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Behavioral Models
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2 Properties of Discrete Choice Models

2.1 Overview

This chapter describes the features that are common to all discrete choice
models. We start by discussing the choice set, which is the set of options
that are available to the decision maker. We then define choice probabili-
ties and derive them from utility-maximizing behavior. The most promi-
nent types of discrete choice models, namely logit, generalized extreme
value (GEV), probit, and mixed logit, are introduced and compared
within the context of this general derivation. Utility, as a constructed
measure of well-being, has no natural level or scale. This fact has im-
portant implications for the specification and normalization of discrete
choice models, which we explore. We then show how individual-level
models are aggregated to obtain market-level predictions, and how the
models are used for forecasting over time.

2.2 The Choice Set

Discrete choice models describe decision makers’ choices among al-
ternatives. The decision makers can be people, households, firms, or
any other decision-making unit, and the alternatives might represent
competing products, courses of action, or any other options or items
over which choices must be made. To fit within a discrete choice frame-
work, the set of alternatives, called the choice set, needs to exhibit three
characteristics. First, the alternatives must be mutually exclusive from
the decision maker’s perspective. Choosing one alternative necessarily
implies not choosing any of the other alternatives. The decision maker
chooses only one alternative from the choice set. Second, the choice
set must be exhaustive, in that all possible alternatives are included.
The decision maker necessarily chooses one of the alternatives. Third,
the number of alternatives must be finite. The researcher can count the
alternatives and eventually be finished counting.

11
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12 Behavioral Models

The first and second criteria are not restrictive. Appropriate definition
of alternatives can nearly always assure that the alternatives are mutually
exclusive and the choice set is exhaustive. For example, suppose two
alternatives labeled A and B are not mutually exclusive because the
decision maker can choose both of the alternatives. The alternatives can
be redefined to be “A only,” “B only,” and “both A and B,” which are
necessarily mutually exclusive. Similarly, a set of alternatives might not
be exhaustive because the decision maker has the option of not choosing
any of them. In this case, an extra alternative can be defined as “none
of the other alternatives.” The expanded choice set, consisting of the
original alternatives plus this new one, is clearly exhaustive.

Often the researcher can satisfy these two conditions in several
different ways. The appropriate specification of the choice set in these
situations is governed largely by the goals of the research and the data
that are available to the researcher. Consider households’ choice among
heating fuels, a topic which has been studied extensively in efforts to
forecast energy use and to develop effective fuel-switching and energy
conservation programs. The available fuels are usually natural gas, elec-
tricity, oil, and wood. These four alternatives, as listed, violate both mu-
tual exclusivity and exhaustiveness. The alternatives are not mutually
exclusive because a household can (and many do) have two types of
heating, e.g., a natural gas central heater and electric room heaters, or
a wood stove along with electric baseboard heating. And the set is not
exhaustive because the household can have no heating (which, unfor-
tunately, is not as rare as one might hope). The researcher can handle
each of these issues in several ways. To obtain mutually exclusive al-
ternatives, one approach is to list every possible combination of heating
fuels as an alternative. The alternatives are then defined as: “electric-
ity alone,” “electricity and natural gas, but no other fuels,” and so on.
Another approach is to define the choice as the choice among fuels for the
“primary” heating source. Under this procedure, the researcher develops
a rule for determining which heating fuel is primary when a household
uses multiple heating fuels. By definition, only one fuel (electricity, nat-
ural gas, oil, or wood) is primary. The advantage of listing every possible
combination of fuels is that it avoids the need to define a “primary” fuel,
which is a difficult and somewhat arbitrary distinction. Also, with all
combinations considered, the researcher has the ability to examine the
factors that determine households’ use of multiple fuels. However, to
implement this approach, the researcher needs data that distinguish the
alternatives, for example, the cost of heating a house with natural gas
and electricity versus the cost with natural gas alone. If the researcher re-
stricts the analysis to choice of primary fuel, then the data requirements
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are less severe. Only the costs associated with each fuel are needed. Also,
a model with four alternatives is inherently easier to estimate and fore-
cast with than a model with the large number of alternatives that arises
when every possible combination of fuels is considered. The researcher
will need to take these trade-offs into consideration when specifying the
choice set.

The same type of issue arises with regard to exhaustiveness. In our case
of heating-fuel choice, the researcher can either include “no heating” as
an alternative or can redefine the choice situation as being the choice
of heating fuel conditional on having heating. The first approach allows
the researcher to examine the factors that relate to whether a household
has heating. However, this ability is only realized if the researcher has
data that meaningfully relate to whether or not a household has heating.
Under the second approach, the researcher excludes from the analysis
households without heating, and, by doing so, is relieved of the need for
data that relate to these households.

As we have just described, the conditions of mutual exclusivity and
exhaustiveness can usually be satisfied, and the researcher often has sev-
eral approaches for doing so. In contrast, the third condition, namely, that
the number of alternatives is finite, is actually restrictive. This condition
is the defining characteristic of discrete choice models and distinguishes
their realm of application from that for regression models. With regres-
sion models, the dependent variable is continuous, which means that
there is an infinite number of possible outcomes. The outcome might be
chosen by a decision maker, such as the decision of how much money
to hold in savings accounts. However, the alternatives available to the
decision maker, which are every possible monetary value above zero, is
not finite (at least not if all fractions are considered, which is an issue we
return to later.) When there is an infinite number of alternatives, discrete
choice models cannot be applied.

Often regression models and discrete choice models are distinguished
by saying that regressions examine choices of “how much” and dis-
crete choice models examine choice of “which.” This distinction, while
perhaps illustrative, is not actually accurate. Discrete choice models can
be and have been used to examine choices of “how much.” A prominent
example is households’ choice of how many cars to own. The alternatives
are 0, 1, 2, and so on, up to the largest number that the researcher con-
siders possible (or observes). This choice set contains a finite number of
mutually exclusive and exhaustive alternatives, appropriate for analysis
via discrete choice models. The researcher can also define the choice
set more succinctly as 0, 1, and 2 or more vehicles, if the goals of the
research can be met with this specification.
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When considered in this way, most choices involving “how many” can
be represented in a discrete choice framework. In the case of savings ac-
counts, every one-dollar increment (or even every one-cent increment)
can be considered an alternative, and as long as some finite maximum
exists, then the choice set fits the criteria for discrete choice. Whether
to use regression or discrete choice models in these situations is a spec-
ification issue that the researcher must consider. Usually a regression
model is more natural and easier. A discrete choice model would be
used in these situations only if there were compelling reasons for do-
ing so. As an example, Train et al. (1987a) analyzed the number and
duration of phone calls that households make, using a discrete choice
model instead of a regression model because the discrete choice model
allowed greater flexibility in handling the nonlinear price schedules that
households face. In general, the researcher needs to consider the goals of
the research and the capabilities of alternative methods when deciding
whether to apply a discrete choice model.

2.3 Derivation of Choice Probabilities

Discrete choice models are usually derived under an assumption of
utility-maximizing behavior by the decision maker. Thurstone (1927)
originally developed the concepts in terms of psychological stimuli,
leading to a binary probit model of whether respondents can differen-
tiate the level of stimulus. Marschak (1960) interpreted the stimuli as
utility and provided a derivation from utility maximization. Following
Marschak, models that can be derived in this way are called random
utility models (RUMs). It is important to note, however, that models
derived from utility maximization can also be used to represent decision
making that does not entail utility maximization. The derivation assures
that the model is consistent with utility maximization; it does not pre-
clude the model from being consistent with other forms of behavior. The
models can also be seen as simply describing the relation of explanatory
variables to the outcome of a choice, without reference to exactly how
the choice is made.

Random utility models (RUMs) are derived as follows. A decision
maker, labeled n, faces a choice among J alternatives. The decision
maker would obtain a certain level of utility (or profit) from each al-
ternative. The utility that decision maker n obtains from alternative j
is Unj , j = 1, . . . , J . This utility is known to the decision maker but
not, as we see in the following, by the researcher. The decision maker
chooses the alternative that provides the greatest utility. The behavioral
model is therefore: choose alternative i if and only if Uni > Unj ∀ j �= i .
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Consider now the researcher. The researcher does not observe the
decision maker’s utility. The researcher observes some attributes of the
alternatives as faced by the decision maker, labeled xnj ∀ j , and some at-
tributes of the decision maker, labeled sn , and can specify a function that
relates these observed factors to the decision maker’s utility. The func-
tion is denoted Vnj = V (xnj , sn) ∀ j and is often called representative
utility. Usually, V depends on parameters that are unknown to the re-
searcher and therefore estimated statistically; however, this dependence
is suppressed for the moment.

Since there are aspects of utility that the researcher does not or cannot
observe, Vnj �= Unj . Utility is decomposed as Unj = Vnj + εnj , where
εnj captures the factors that affect utility but are not included in Vnj . This
decomposition is fully general, since εnj is defined as simply the differ-
ence between true utility Unj and the part of utility that the researcher
captures in Vnj . Given its definition, the characteristics of εnj , such as its
distribution, depend critically on the researcher’s specification of Vnj .
In particular, εnj is not defined for a choice situation per se. Rather, it is
defined relative to a researcher’s representation of that choice situation.
This distinction becomes relevant when evaluating the appropriateness
of various specific discrete choice models.

The researcher does not know εnj ∀ j and therefore treats these terms
as random. The joint density of the random vector ε′

n = 〈εn1, . . . , εn J 〉
is denoted f (εn). With this density, the researcher can make probabilis-
tic statements about the decision maker’s choice. The probability that
decision maker n chooses alternative i is

Pni = Prob(Uni > Unj ∀ j �= i)

= Prob(Vni + εni > Vnj + εnj ∀ j �= i)

= Prob(εnj − εni < Vni − Vnj ∀ j �= i).(2.1)

This probability is a cumulative distribution, namely, the probability that
each random term εnj − εni is below the observed quantity Vni − Vnj .
Using the density f (εn), this cumulative probability can be rewritten as

Pni = Prob(εnj − εni < Vni − Vnj ∀ j �= i)

=
∫

ε

I (εnj − εni < Vni − Vnj ∀ j �= i) f (εn) dεn,(2.2)

where I (·) is the indicator function, equaling 1 when the expression in
parentheses is true and 0 otherwise. This is a multidimensional integral
over the density of the unobserved portion of utility, f (εn). Different
discrete choice models are obtained from different specifications of this
density, that is, from different assumptions about the distribution of the
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unobserved portion of utility. The integral takes a closed form only for
certain specifications of f (·). Logit and nested logit have closed-form
expressions for this integral. They are derived under the assumption that
the unobserved portion of utility is distributed iid extreme value and a
type of generalized extreme value, respectively. Probit is derived under
the assumption that f (·) is a multivariate normal, and mixed logit is
based on the assumption that the unobserved portion of utility consists
of a part that follows any distribution specified by the researcher plus a
part that is iid extreme value. With probit and mixed logit, the resulting
integral does not have a closed form and is evaluated numerically through
simulation. Each of these models is discussed in detail in subsequent
chapters.

The meaning of choice probabilities is more subtle, and more
revealing, than it might at first appear. An example serves as illustra-
tion. Consider a person who can take either a car or a bus to work. The
researcher observes the time and cost that the person would incur under
each mode. However, the researcher realizes that there are factors other
than time and cost that affect the person’s utility and hence his choice.
The researcher specifies

Vc = αTc + βMc,

Vb = αTb + βMb,

where Tc and Mc are the time and cost (in money) that the person incurs
traveling to work by car, Tb and Mb are defined analogously for bus,
and the subscript n denoting the person is omitted for convenience. The
coefficients α and β are either known or estimated by the researcher.

Suppose that, given α and β and the researcher’s measures of the time
and cost by car and bus, it turns out that Vc = 4 and Vb = 3. This means
that, on observed factors, car is better for this person than bus by 1 unit.
(We discuss in following text the normalization of utility that sets the
dimension of these units.) It does not mean, however, that the person
necessarily chooses car, since there are other factors not observed by the
researcher that affect the person. The probability that the person chooses
bus instead of car is the probability that the unobserved factors for bus
are sufficiently better than those for car to overcome the advantage that
car has on observed factors. Specifically, the person will choose bus if the
unobserved portion of utility is higher than that for car by at least 1 unit,
thus overcoming the 1-unit advantage that car has on observed factors.
The probability of this person choosing bus is therefore the probability
that εb − εc > 1. Likewise, the person will choose car if the unobserved
utility for bus is not better than that for car by at least 1 unit, that is, if
εb − εc < 1. Since 1 is the difference between Vc and Vb in our example,
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the probabilities can be stated more explicitly as

Pc = Prob(εb − εc < Vc − Vb)

and

Pb = Prob(εb − εc > Vc − Vb)

= Prob(εc − εb < Vb − Vc).

These equations are the same as equation (2.1), re-expressed for our
car–bus example.

The question arises in the derivation of the choice probabilities: what
is meant by the distribution of εn? The interpretation that the researcher
places on this density affects the researcher’s interpretation of the choice
probabilities. The most prominent way to think about this distribution
is as follows. Consider a population of people who face the same ob-
served utility Vnj ∀ j as person n. Among these people, the values of
the unobserved factors differ. The density f (εn) is the distribution of
the unobserved portion of utility within the population of people who
face the same observed portion of utility. Under this interpretation, the
probability Pni is the share of people who choose alternative i within
the population of people who face the same observed utility for each
alternative as person n. The distribution can also be considered in sub-
jective terms, as representing the researcher’s subjective probability that
the person’s unobserved utility will take given values. In this case, Pni

is the probability that the researcher ascribes to the person’s choosing
alternative i given the researcher’s ideas about the unobserved portions
of the person’s utility. As a third possibility, the distribution can repre-
sent the effect of factors that are quixotic to the decision maker himself
(representing, e.g., aspects of bounded rationality), so that Pni is the
probability that these quixotic factors induce the person to choose alter-
native i given the observed, nonquixotic factors.

2.4 Specific Models

Logit, GEV, probit, and mixed logit are discussed at length in the sub-
sequent chapters. However, a quick preview of these models is useful at
this point, to show how they relate to the general derivation of all choice
models and how they differ within this derivation. As stated earlier, dif-
ferent choice models are derived under different specifications of the
density of unobserved factors, f (εn). The issues therefore are what dis-
tribution is assumed for each model, and what is the motivation for these
different assumptions.
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Logit (discussed in Chapter 3) is by far the most widely used discrete
choice model. It is derived under the assumption that εni is iid extreme
value for all i . The critical part of the assumption is that the unobserved
factors are uncorrelated over alternatives, as well as having the same
variance for all alternatives. This assumption, while restrictive, provides
a very convenient form for the choice probability. The popularity of
the logit model is due to this convenience. However, the assumption
of independence can be inappropriate in some situations. Unobserved
factors related to one alternative might be similar to those related to
another alternative. For example, a person who dislikes travel by bus
because of the presence of other riders might have a similar reaction to
rail travel; if so, then the unobserved factors affecting bus and rail are
correlated rather than independent. The assumption of independence
also enters when a logit model is applied to sequences of choices over
time. The logit model assumes that each choice is independent of the
others. In many cases, one would expect that unobserved factors that
affect the choice in one period would persist, at least somewhat, into the
next period, inducing dependence among the choices over time.

The development of other models has arisen largely to avoid the inde-
pendence assumption within a logit. Generalized extreme value models
(GEV, discussed in Chapter 4) are based, as the name implies, on a gener-
alization of the extreme value distribution. The generalization can take
many forms, but the common element is that it allows correlation in
unobserved factors over alternatives and collapses to the logit model
when this correlation is zero. Depending on the type of GEV model,
the correlations can be more or less flexible. For example, a compar-
atively simple GEV model places the alternatives into several groups
called nests, with unobserved factors having the same correlation for all
alternatives within a nest and no correlation for alternatives in different
nests. More complex forms allow essentially any pattern of correlation.
GEV models usually have closed forms for the choice probabilities, so
that simulation is not required for their estimation.

Probits (Chapter 5) are based on the assumption that the unobserved
factors are distributed jointly normal: ε′

n = 〈εn1, . . . , εn J 〉 ∼ N (0, �).
With full covariance matrix �, any pattern of correlation and het-
eroskedasticity can be accommodated. When applied to sequences of
choices over time, the unobserved factors are assumed to be jointly nor-
mal over time as well as over alternatives, with any temporal correlation
pattern. The flexibility of the probit model in handling correlations over
alternatives and time is its main advantage. Its only functional limitation
arises from its reliance on the normal distribution. In some situations,
unobserved factors may not be normally distributed. For example, a
customer’s willingness to pay for a desirable attribute of a product is
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necessary positive. Assuming that this unobserved factor is normally
distributed contradicts the fact that it is positive, since the normal distri-
bution has density on both sides of zero.

Mixed logit (Chapter 6) allows the unobserved factors to follow any
distribution. The defining characteristic of a mixed logit is that the un-
observed factors can be decomposed into a part that contains all the
correlation and heteroskedasticity, and another part that is iid extreme
value. The first part can follow any distribution, including non-normal
distributions. We will show that mixed logit can approximate any dis-
crete choice model and thus is fully general.

Other discrete choice models (Chapter 7) have been specified by re-
searchers for specific purposes. Often these models are obtained by
combining concepts from other models. For example, a mixed probit is
obtained by decomposing the unobserved factors into two parts, as in
mixed logit, but giving the second part a normal distribution instead of
extreme value. This model has the generality of mixed logit and yet for
some situations can be easier to estimate. By understanding the deriva-
tion and motivation for all the models, each researcher can specify a
model that is tailor-made for the situation and goals of her research.

2.5 Identification of Choice Models

Several aspects of the behavioral decision process affect the specification
and estimation of any discrete choice model. The issues can be summa-
rized easily in two statements: “Only differences in utility matter” and
“The scale of utility is arbitrary.” The implications of these statements
are far-reaching, subtle, and, in many cases, quite complex. We discuss
them below.

2.5.1. Only Differences in Utility Matter

The absolute level of utility is irrelevant to both the decision
maker’s behavior and the researcher’s model. If a constant is added to the
utility of all alternatives, the alternative with the highest utility doesn’t
change. The decision maker chooses the same alternative with Unj ∀ j
as with Unj + k ∀ j for any constant k. A colloquial way to express this
fact is, “A rising tide raises all boats.”

The level of utility doesn’t matter from the researcher’s perspec-
tive either. The choice probability is Pni = Prob(Uni > Unj ∀ j �= i) =
Prob(Uni − Unj > 0 ∀ j �= i), which depends only on the difference
in utility, not its absolute level. When utility is decomposed into the
observed and unobserved parts, equation (2.1) expresses the choice
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probability as Pni = Prob(εnj − εni < Vni − Vnj ∀ j �= i), which also de-
pends only on differences.

The fact that only differences in utility matter has several implications
for the identification and specification of discrete choice models. In
general it means that the only parameters that can be estimated (that is,
are identified) are those that capture differences across alternatives. This
general statement takes several forms.

Alternative-Specific Constants

It is often reasonable to specify the observed part of utility to
be linear in parameters with a constant: Vnj = x ′

njβ + k j ∀ j , where xnj

is a vector of variables that relate to alternative j as faced by decision
maker n, β are coefficients of these variables, and k j is a constant that
is specific to alternative j . The alternative-specific constant for an al-
ternative captures the average effect on utility of all factors that are not
included in the model. Thus they serve a similar function to the con-
stant in a regression model, which also captures the average effect of all
unincluded factors.

When alternative-specific constants are included, the unobserved por-
tion of utility, εnj , has zero mean by construction. If εnj has a nonzero
mean when the constants are not included, then adding the constants
makes the remaining error have zero mean: that is, if Unj = x ′

njβ + ε∗
nj

with E(εnj )
∗ = k j �= 0, then Unj = x ′

njβ + k j + εnj with E(εnj ) = 0. It
is reasonable, therefore, to include a constant in Vnj for each alternative.
However, since only differences in utility matter, only differences in
the alternative-specific constants are relevant, not their absolute levels.
To reflect this fact, the researcher must set the overall level of these
constants.

The concept is readily apparent in the car–bus example. A specifica-
tion of utility that takes the form

Uc = αTc + βMc + k0
c + εc,

Ub = αTb + βMb + k0
b + εb,

with k0
b − k0

c = d, is equivalent to a model with

Uc = αTc + βMc + k1
c + εc,

Ub = αTb + βMb + k1
b + εb,

where the difference in the new constants is the same as the difference
in the old constants, namely, k1

b − k1
c = d = k0

b − k0
c . Any model with

the same difference in constants is equivalent. In terms of estimation, it
is impossible to estimate the two constants themselves, since an infinite
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number of values of the two constants (any values that have the same
difference) result in the same choice probabilities.

To account for this fact, the researcher must normalize the absolute
levels of the constants. The standard procedure is to normalize one of
the constants to zero. For example, the researcher might normalize the
constant for the car alternative to zero:

Uc = αTc + βMc + εc,

Ub = αTb + βMb + kb + εb.

Under this normalization, the value of kb is d, which is the difference
in the original (unnormalized) constants. The bus constant is interpreted
as the average effect of unincluded factors on the utility of bus relative
to car.

With J alternatives, at most J − 1 alternative-specific constants can
enter the model, with one of the constants normalized to zero. It is irrel-
evant which constant is normalized to zero: the other constants are inter-
preted as being relative to whichever one is set to zero. The researcher
could normalize to some value other than zero, of course; however, there
would be no point in doing so, since normalizing to zero is easier (the
constant is simply left out of the model) and has the same effect.

Sociodemographic Variables

The same issue affects the way that socio-demographic variables
enter a model. Attributes of the alternatives, such as the time and cost
of travel on different modes, generally vary over alternatives. However,
attributes of the decision maker do not vary over alternatives. They can
only enter the model if they are specified in ways that create differences
in utility over alternatives.

Consider for example the effect of a person’s income on the decision
whether to take bus or car to work. It is reasonable to suppose that a
person’s utility is higher with higher income, whether the person takes
bus or car. Utility is specified as

Uc = αTc + βMc + θ0
c Y + εc,

Ub = αTb + βMb + θ0
b Y + kb + εb,

where Y is income and θ0
c and θ0

b capture the effects of changes in
income on the utility of taking car and bus, respectively. We expect
that θ0

c > 0 and θ0
b > 0, since greater income makes people happier no

matter what mode they take. However, θ0
c �= θ0

b , since income probably
has a different effect on the person depending on his mode of travel.
Since only differences in utility matter, the absolute levels of θ0

c and θ0
b

cannot be estimated, only their difference. To set the level, one of these
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parameters is normalized to zero. The model becomes

Uc = αTc + βMc + εc,

Ub = αTb + βMb + θbY + kb + εb,

where θb = θ0
b − θ0

c and is interpreted as the differential effect of income
on the utility of bus compared to car. The value of θb can be either positive
or negative.

Sociodemographic variables can enter utility in other ways. For ex-
ample, cost is often divided by income:

Uc = αTc + βMc/Y + εc,

Ub = αTb + βMb/Y + θbY + kb + εb.

The coefficient of cost in this specification is β/Y . Since this coefficient
decreases in Y , the model reflects the concept that cost becomes less
important in a person’s decision making, relative to other issues, when
income rises.

When sociodemographic variables are interacted with attributes of
the alternatives, there is no need to normalize the coefficients. The
sociodemographic variables affect the differences in utility through
their interaction with the attributes of the alternatives. The difference
Uc − Ub = . . . β(Mc − Mb)/Y . . . varies with income, since costs differ
over alternatives.

Number of Independent Error Terms

As given by equation (2.2), the choice probabilities take the
form

Pni =
∫

ε

I (εnj − εni < Vni − Vnj ∀ j �= i) f (εn) dεn.

This probability is a J-dimensional integral over the density of the J error
terms in ε′

n = 〈εn1, . . . , εn J 〉. The dimension can be reduced, however,
through recognizing that only differences in utility matter. With J errors
(one for each alternative), there are J − 1 error differences. The choice
probability can be expressed as a (J − 1)-dimensional integral over the
density of these error differences:

Pni = Prob(Uni > Unj ∀ j �= i)

= Prob(εnj − εni < Vni − Vnj ∀ j �= i)

= Prob(ε̃nji < Vni − Vnj ∀ j �= i)

=
∫

I (ε̃nji < Vni − Vnj ∀ j �= i)g(ε̃ni ) d ε̃ni
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where ε̃nji = εnj − εni is the difference in errors for alternatives i and j ;
ε̃ni = 〈ε̃n1i , . . . , ε̃n J i 〉 is the (J − 1)-dimensional vector of error differ-
ences, with the . . . over all alternatives except i ; and g(·) is the density
of these error differences. Expressed in this way, the choice probability
is a (J − 1)-dimensional integral.

The density of the error differences g(·), and the density of the original
errors, f (·), are related in a particular way. Suppose a model is speci-
fied with an error for each alternative: εn = 〈εn1, . . . , εn J 〉 with density
f (εn). This model is equivalent to a model with J − 1 errors defined as
ε̃njk = εnj − εnk for any k and density g(ε̃nk) derived from f (εn). For any
f (εn), the corresponding g(ε̃nk) can be derived. However, since εn has
more elements than ε̃nk , there is an infinite number of densities for the
J error terms that give the same density for the J − 1 error differences.
Stated equivalently, any g(ε̃nk) is consistent with an infinite number of
different f (εn)’s. Since choice probabilities can always be expressed as
depending only on g(ε̃nk), one dimension of the density of f (εn) is not
identified and must be normalized by the researcher.

The normalization of f (εn) can be handled in various ways. For some
models, such as logit, the distribution of the error terms is sufficiently
restrictive that the normalization occurs automatically with the assump-
tions on the distribution. For other models, such as probit, identification
is often obtained by specifying the model only in terms of error differ-
ences, that is, by parameterizing g(·) without reference to f (·). In all but
the simplest models, the researcher needs to consider the fact that only
the density of error differences affects the probabilities and therefore is
identified. In discussing the various models in subsequent chapters, we
will return to this issue and how to handle it.

2.5.2. The Overall Scale of Utility Is Irrelevant

Just as adding a constant to the utility of all alternatives does
not change the decision maker’s choice, neither does multiplying each
alternative’s utility by a constant. The alternative with the highest utility
is the same no matter how utility is scaled. The modelU 0

nj = Vnj + εnj ∀ j
is equivalent to U 1

nj = λVnj + λεnj ∀ j for any λ > 0. To take account
of this fact, the researcher must normalize the scale of utility.

The standard way to normalize the scale of utility is to normalize
the variance of the error terms. The scale of utility and the variance
of the error terms are definitionally linked. When utility is multiplied
by λ, the variance of each εnj changes by λ2: Var(λεnj ) = λ2 Var(εnj ).
Therefore normalizing the variance of the error terms is equivalent to
normalizing the scale of utility.
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Normalization with iid Errors

If the error terms are assumed to be independently, identically
distributed (iid), then the normalization for scale is straightforward. The
researcher normalizes the error variance to some number, which is usu-
ally chosen for convenience. Since all the errors have the same variance
by assumption, normalizing the variance of any of them sets the variance
for them all.

When the observed portion of utility is linear in parameters, the nor-
malization provides a way of interpreting coefficients. Consider the
model U 0

nj = x ′
njβ + ε0

nj where the variance of the error terms is
Var(ε0

nj ) = σ 2. Suppose the researcher normalizes the scale by setting
the error variance to 1. The original model becomes the following equiva-
lent specification: U 1

nj = x ′
nj (β/σ ) + ε1

nj with Var(ε1
nj ) = 1. The original

coefficients β are divided by the standard deviation of the unobserved
portion of utility. The new coefficients β/σ reflect, therefore, the effect
of the observed variables relative to the standard deviation of the unob-
served factors.

The same concepts apply for whatever number the researcher chooses
for normalization. As we will see in the next chapter, the error variances
in a standard logit model are traditionally normalized to π2/6, which is
about 1.6. In this case, the preceding model becomes Unj = x ′

nj (β/σ )√
1.6 + εnj with Var(εnj ) = 1.6. The coefficients still reflect the vari-

ance of the unobserved portion of utility. The only difference is that the
coefficients are larger by a factor of

√
1.6.

While it is immaterial which number is used by the researcher for nor-
malization, interpretation of model results must take the normalization
into consideration. Suppose, for example, that a logit and an independent
probit model were both estimated on the same data. As stated earlier,
the error variance is normalized to 1.6 for logit. Suppose the researcher
normalized the probit to have error variances of 1, which is traditional
with independent probits. This difference in normalization must be kept
in mind when comparing estimates from the two models. In particu-
lar, the coefficients in the logit model will be

√
1.6 times larger than

those for the probit model, simply due to the difference in normaliza-
tion. If the researcher does not take this scale difference into account
when comparing the models, she might inadvertently think that the logit
model implies that people care more about the attributes (since the co-
efficients are larger) than implied by the probit model. For example, in
a mode choice model, suppose the estimated cost coefficient is −0.55
from a logit model and −0.45 from an independent probit model. It is
incorrect to say that the logit model implies more sensitivity to costs
than the probit model. The coefficients in one of the models must be
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adjusted to account for the difference in scale. The logit coefficients can
be divided by

√
1.6, so that the error variance is 1, just as in the probit

model. With this adjustment, the comparable coefficients are −0.43 for
the logit model and −0.45 for the probit model. The logit model implies
less price sensitivity than the probit. Instead, the probit coefficients could
be converted to the scale of the logit coefficients by multiplying them
by

√
1.6, in which case the comparable coefficients would be −0.55 for

logit and −0.57 for probit.
A similar issue of interpretation arises when the same model is es-

timated on different data sets. The relative scale of the estimates from
the two data sets reflects the relative variance of unobserved factors in
the data sets. Suppose mode choice models were estimated in Chicago
and Boston. For Chicago, the estimated cost coefficient is −0.55 and
the estimated coefficient of time is −1.78. For Boston, the estimates
are −0.81 and −2.69. The ratio of the cost coefficient to the time co-
efficient is very similar in the two cities: 0.309 in Chicago and 0.301
in Boston. However, the scale of the coefficients is about fifty percent
higher for Boston than for Chicago. This scale difference means that
the unobserved portion of utility has less variance in Boston than in
Chicago: since the coefficients are divided by the standard deviation of
the unobserved portion of utility, lower coefficients mean higher stan-
dard deviation and hence variance. The models are revealing that factors
other than time and cost have less effect on people in Boston than in
Chicago. Stated more intuitively, time and cost have more importance,
relative to unobserved factors, in Boston than in Chicago, which is con-
sistent with the larger scale of the coefficients for Boston.

Normalization with Heteroskedastic Errors

In some situations, the variance of the error terms can be dif-
ferent for different segments of the population. The researcher cannot
set the overall level of utility by normalizing the variance of the errors
for all segments, since the variance is different in different segments.
Instead, the researcher sets the overall scale of utility by normalizing the
variance for one segment, and then estimates the variance (and hence
scale) for each segment relative to this one segment.

For example, consider the situation described in the previous section,
where the unobserved factors have greater variance in Chicago than
in Boston. If separate models are estimated for Chicago and Boston,
then the variance of the error term is normalized separately for each
model. The scale of the parameters in each model reflects the variance
of unincluded factors in that area. Suppose, however, that the researcher
wants to estimate a model on data for both Chicago and Boston. She



P1: JYD/...

CB495-02Drv CB495/Train KEY BOARDED May 25, 2009 20:43 Char Count= 0

26 Behavioral Models

cannot normalize the variance of the unobserved factors for all travelers
to the same number, since the variance is different for travelers in Boston
than for those in Chicago. Instead, the researcher sets the overall scale
of utility by normalizing the variance in one area (say Boston) and then
estimates the variance in the other area relative to that in the first area
(the variance in Chicago relative to that in Boston).

The model in its original form is

Unj = αTnj + βMnj + εB
nj ∀n in Boston

Unj = αTnj + βMnj + εC
nj ∀n in Chicago,

where the variance of εB
nj is not the same as the variance of εC

nj . Label

the ratio of variances as k = Var(εC
nj )/Var(εB

nj ). We can divide the utility

for travelers in Chicago by
√

k; this division doesn’t affect their choices,
of course, since the scale of utility doesn’t matter. However, doing so
allows us to rewrite the model as

Unj = αTnj + βMnj + εnj ∀n in Boston

Unj = (α/
√

k)Tnj + (β/
√

k)Mnj + εnj ∀n in Chicago,

where now the variance of εnj is the same for all n in both cities (since
Var(εC

nj/
√

k) = (1/k)Var(εC
nj ) = [Var(εB

nj )/Var(εC
nj )]Var(εC

nj ) = Var(εB
nj ).

The scale of utility is set by normalizing the variance of εnj . The param-
eter k, which is often called the scale parameter, is estimated along with
β and α. The estimated value k̂ of k tells the researcher the variance of
unobserved factors in Chicago relative to that in Boston. For example,
k̂ = 1.2 implies that the variance of unobserved factors is twenty percent
greater in Chicago than in Boston.

The variance of the error term can differ over geographic regions,
data sets, time, or other factors. In all cases, the researcher sets the
overall scale of utility by normalizing one of the variances and then
estimating the other variances relative to the normalized one. Swait and
Louviere (1993) discuss the role of the scale parameter in discrete choice
models, describing the variety of reasons that variances can differ over
observations. As well as the traditional concept of variance in unobserved
factors, psychological factors can come into play, depending on the
choice situation and the interpretation of the researcher. For example,
Bradley and Daly (1994) allow the scale parameter to vary over stated
preference experiments in order to allow for respondents’ fatigue in
answering the survey questions. Ben-Akiva and Morikawa (1990) allow
the scale parameter to differ for respondents’ stated intentions versus
their actual market choices.
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Normalization with Correlated Errors

In the discussion so far we have assumed that εnj is independent
over alternatives. When the errors are correlated over alternatives, nor-
malizing for scale is more complex. We have talked in terms of setting
the scale of utility. However, since only differences in utility matter, it is
more appropriate to talk in terms of setting the scale of utility differences.
When errors are correlated, normalizing the variance of the error for one
alternative is not sufficient to set the scale of utility differences.

The issue is most readily described in terms of a four-alternative
example. The utility for the four alternatives is Unj = Vnj + εnj , j =
1, . . . , 4. The error vector εn = 〈εn1, . . . , εn4〉 has zero mean and co-
variance matrix

(2.3) � =

⎛
⎜⎜⎝

σ11 σ12 σ13 σ14

· σ22 σ23 σ24

· · σ33 σ34

· · · σ44

⎞
⎟⎟⎠ ,

where the dots refer to the corresponding elements in the upper part of
the symmetric matrix.

Since only differences in utility matter, this model is equivalent to
one in which all utilities are differenced from, say, the first alterna-
tive. The equivalent model is Ũnj1 = Ṽnj1 − ε̃nj1 for j = 2, 3, 4, where
Ũnj1 = Unj − Un1, Ṽnj1 = Vnj − Vn1, and the vector of error differ-
ences is ε̃n1 = 〈(εn2 − εn1), (εn3 − εn1), (εn4 − εn1)〉. The variance of
each error difference depends on the variances and covariances of the
original errors. For example, the variance of the difference between
the first and second errors is Var(ε̃n21) = Var(εn2 − εn1) = Var(εn1) +
Var(εn2) − 2 Cov(εn1, εn2) = σ11 + σ22 − 2σ12. We can similarly calcu-
late the covariance between ε̃n21, which is the difference between the first
and second errors, and ε̃n31, which is the difference between the first and
third errors: Cov(ε̃n21, ε̃n31) = E(εn2 − εn1)(εn3 − εn1) = E(εn2εn3 −
εn2εn1 − εn3εn1 + εn1εn1) = σ23 − σ21 − σ31 + σ11. The covariance
matrix for the vector of error differences becomes

�̃1 =
(

σ11 + σ22 − 2σ12 σ11 + σ23 − σ12 − σ13 σ11 + σ24 − σ12 − σ14

· σ11 + σ33 − 2σ13 σ11 + σ34 − σ13 − σ14

· · σ11 + σ44 − 2σ14

)
.

Setting the variance of one of the original errors is not sufficient to
set the variance of the error differences. For example, if the variance
for the first alternative is set to some number σ11 = k, the variance of
the difference between the errors for the first two alternatives becomes
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k+σ22−2σ12. An infinite number of values for σ22 and σ12 lead to the
same value of the difference σ22−2σ12 and so provide equivalent models.

A common way to set the scale of utility when errors are not iid
is to normalize the variance of one of the error differences to some
number. Setting the variance of an error difference sets the scale of utility
differences and hence of utility. Suppose we normalize the variance of
ε̃n21 to 1. The covariance matrix for the error differences, expressed in
terms of the covariances of the original errors, becomes

(2.4)

⎛
⎝1 (σ11 + σ23 − σ12 − σ13)/m (σ11 + σ24 − σ12 − σ14)/m

· (σ11 + σ33 − 2σ13)/m (σ11 + σ34 − σ13 − σ14)/m
· · (σ11 + σ44 − 2σ14)/m

⎞
⎠ ,

where m = σ11 + σ22 − 2σ12. Utility is divided by
√

σ11 + σ22 − 2σ12

to obtain this scaling.
Note that when the error terms are iid, normalizing the variance of

one of these errors automatically normalizes the variance of the error
differences. With iid errors, σ j j = σi i and σi j = 0 for i �= j . Therefore,
if σ11 is normalized to k, then the variance of the error difference be-
comes σ11 + σ22 − 2σ12 = k + k − 0 = 2k. The variance of the error
difference is indeed being normalized, the same as with non-iid errors.

Normalization has implications for the number of parameters that can
be estimated in the covariance matrix. The covariance of the original
errors, � in equation (2.3), has ten elements in our four-alternative ex-
ample. However, the covariance matrix of the error differences has six
elements, one of which is normalized to set the scale of utility differ-
ences. The covariance matrix for error differences with the variance of
the first error difference normalized to k takes the form

(2.5) �̃∗
1 =

⎛
⎝ k ωab ωac

· ωbb ωbc

· · ωcc

⎞
⎠ ,

which has only five parameters. On recognizing that only differences
matter and that the scale of utility is arbitrary, the number of covariance
parameters drops from ten to five. A model with J alternatives has at
most J (J − 1)/2 − 1 covariance parameters after normalization.

Interpretation of the model is affected by the normalization. Suppose
for example that the elements of matrix (2.5) were estimated. The param-
eter ωbb is the variance of the difference between the errors for the first
and third alternatives relative to the variance of the difference between
the errors for the first and second alternatives. Complicating interpreta-
tion even further is the fact that the variance of the difference between
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the errors for two alternatives reflects the variances of both as well as
their covariance.

As we will see, the normalization of logit and nested logit models is
automatic with the distributional assumptions that are placed on the error
terms. Interpretation under these assumptions is relatively straightfor-
ward. For mixed logit and probit, fewer assumptions are placed on the
distribution of error terms, so that normalization is not automatic. The
researcher must keep the normalization issues in mind when specifying
and interpreting a model. We return to this topic when discussing each
discrete choice model in subsequent chapters.

2.6 Aggregation

Discrete choice models operate at the level of individual decision makers.
However, the researcher is usually interested in some aggregate measure,
such as the average probability within a population or the average re-
sponse to a change in some factor.

In linear regression models, estimates of aggregate values of the de-
pendent variable are obtained by inserting aggregate values of the ex-
planatory variables into the model. For example, suppose hn is housing
expenditures of person n, yn is the income of the person, and the model
relating them is hn = α + βyn . Since this model is linear, the average
expenditure on housing is simply calculated as α + β ȳ, where ȳ is av-
erage income. Similarly, the average response to a one-unit change in
income is simply β, since β is the response for each person.

Discrete choice models are not linear in explanatory variables, and
consequently, inserting aggregate values of the explanatory variables
into the models will not provide an unbiased estimate of the average
probability or average response. The point can be made visually. Con-
sider Figure 2.1, which gives the probabilities of choosing a particular
alternative for two individuals with the observed portion of their utility
(their representative utility) being a and b. The average probability is
the average of the probabilities for the two people, namely, (Pa + Pb)/2.
The average representative utility is (a + b)/2, and the probability eval-
uated at this average is the point on the curve above (a + b)/2. As shown
for this case, the average probability is greater than the probability eval-
uated at the average representative utility. In general, the probability
evaluated at the average representative utility underestimates the aver-
age probability when the individuals’ choice probabilities are low and
overestimates when they are high.

Estimating the average response by calculating derivatives and elastic-
ities at the average of the explanatory variables is similarly problematic.
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Choice 
probability

Representative 
utility

a ba + b
2

Pb

Pa

Average 
probability

Probability at 
average

Figure 2.1. Difference between average probability and probability calculated

at average representative utility.

Choice 
probability

Representative 
utility

a ba + b
2

Figure 2.2. Difference between average response and response calculated at

average representative utility.

Consider Figure 2.2, depicting two individuals with representative util-
ities a and b. The derivative of the choice probability for a change in
representative utility is small for both of these people (the slope of the
curve above a and b). Consequently, the average derivative is also small.
However, the derivative at the average representative utility is very large
(the slope above (a + b)/2). Estimating the average response in this way
can be seriously misleading. In fact, Talvitie (1976) found, in a mode
choice situation, that elasticities at the average representative utility can
be as much as two or three times greater or less than the average of the
individual elasticities.
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Aggregate outcome variables can be obtained consistently from dis-
crete choice models in two ways, by sample enumeration or segmenta-
tion. We discuss each approach in the following sections.

2.6.1. Sample Enumeration

The most straightforward, and by far the most popular, approach
is sample enumeration, by which the choice probabilities of each deci-
sion maker in a sample are summed, or averaged, over decision makers.
Consider a discrete choice model that gives probability Pni that decision
maker n will choose alternative i from a set of alternatives. Suppose
a sample of N decision makers, labeled n = 1, . . . , N , is drawn from
the population for which aggregate statistics are required. (This sample
might be the sample on which the model was estimated. However, it
might also be a different sample, collected in a different area or at a
later date than the estimation sample.) Each sampled decision maker n
has some weight associated with him, wn , representing the number of
decision makers similar to him in the population. For samples based on
exogenous factors, this weight is the reciprocal of the probability that
the decision maker was selected into the sample. If the sample is purely
random, then wn is the same for all n; and if the sample is stratified
random, then wn is the same for all n within a stratum.

A consistent estimate of the total number of decision makers in the
population who choose alternative i , labeled N̂i , is simply the weighted
sum of the individual probabilities:

N̂i =
∑

n

wn Pni .

The average probability, which is the estimated market share, is N̂i/N .
Average derivatives and elasticities are similarly obtained by calculating
the derivative and elasticity for each sampled person and taking the
weighted average.

2.6.2. Segmentation

When the number of explanatory variables is small, and those
variables take only a few values, it is possible to estimate aggregate
outcomes without utilizing a sample of decision makers. Consider, for
example, a model with only two variables entering the representative
utility of each alternative: education level and gender. Suppose the edu-
cation variable consists of four categories: did not complete high school,
completed high school but did not attend college, attended college but
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did not receive a degree, received a college degree. Then the total num-
ber of different types of decision makers (called segments) is eight: the
four education levels for each of the two genders. Choice probabilities
vary only over these eight segments, not over individuals within each
segment.

If the researcher has data on the number of people in each segment,
then the aggregate outcome variables can be estimated by calculating
the choice probability for each segment and taking the weighted sum of
these probabilities. The number of people estimated to choose alternative
i is

N̂i =
8∑

s=1

ws Psi ,

where Psi is the probability that a decision maker in segment s chooses
alternative i , and ws is the number of decision makers in segment s.

2.7 Forecasting

For forecasting into some future year, the procedures described earlier
for aggregate variables are applied. However, the exogenous variables
and/or the weights are adjusted to reflect changes that are anticipated
over time. With sample enumeration, the sample is adjusted so that it
looks like a sample that would be drawn in the future year. For example,
to forecast the number of people who will choose a given alternative five
years in the future, a sample drawn from the current year is adjusted to
reflect changes in socioeconomic and other factors that are expected to
occur over the next five years. The sample is adjusted by (1) changing
the value of the variables associated with each sampled decision maker
(e.g., increasing each decision maker’s income to represent real income
growth over time), and/or (2) changing the weight attached to each de-
cision maker to reflect changes over time in the number of decision
makers in the population that are similar to the sampled decision maker
(e.g., increasing the weights for one-person households and decreasing
weights for large households to reflect expected decreases in household
size over time).

For the segmentation approach, changes in explanatory variables over
time are represented by changes in the number of decision makers in
each segment. The explanatory variables themselves cannot logically be
adjusted, since the distinct values of the explanatory variables define the
segments. Changing the variables associated with a decision maker in
one segment simply shifts the decision maker to another segment.
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2.8 Recalibration of Constants

As described in Section 2.5.1, alternative-specific constants are often
included in a model to capture the average effect of unobserved factors.
In forecasting, it is often useful to adjust these constants, to reflect the
fact that unobserved factors are different for the forecast area or year
compared to the estimation sample. Market-share data from the forecast
area can be used to recalibrate the constants appropriately. The recali-
brated model can then be used to predict changes in market shares due
to changes in explanatory factors.

An iterative process is used to recalibrate the constants. Let α0
j be

the estimated alternative-specific constant for alternative j . The super-
script 0 is used to indicate that these are the starting values in the iterative
process. Let Sj denote the share of decision makers in the forecast area
that choose alternative j in the base year (usually, the latest year for
which such data are available.) Using the discrete choice model with
its original values of α0

j ∀ j , predict the share of decision makers in the
forecast area who will choose each alternative. Label these predictions
Ŝ j

0 ∀ j . Compare the predicted shares with the actual shares. If the actual
share for an alternative exceeds the predicted share, raise the constant
for that alternative. Lower the constant if the actual share is below the
predicted. An effective adjustment is

α1
j = α0

j + ln
(
Sj/Ŝ j

0
)
.

With the new constants, predict the share again, compare with the actual
shares, and if needed adjust the constants again. The process is repeated
until the forecasted shares are sufficiently close to the actual shares. The
model with these recalibrated constants is then used to predict changes
from base-year shares due to changes in observed factors that affect
decision makers’ choices.


