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This paper develops a dynamic model of seigniorage in which economies’ equilibrium
paths reflect the ongoing strategic interaction between an optimizing government and a
rational public. The model extends existing positive models of monetary policy and
inflation by explicitly incorporating the intertemporal linkages among budget deficits,
debt, and inflation. A central finding is that the public’s rational responses to government
policies may well create incentives for the government to reduce inflation and the public
debt over time. A sufficiently myopic government may, however, provoke a rising
equilibrium path of inflation and public debt.
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1. INTRODUCTION

This paper develops a dynamic model of seigniorage whose equilibrium paths
are generated by the ongoing strategic interaction of an optimizing government
with a rational public. The model extends existing positive models of inflation by
explicitly incorporating the intertemporal linkages among budget deficits, debt,
and inflation. A central finding is that the public’s rational responses to policies
may lead the government to reduce inflation and the public debt over time, even
in the absence of self-supporting reputational expectation mechanisms.

Recent research aiming to explain observed inflation patterns has proceeded
along two main lines. The first focuses on the temptation to effect resource transfers
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from the private sector to the government through surprise inflation. The second
stresses a dynamic aspect of the public-finance problem: the optimal distribution
over time of inflation distortions. A brief review of the predictions and limitations
of these two approaches—which may be called thediscretionary-policyapproach
and theinflation-smoothingapproach—puts the goals of the present exploration
into perspective.

Calvo (1978), Barro (1983), and others have observed that the temptation to
tax cash balances through surprise inflation may lead to higher inflation and lower
seigniorage revenue than would result if the government were deprived of its
discretionary powers and bound instead to a prior choice of the price level’s path.
The incentive to violate such prior commitments in later periods is an example of
the general problem of time inconsistency: Optimal government plans that affect
current household choices may no longer seem optimal after households have
made those choices.1

Whereas the discretionary-policy approach suggests that inflation will be higher
than is socially optimal, the inflation-smoothing approach suggests that inflation,
whatever its level today, will be persistent. The inflation-smoothing approach builds
on Ramsey’s principle of optimal taxation, which directs governments to adopt
contingency plans for tax rates that equate the expected marginal losses from tax
distortions in all future periods [Barro (1979)]. Mankiw (1987) and Grilli (1988,
1989) argue that because inflation is a distorting tax that inflicts economic costs on
society, optimizing governments will base inflation plans on the Ramsey principle.
These authors make the empirical prediction that the stochastic process for inflation
will be a martingale, with expected future inflation equal to current inflation. A
corollary of their results is that total government spending commitments—debt
plus the present value of nondiscretionary outlays—also will follow a martingale.2

Examples of high and seemingly chronic inflation certainly abound, but there
are many notable episodes as well of successful inflation reduction, often coupled
with government fiscal consolidation. Fischer (1986, p. 14) observes that

it is clear that inflationary bias is only a sometime thing. At the ends of the Napoleonic
and Civil Wars, and World War I, Britain and the United States deflated to get back to
fixed gold parities. These episodes too deserve attention in the dynamic inconsistency
literature.

Needless to say, there are numerous much more recent examples.3

Available models of both discretionary policy and inflation smoothing suffer
from theoretical limitations that leave them unable to throw light on such im-
portant episodes of government behavior. Most discretionary-policy models are
intertemporal only in a superficial sense, because they lack any intrinsic sources of
dynamic evolution. In particular, the models make no allowance for the dynamics
of public debt or for the role that government budgets might play in the infla-
tionary expectations of the public. Inflation-smoothing models, in contrast, place
the determination of the public debt at center stage, but it is well known that the
optimal plans that produce Ramsey tax rules are dynamically inconsistent except



        

590 MAURICE OBSTFELD

in very special cases. The behavior predicted by these models generally will not be
observed when the government can set policy anew each period at its discretion.4

The model developed in this paper synthesizes elements of the discretionary-
policy and inflation-smoothing approaches in a genuine dynamic setting that as-
sumes rational private-sector expectations. Consonant with the first approach, the
model predicts thatat each point in timeat which inflation is positive, it will be
higher than it would be if the government could commit itself in advance to future
tax policies.5 But, consonant with the second approach, the theory also predicts
that for plausible parameters, government tax-smoothing behavior can generate
an inflation rate with a tendency to fallover timetoward the socially preferred
long-run rate (zero in my model).6 The basic reason is that government budgetary
conditions affect inflationary expectations, thus giving the authorities additional
incentives to retire debt and thereby reduce future seigniorage needs. Equilibria
with persistently high inflation cannot, however, be ruled out in general.

In technical terms, the investigation is an application of dynamic game theory to
interactions between public and private sectors. The endogenous variable respon-
sible for economic dynamics is the stock of government spending commitments,
including the public debt. In the equilibria that I construct, the government’s mon-
etary policy actions are always optimal, given household behavior and the econ-
omy’s aggregate physical state; at the same time, private forecasts are always ra-
tional, given the government’s strategy. Players’ strategies are restricted, however,
to bememoryless. Although this restriction rules out many potential equilibria, it
serves to highlight recursive, Markov perfect equilibria that can be characterized in
terms of a minimal set of currently relevant economic state variables. Even under
a Markov restriction, equilibrium may not be unique. One somewhat novel aspect
of the equilibria that I define is that government strategies prescribe choices of the
money supply rather than of inflation itself, contrary to most of the literature.

Section 2 of the paper sets up a model monetary economy and describes the
objectives of households and the government. Section 3 develops the definition of
equilibrium. In Section 4, I characterize equilibrium in a perfect-foresight setting
and describe the dynamics of government spending commitments. Section 5 uses
a linear approximation to calculate equilibria explicitly under stochastic as well as
deterministic assumptions. Section 6 contains concluding observations.

2. SETTING UP THE MODEL

The analytical setting for the model is from Brock (1974). This section and the next
two simplify by assuming a deterministic environment, but a stochastic extension
is studied in Section 5.

An overview of the sequence of events within each discrete time period is as
follows. Households and the government enter a periodt holding net asset stocks
datedt − 1, along with the interest that those assets pay out at the start of the
new period. Goods and asset markets then meet simultaneously. The government
finances its consumption purchases and net debt retirement by printing money; at
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the same time, households consume and decide what level of monetary balances
(datedt) to carry over to the start of periodt + 1. The equilibrium interaction
of government and private decisions in period-t markets determines the overall
money price level for datet and thet-dated stocks of government and household
assets that are carried over to the start of periodt + 1.

2.1. Households

The economy is populated by a large fixed number of identical households that take
the economy’s aggregates and prices as given. A household’s satisfaction depends
only on its own consumption of a single composite good and on transaction services
from holding real monetary balances. (Public consumption does not directly affect
household utility.)

The notation uses lowercase letters for household choice variables and upper-
case letters for the corresponding economywideper-householdtotals, which are
averages of individual household choices. Thus, for example,m is a particular
household’s choice of real monetary balances, andM is total real monetary bal-
ances per household. When there is no risk of confusion, I refer to economywide
quantities per household simply asaggregatequantities.

At the start of periodt , households maximize

Ut =
∞∑
τ=t

(1+ ρ)−(τ−t)[cτ + ϑ(mτ )], (1)

whereρ ∈ (0, 1). The period utility function for money,ϑ(m), is twice continu-
ously differentiable, increasing, and strictly concave on [0,∞).

LetPt denote the economy’s money price level during periodt . (Throughout the
paper, boldface letters denote variables with values proportional to the monetary
unit.) The inflation rate from periodt to t + 1, πt+1, is the tax rate on currency,
given by

πt+1 = (Pt+1− Pt )/Pt+1.

Its maximum value,π = 1, is the confiscatory rate.
Linearity of utility in consumption fixes the equilibrium real interest rate atρ.

By assumption, all nonmoney assets offer the rate of returnρ ex post, that is,
are indexed to the price level. The household thus maximizesUt in equation (1)
subject to a given level of real wealth at the end of periodt − 1, wt−1, given
its real monetary balances,mt−1, and an intertemporal budget constraint. The
intertemporal constraint comes from integrating a sequence of period-by-period
finance constraints of the form

wt = (1+ ρ)wt−1− ct − (ρ + πt )mt−1

and imposing the solvency condition limt→∞(1+ ρ)−twt ≥ 0.7
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It is well known [see Brock (1974)] that for a given expected inflation rate, the
optimal household choice of period-t real balances,mt , satisfies

ϑ ′(mt ) = ρ + πt+1

1+ ρ . (2)

Thus,mt is a decreasing function of expected inflation betweent and t + 1.8

Because utility is linear in consumption, moreover, the optimalmt in (2) depends
onlyonπt+1 (givenρ), a fact that I use below to simplify the description of Markov
perfect equilibria.

2.2. Government

The government’s goal is to finance at minimum welfare cost an exogenous path of
aggregate public consumption purchases per household,Gt . A finance constraint
links the change in government debt to the difference between government con-
sumption and net revenue. To simplify, I assume that money creation is the only
form of taxation available to the government.

The government’s social welfare criterion is

Vt =
∞∑
τ=t

(1+ r )−(τ−t)[Cτ + z(Mτ )], (3)

wherez(M) is a nondecreasing, concave, twice continuously differentiable func-
tion of the representative household’s real balances. The government discount rate
r may equal the market rateρ, but it could exceedρ if, for example, the current
government’s rule is subject to termination on a random date. The literature on
tax smoothing generally assumesr = ρ to obtain its martingale prediction for tax
rates (including inflation). I assumer ≥ ρ.

The functionz(M) in (3) describes the government’s welfare valuation of the
services that households derive from real money holdings; but it does not coincide
with the household utility functionϑ(m). Most important, I assume thatz′(M) = 0
for M exceeding the level of real balances that households demand when the
expected inflation rateis zero. As becomes clear in Section 4, this assumption,
together with the inflation-cost function that I posit in equation (8), serves to pin
downπ = 0 unambiguously as the government’s long-run target inflation rate.9

Let Dt denote the aggregate per-household stock of real government nonmoney
debt at the end of periodt . All debts (assets when negative) are consumption-
indexed bonds paying the real interest rate,ρ. The government’s period finance
constraint is

Dt = (1+ ρ)Dt−1+ Gt − [πt Mt−1+ (Mt − Mt−1)]. (4)

The term in square brackets above is governmentseignioragerevenue in periodt ,
the sum of (i) the inflation tax on real monetary balances carried over from period
t − 1 and (ii) households’ desired increase in real balances in periodt .10
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The government’s intertemporal budget constraint comes from integrating (4),
assuming no Ponzi finance, limt→∞(1+ ρ)−t Dt ≤ 0:

∞∑
τ=t

(1+ ρ)−(τ−t)Gτ + (1+ ρ)Dt−1

≤
∞∑
τ=t

(1+ ρ)−(τ−t)[πτ Mτ−1+ (Mτ − Mτ−1)]

= −(1+ ρ)Mt−1+
∞∑
τ=t

(1+ ρ)−(τ−t)(ρ + πτ )Mτ−1. (5)

Comparison of (5) with the household’s period finance constraint,wt = (1 +
ρ)wt−1 − ct − (ρ + πt )mt−1, shows that private expenditures on money services
lessinitial real balance holdings,Mt−1 (a government liability and a corresponding
household asset), equals the resources that government obtains from seigniorage.11

Constraint (5) highlights a fact central to solving the model: The government’s fis-
cal position at the start of a periodt depends entirely on the two liability stocks,
Dt−1 and Mt−1, carried over from the previous period, and on the present dis-
counted value of committed government purchases for periodt and after.

Define real governmentcommitmentsat the end of periodt − 1, Kt−1, by

Kt−1 ≡ 1

(1+ ρ)
∞∑
τ=t

(1+ ρ)−(τ−t)Gτ + Dt−1. (6)

When written in terms of this new variable, constraint (5) becomes

(1+ ρ)(Kt−1+ Mt−1) ≤
∞∑
τ=t

(1+ ρ)−(τ−t)(ρ + πτ )Mτ−1. (7)

2.3. Technology and the Output Cost of Inflation

The economy is endowed with an exogenously fixed “potential” aggregate output
level,Y, but output is perishable and cannot be transformed into capital for future
use. Consumption need not equal potential output, however, because the amount
of output available for consumption falls as the economy’s inflation rate diverges
from zero. Specifically, private consumption will be

Ct = Y − Gt − κ(πt ) (8)

in equilibrium, whereκ(0) = 0,κ ′(0) = 0,κ ′′(π) > 0 for allπ , andκ ′(π) has the
same sign asπ .

The inflation-cost functionκ(π) in (8) is meant to capture costs distinct from the
inflation-tax distortion of money demand, for example, the reduction in allocative
efficiency often said to accompany a rise in inflation.12 In the stochastic version of
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the model,κ(π) comprises costs of unanticipated as well as anticipated inflation.
The “shoe-leather” welfare costs associated with inefficiently low money demand,
in contrast, are entirely due to anticipated inflation.

The assumption thatκ(π) has its minimum atπ = 0 is somewhat arbitrary, but
it is congruent with the earlier assumption that the government’s period objective
for private real balances,z(M), reaches a maximum whereπ = 0. Together, these
two assumptions makeπ = 0 the government’s target inflation rate.

3. EQUILIBRIUM WITHOUT COMMITMENT: DEFINITION

The government is assumed to be unable to precommit its future monetary policy
actions. (It is committed only to paying its nonmonetary debts and to following
the given expenditure path{Gt }.) The government instead sets the nominal money
supply Mt in every periodt so as to maximize the objective function in (3).
Households observe the government’s choice ofMt and then choose the levels
of real balances they will carry into periodt + 1.

Equilibrium paths for the economy are defined by government and household
policy functions such that:

1. The government’s policy function maximizes its objective (3) in any state of the
economy, given the government budget constraint and the behavior of aggregate
money demand induced by household decision rules.

2. The representative household policy function maximizes private utility in any state of
the economy, given the government’s policy function and aggregate money demand.

3.1. Inflation Rate and State Transitions

Let Mt−1 be the aggregatenominalmoney supply (per household) at the end of
periodt − 1. When markets meet in periodt , the government printsMt −Mt−1

currency units with which it purchases goods and assets from the public. The
government’s policy moves are most conveniently formulated as choices of gross
growth rates for the nominal money supply,γt ≡ Mt/Mt−1.

The aggregatestateof the economy when periodt starts is observed by house-
holds and government and is given by the vector

St = (Kt−1,Mt−1).

I assume a Markov perfect equilibrium, in which players’ strategies are stationary
functions of the state of the economy and depend on the past history of play only
through that state. However, household strategies also are functions of contem-
poraneous money-supply growth, which households observe before making the
period’s money-demand decisions. Date-t money-supply growth is informative
aboutSt+1 and thus about the following period’s inflation, which in turn influ-
ences date-t money demand.

To make intertemporal decisions, the government and private sector alike must
understand how alternative nominal money-supply growth rates affect inflation
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and the economy’s state. This understanding, in turn, presupposes rational beliefs
about howaggregate(per household) demand for real balances is determined.
Without loss of generality, assume that households and the government take as
given the aggregate real money-demand schedule

Mt = L(γt , St ). (9)

It is shown later that a schedule of this form is consistent with optimal household
and government behavior.

The interaction between aggregate real money demandMt and the government’s
choice of nominal money-supply growth determines the equilibrium period-t price
level Pt = Mt/Mt . BecausePt−1 is given by history, money-supply growth also
determines the realized inflation rate between periodst − 1 andt , πt = (Pt −
Pt−1)/Pt . Players’ forecasts of inflation can be expressed in terms of nominal
money growth and the current state through the equation

πt = 1− (Pt−1/Pt ) = 1− [L(γt , St )/Mt−1] × (1/γt ), (10a)

to be denoted by
πt = 5(γt , St ). (10b)

Through definition (6) and equation (9), the government’s perceived finance
constraint (4), expressed in terms of commitments, is

Kt = (1+ ρ)Kt−1− {πt Mt−1+ [L(γt , St )− Mt−1]}.
The preceding equation and (10a) together imply that

Kt = (1+ ρ)Kt−1− [1− (1/γt )]L(γt , St ), (11a)

to be denoted by
Kt = 1(γt , St ). (11b)

Equations (9) and (11b) together yield the state transition equation that agents
take as given,

St+1 = [1(γt , St ), L(γt , St )], (12a)

which defines the function9:R3→ R2 such that

St+1 = 9(γt , St ). (12b)

3.2. Government’s Policy Rule

Consider first the problem faced by the government when it takes the money-
demand schedule (9) as given. LetV(St ) = V(Kt−1,Mt−1) be the government’s
value function evaluated at the start of periodt , that is, the result of maximizing
Vt in (3) subject to (7), (9), (10b), and (12b). It is clear from equation (7) that both
of the partial derivatives∂V/∂Kt−1 and∂V/∂Mt−1 are less than or equal to zero.
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The government’s optimal policy choice in periodt can be characterized with
the help of Bellman’s equation. By equations (3), (8), and (9),V(S) satisfies the
recursion

V(St ) = max
γt

{
Y − Gt − κ(πt )+ z[L(γt , St )] + 1

(1+ r )
V(St+1)

}
, (13)

subject to equations (10b) and (12b). By direct substitution of the constraints, the
government’s optimal choice of period-t money growthγt maximizes

Y − Gt − κ[5(γt , St )] + z[L(γt , St )] + 1

(1+ r )
V{1(γt , St ), L(γt , St )}. (14)

The maximizing value ofγt , assumed to exist and be unique, defines the policy-
choice function

γt = 0(St ). (15)

3.3. Household’s Decision Rule

Each household observes the government’s choice ofγt and uses this information
to decide on its own period-t real balancesmt . A household strategy is represented
by the policy function

mt = `(γt , St ).

The intuitive motivation for this policy function comes from the money-demand
equation (2), which makes individual money demand a negative function of ex-
pected inflation. A government’s incentive to inflate on datet + 1 is higher when
its real commitments at that period’s start,Kt , are higher, and when aggregate real
money holdings,Mt , are higher. Households thus will forecast the inflation rate
πt+1 by calculating how the money-supply growth decisionγt affectsKt andMt ,
givenKt−1 andMt−1. Notice that household wealth doesnotenter the policy func-
tion for real balances because the marginal utility of consumption was assumed to
be independent of wealth in (1). [In equilibrium, of course,`(γt , St ) must equal
the aggregate functionL(γt , St ) in (9).]

3.4. Equilibrium

Equilibrium now may be defined. By assuming that government and household
choices are functions of theminimalsets of variables compatible with perfection,
I have restricted the analysis to recursive, Markov perfect equilibria of the type
studied by Fudenberg and Tirole (1986), Bernheim and Ray (1987), and Maskin and
Tirole (1988), among others. The force of focusing on Markov perfect equilibria
is to exclude other potential equilibria involving strategies with memory, as in the
reputational models discussed in Rogoff’s (1989) critical survey.13

DEFINITION 1. Let the state of the economy at the start of a period t be St =
(Kt−1,Mt−1). Anequilibriumconsists of a government policy functionγ = 0(S),
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a household policy function m= `(γ, S), and a state transition equation Sτ+1 =
9(γτ , Sτ ), such that for all dates t and any starting state St , the following hold:

(i) Government maximization. The choiceγt = 0(St ) maximizes

Vt = Y − Gt − κ[5(γt , St )] + z
[
L(γt , St )

]
+

∞∑
τ=t+1

(1+ r )−(τ−t)((Y − Gτ − κ{5[0(Sτ ), Sτ ]} + z{L[0(Sτ ), Sτ ]}))

subject to the government intertemporal budget constraint

(1+ ρ)(Kt−1 + Mt−1) ≤ [ρ +5(γt , St )]Mt−1

+
∞∑

τ=t+1

(1+ ρ)−(τ−t){ρ +5[0(Sτ ), Sτ ]}L[0(Sτ−1), Sτ−1]

and the transition equations

St+1 = 9(γt , St ),

Sτ+1 = 9[0(Sτ ), Sτ ], τ > t.

(ii) Household maximization. The choice mt = `(γt , St ) satisfies equation(2) when each
household takes the government’s strategy0(S) and those of other households as
given and forecasts inflation using(10b)and(12b),

ϑ ′[`(γt , St )] = ((ρ +5{0[9(γt , St )], 9(γt , St )}))
1+ ρ . (16)

(iii) Rational expectations.̀(γt , St ) = L(γt , St ).

An equilibrium government strategy thus prescribes an optimal action at each
date and state, given future implementation of the same strategy, and given the
strategies of private actors. Equilibrium household strategies, similarly, prescribe
optimal actions at each date and state, given the government’s strategy and those
of the other households.

The equilibrium concept just described characterizes outcomes of a dynamic
game of alternating moves by the government and private sector. By construction,
any equilibrium is subgame-perfect. Gale (1982, Sec. 3.4) refers to this type of
equilibrium as a “perfect leader-follower equilibrium,” Chari et al. (1989) call
it a “time-consistent equilibrium,” Chari and Kehoe (1990) call it a “sustainable
plan,” and Stokey (1991) names it a “credible policy.” Cole and Kehoe (1996),
who restrict their analysis to Markov strategies as this paper does, use the term
“recursive equilibrium.”

4. EQUILIBRIUM WITHOUT COMMITMENT: CHARACTERIZATION

This section presents a qualitative picture of the economy’s equilibrium path. That
picture turns out to be quite simple when public and private time-preference rates
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coincide. In that case, inflation declines to zero over time as the government builds
up a large enough asset stock to finance public spending out of interest receipts
alone, without seigniorage. When the government’s time-preference rate exceeds
the private sector’s, however, the economy may follow very different routes.

Some preliminary propositions are helpful in deriving these results. I assume that
in the economy’s initial position the government is creating money at a nonnegative
rate, so thatγ ≥ 1.

4.1. Preliminary Results

The first preliminary result shows that in any equilibrium, higher rates of monetary
growth are associated with higher current inflation rates and lower growth rates
for public commitments.

PROPOSITION 1.In an equilibrium with nonnegative money-supply growth,
∂5/∂γt > 0 and∂1/∂γt < 0. That is, higher money-supply growth raises con-
temporaneous inflation and lowers the end-period stock of public commitments.

Proof 1. Equations (10a) and (11a) show that, for allt ,

∂5

∂γt
=
(

Mt

γ 2
t Mt−1

)[
1−

(
γt

Mt

∂L

∂γt

)]
, (17)

∂1

∂γt
= −

(
1− 1

γt

)
∂L

∂γt
− Mt

γ 2
t

. (18)

There are two cases to consider:

(i) If ∂L/∂γt ≥ 0, then (18) implies∂1/∂γt < 0 (becauseγt ≥ 1). That conclusion
shows, however, that in equilibrium the government will always choose a money-
growth rate such that∂5/∂γt > 0. If ∂5/∂γt > 0 didn’t hold, the government
would have an incentive toraisemonetary growth, thereby lowering end-of-period
commitments without raising inflation. So, if∂L/∂γt ≥ 0, then by (17), the govern-
ment will always choose a point of the aggregate money-demand schedule where the
elasticity of real money demand with respect to nominal money growth is below unity.

(ii) What if, instead,∂L/∂γt < 0? This case automatically would entail∂5/∂γt > 0 [by
(17)], so that, at an optimum for the government,∂1/∂γt is necessarily negative once
again. If it were not, the government would wish to lower monetary growth, thereby
lowering inflation without raising end-of-period commitments.

The next result simplifies the interpretation of equilibria by showing that any
equilibrium aggregate real money-demand scheduleL(γt , St ) can be written as a
function of a single variable, the end-of-period commitment stock,Kt .

PROPOSITION 2.In equilibrium, L(γt , St ) is of the form

L(γt , St ) = L̂[1(γt , St )] = L̂(Kt ). (19)
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Proof. Equation (16) shows that, in equilibrium,

L(γt , St ) = (ϑ ′)−1

{
ρ +5[0(St+1), St+1]

1+ ρ
}
. (20)

Along an equilibrium path, however,St+1 = (Kt ,Mt ) = [Kt , L(γt , St )], and so,
equation (20) givesL(γt , St ) implicitly as a functionL̂(Kt ) of Kt alone.

The preceding finding allows us to think of the private sector’s equilibrium
forecast of inflation between periodst andt + 1 as depending only on its forecast
of the beginning-datet + 1 stock of public-sector commitments. Intuitively, one
would guess that̂L ′(Kt ) < 0 in any equilibrium: People reduce their real balances
when they know the end-of-period stock of public commitments is higher. That
conjecture is verified below by considering the government’s intertemporal Euler
condition. In analyzing that condition, the next proposition is helpful.

PROPOSITION 3.In an equilibrium with nonnegative money-supply growth,

1+ [1− (1/γt )] L̂ ′(Kt ) > 0, (21)

∂1

∂γt
= −Mt

/
γ 2

t

1+ [1− (1/γt )] L̂ ′(Kt )
< 0, (22)

∂1

∂Kt−1
= (1+ ρ)

1+ [1− (1/γt )] L̂ ′(Kt )
> 0. (23)

Furthermore, if ∂L/∂γt > 0,

1+ L̂ ′(Kt ) > 0. (24)

Proof. To compute the derivatives in (22) and (23), use (11a) and (11b), substi-
tuting L̂(Kt ) for L(γt , St ) and applying the chain rule. Inequality (21) then follows
from (22) and Proposition 1 (which established that∂1/∂γt < 0). To prove (24)
when∂L/∂γt > 0, apply the chain rule to (19) and use (11b) to derive

∂L

∂γt
= L̂ ′(Kt )

∂1

∂γt
. (25)

Combining (25) with (18) gives

L̂ ′(Kt ) = −1

/{
1+ (1/γt )

[(
γt

Mt

∂L

∂γt

)−1

− 1

]}
.

However, Proposition 1 implies [via equation (17)] that(γt/Mt )∂L/∂γt < 1 when
the government is optimizing. Inequality (24) follows immediately if∂L/∂γt > 0.

The strictly positive term in the denominator of (22) and (23) reflects a multiplier
effect that influences commitment accumulation because period-t money demand
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depends onKt itself. A unit rise inKt−1, for example, has a direct positive effect
of 1+ ρ on Kt , but it has an additional indirect effect onKt by changingL̂(Kt )

as well. The total result is given by (23).

4.2. Government Optimality Conditions

To derive first-order necessary conditions for an optimal money-growth path, dif-
ferentiate (14) with respect toγt . At an interior maximum [recall equation (12a)],

κ ′(πt )
∂5

∂γt
= z′[L(γt , St )]

∂L

∂γt
+ 1

(1+ r )

(
∂V

∂Kt

∂1

∂γt
+ ∂V

∂Mt

∂L

∂γt

)
. (26)

It is helpful to rewrite this condition in terms of the reduced-form money-demand
schedule of equation (19), which depends onKt only. Substitution of (9) and (25)
into (26) gives

κ ′(πt )
∂5

∂γt
= ∂1

∂γt

{
z′(Mt )L̂

′(Kt )+ 1

(1+ r )

[
∂V

∂Kt
+ ∂V

∂Mt
L̂ ′(Kt )

]}
, (27)

which is the same Euler equation that would have resulted from substitution of
L̂(Kt ) for L(γt , St ) in (14) prior to maximization.

The interpretation of Euler equation (27) is standard.14 The left-hand side is the
output cost of incrementally higher period-t money growth—the product of the
marginal cost of current inflation and the marginal inflation effect of money growth.
The right-hand side is the marginal value of higher period-t money growth—the
product of the reduction inKt due to a higherγt and the marginal value to the
government of lower end-of-t-commitments. A lowerKt , in turn, affects social
welfare both by raising real money demand,Mt , and by changing discounted period
t + 1 valueVt+1, which depends on the end-of-t stocksKt andMt .

A further definition helps to clarify the economic implications of (27). Define
theshadow price of public commitmentsat the start of periodt , λt , by

λt ≡

{[
z′(Mt )+ κ ′(πt )

γt Mt−1

]
L̂ ′(Kt )+ 1

(1+ r )

[
∂V

∂Kt
+ ∂V

∂Mt
L̂ ′(Kt )

]}
1+

(
1− 1

γt

)
L̂ ′(Kt )

. (28)

The priceλt is the marginal value to the government of having an additional unit
of resources in private rather than public hands. Recall that the maximized value
of (14) is the government’s value function,V(St ) = V(Kt−1,Mt−1). An envelope
argument that uses (23) establishes the equality:

λt = 1

(1+ ρ)
∂V

∂Kt−1
≤ 0, ∀ t. (29)

That is,λt is the effect on social welfare of a unit increase in government commit-
ments at the start of periodt . [A unit rise inKt−1 raises beginning-of-t government
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commitments by 1+ρ units, not by 1 unit, which explains the discounting in equa-
tion (29)]. Another envelope argument leads to [recall equation (10a)]

∂V

∂Mt−1
= −κ ′(πt )

∂5

∂Mt−1
= −κ ′(πt )

Mt

γt M2
t−1

≤ 0, ∀ t. (30)

Now, use (17), (19), (22), and (28)–(30) to express the first-order condition (27)
in terms ofλt andλt+1. The result (after some algebra) is the pair of conditions,

κ ′(πt ) = −λt Mt−1, (31)

λt = z′(Mt )L̂ ′(Kt )

1+ L̂ ′(Kt )
+ λt+1

(1+ r )

[
(1+ ρ)+ (1− πt+1)L̂ ′(Kt )

1+ L̂ ′(Kt )

]
. (32)

The meanings of these two equations are grasped most easily by thinking of the
government’s move as a direct choice of the inflation rate,πt , rather than a choice
of the contemporaneous money-supply growth rate,γt .15 Condition (31) simply
equates the marginal current benefit from a fall in inflation to the marginal value
of the resources the government would thereby forgo.

Condition (32) rules out any welfare gain from a perturbation in the path of
public commitments that lowersKt incrementally (say) but leaves commitments
unchanged on all other dates. To understand (32), let us assume provisionally that
∂L/∂γt ≥ 0, so that inequality (24) holds (see Proposition 3). (The provisional
assumption is confirmed below.) The intertemporal trade-off involved in the choice
of an inflation rate is embodied in (11a), which can be expressed as

Kt + L̂(Kt ) = (1+ ρ)Kt−1+ (1− πt )Mt−1. (33)

Because the commitment multiplier implied by (33) is 1/[1+ L̂ ′(Kt )] [a positive
number, if inequality (24) holds], the period-t inflation increase that changesKt by
the infinitesimal amount dKt < 0 reduces social welfare byλt [1+ L̂ ′(Kt )] dKt =
[−κ ′(πt )/Mt−1][1 + L̂ ′(Kt )] dKt . At an optimum, however, this welfare cost just
equals the benefits of a one-unit commitment reduction lasting one period: an
immediate rise in household money demand—worthz′(Mt )L̂ ′(Kt ) dKt in cur-
rent welfare terms—plus the present marginal value of the periodt + 1 infla-
tion reduction that returns commitments to their initial path—which is worth
(1+ r )−1λt+1[(1+ρ)+ (1−πt+1)L̂ ′(Kt )] dKt = (1+ r )−1[−κ ′(πt+1)/Mt ][(1+
ρ)+ (1− πt+1)L̂ ′(Kt )] dKt .

4.3. Slope of Reduced-Form Money-Demand Schedule

The following result is central to a characterization of equilibrium dynamics.

PROPOSITION 4.In an equilibrium such that(31)and(32)hold,

L̂ ′(K ) ≤ 0.
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Proof. Suppose instead thatL̂ ′(K ) > 0. Assume that inflation initially is posi-
tive. Becauser ≥ ρ by assumption,λt , which is a negative number, must fall
over time (i.e., become more negative) according to condition (32). Condition
(31) therefore implies that inflation must rise over time, equation (2) that money
demand must fall over time, and the assumptionL̂ ′(K ) > 0 that commitments also
must fall. However, the government wouldn’t find it optimal to play the strategy the
private sector expects along the path just described. By slightlyloweringinflation
on any date and maintaining inflation at that level forever, the government could
freeze its commitments, thereby reaching a higher welfare level on that date and on
every future date while respecting intertemporal budget balance. Thus, the paths
that (31) and (32) generate whenL̂ ′(K ) > 0 are not equilibrium paths.

COROLLARY. In an equilibrium with nonnegative money-supply growth,
∂L/∂γt ≥ 0 and∂L/∂Kt−1 ≤ 0.

Proof. Apply the chain rule to (19) and use Proposition 1 and inequality (23).

4.4. Stationary States

Equations (31) and (32) together summarize the dynamics of the model. The first
dynamic implication concerns stationary-state equilibria, equilibria in which pub-
lic commitments, their shadow price, and inflation all remain constant over time.

One stationary state is described bȳK = λ̄ = π̄ = 0. These values satisfy
(31) and (32) becauseκ ′(0) = 0 andz′(M̄) = 0 at the real-balance level̄M that
households demand when expected inflation in zero{that is, atM̄ ≡ ϑ−1[ρ/(1+
ρ]}. To see that the government budget constraint (7) is satisfied in this stationary
state, suppose thatMt−1 = M̄ . By (6), Kt−1 = 0 implies that the government
holds anegativedebtDt−1 given by

−Dt−1 = 1

(1+ ρ)
∞∑
τ=t

(1+ ρ)−(τ−t)Gτ ,

so that it can finance all current and future purchases out of asset income, without
ever resorting to inflation. Thus,Mt will remain atM̄ andKt at K̄ = 0. Because
the government never needs to levy distorting inflation taxes,λt , the marginal
inflation-tax distortion, remains steady atλ̄ = 0.

In this zero-inflation stationary state, the budget need not be balanced on a
period-by-period basis: Deficits will be run whenGt is unusually high, surpluses
when it is unusually low. Whatis true is that government assets always equal the
present value of future public spending, and so, there is never a need to supplement
the budget with seigniorage revenue.

Becauseλ cannot take positive values, the zero-inflation stationary state is the
only one whenL̂ ′(K ) < 0 andr ≤ ρ (the government discount rate is no greater
than the market rate).16 Whenr > ρ, as allowed above, however, steady states
with λ < 0 may arise. These are characterized by constant levels ofπ andK .
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A very special case arises whenL̂ ′(K ) ≡ 0. In general, this condition can hold in
a Markov perfect equilibrium only when household money demand is completely
insensitive to the nominal interest rate. Under this assumption, (32) reduces to

λt = (1+ ρ)
(1+ r )

λt+1,

a familiar condition for intertemporal optimization in dynamic fiscal-policy mod-
els in which precommitment is possible or irrelevant. Forr = ρ, this condition
becomesλt = λt+1, in which case (31) delivers the prediction that inflation will be
the same on all dates. This is the intertemporal tax-smoothing formula applied to
inflation by Mankiw (1987) and Grilli (1988, 1989). Every level ofK corresponds
to a distinct stationary state whenr = ρ, and the associated constant inflation rate
keepsK constant.

Inflation generally isn’t constant when money demand is interest-sensitive be-
cause the government knows that its budgetary position affects inflation expecta-
tions and, with them, private money demand. I assume below thatL̂ ′(K ) < 0.

4.5. Equilibrium Dynamics

Consider first the caser = ρ (assumed in most of the tax-smoothing literature).
BecausêL ′(Kt ) < 0, equation (32) shows that the inequalitiesλt<λt+1 ≤ 0 must
hold in this case. So,λt converges over time tōλ = 0, the unique stationary value,
asKt converges tōK = 0 andπt converges to ¯π = 0 [see equation (31)].

The interaction of government policy and rational private expectations thus
drives the economy to a noninflationary long-run equilibrium whenr = ρ. That
result hinges crucially on the equilibrium relationship between public commit-
ments and private expectations of inflation. As noted above, whenL̂ ′(K ) ≡ 0—in
which case money demand is not responsive to the government’s incentives to
inflate—the path of inflation is flat andK is constant. The government has no
reason to changeK because the gross return on asset accumulation, 1+ ρ, is then
exactly offset by the government’s discount factor, 1/(1+ r ) = 1/(1+ ρ). In the
equilibrium constructed above, in contrast, additional government saving yields
the gross return 1+ ρ plus the extra benefits from the induced increase in money
demand [see (32)]. Because the government’s discount factor is just 1/(1+ρ), the
government will reduce its spending commitments,K , over time, by always setting
monetary growth and inflation higher than the level that would be consistent with
unchanging commitments.

These conclusions about the economy’s equilibrium path would be qualitatively
unchanged ifr were belowρ, or if r were greater thanρ, but not by enough to
produce a second stationary state. Once a second stationary equilibrium appears,
however, it becomes difficult to analyze stability without more detailed information
on inflation costs and on government and household preferences. It is possible
(for r sufficiently high relative toρ) that there is a stable inflationary long-run



              

604 MAURICE OBSTFELD

equilibrium, and that the ¯π = 0 equilibrium is unstable. A sudden rise in the
government’s discount rate (the result of increased political instability, say), could
turn a stable zero-inflation equilibrium into an unstable one, thereby allowing small
disturbances to propel the economy into high and persistent inflation. The linear
examples in Section 5 illustrate some of these possibilities.17

As the examples also show, there is no general guarantee that equilibrium is
unique. For given fundamentals, there can be several equilibrium paths for the
economy, possibly converging to different stationary states.

5. SOME LINEAR EXAMPLES

Closed-form linear-quadratic examples illustrate some characteristics of the equi-
libria defined and analyzed above.18 In the examples, I assume thatz(M) ≡ 0
in (3), so that inflation reduces welfare only through its negative current-output
effect.

An advantage of the linear-quadratic setup is that it allows an easy analysis of
the model’s equilibrium when agents face specific types of uncertainty. I there-
fore allow for the possibility that government spending,Gt , is a random variable
generated by an exogenous first-order Markov process. (Additional assumptions
on that process are introduced below.) The realization ofGt is revealed in period
t beforethe government implements its period-t policy action. As a result, house-
holds generally will make unsystematic forecast errors in a stochastic equilibrium.
I assume that, despite the stochastic environment, government debt payments are
not indexed to the realized state of nature.

The key strategem delivering linearity is a redefinition of the model in terms of
aggregateinflation-taxpayments,µt , where

µt ≡ πt Mt−1.

In line with this approach, I assume that a household’s demand for real balances is
a linear decreasing function of the inflation-tax revenue it expects the government
to collect next period,

mt = m̄− δEt (µt+1), (34)

and that the output cost of inflation is given by the functionκ(µt ) = ( 1
2)µ

2
t . The

government thus is assumed to maximize

Vt = −1

2
Et

[ ∞∑
τ=t

(1+ r )−(τ−t)µ2
τ

]
. (35)

In (34) and (35),Et [·] denotes a rational expectation conditional on the vector
of economic state variables known at the start of periodt , (Gt , Dt−1,Mt−1). An
optimal government policy rule will take the form of a deterministic linear function
of this state vector. The resulting sequence of contingency plans must satisfy
intertemporal budget constraint (5) with probability 1.
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The money-demand specification (34) is plausible (at least as an approximation)
if the elasticity of household money demand with respect to expected inflation is
low enough that inflation-tax proceeds and inflation move together.19 A further
parameter restriction necessary for equilibrium is

δ < 1/ρ. (36)

Condition (36) requires the elasticity of aggregate money demand with respect to
[ρ + Et (πt+1)]/(1 + ρ), the opportunity cost of holding money, to be less than
unity.

5.1. Deterministic Case

If government spending follows a known exogenous path, then in each periodt , the
government maximizes−( 1

2)µ
2
t + (1+ r )−1V(Kt ,Mt ) subject to equation (33),

written asKt + L̂(Kt ) = (1+ ρ)Kt−1 − µt + Mt−1, with Kt−1 andMt−1 given.
Without loss of generality, the government’s period-t action can be viewed as a
direct choice ofµt . My working conjectures are that the aggregate reduced-form
money-demand relationship takes the form

Mt = L̂(Kt ) = M̄ − βKt , (37)

and that the government’s optimal policy function is of the form

µt = ϕ0+ ϕ1Kt−1+ ϕ2Mt−1. (38)

On an equilibrium path withKt = 0, it must be true thatµt = 0 as well, and so,
(37) and (38) together imply the restriction

ϕ0+ ϕ2M̄ = 0. (39)

I now show that the functions (37) and (38) characterize equilibria for appropriate
coefficient values.

Suppose the government is choosing its period-t action,µt . The government
takes as given that aggregate money demand obeys (37) in all periodsτ ≥ t .
Equation (33) then implies that

Kt = (1+ ρ)Kt−1+ Mt−1− M̄ − µt

1− β . (40)

[Notice thatMt−1 in (40) could be any arbitrary value, and is not necessarily related
to Kt−1 by (37).] If the government follows policy rule (38) from periodt + 1 on,
its end-of-period commitments starting int + 1 are given by

Kτ = ψKτ−1, ∀ τ ≥ t + 1, (41)
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where

ψ ≡ [1+ ρ − ϕ1− (1− ϕ2)β]

1− β . (42)

(I check later in specific cases that 0< β, ψ < 1 in equilibrium.) Equation (41)
implies that under (37) and (38), the government’s value function for periodt + 1
therefore is

V(St ) = V [Kt , L̂(Kt )] = −
(

1

2

)
(ϕ1− ϕ2β)

2

1− ψ2/(1+ r )
K 2

t .

Bellman’s principle implies that the optimal period-t policyµt necessarily max-
imizesVt = −( 1

2)µ
2
t + (1+ r )−1V(Kt ,Mt ) subject to (37) and (40); that is, it

satisfies

ϕ0+ ϕ1Kt−1+ ϕ2Mt−1

= arg max
µt

((
− 1

2

{
µ2

t +
(ϕ1− ϕ2β)

2

1+ r − ψ2

[
(1+ ρ)Kt−1+ Mt−1− M̄ − µt

1− β
]2}))

.

(43)

By differentiating the term in boldface parentheses in (43) and equating coefficients
with (38), one finds that

ϕ1 = (1+ ρ)(ϕ1− ϕ2β)
2

(ϕ1− ϕ2β)2+ (1− β)2(1+ r − ψ)2 , ϕ2 = ϕ1

1+ ρ , ϕ0 = −ϕ2M̄ .

(44)
[The last equality is (39).] Definition (42) now gives the optimal value ofϕ1 as a
function of the parameterβ in (37):

ϕ1 = (1+ ρ)
[
1− (1+ r )(1− β)2

(1+ ρ − β)2
]
. (45)

The optimal policy coefficientsϕ0 andϕ2 follow immediately.
The exercise is still incomplete, however: It remains to ensure that (37) is the

result of optimal household behavior when households predict on the basis of (37)
and (45). That equality holds only when̄M andβ are related in a specific way to
the parameters̄m andδ in the household money-demand equation (34).

To find the necessary relationship, observe that, given (37), a household’s ratio-
nal period-t forecast ofµt+1 is

µt+1 = ϕ0+ ϕ1Kt + ϕ2(M̄ − βKt ) = ϕ1

(
1− β

1+ ρ
)

Kt

[by (37) and (44)]. Thus, by (34), each household will demand real balances
m̄− δϕ1{1−[β/(1+ρ)]}Kt . In an equilibrium, this demand function must coincide
with (37), which requires that̄m= M̄ and
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β = δϕ1

(
1− β

1+ ρ
)
⇔ ϕ1 = (1+ ρ)β

δ(1+ ρ − β) . (46)

When combined, (45) and (46) lead to a quadratic equation that any equilibrium
value ofβ, β∗, must satisfy:

(1− r δ)β2+ [2(r − ρ)δ − (1+ ρ)]β + δ[ρ(1+ ρ)+ (ρ − r )] = 0. (47)

Rather than presenting a general analysis of solutions to (47), I concentrate on two
special cases of interest.

Case 1.r = ρ. In this case the solutions to (47) are both positive and real. They
are

β = (1+ ρ)±
√
(1+ ρ)2− 4ρδ(1+ ρ)(1− ρδ)

2(1− ρδ) . (48)

The Appendix shows a proof that the larger of these two solutions exceeds 1, and
thus cannot be the equilibrium valueβ∗ [becauseβ∗ = L̂ ′(K ); see inequality
(24) above]. The smaller solution in (48) isβ∗, and the Appendix shows that
ρδ < β∗ < 1.

The inequalityβ∗>ρδ implies that public commitments will decline over time
to the stationary statēK = 0. These dynamics follow from (41), because the
equilibriumψ∗ can be expressed as

ψ∗ = 1− (β
∗ − ρδ)

δ(1− β∗) (49)

with the help of (42), (44), and (46). (The Appendix shows thatψ∗ > 0.) In the
caser = ρ, we therefore have a unique equilibrium with the features described in
Section 4.

Case 2.r = ρ/(1− ρδ). This is a case in which the government discount rate
exceeds that of the private sector. A direct check using (47) shows thatβ∗ = ρδ < 1
defines an equilibrium.

In this case, however, (49) implies thatψ∗ = 1, so that public commitments will
follow Kt = Kt−1 along the economy’s equilibrium path. In other words, there is
an equilibrium with perfect inflation smoothing despite the government’s aware-
ness that the level of government commitments influences household expectations.
Whenr = ρ/(1−ρδ), the gap between government and household discount rates
just offsets the additional government saving incentives due to market expectations.
As a result, any initial value of government commitments will be maintained in-
definitely if the economy starts from a position on the equilibrium path (that is,
with initial real balances related to initial commitments byMt−1 = m̄− β∗Kt−1).
The policy function (38) is justµt = ρKt−1 along equilibrium paths.
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When 1−2ρδ > 0, the equilibrium solutionβ∗ = ρδ is unique. When 1−2ρδ <
0, however, there may be a second equilibriumβ∗∗ ∈ (ρδ, 1), whereβ∗∗ = 1−
ρ[(1−ρδ)/(2ρδ−1)]. (See Section 5.2 for a numerical example.) Even in a linear-
quadratic setting, therefore, multiple equilibria appear to be possible forr > ρ. A
second equilibrium arises in the present case when households’ expectation that
lower public commitments will lead to lower inflation provides just the incentive
the government needs to induce a paring down of public commitments over time.

5.2. Stochastic Case

Now assume that government spending is a random variable that follows a first-
order Markov process. Recall that the period-t realizationGt is revealed at the
start of periodt , before the government choosesµt but after the public has chosen
the previous period’s real balances,Mt−1.

It is convenient to redefine the stock of public commitments at the end of period
t − 1 in terms of expected values as

Kt−1 ≡ 1

(1+ ρ)Et−1

[ ∞∑
τ=t

(1+ ρ)−(τ−t)Gτ

]
+ Dt−1.

We now need to distinguish, however, the end-of-(t − 1) commitment measure
Kt−1, on which households’ choice ofMt−1 is based, from thestart-of-t com-
mitment measure on which the government bases its choice ofµt . The difference
between the two depends on the unanticipated component ofGt . Define the ex-
pectational revision at the start of periodt , εt , by

εt ≡ 1

(1+ ρ)

{
Et

[ ∞∑
τ=t

(1+ ρ)−(τ−t)Gτ

]
− Et−1

[ ∞∑
τ=t

(1+ ρ)−(τ−t)Gτ

]}
.

The commitment variable relevant for the government’s period-t decisions is then

K̃ t ≡ Kt−1+ εt = 1

(1+ ρ)Et

[ ∞∑
τ=t

(1+ ρ)−(τ−t)Gτ

]
+ Dt−1,

and the government finance constraint becomes

K̃ t+1 = (1+ ρ)K̃ t − (Mt − Mt−1)− µt + εt+1. (50)

I assume thatεt , which has a mean of zero conditional on information known in
periodt−1, has a finite variance and is distributed independently of period-(t−1)
information.

Because the realization ofGt+1 is not known by households in periodt , the
stochastic analogue of (37) has the form

Mt = L̂[Et (K̃ t+1)] = M̄ − βEt (K̃ t+1) = M̄ − βKt . (51)



            

DYNAMIC SEIGNIORAGE THEORY 609

When combined, (50) and (51) give the two dynamic equations

K̃ t+1 = (1+ ρ)K̃ t + Mt−1− M̄ − µt

1− β + εt+1, (52)

Mt = M̄ − β
[
(1+ ρ)K̃ t + Mt−1− M̄ − µt

1− β
]
. (53)

The problem of maximizing (35) subject to (52) and (53) was solved in Section
5.1 with the stochastic shockε suppressed and with̃K t formally labeled asKt−1.
The optimal policy rule in the present stochastic case is, however, thesamefunction
of the state variables as in the deterministic case [Sargent (1987, p. 37)]. Thus, the
optimal policy rule [given (51)] is of the form (38), with̃K t in place ofKt−1 and
with coefficients again described by (44) and (45). Because

Et (µt+1) = Et {ϕ0+ ϕ1K̃ t+1+ ϕ2[M̄ − βEt (K̃ t+1)]} = ϕ1

(
1− β

1+ ρ
)

Kt ,

condition (46) remains necessary for equilibrium. An equilibrium value ofβ, β∗,
is thus a root of the quadratic equation (47).

Some calculation shows that along the economy’s equilibrium path, beginning-
of-period (resp. end-of-period) public commitments follow an ARMA (1, 1,) [resp.
AR(1)] process

K̃ t+1 = ψ∗K̃ t + εt+1+ θεt ⇔ Kt = ψ∗Kt−1+ (ψ∗ + θ)εt ,

whereψ∗ is given by the formula in (49) andθ = β∗(1−ϕ∗2)/(1−β∗). Inflation-tax
revenue is generated by the AR(1) process

µt = ψ∗µt−1+ ϕ∗1εt .

In the caser = ρ, ψ∗ ∈ (0, 1), and so, both the stock of commitments and
inflation-tax revenue follow stationary stochastic processes with long-run distri-
butions centered on zero. As a numerical example, suppose thatρ = r = 0.04
andδ = 12 (so that the elasticity of real money demand with respect to interest
cost is 0.48). Then,β∗ = 0.798 [by (48)] andψ∗ = 0.869 [by (49)]. Only in the
constant-velocity case,δ = 0, do (42), (45), and (48) lead toψ∗ = 1 and the
martingale property forKt andµt .

In the caser = ρ/(1− ρδ), both theKt andµt processes may be martingales
even forδ > 0, becauseβ∗ = ρδ is one equilibrium.20 For the specific param-
eter assignments of the last paragraph, which implyr = 0.077, the martingale
equilibrium is the only one.

Suppose, however, thatρ= 0.04 once again but thatδ= 20, giving r = ρ/
(1− ρδ) = 0.04/(1− 0.8) = 0.2. There is still an equilibrium withβ∗ = ρδ,
but there is also a second, convergent equilibrium in whichβ∗∗ = 0.987 and
ψ∗∗ = 0.3. A higher interest elasticity of money demand makes possible an equi-
librium in which money demand responds so strongly to public debt reduction that
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the government finds it optimal to accumulate wealth over time despite its high
rate of time preference.

6. CONCLUSION

This paper has explored the intertemporal behavior of seigniorage and government
spending commitments in a dynamic game-theoretic model that determines the
path of a key endogenous state variable, the public debt. When government and
private-sector discount rates are the same, as intertemporal tax-smoothing analyses
typically assume, a Markov perfect equilibrium requires declining paths of inflation
and government commitments. In long-run equilibrium, the government holds an
asset stock sufficient to finance future government expenditures without the need
for inflation (or, for that matter, other distorting taxes).

When the government’s discount rate exceeds the market’s, however—perhaps
as a result of finite political lifetimes—alternative Markov perfect paths for infla-
tion and budgetary commitments are possible, including inflationary steady states.
There is no general guarantee of a unique equilibrium.

Although the model yields predictions broadly consistent with the apparent
long-term behavior of prices in many countries, it is less clear that it can capture
the great disparities in budgetary and inflationary experiences across economies
and epochs. Some government-caused inflation is not motivated by seigniorage
needs, official preferences change over time, and measured inflation is subject to
serially correlated shocks beyond government control. Income-distribution and
employment goals, two factors absent from the paper’s model, are particularly im-
portant. Political uncertainly has been introduced into the model in a rudimentary
way, but it would plainly be desirable to build explicitly on the social and economic
tensions underlying political theories of budget processes [see Alesina and Perotti
(1995) for a survey]. Such an extension might explain why the zero-tax stationary
equilibrium predicted by some versions of the model is literally never observed in
reality.21

Despite its strong simplifying assumptions, the model does capture forces that
influence fiscal and monetary policy formulation even in countries where inflation
seems most deeply rooted. The model helps explain, for example, why governments
in budgetary crisis often sharply devalue their currencies at the outset of stabiliza-
tion, thereby spurring domestic inflation temporarily but (hopefully) promoting
increases in official exchange foreign reserves. A partial rationale for devalua-
tion is that it may lowerfuture inflation by objectively improving the budgetary
situation—just as in the account offered above. The model also throws light on the
current European exercise in fiscal retrenchment in preparation for economic and
monetary union.

NOTES

1. In this paper, my focus is on the seigniorage motive for inflation. A number of authors, starting
with Kydland and Prescott (1977), show how excessive inflation can result from the time-inconsistency
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problem of a government that wishes to raise employment above some “natural” rate. Without a more
detailed account of why governments may want to do this, it is difficult to relate the literature on the
employment motive for inflation to the budgetary issues that concern me below. Any such account is
likely to involve budgetary incentives, however (for example, a government’s desire to raise income-tax
revenue while cutting public transfer payments to the unemployed).

2. Chari et al. (1996) show in a variety of models that even when all other conventional taxes distort,
the optimal precommitment path for inflation follows Milton Friedman’s “optimal quantity of money”
rule (such that the nominal interest rate is zero). In the model of the present paper, inflation is the only
tax. That assumption may be viewed as a reflection of political obstacles to setting conventional taxes
at Ramsey-optimal levels.

3. Evidence on the inflation-smoothing approach (in totality rather unsupportive) is discussed by
Mankiw (1987), Grilli (1988, 1989), Judd (1989), Bizer and Durlauf (1990), Poterba and Rotemberg
(1990), and Calvo and Leiderman (1992).

4. In the absence of a government precommitment capability, Ramsey plans sometimes can be
supported as equilibria through intricate government debt-management strategies [Lucas and Stokey
(1983) and Persson et al. (1987)] or in specific self-fulfilling trigger-strategy or reputational equilibria
[Chari and Kehoe (1990), Rogoff (1989), and Stokey (1991)]. Debt-management strategies are known
to be effective only in very special circumstances, however. Calvo and Obstfeld (1990) show that the
prescriptions of Persson et al. (1987) are not generally valid, suggesting that the problem of dynamic
inconsistency underlying the present paper’s analysis need not disappear when the government can hold
nominal assets. Additionally, as Rogoff’s (1989) discussion indicates, the empirical relevance of reputa-
tional equilibria remains controversial. In previous work [Obstfeld (1991)], I derive the Ramsey solution
for a planning problem similar to that of Section 2 and discuss its dynamic inconsistency in detail.

5. According to the model, a multicountry cross-sectional study thus would find a stronger impact
of government debt levels on inflation than a Ramsey tax-smoothing rule would predict. Thatsome
significant positive cross-sectional link between debt levels and inflation exists is confirmed by Campillo
and Miron (1997).

6. Judd (1989) independently reaches this conclusion, based on simulations of a stochastic model
of capital, labor, and money taxation. Bohn (1988) and Poterba and Rotemberg (1990) take approaches
similar to mine in modeling optimal inflation. Their analyses, however, do not consider equilibrium
dynamics in any detail.

7. The preceding constraint reflects the household’s loss during periodt of [1− (Pt−1/Pt )]mt−1 =
πt mt−1 on real balances carried over from periodt − 1.

8. In equilibrium, households are indifferent between alternative feasible intertemporal consump-
tion allocations. Each period, the representative household chooses to consume aggregate output (net
of inflation costs) less government consumption [see equation (8)].

9. In Obstfeld (1991) I examine the case in whichz(m) = ϑ(m) andr = ρ, so that the government
maximizes the representative household’s utility. In that case,π = −ρ is the economy’s unique
stationary point.

10. This sum equals(Mt −Mt−1)/Pt , whereM denotes nominal money holdings per household.
Thus, whenPt is the equilibrium price level, seigniorage equals the real resources that the government
is able to purchase from each household in exchange for money. To work in terms of present values,
below, I assume a transversality condition on equilibrium household real money balances, limt→∞(1+
ρ)−t mt = 0.

11. See Auernheimer (1974).
12. Driffill et al. (1990) survey the literature on the costs of inflation.
13. In related models, Chang (1996) and Phelan and Stacchetti (1996) describe algorithmic methods

for characterizing all equilibria, not just the Markovian equilibria.
14. In working with (27), I am assuming that it indeed characterizes the government’s optimum.

Section 5 presents a linear approximation to the model in which equilibrium exists and a counterpart
of (27) characterizes it.

15. There is no loss of generality in taking this approach. Equation (10a) and Proposition 1 imply
that in equilibrium,πt andγt are linked by an invertible relationship.
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16. The proof is immediate from (32). Becauseπ ≤ 1, by definition,

(1+ ρ)+ (1− πt+1)L̂ ′(Kt )

1+ L̂ ′(Kt )
> (1+ ρ)

(providedπ > −ρ, which I am assuming). So, no constant (negative) value ofλ can satisfy (32).
17. See Obstfeld (1991) for a diagrammatic exposition.
18. For similar calculations in a deterministic model, see Cohen and Michel (1988).
19. Notice that there are limits on the maximum feasible value ofµ and on the minimum value

consistent with equilibrium. The first-order conditions that I work with below will not hold when one of
these constraints onµ binds. It may be pushing the linear specification too far to apply it in a stochastic
setting, where constraints onµ could come into force at some point. In my view, the interior results
obtained still provide a useful starting point for analyzing the model’s empirical implications.

20. Whenψ∗ = 1 and when government spending follows the martingale processGt = Gt−1+ηt ,
governmentdebtfollows the martingale processDt = Dt−1 + θεt (whereεt = ηt/ρ).

21. Governments might be reluctant, for example, to leave a possibly hostile successor with a large
bequest of public assets.
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APPENDIX

This Appendix takes care of some unfinished details from Section 5. Letβ∗ be the smaller
of the roots given by (48),β∗′ the larger. Proof is given here that whenr = ρ,

(i) β∗ ∈ (ρδ, 1) andβ∗′ ∈ (1,∞).
(ii) ψ∗ > 0 [whereψ∗ is defined by (49)].

Proof of (i). First notice that bothβ∗ andβ∗′ are real, because [see (48)]ρδ(1− ρδ)
has its maximum atρδ = 1

2, andρ > 0. The rootsβ∗ andβ∗′ are the zeroes of the
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polynomial
ζ(β) = (1− ρδ)β2 − (1+ ρ)β + ρδ(1+ ρ) (A.1)

[the left-hand side of (47) withr = ρ], which has the derivative

ζ ′(β) = 2(1− ρδ)β − (1+ ρ). (A.2)

Because 1> ρδ according to (36),ζ(ρδ) > 0 andζ ′(ρδ) < 0; moreover,ζ ′(β) < 0 for
all β < ρδ. So, necessarily,β∗ > ρδ. However,ζ(1) = ρ(ρδ − 1) < 0, soβ∗ < 1 and
β∗′ > 1.

Proof of (ii). With the help of (48) and (49),ψ∗ > 0 can be shown, after much tedious
algebra, to be equivalent toρδ(2−ρδ) < 1. The functionρδ(2−ρδ) reaches its maximum
of 1 whenρδ = 1, however; so, assumption (36)⇒ ψ∗ > 0.


