimental studies. Second, it uses a cutoff elicita-
tion technique such that, instead of making a decision per se, subjects state
a cutoff that then determines their action.

We find that imitation is much less frequent when subjects have imper-
fect information, even less frequent than the theory predicts. For a better
understanding of the decision mechanism of the subjects, we focus on the
data at the individual level. We find that among the subjects who fol-
low their predecessor there is a good degree of conformity with the theory,
which we fail to observe in the aggregate data. Under imperfect information
decision-making is of course much more complex, and thus, mistakes are
more likely to occur.

For that reason we turn to the robustness of the existing theory by
tackling its central assumption of common knowledge of rationality. We
introduce a model that explains subjects’ behavior as a form of general-
ized Bayesian behavior that incorporates limits on the rationality of others.
While we find strong evidence that this form of generalized Bayesian behav-

2Anderson and Holt (1997) investigate the model of Bikhchandani, Hirshleifer and
Welch (1992) experimentally. Following their pioneering work, Allsopp and Hey (2000),
Anderson (2001), Hung and Plott (2001), and Kübler and Weizsäcker (2004), among
others, analyze observational learning under perfect information.
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ior adequately explains behavior in the laboratory under perfect informa-
tion, under imperfect information behavior is not consistent even with this
generalization.

The paper is organized as follows. The next section describes the experi-
mental design and procedures, and section 3 outlines the underlying theory.
Section 4 summarizes the results and provides an econometric analysis. Sec-
tion 5 discusses the results. Section 6 contains some concluding remarks.

2 Experimental Design

The procedures described below are identical to those used by Çelen and
Kariv (2004a) with the exception that the history of actions observed by
subjects is different. The experiment was run at the Experimental Eco-
nomics Laboratory of the Center for Experimental Social Sciences (C.E.S.S.)
at New York University. The 40 subjects in this experiment were recruited
from undergraduate economics classes at New York University and had no
previous experience in observational learning experiments. In each session
eight subjects participated as decision-makers. After subjects read the in-
structions (the instructions are available upon request) they were also read
aloud by an experimental administrator. The experiment lasted for about
one and a half hours. A $5 participation fee and subsequent earnings for
correct decisions, which averaged about $19, were paid in private at the end
of the session. Throughout the experiment we ensured anonymity and effec-
tive isolation of subjects in order to minimize any interpersonal influences
that could stimulate uniformity of behavior.

Each experimental session entailed 15 independent rounds, each divided
into eight decision-turns. In each round, all eight subjects took decisions
sequentially in a random order. A round started by having the computer
draw eight numbers from a uniform distribution over [−10, 10]. The numbers
drawn in each round were independent of each other and of the numbers
in any of the other rounds. Each subject was informed only of the number
corresponding to her turn to move. The value of this number was her private
signal. In practice, subjects observed their signals up to two decimal points.

Upon being called to participate, a subject first observed the action taken
by the preceding subject in that round. After this and before being informed
of her private signal, each subject was asked to select a number between −10
and 10 (a cutoff), for which she would take action A if her signal was above
the cutoff and action B if it was not. Action A was profitable if and only
if the sum of the eight numbers was positive and action B was profitable
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otherwise. Only after submitting her cutoff, the computer informed her of
the value of her private signal. Then, the computer recorded her decision
as A if the signal was higher than the cutoff she selected. Otherwise, the
computer recorded her action as B.

After all subjects had made their decisions, the computer informed every-
one what the sum of the eight numbers actually was. All participants whose
decisions determined A as their action earned $2 if this sum was positive
(or zero) and nothing otherwise. Similarly, all whose decisions led to action
B earned $2 if this sum was negative and nothing otherwise. This process
was repeated in all rounds. Each session was terminated after all 15 rounds
were completed.

3 Some Theory

3.1 The Bayesian solution

In this section we discuss at some length the theoretical predictions of the
model tested in the laboratory. Çelen and Kariv (2004b) provides an exten-
sive analysis of a more general version of the model.

To formulate the Bayesian solution of the decision problem underly-
ing our experimental design, suppose that the eight individuals receive pri-
vate signals θ1, θ2, .., θ8 that are independently and uniformly distributed
on [−1, 1].3 Sequentially, each individual n ∈ {1, ..., 8} has to make a bi-
nary irreversible decision xn ∈ {A,B} where action A is profitable if and
only if

P8
i=1 θi ≥ 0, and action B otherwise. Furthermore, except the first

individual, everyone observes only her immediate predecessor’s decision.
In such a situation, conditional on the information available to her, in-

dividual n’s optimal decision rule is

xn = A if and only if E
hX8

i=1
θi | θn, xn−1

i
≥ 0

and since individuals do not know any of their successors’ actions,

xn = A if and only if θn ≥ −E
hXn−1

i=1
θi | xn−1

i
.

It readily follows that the optimal decision takes the form of the following
cutoff strategy,

xn =

½
A if θn ≥ θ̂n,

B if θn < θ̂n,
(1)

3For expository ease, we normalize the signal space to [−1, 1].
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where
θ̂n = −E

hXn−1

i=1
θi | xn−1

i
(2)

is the optimal cutoff which accumulates all the information revealed to indi-
vidual n from her predecessor’s action. Since θ̂n is sufficient to characterize
individual n’s behavior, the sequence of cutoffs {θ̂n} characterizes the social
behavior. We take these as the primitives of the experimental design and of
our analysis.

We proceed by illustrating the basic features of the decision problem.
The first individual’s decision is based solely on her private signal. Therefore,
her optimal cutoff is θ̂1 = 0 meaning that it is optimal for her to take action
A if and only if θ1 ≥ 0 and action B otherwise. Since the second individual
observes the first’s action, she conditions her decision on whether x1 = A or
x1 = B. If, for example, x1 = A, then E [θ1 |x1 = A ] = 1/2 and thus it is
optimal for the second individual to take action A if and only if θ2 ≥ −1/2.
Likewise, if x1 = B it is optimal for her to take action A if and only if
θ2 ≥ 1/2. Thus, according to (2) the second individual’s cutoff rule is

θ̂2 =

½
−12 if x1 = A,
1
2 if x1 = B.

(3)

Note that for any θ2 ∈ [−1/2, 1/2) the second individual imitates the first
even though she would have taken a contrary action had she based her
decision solely on her own signal.

By the time it is the third individual’s turn to make a decision, the
information inherent in the first individual’s action is suppressed, but she
can still draw a probabilistic conclusion about it by Bayes’ rule. That is, by
observing the action of the second individual the third assigns probability
to the actions that the first individual could have taken. For example, by
observing x2 = A, she assigns probability 3/4 that x1 = A and probability
1/4 that x1 = B. A simple computation shows that E [θ1 + θ2 |x2 = A ] =
5/8 which implies that if x2 = A it is optimal for the third individual to
take action A for any signal θ3 ≥ −5/8. A similar analysis shows that if
x2 = B it is optimal for her to take action A for any signal θ3 ≥ 5/8. Thus,
according to (2) the third individual’s cutoff rule is

θ̂3 =

½
−58 if x2 = A,
5
8 if x2 = B.

(4)

Note that the action of the second individual reflects part of the infor-
mation of the first individual, so relative to the first individual’s action more
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information is revealed by the second’s action. For that reason, the third
individual is ex ante more likely to act like her predecessor than the sec-
ond individual. For example, if the first individual takes action A, then by
(3) the second individual imitates her for any private signal θ2 ∈ [−1/2, 1].
Whereas, if the second individual takes action A, according to (4), the third
individual imitates the second for any private signal θ3 ∈ [−5/8, 1].

Proceeding with the example by adding individuals who receive private
signals and learn only from preceding individual’s action, the cutoff rule, θ̂n,
of any individual n can take the two different values conditional on whether
individual n− 1 took action A or action B which we denote by

θn = −E
hXn−1

i=1
θi | xn−1 = A

i
,

θn = −E
hXn−1

i=1
θi | xn−1 = B

i
.

Note that if individual n observes xn−1 = A, she can determine the probabil-
ities that xn−2 = A or xn−2 = B conditional on this information. If xn−2 = 1
then the actual cutoff of individual n− 1 is θn−1, which already inherits all
the information accumulated in the history. Moreover, the expected value
of her signal θn−1 is computable conditional on θn−1 and xn−1 = A. Using
these observations, In Çelen and Kariv (2004b) we show that the law of
motion for θn is given by

θn = P (xn−2 = A|xn−1 = A)
©
θn−1 − E [θn−1 | xn−2 = B]

ª
+ P (xn−2 = B|xn−1 = B)

©
θn−1 − E [θn−1 | xn−2 = B]

ª
,

which simplifies to

θn =
1− θn−1

2

∙
θn−1 −

1 + θn−1
2

¸
+
1− θn−1

2

∙
θn−1 −

1 + θn−1
2

¸
. (5)

An analogous argument also applies for the law of motion for θn. Using
symmetry, θn = −θn, the dynamics of the cutoff rule θ̂n is described in a
closed form solution recursively as follows:

θ̂n =

⎧⎨⎩ −1+θ̂
2
n−1
2 if xn−1 = A,

1+θ̂
2
n−1
2 if xn−1 = B,

(6)

where θ̂1 = 0.
The impossibility of an informational cascade follows immediately from

(6) since for every n, −1 < θ̂n < 1. That is, in making a decision, every-
one takes her private signal into account in a non-trivial way. However, as
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Figure 1 illustrates, according to (6) the cutoff rule partitions the signal
space into three subsets: [−1, θn), [θn, θn) and [θn, 1]. For high-value sig-
nals θn ∈ [θn, 1] and low-value signals θn ∈ [−1, θn) individual n follows
her private signal and takes action A or B respectively. In the intermediate
subset [θn, θn), which we call an imitation set, private signals are ‘ignored’
in making a decision and individuals imitate their immediate predecessor’s
action. Furthermore, since {θn} and {θn} converge respectively to −1 and
1, imitation sets monotonically increase in n regardless of the actual history
of actions, and thus, over time, it is more likely that imitation will arise.

[Figure 1 here]

In fact, in Çelen and Kariv (2004b) we show that when the population
is arbitrary large the imitation sets converge to the entire signal space in
the limit. However, note that this does not imply convergence of the cutoff
process (6). A careful analysis shows that it is not stable either at −1 or at 1.
This implies that there will always be an individual who will choose an action
different from her predecessor’s because of a contrary signal. Therefore,
herd behavior is impossible. However, although there is no convergence of
actions in the standard herding manner, the behavior exhibits longer and
longer periods in which individuals act alike, punctuated by increasingly
rare switches.

3.2 A note on perfect and imperfect information

Next, we shall investigate the differences between the decision problem under
perfect and imperfect information. Under perfect information, the optimal
decision also takes the form of the cutoff strategy given in (1) where the
cutoff rule is a function of the entire realized history of actions:

θ̂n = −E
hXn−1

i=1
θi | (xi)n−1i=1

i
. (7)

Since under perfect information any history is shared as public information,
individual n’s cutoff θ̂n can be inferred perfectly by her successors. In other
words, everyone can deduce what each of her predecessors has learned. As
a result, under perfect information the cutoff rule exhibits the following
recursive structure,

θ̂n = θ̂n−1 − E[θn−1 | θ̂n−1, xn−1],
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which results in the following cutoff process, described recursively.

θ̂n =

(
−1+θ̂n−1

2 if xn−1 = A,
1+θ̂n−1

2 if xn−1 = B,
(8)

where θ̂1 = 0.
As in the imperfect information case, the impossibility of an informa-

tional cascade follows immediately, since for any individual n −1 < θ̂n < 1.
However, the cutoff process has the martingale property E[θ̂n+1 | θ̂n] = θ̂n,
so by the Martingale Convergence Theorem it is stochastically stable in the
neighborhood of the fixed points, −1 and 1. Further, since convergence of
the cutoff process implies convergence of actions, behavior settles down in
finite time. Hence, under perfect information, a cascade cannot arise but
herd behavior must.4

Let us fix ideas in terms of the preceding illustration. Under perfect
information, since the first individual’s action is public information known
to both successors, the third individual knows the observation on which the
second based her decision. Thus, according to (8), a simple computation
yields that the third’s cutoff rule is given by

θ̂3 =

⎧⎪⎪⎨⎪⎪⎩
−34 if x1 = A, x2 = A,
−14 if x1 = B, x2 = A,
1
4 if x1 = A, x2 = B,
3
4 if x1 = B, x2 = B.

If we add individuals and proceed with the same analysis, we find that
if the first three individuals choose A, the fourth individual’s cutoff is θ̂4 =
−7/8; if the first four individuals choose A, the fifth individual’s cutoff is
θ̂5 = −15/16; and so on. Hence, any successive individual who also chooses
action A reveals less of her private information and makes it more difficult
for her predecessor not to choose action A.

On the other hand, if the fourth individual chooses action B after the
first three individuals choose A, her decision reveals that her signal lies in the
interval [−1,−7/8) and the fifth individual’s cutoff is θ̂5 = 1/16. Hence, the
longer a cluster of individuals acts alike, the larger the asymmetry between
the information revealed by imitation and deviation. Notice that a deviator

4An informational cascade is said to occur when an infinite sequence of individuals
ignore their private information when making a decision, whereas herd behavior occurs
when an infinite sequence of individuals make an identical decision, not necessarily ignoring
their private information.
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induces her successor to be slightly in favor of joining the deviation, which
is referred in the literature as the overturning principle.

Under imperfect information, in contrast, the overturning principal has
a more extreme nature. To illustrate, suppose that the first three indi-
viduals take action A. Thus, according to (6) the fourth individual’s cut-
off is θ̂4 = −0.695. Now, if the fourth individual has a contrary signal,
θ4 ∈ (−0.695,−1], she deviates by choosing action B. Moreover, since the
deviation is not observed by the fifth individual, she sharply overturns be-
havior by setting her cutoff near 1, specifically at θ̂5 = 0.743. Hence, devi-
ation of the fourth individual makes it hard for the fifth individual not to
follow the deviation.

In conclusion, according to the overturning principle, under both perfect
and imperfect information a deviator becomes a leader to her successors.
Nevertheless, there is substantial difference. Under perfect information the
deviator can be identified since previous actions are publicly known. As
a result, her deviation reveals clear cut information regarding her private
signal that meagerly dominates the accumulated public information. Thus,
her successor will slightly favor joining the deviation. On the other hand,
under imperfect information, one cannot tell whether her predecessor is an
imitator or a deviator. Thus, the action of the deviator is her successor’s
only statistic from which to infer the entire history of actions. Consequently,
one who follows a deviator is very enthusiastic to join the deviation.

4 Experimental Results

4.1 Descriptive statistics

4.1.1 Group behavior

We identify a subject who engages in cascade behavior as one who reports
a cutoff of −10 or 10, and thus takes either action A or B, no matter what
private signal she receives. In contrast, a subject who joins a herd but
does not engage in cascade behavior is one whose cutoff is in the interval
(−10, 10), indicating that there are some signals that can lead her to choose
action A and some that lead to B but when her private signal is realized
she acts as her predecessors did. Finally, we say that a cascade occurs
in the laboratory when beginning with some subject, all others thereafter
follow cascade behavior, and herd behavior occurs when, beginning with
some subject, all take the same action.

Through all of the experimental sessions, we observed herds of at least
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five subjects in 8 of the 75 rounds (10.7 percent). As Table 1 shows, of
these 8 rounds, in 2 rounds all eight subjects acted alike, in 1 round the
last six subjects and in 5 rounds the last five subjects acted alike. All
herds, except one, were consistent with the optimal cutoff rules given by
(2). Moreover, even though subjects had imperfect information about the
history of decisions, all herds selected the correct action (defined relative
to the information available to the group). The theoretical prediction, in
contrast, is that even under imperfect information herds should arise in more
than half of the rounds (63.4 percent), yet 19.8 percent of these herds should
entail incorrect decisions.5 Finally, since herds developed rarely, it is clear
that overturns in behavior occurred often. Excluding the first decision turn,
such overturns happened in 234 of the 525 decisions points (39.0 percent),
whereas the theory predicts behavior overturns at only 19.0 percent of the
decision points.

[Table 1 here]

Table 1 illustrates the instances where a herd is not the result of an in-
formational cascade. For example, in rounds 1.7 (the seventh round in the
first session) and 4.11, an informational cascade did not occur, yet all sub-
jects followed a herd. Although theory predicts that cascades do not occur,
we observe them in the laboratory. Informational cascades were observed
in 18 rounds (24.0 percent) of which in two rounds the last two subjects
followed cascade behavior, and in 16 rounds only the last subject followed
cascade behavior. Table 2 summarizes the data and the Bayesian outcome
for selected rounds in which cascades occur. In addition, a cascade behavior,
which was not part of an informational cascade, was observed in 85 decision
turns. In total, cascade behavior was observed in 105 out of 600 turns (17.5
percent). However, 65 of these 105 (61.9 percent) entail to a small number
of subjects who consistently followed cascade behavior in most rounds in
which they participated.6

5We compute the probability with the help of simulations since, conditional on the state
of the world 8

n=1 θn, private signals are perfectly negatively correlated, which makes the
problem very hard to solve analytically.
The simulations were carried out by MatLab. An experiment starts by drawing a vector

of ten i.i.d. signals from uniform distribution over [−10, 10]. Then, we collect the actions
generated by this vector according to cutoff processes. Experiments are repeated until the
marginal change in the average number of correct actions for additional 107 experiments
is less than 10−5.

6Of all 40 subjects, two followed a cascade behavior in all rounds, one in 11 rounds,
one in nine rounds, one in eight rounds and one in seven rounds.
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[Table 2 here]

Table 3 summarizes our experimental results and compares them with
the results we reported in Çelen and Kariv (2004a). Under perfect informa-
tion, herds were observed in 27 of the 75 rounds (36.0 percent), and in half
of the herds all subjects acted alike. Moreover, all herds except one turned
out to be on the correct decision. Perhaps the most unexpected result under
perfect information, at least from a theoretical perspective, is that informa-
tional cascades were observed in 26 rounds (34.7 percent). Accordingly, we
conclude that although from a theoretical point of view cascade behavior is
a mistake, it is a behavioral phenomenon. Under imperfect information, in
contrast, both herds and cascades are much less frequent. Finally, over all
subjects, earnings for correct decisions averaged $18.8 under imperfect infor-
mation and $22.0 under perfect information, a difference of 17.0 percent. A
binary Wilcoxon test indicates that there is a significant difference between
the sample of subject payoffs under perfect and imperfect information at the
5 percent significance level.

[Table 3 here]

The decrease in the payoffs under imperfect information, relative to those
under perfect information, is mainly attributable to the decreasing number
of herds. Note that the number of herds observed under imperfect informa-
tion is 71.4 percent less than the number of herds observed under imperfect
information. Remarkably, under both perfect and imperfect information all
herds except one turned out to be on the correct decision. This is particu-
larly interesting since the prediction of the theory, which was replicated in
many experiments, is that uniform behavior is likely to be erroneous. In
Çelen and Kariv (2004a), we argue that possible reasons for the difference
is the richness of the continuous signal space, and that subjects can fine-
tune their decisions by choosing a cutoff strategy instead of taking an action
directly. Simulations, however, suggest that theoretically the probabilities
of ending up in a correct (incorrect) herd are 62.9 percent (20.0 percent)
and 50.8 percent (12.5 percent) under perfect and imperfect information
respectively.

4.1.2 Individual behavior

To organize our cutoff data and to put them into perspective, we first define
decisions made by subjects as concurring decisions if the sign of their cutoff
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agrees with the action taken by their predecessor. For instance, when a sub-
ject observes that her predecessor took action A (B) and adopts a negative
(positive) cutoff, she demonstrates concurrence, since by selecting a nega-
tive (positive) cutoff she adopts a higher probability of taking action A (B).
Similarly, if a subject observes action A (B) and selects a positive (negative)
cutoff, then she disagrees with her predecessor. We say that such decisions
are contrary decisions. Finally, neutral decisions are carried out by choos-
ing a zero cutoff, which neither agrees nor disagrees with the predecessor’s
action but simply entails choice based on private information.

Over all decision turns, excluding the first, 44.2, 39.2 and 16.6 percents
of the decisions were concurring, contrary and neutral in that order. Thus,
subjects tended to follow the actions of their predecessor far less than the
theory predicts. In addition to presenting the data on the number of decision
points that were concurring, neutral or contrary, we look at the distribution
of subjects in terms of the frequency with which they either agreed or dis-
agreed with their predecessor’s action. Figure 2 summarizes the percent of
subjects who disagreed with the observed action in less than two rounds,
three to five rounds and so on. Notice that subjects tended to disagree
very often. In fact, only 20.0 percent of the subjects disagreed less than
two times and 40.0 percent of the subjects disagreed with the action they
observed about half of the times. This is a strong indication that subjects
acted in a manner that is not consistent with the prediction of the theory.

[Figure 2 here]

The signs of the cutoffs as indicating agreement or disagreement tells only
part of the story as it ignores the strength of this agreement or disagreement,
which can be measured by the magnitude of the cutoff set. For example,
if one observes action A and sets a cutoff close to −10, then not only she
agrees with the action she observed, but she does so very strongly since she
will almost surely take action A. In contrast, selection of a negative cutoff
that is closer to zero clearly indicates a much weaker agreement.

Since the cutoff strategy is symmetric around zero, we proceed by trans-
forming the data generated by our subjects in the following way: Take the
absolute value of cutoffs in concurring decision points and minus the ab-
solute value of cutoffs at contrary decision points. For instance, if a subject
observes action A and selects a cutoff of −5, we take it as 5, since she acts
in a concurring manner. On the other hand, if she places a cutoff of 5 we
take it as −5, since she acts in a contrary manner.

Figure 3 presents the theoretical cutoffs and the mean cutoff of con-
curring decisions turn by turn. Note that there is a substantial degree of
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conformity with the theory in the magnitude of the cutoffs chosen by sub-
jects when they agreed with the action observed. In other words, once a
subject has decided to imitate her predecessor’s action, she does so with the
right intensity in the Bayesian sense as the cutoffs chosen are quite close to
those the theory predicts. However, Figure 3 shows clearly that the situ-
ation reverses, particularly in late decision-turns, when we include neutral
decisions in our sample.

[Figure 3 here]

So far, we focused on concurring decisions. There is, however, the com-
plement subset of contrary decisions. Notice that once a subject decides not
to follow her predecessor’s action, the intensity of her disagreement can be
measured in several ways. Figure 4 presents the intensity of disagreement
in two ways. First, we use the absolute value of the distance between the
cutoff actually chosen and the one which would be selected if the subject
acted according to the theoretical cutoff rule, and, second, by the absolute
value of the distance of the chosen cutoff from zero. Note that the strength
of disagreement is rather severe since when subjects disagree with their pre-
decessor they tend to do so in quite an extreme way.

[Figure 4 here]

All of the results presented above condition our data on whether decisions
are concurring or contrary. Figure 5 shows that if we do not condition
the data on agreement and disagreement, it appears that overall there is a
significant difference from what the theory predicts. In fact, the heuristic in
which subjects follow their own signal outperforms Bayesian behavior as a
predictor to the behavior in the laboratory. However, the difference from the
prediction of the theory is in fact a compositional difference representing the
distribution of decisions over our concurring and contrary categories and not
differences in how persuasive predecessors’ actions are once they are followed.

[Figure 5 here]

The regression analysis presented in Table 4 summarizes our discussion
so far. We regress the transformed cutoff set by subjects on the decision
turn as well as dummy variables which take a value of one in the first and
last five rounds in a session.7 Note that cutoffs are not expected to increase

7There is no control for subjects’ private signals because each subject was asked to
select a cutoff after observing the action taken by the preceding subject but before being
informed of her private signal.
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with later turns as every coefficient is not significantly different from zero.
Thus, the regression clearly indicates that, subjects, when they repeat the
rounds, are not increasingly persuaded by the observed action.

[Table 4 here]

Comparing the individual behavior with that reported in Çelen and
Kariv (2004a) indicates that perfect information appears to be rational-
ity enhancing. To demonstrate this, under each information structure, for
each subject, we compute the mean squared deviation (MSD) between the
cutoff a subject reports and that prescribed by the theory. The smaller the
mean MSD for subjects in any information structure the closer is their be-
havior to that predicted by the theory. The histograms in Figure 6 show
that subject behavior is more consistent with the theory under perfect in-
formation as the distribution of MSD scores shifts considerably to the left
when calculated using the perfect information data. A Kolmogorov-Smirnov
test confirms this observation at the 5 percent significance level.

[Figure 6 here]

4.1.3 An econometric analysis

In Çelen and Kariv (2004a), in order to explain the behavior in the lab-
oratory, we test a model that describes subjects’ behavior as a form of
generalized Bayesian behavior that incorporates limits on the rationality of
others. We find strong evidence that this type of Bayes rationality explains
the behavior in the laboratory. For comparison purposes, we repeat the
same exercise here.

We assume that subjects estimate the errors of others and consider this
in processing the information revealed by their predecessors’ actions. We
attempt to formulate this by estimating a recursive model that allows for
the possibility of errors in earlier decisions. This approach enables us to
evaluate the degree to which Bayes rationality explains behavior in the lab-
oratory. Anderson and Holt (1997) also employ this approach, but while
they use subjects’ expected payoffs, our cutoff elicitation allows us to esti-
mate recursively the process of cutoff determination adjusted for decision
errors and independent shocks.

For this purpose, suppose that at each decision turn n, with probability
pn an individual is Bayesian and rationally computes her cutoff, and with
probability (1 − pn), she is noisy, in the sense that her cutoff is a random
draw from a distribution function Gn with support [−1, 1] (for expository
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ease, we again normalize the signal space) and mean θ̃n. Suppose that others
cannot observe whether an individual’s behavior is noisy, but the sequences
{pn} and {Gn} are common knowledge among individuals. In addition,
we assume that rational individuals could tremble, in the sense that their
cutoff embodying uncorrelated small computation or reporting mistakes. To
be precise, a rational individual in turn n reports cutoff θ̂n+φn where φn is
distributed normally with mean 0 and variance σ2n. Note that the mistakes
of the rational individuals are a tremble from the rational cutoff, i.e., has
mean θ̂n, whereas noisy individuals make decisions randomly.

After adding noisy individuals to the model, the law of motion for θn
becomes

θ̄n = −{pn−1E[
Pn−1

i=1 θi | xn−1 = A] + (1− pn−1)E[θn−1 | Gn−1, xn−1 = A]},
(9)

where

E[θn−1 | Gn−1, xn−1 = A] =

Z 1

−1

1 + x

2
dGn−1(x) =

1 + θ̃n−1
2

,

and by using (5)

θn = pn−1{
1− θn−1

2
[θn−1 −

1 + θn−1
2

]

+
1− θn−1

2
[θn−1 −

1 + θn−1
2

]}

− (1− pn−1)
1 + θ̃n
2

.

An analogous analysis applies for the law of motion for θn.
8

Under these assumptions, at any decision turn n and round i, the ex-
pected cutoff is

yin = (1− pn)θ̃n + pnθ̂
i
n + pnφ

i
n,

and in matrix form

yn = (1− pn)θ̃n1+ pnθ̂n + pnφn, (10)

where yn, 1, θ̂n and φn are vectors whose components are y
i
n, 1, θ̂

i
n and φin

respectively. This leads the following econometric specification:

yn = αn1+ βnzn + εn, (11)
8Note that we do not assume that Gn satisfies symmetry, i.e., Gn(θ) = 1−Gn(−θ) for

any n and θ ∈ [−1, 1], so after adding noise generically θ̄n 6= −θn.
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where
αn = (1− pn)θ̃n−1, βn = pn and εn = pnφn.

For any round i, z1 = 0 and for any turn n > 1, the ith component of the
vector zn is

zin =

½
zn if xin−1 = A,
zn if xin−1 = B,

(12)

where

zin = β̂n−1{
1− zin−1

2
[zin−1 −

1 + zin−1
2

]

+
1− zin−1

2
[zin−1 −

1 + zin−1
2

]}

− 1− β̂n−1 + α̂n−1
2

.

A similar analysis also applies for zn.
9

Notice that the parameters are estimated recursively. That is, the es-
timated parameters for the first decision-turn, α̂1 and β̂1, are employed in
estimating the parameters for the second turn, α2 and β2, and so on. So,
at each turn n, the estimates for the previous turn α̂n−1 and β̂n−1 are used
to calculate an estimate of the optimal cutoff for each decision θ̄in or θ

i
n, de-

noted respectively by z̄in and z
i
n, which, in turn, constitutes the independent

variable in the estimation (11) for that turn.
Coefficient β is the probability that a subject participating in decision-

turn n is rational, which can be interpreted as a parameterization of the
average weights given to the information revealed by the history of actions.
On the other hand, coefficient α can be interpreted as a parameterization of
the information processing bias such as a blind tendency toward a particular
action. For example, since θ̃n = αn/(1 − βn), when βn < 1, any αn < 0
(αn > 0) indicates that subjects participating in turn n are biased toward
action A (B).

When the information processing biases diminish, i.e., αn → 0, and
βn → 1 (and σ2n → 0), the behavior tends to become Bayesian. That

9A similar econometric specification (11) is employed in Çelen and Kariv (2004a) under
perfect information, but for any turn n > 1 the error-adjustment updating rule (12)
exhibits the following recursive structure

zin = zin−1 −
1+(α̂n−1+β̂n−1z

i
n−1)

2 if xin−1 = A,
−1+(α̂n−1+β̂n−1zin−1)

2 if xin−1 = B.
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is, when αn = 0 and βn = 1 for all n, according to (11), the labora-
tory decision-making conforms perfectly with the optimal history-contingent
cutoff process given by (6). Similarly, the behavior tends to be random as
αn → 0 and βn → 0. Notice that when αn = βn = 0 (and σ

2
n → 0), equation

(11) requires expected cutoff to be zero, which is simply a choice based on
private information. In general, any βn < 1 indicates that the population
of subjects in turn n underweights the information revealed by the history
of others’ actions relative to their private information. This is a plausible
response to the belief that others can make errors in their decisions. To
illustrate, Figure 7 shows sample plots of z̄n with αn = 0 and βn = β for all
n and differing values of β ∈ [0, 1].

[Figure 7 here]

Table 5 summarizes the econometric results10 and compares them with
the results of Çelen and Kariv (2004a). Note that under imperfect informa-
tion both the α̂n and β̂n coefficients are not significantly different from zero
in all turns. Thus, we conclude that under imperfect information overall
follow-own-signal heuristic outperforms Bayes’ rule as a predictor. Under
perfect information, in contrast, although in Bayesian terms, subjects as-
sign too much weight to their own information and too little weight to the
public information, they gradually increase their confidence in the informa-
tion revealed by the history of actions taken before them, as β̂n exhibits an
upward trend showing that over time subjects tend to adhere more closely
to Bayesian updating.

[Table 5 here]

In sum, over time, while under perfect information, the information re-
vealed by the history of actions is relied upon more and subjects become
increasingly likely to imitate their predecessors, under imperfect informa-
tion subjects do not tend to rely more on the information revealed by the
predecessor’s action.

5 Discussion

The decision problems under perfect and imperfect information differ rad-
ically. The dissimilarities have two related sources. First, under perfect

10GLS random-effects (mixed) estimators and robust variance estimators for indepen-
dent data and clustered data yield similar results.
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information any history of actions is shared as public information by all suc-
cessors and, thus, everyone can infer perfectly what each of her predecessors
has observed. Under imperfect information, in contrast, all learn only from
their immediate predecessor’s action. As a result, no subset of the history
of actions is shared as public information, and thus everyone draws different
inferences about what predecessors have observed.

Second, while under perfect information the valuable information re-
vealed by the frequency of past actions is available, under imperfect infor-
mation no one can tell if her predecessor is a deviator or an imitator. Thus,
Bayesian inference induces a probability measure over all possible histories
conditional on the immediate predecessor’s action, such that the information
embedded in the history is suppressed in a way that gives a significant weight
to the event in which all predecessors acted as the immediate predecessor
did. Put differently, because Bayesian individuals attempt to capture the
content of all predecessors’ signals by using their immediate predecessor’s
action, they become increasingly likely to imitate.

The pattern of our experimental results suggests two important conclu-
sions. The first deals with the group behavior. Under imperfect information,
herd behavior develops much less frequently than under perfect information,
and even less frequently than the theory predicts. The second inference,
which narrows the possible explanations for the first observation, is related
to the individual behavior. The difference in group behavior is in fact a
compositional difference in the individual behavior, representing the distri-
bution of decisions over our concurring and contrary categories and is not
attributable to differences in the persuasiveness of predecessors’ actions once
there is the desire to confirm.

Our results under imperfect information suggest that the individual be-
havior is less consistent even with the generalized Bayesian behavior. In view
of these findings, one may ask how can we reconcile this with the conclusions
reached in Çelen and Kariv (2004a) under perfect information. Obviously,
in our informationally constrained environment, it is understandable that
subjects are less likely to be able to act rationally. To organize our experi-
mental data theoretically and to put the observed behavior into perspective,
we use a modification of the Bayesian model, which provides a framework
that enables us to understand the differences in individual behavior under
perfect and imperfect information.

In our NYU C.E.S.S. working paper with the same title, we pursue a
modification of the original model that abandons the assumption of common
knowledge of rationality. We assume that a fraction of individuals are noisy,
and that whether an individual’s behavior is noisy is unobservable by others
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and that the noise is distributed independently across individuals. To be
precise, we assume two forms of noise, which are at the opposite extreme,
either noisy individuals take actions randomly by setting their cutoffs at
either −1 or 1 with equal chance, or noisy individuals ignore history and
make decisions solely on the basis of private information, by simply setting
cutoffs at zero. As such, the actions of noisy individuals of the first type
do not reveal any information to successors, whereas, put side by side with
a rational individual, a noisy individual of the second type reveals more of
her private information.

We show that a characteristic of the imperfect information model with
these two extreme forms of noise is instability that is more episodic, because
a single action is necessarily less informative. Put differently, since much less
information is accumulated, rational individuals are not as likely to imitate
their predecessors as in the noise-free model. Consequently, we observe fewer
periods of uniform behavior and switches that are more frequent than the
theory predicts. In contrast, with both forms of noise, we show that under
perfect information individuals gradually increase their confidence in the
information revealed by the actions of others.

To conclude, clearly, some complex multilateral mixture of bounded ra-
tionality and limits to the rationality of others can best characterize the
nature of behavior. However, taken as a whole, generalized Bayesian be-
havior that is properly modified to take these traits into account permits
successful prediction of the subjects’ behavior under perfect information.
Under imperfect information, in contrast, behavior is not consistent even
with this generalization of Bayesian behavior.

6 Concluding Remarks

This paper tests an imperfect-information observational learning model that
theoretically yields behavior quite distinct from and in some ways more ex-
treme than that in the perfect-information model. Furthermore, using a
setup with continuous signal and discrete action, along with a cutoff elici-
tation technique, enables us to examine how well Bayes rationality approx-
imates the actual behavior observed in the laboratory.

Our results can be summarized briefly as follows. First, herd behavior is
much less frequent under imperfect information than under perfect informa-
tion, and even less frequent than the theory predicts. Second, the difference
from the prediction of the theory is in fact a compositional difference repre-
senting the distribution of decisions over concurring and contrary categories
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and is not attributable to differences in how persuasive predecessors’ actions
are, once they are followed. In fact, in the subset of concurring decisions,
there is a substantial degree of conformity with the theory.

The experiment tests the robustness of results derived in the perfect-
information version of the observational learning experiments, and generate
sharp and suggestive predictions. It is natural to ask about the robustness of
the results when the number of most recent actions that a subject observes
exceeds one. Our analysis does not properly address this issue since for any
observation of histories larger than one the structure of the decision rule is
extremely involved. Clearly, further inferences based on the frequency of
past actions can be obtained and individuals are then able to identify de-
viators and imitators. Whether an increase in the number of predecessors
observed would lead to sharply different results is not clear as different in-
formation structures may lead to different outcomes. This remains a subject
for further research.
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Session. Action Sum of
round* Length 1 2 3 4 5 6 7 8 signals

1.7 B B B B B B B B B -46.6
8 5 -4 10 0 0 2 0 -2

2.7 A A B A A A A A A 23.2
6 -10 2 -5 2.4 -10 -10 0 -4

3.10 A B B B A A A A A 12.6
5 0 4 8 -10 -10 0 -8 0

3.12 A B A B A A A A A 39.5
5 10 -10 6.9 -8 0 0 -4 0

4.5 B A B A B B B B B -5.5
5 0 2.5 5.6 7 -1 10 10 9

4.10 B A B A B B B B B -16.7
5 -10 0 -8 1.7 0 0 10 10

4.11 A A A A A A A A A 28.3
8 -7.5 1 3 -10 -3 0 3.3 -5.2

5.8 A A B B A A A A A 35.3
5 0 7 5 5 1.4 2 -6.7 -1.2

* - (Session.Round). For example, 1.11 is the eleventh round in the first session.

Table 1: Data for rounds in which herd behavior arises

Action and cutoff by turn



Session/ Sum of
round 1 2 3 4 5 6 7 8 signals

A A A A B A B A
2.3 0 -6 -2 -4 -1 6 10 -5.5 35.1

1.19 4.88 9.16 7.9 -9.83 7.97 7.46 6.34
B B B B B A A A

2.4 0 -1 10 4 0 -5 -8 -10 -19.7
-0.13 -7.21 5.12 1.33 -4.45 -4.25 -0.42 -9.66

A A A B B B A A
2.10 1 -5 -5 0 10 4 -3 -10 13.7

7.09 -2.41 -4.58 -3.14 4.68 1.74 2.56 7.77
B B B B B B A B

2.11 0 -6 1 -5 10 10 -5 0.6 -6.9
-8.03 -8.49 -2.02 -6.23 4.84 8.78 3.77 0.45

A A A A A A B B
2.12 0 -6 -5 -10 0 -4 5 8 31.2

9.42 4.63 -3.43 6.06 8.15 0.58 3.72 2.1
B B A A A A B B

2.13 -1 3 -5 -4 5 -10 2 10 25.7
-3.06 -4.18 7.32 8.38 8.3 0.14 -0.72 9.51

B B A A A B B A
2.14 0 -5 -5 -6 -4 6 10 4 -7.0

-3.4 -9.13 -1.9 -2.05 2.44 -5.55 5.53 7.06

Key:  - Cascade behavior.

Private Signal

Table 2: Data for selected rounds from session 2
Action
Cutoff



Imperfect Perfect
Information Information

Earnings $18.8 $22.0
Herds* 8 28
% of Herds** 10.7 37.3
Incorrect Herds 0 1
Cascades 18 26
% of Cascades** 24.0 34.7
Overturns 234 173
% of Overturns*** 44.6 32.9

* Herds of at least five subjects.
** Out of all 75 rounds. 

*** Out of all 525 decision points excluding the first decision turn.

Table 3: Summary of experimental results



Coef. Std. Err. t
Turn 0.19 0.126 1.522
FR -0.48 0.617 -0.775
LR -0.19 0.617 -0.312
Cons. 0.18 0.765 0.239

Table 4: Regression results

1. A regression of the transformed cutoffs on the decision turn at
which this cutoff was set as well as dummies which take a value
of one in the first (FR) and last (LR) five rounds in a session (# of
obs.=525).
2. GLS random-effects (mixed) estimators and robust variance
estimators for independent data and clustered data (data not
independent within subjects but independent across subjects) yield
similar results.



Turn 2 3 4 5 6 7 8
# of obs. 75 75 75 75 75 75 75

-0.09 -0.10 -0.12 -0.57 -0.42 0.36 -0.56
Imperfect (0.06) (0.66) (0.72) (0.65) (0.67) (0.67) (0.73)

information -0.06 0.21 0.22 0.15 0.21 0.25 0.29
(0.12) (0.13) (0.14) (0.13) (0.13) (0.13) (0.15)

0.96 0.02 0.16 -0.02 0.39 -0.05 0.27
Perfect (0.46) (0.56) (0.56) (0.48) (0.59) (0.63) (0.67)

information 0.22 0.48 0.49 0.59 0.60 0.59 0.62
(0.09) (0.07) (0.07) (0.06) (0.07) (0.08) (0.08)

(Std. Err)

Table 5: The econometric results by turn

β̂

β̂

1). The econometric results under imperfect and perfect (Çelen and Kariv (2001b))
information. 
2). Under imperfect information, both coefficients are not significantly different from
zero in all decision turns, where under perfect information Betas exhibit an upward
trend indicating, that over time subjects tend to adhere more closely to Bayesian
updating. 
3). GLS random-effects (mixed) estimators and robust variance estimators for
independent data and clustered data yield similar results. 



Figure 1: The process of cutoffs and imitation sets
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Figure 2: The distribution of concurring subjects

The percent of subjects who disagreed with the observed action in less than two rounds, three to five rounds and
so on. 



Figure 3: Mean cutoffs by decision turn in concurring and weakly concurring decisions
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Figure 4: Strength of disagreement
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Figure 5: Unconditional mean cutoffs by decision turn
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Figure 6: The distribution of subjects' MSD scores
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The histograms show that subject behavior is more consistent with the theory under perfect information as the
distribution of MSD scores shifts to the left when calculated using the perfect information data. 



Figure 7: Sample plots of the error-adjustment updating rule 
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