3 Logit

3.1 Choice Probabilities

By far the easiest and most widely used discrete choice model is logit.
Its popularity is due to the fact that the formula for the choice proba-
bilities takes a closed form and is readily interpretable. Originally, the
logit formula was derived by Luce (1959) from assumptions about the
characteristics of choice probabilities, namely the independence from ir-
relevant alternatives (I1A) property discussed in Section 3.3.2. Marschak
(1960) showed that these axioms implied that the model is consistent
with utility maximization. The relation of the logit formula to the distri-
bution of unobserved utility (as opposed to the characteristics of choice
probabilities) was developed by Marley, as cited by Luce and Suppes
(1965), who showed that the extreme value distribution leads to the
logit formula. McFadden (1974) completed the analysis by showing the
converse: that the logit formula for the choice probabilities necessarily
implies that unobserved utility is distributed extreme value. In his Nobel
lecture, McFadden (2001) provides a fascinating history of the develop-
ment of this path-breaking model.

To derive the logit model, we use the general notation from Chapter 2
and add a specific distribution for unobserved utility. A decision maker,
labeled n, faces J alternatives. The utility that the decision maker obtains
from alternative j is decomposed into (1) a part labeled V,,; that is known
by the researcher up to some parameters, and (2) an unknown part ¢,;
that is treated by the researcher asrandom: U,,; = V,,; + ¢,; Vj. The logit
model is obtained by assuming that each ¢,; is independently, identically
distributed extreme value. The distribution is also called Gumbel and
type I extreme value (and sometimes, mistakenly, Weibull). The density
for each unobserved component of utility is

B fleg) =e e,
and the cumulative distribution is

(32) F(e)=e*".
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The variance of this distribution is 772/6. By assuming the variance is
72 /6, we are implicitly normalizing the scale of utility, as discussed in
Section 2.5. We return to this issue, and its relevance to interpretation,
in the next section. The mean of the extreme value distribution is not
zero; however, the mean is immaterial, since only differences in utility
matter (see Chapter 2), and the difference between two random terms
that have the same mean has itself a mean of zero.

The difference between two extreme value variables is distributed
logistic. That s, if ¢,,; and €,,; are iid extreme value, then &7

A nji = Enj T Eni
follows the logistic distribution

(33) F(eh,) = ——

njt 1 + esnji

This formula is sometimes used in describing binary logit models, that
is, models with two alternatives. Using the extreme value distribution for
the errors (and hence the logistic distribution for the error differences)
is nearly the same as assuming that the errors are independently normal.
The extreme value distribution gives slightly fatter tails than a normal,
which means that it allows for slightly more aberrant behavior than the
normal. Usually, however, the difference between extreme value and
independent normal errors is indistinguishable empirically.

The key assumption is not so much the shape of the distribution as
that the errors are independent of each other. This independence means
that the unobserved portion of utility for one alternative is unrelated
to the unobserved portion of utility for another alternative. It is a fairly
restrictive assumption, and the development of other models such as
those described in Chapters 4—6 has arisen largely for the purpose of
avoiding this assumption and allowing for correlated errors.

It is important to realize that the independence assumption is not as
restrictive as it might at first seem, and in fact can be interpreted as a
natural outcome of a well-specified model. Recall from Chapter 2 that
&,; 18 defined as the difference between the utility that the decision maker
actually obtains, U, ;, and the representation of utility that the researcher
has developed using observed variables, V,;. As such, ¢,; and its distri-
bution depend on the researcher’s specification of representative utility;
it is not defined by the choice situation per se. In this light, the assump-
tion of independence attains a different stature. Under independence, the
error for one alternative provides no information to the researcher about
the error for another alternative. Stated equivalently, the researcher has
specified V,; sufficiently that the remaining, unobserved portion of utility
is essentially “white noise.” In a deep sense, the ultimate goal of the
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researcher is to represent utility so well that the only remaining aspects
constitute simply white noise; that is, the goal is to specify utility well
enough that a logit model is appropriate. Seen in this way, the logit model
is the ideal rather than a restriction.

If the researcher thinks that the unobserved portion of utility is cor-
related over alternatives given her specification of representative utility,
then she has three options: (1) use a different model that allows for cor-
related errors, such as those described in Chapters 4-6, (2) respecify
representative utility so that the source of the correlation is captured
explicitly and thus the remaining errors are independent, or (3) use the
logit model under the current specification of representative utility, con-
sidering the model to be an approximation. The viability of the last
option depends, of course, on the goals of the research. Violations of
the logit assumptions seem to have less effect when estimating average
preferences than when forecasting substitution patterns. These issues
are discussed in subsequent sections.

We now derive the logit choice probabilities, following McFadden
(1974). The probability that decision maker n chooses alternative i is

Py = PrOb(Vni + &ni > Vn/ + Enj V.] # l)
3.4) = Prob(e,; < &,i + Vi — Vy; Vj #1).
If ¢,; is considered given, this expression is the cumulative distribution
for each ¢,; evaluated at ¢,; + V,; — V,;, which, according to (3.2),
is exp(— exp(—(&,; + Vi — V;,;))). Since the ¢’s are independent, this

cumulative distribution over all j # i is the product of the individual
cumulative distributions:

— o~ EnitVni=Vj)
Pni|8ni=1_[ee "
J#
Of course, ¢,; is not given, and so the choice probability is the integral
of P,; | &,; over all values of ¢,; weighted by its density (3.1):

~(EnitVni =Vnj) —&,. —e tni
(3.5) Py, =/ He_e e e Mdey;.
J#
Some algebraic manipulation of this integral results in a succinct, closed-

form expression:

eVni

Y et

which is the logit choice probability. The algebra that obtains (3.6) from
(3.5) is given in the last section of this chapter.

(36) Pni =
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Representative utility is usually specified to be linear in parameters:
V,j = B'x,j, where x,; is a vector of observed variables relating to al-
ternative j. With this specification, the logit probabilities become

eﬁ/xni
> b

Under fairly general conditions, any function can be approximated ar-
bitrarily closely by one that is linear in parameters. The assumption
is therefore fairly benign. Importantly, McFadden (1974) demonstrated
that the log-likelihood function with these choice probabilities is glob-
ally concave in parameters 8, which helps in the numerical maximization
procedures (as discussed in Chapter 8). Numerous computer packages
contain routines for estimation of logit models with linear-in-parameters
representative utility.

The logit probabilities exhibit several desirable properties. First, P,; is
necessarily between zero and one, as required for a probability. When V,,;
rises, reflecting an improvement in the observed attributes of the alter-
native, with V,; Vj # i held constant, P,; approaches one. And P,; ap-
proaches zero when V,; decreases, since the exponential in the numerator
of (3.6) approaches zero as V,;; approaches —oo. The logit probability for
an alternative is never exactly zero. If the researcher believes that an alter-
native has actually no chance of being chosen by a decision maker, the re-
searcher can exclude that alternative from the choice set. A probability of
exactly 1 is obtained only if the choice set consists of a single alternative.

Second, the choice probabilities for all alternatives sum to one:
Zile P, =) . exp(Vui)/ Zj exp(V,;) = 1. The decision maker neces-
sarily chooses one of the alternatives. The denominator in (3.6) is simply
the sum of the numerator over all alternatives, which gives this summing-
up property automatically. With logit, as well as with some more complex
models such as the nested logit models of Chapter 4, interpretation of
the choice probabilities is facilitated by recognition that the denominator
serves to assure that the probabilities sum to one. In other models, such
as mixed logit and probit, there is no denominator per se to interpret in
this way.

The relation of the logit probability to representative utility is sigmoid,
or S-shaped, as shown in Figure 3.1. This shape has implications for the
impact of changes in explanatory variables. If the representative utility of
an alternative is very low compared with other alternatives, a small in-
crease in the utility of the alternative has little effect on the probability of
its being chosen: the other alternatives are still sufficiently better such that
this small improvement doesn’t help much. Similarly, if one alternative

P, =
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Pni

Figure 3.1. Graph of logit curve.

is far superior to the others in observed attributes, a further increase in its
representative utility has little effect on the choice probability. The point
at which the increase in representative utility has the greatest effect on
the probability of its being chosen is when the probability is close to 0.5,
meaning a 50-50 chance of the alternative being chosen. In this case, a
small improvement tips the balance in people’s choices, inducing a large
change in probability. The sigmoid shape of logit probabilities is shared
by most discrete choice models and has important implications for policy
makers. For example, improving bus service in areas where the service
is so poor that few travelers take the bus would be less effective, in terms
of transit ridership, than making the same improvement in areas where
bus service is already sufficiently good to induce a moderate share of
travelers to choose it (but not so good that nearly everyone does).

The logit probability formula is easily interpretable in the context
of an example. Consider a binary choice situation first: a household’s
choice between a gas and an electric heating system. Suppose that the
utility the household obtains from each type of system depends only
on the purchase price, the annual operating cost, and the household’s
view of the convenience and quality of heating with each type of system
and the relative aesthetics of the systems within the house. The first two
of these factors can be observed by the researcher, but the researcher
cannot observe the others. If the researcher considers the observed part
of utility to be a linear function of the observed factors, then the utility
of each heating system can be written as: U, = PP, + 8,0C, + ¢,
and U, = B;PP, + B,0C, + ¢., where the subscripts g and e denote
gas and electric, PP and OC are the purchase price and operating cost,
B1 and B, are scalar parameters, and the subscript n for the household
is suppressed. Since higher costs mean less money to spend on other
goods, we expect utility to drop as purchase price or operating cost rises
(with all else held constant): 8; <0 and 3, < 0.
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The unobserved component of utility for each alternative, ¢, and &,
varies over households depending on how each household views the
quality, convenience and aesthetics of each type of system. If these unob-
served components are distributed iid extreme value, then the probability
that the household will choose gas heating is

a7 oB1PP+B0C,
1) Py =

elglPPg""/gZOCg + eﬂlppe+,620Ce

and the probability of electric heating is the same but with exp(8;PP, +
B20C,) as the numerator. The probability of choosing a gas system
decreases if its purchase price or operating cost rises while that of the
electric system remains the same (assuming that 8; and $, are negative,
as expected).

As in most discrete choice models, the ratio of coefficients in this
example has economic meaning. In particular, the ratio 8,/ represents
the household’s willingness to pay for operating-cost reductions. If §;
were estimated as —0.20 and j;, as —1.14, these estimates would imply
that households are willing to pay up to (—1.14)/(—0.20) = 5.70 dollars
more for a system whose annual operating costs are one dollar less. This
relation is derived as follows. By definition, a household’s willingness
to pay for operating-cost reductions is the increase in purchase price
that keeps the household’s utility constant given a reduction in operating
costs. We take the total derivative of utility with respect to purchase price
and operating cost and set this derivative to zero so that utility doesn’t
change: dU = B, dPP + B8, dOC = 0. We then solve for the change in
purchase price that keeps utility constant (i.e., satisfies this equation) for
a change in operating costs: dPP/0OC = —p8,/8,. The negative sign
indicates that the two changes are in the opposite direction: to keep
utility constant, purchase price rises when operating cost decreases.

In this binary choice situation, the choice probabilities can be ex-
pressed in another, even more succinct form. Dividing the numerator and
denominator of (3.7) by the numerator, and recognizing that exp(a)/
exp(b) = exp(a — b), we have

1
Py = 1 + eBIPP+B.0C)—(BPP,+5,0C,)

In general, binary logit probabilities with representative utilities V,;;
and V,; can be written P,; = 1/(1 + exp(V,, — V1)) and P = 1/(1 +
exp(V,1 — Vy2)). If only demographics of the decision maker, s,, enter
the model, and the coefficients of these demographic variables are nor-
malized to zero for the first alternative (as described in Chapter 2), the
probability of the first alternative is P,; = 1/(1 4 ¢**"), which is the
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form that is used in most textbooks and computer manuals for binary
logit.

Multinomial choice is a simple extension. Suppose there is a third
type of heating system, namely oil-fueled. The utility of the oil system
is specified as the same form as for the electric and gas systems: U, =
B1PP, + B,0C, + ¢,. With this extra option available, the probability
that the household chooses a gas system is

oP1PP+B0C,

Pe = eBIPPAB0C, 1 oBiPPAF20C, | ofiPPo+f20C, "

which is the same as (3.7) except that an extra term is included in the
denominator to represent the oil heater. Since the denominator is larger
while the numerator is the same, the probability of choosing a gas system
is smaller when an oil system is an option than when not, as one would
expect in the real world.

3.2 The Scale Parameter

In the previous section we derived the logit formula under the assumption
that the unobserved factors are distributed extreme value with variance
72 /6. Setting the variance to 2 /6 is equivalent to normalizing the model
for the scale of utility, as discussed in Section 2.5. It is useful to make
these concepts more explicit, to show the role that the variance of the
unobserved factors plays in logit models.

In general, utility can be expressed as U, ; = V,,; + ¢&},;, where the un-
observed portion has variance o> x (72/6). That is, the variance is any
number, re-expressed as a multiple of 772/6. Since the scale of utility is
irrelevant to behavior, utility can be divided by o without changing be-
havior. Utility becomes U,; = V,,; /o + ¢, whereg,; = s’;j /o .Now the
unobserved portion has variance 2 /6: Var(e, i) = Var(e’, y /o) = (1/0?)
Var(e},) = (1/0%) x 02 x (w?/6) = % /6. The choice probability is

eVni/U
= X V,U‘/U ’
2je

which is the same formula as in equation (3.6) but with the representative
utility divided by o. If V,; is linear in parameters with coefficient g*,
the choice probabilities become

e(ﬂ*/o)’xni
TR

Each of the coefficients is scaled by 1/0. The parameter o is called the

Pni

P, =
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scale parameter, because it scales the coefficients to reflect the variance
of the unobserved portion of utility.

Only the ratio 8*/o can be estimated; f* and o are not separately
identified. Usually, the model is expressed in its scaled form, with
B = B*/o, which gives the standard logit expression

eﬂ’xm’
> j ebni

The parameters B are estimated, but for interpretation it is useful to
recognize that these estimated parameters are actually estimates of the
“original” coefficients §* divided by the scale parameter o. The coef-
ficients that are estimated indicate the effect of each observed variable
relative to the variance of the unobserved factors. A larger variance in
unobserved factors leads to smaller coefficients, even if the observed
factors have the same effect on utility (i.e., higher o means lower 8 even
if B* is the same).

The scale parameter does not affect the ratio of any two coefficients,
since it drops out of the ratio; for example, B1/8, = (B]/0)/(B5/0) =
B /B3, where the subscripts refer to the first and second coefficients.
Willingness to pay, values of time, and other measures of marginal rates
of substitution are not affected by the scale parameter. Only the inter-
pretation of the magnitudes of all coefficients is affected.

So far we have assumed that the variance of the unobserved factors
is the same for all decision makers, since the same o is used for all n.
Suppose instead that the unobserved factors have greater variance for
some decision makers than others. In Section 2.5, we discuss a situation
where the variance of unobserved factors is different in Boston than
in Chicago. Denote the variance for all decision makers in Boston as
(68)2(?/6) and that for decision makers in Chicago as (o €)?*(7%/6).
The ratio of variance in Chicago to that in Boston is k = (6€ /o 8)?. The
choice probabilities for people in Boston become

P, =

eﬂ’xni
el
and for people in Chicago

Pm':

e(ﬂ/\/z)/xni

nl‘:

> eBIVKY %y

where B = B*/o 8. The ratio of variances k is estimated along with the
coefficients 8. The estimated §’s are interpreted as being relative to the
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variance of unobserved factors in Boston, and the estimated k provides
information on the variance in Chicago relative to that in Boston. More
complex relations can be obtained by allowing the variance for an ob-
servation to depend on more factors. Also, data from different data sets
can often be expected to have different variance for unobserved fac-
tors, giving a different scale parameter for each data set. Ben-Akiva and
Morikawa (1990) and Swait and Louviere (1993) discuss these issues
and provide more examples.

3.3  Power and Limitations of Logit

Three topics elucidate the power of logit models to represent choice
behavior, as well as delineating the limits to that power. These topics
are: taste variation, substitution patterns, and repeated choices over time.
The applicability of logit models can be summarized as follows:

1. Logit can represent systematic taste variation (that is, taste vari-
ation that relates to observed characteristics of the decision
maker) but not random taste variation (differences in tastes that
cannot be linked to observed characteristics).

2. The logit model implies proportional substitution across alterna-
tives, given the researcher’s specification of representative util-
ity. To capture more flexible forms of substitution, other models
are needed.

3. If unobserved factors are independent over time in repeated
choice situations, then logit can capture the dynamics of re-
peated choice, including state dependence. However, logit can-
not handle situations where unobserved factors are correlated
over time.

We elaborate each of these statements in the next three subsections.

3.3.1. Taste Variation

The value or importance that decision makers place on each
attribute of the alternatives varies, in general, over decision makers. For
example, the size of a car is probably more important to households with
many members than to smaller households. Low-income households are
probably more concerned about the purchase price of a good, relative
to its other characteristics, than higher-income households. In choosing
which neighborhood to live in, households with young children will be
more concerned about the quality of schools than those without children,
and so on. Decision makers’ tastes also vary for reasons that are not
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linked to observed demographic characteristics, just because different
people are different. Two people who have the same income, education,
etc., will make different choices, reflecting their individual preferences
and concerns.

Logit models can capture taste variations, but only within limits. In
particular, tastes that vary systematically with respect to observed vari-
ables can be incorporated in logit models, while tastes that vary with
unobserved variables or purely randomly cannot be handled. The fol-
lowing example illustrates the distinction.

Consider households’ choice among makes and models of cars to
buy. Suppose for simplicity that the only two attributes of cars that the
researcher observes are the purchase price, PP; for make/model j, and
inches of shoulder room, SR, which is a measure of the interior size
of a car. The value that households place on these two attributes varies
over households, and so utility is written as

(3.8) U, = a,SR; + B,PP; + ¢,

where o, and B, are parameters specific to household 7.

The parameters vary over households reflecting differences in taste.
Suppose for example that the value of shoulder room varies with the
number of members in the households, M,,, but nothing else:

oy = IOMn’

so that as M,, increases, the value of shoulder room, «,,, also increases.
Similarly, suppose the importance of purchase price is inversely related
to income, I, so that low-income households place more importance on
purchase price:

Bn=0/1,.
Substituting these relations into (3.8) produces
U = p(M,SR;) + 0(PP; /1) + €.

Under the assumption that each ¢,; is iid extreme value, a standard logit
model obtains with two variables entering representative utility, both
of which are an interaction of a vehicle attribute with a household
characteristic.

Other specifications for the variation in tastes can be substituted. For
example, the value of shoulder room might be assumed to increase with
household size, but at a decreasing rate, so thate,, = pM,, + ¢ M, 3 where
p is expected to be positive and ¢ negative. Then U,; = p(M,SR;) +
¢(M,%SRJ-) +60(PP;/1,) + &,;, which results in a logit model with three
variables entering the representative utility.
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The limitation of the logit model arises when we attempt to allow tastes
to vary with respect to unobserved variables or purely randomly. Suppose
for example that the value of shoulder room varied with household size
plus some other factors (e.g., size of the people themselves, or frequency
with which the household travels together) that are unobserved by the
researcher and hence considered random:

oy = pMy, + Wn,

where w, is a random variable. Similarly, the importance of purchase
price consists of its observed and unobserved components:

ﬁn = 9/171 + 1.
Substituting into (3.8) produces
U,j = p(M,SR;) + u,SR; + 60(PP;/I,) + n,PP; + ¢,;.

Since w, and 7, are not observed, the terms 1,SR; and n,PP; become
part of the unobserved component of utility,

U,j = p(M,SR;) 4+ 0(PP;/I,) + &y,

where &,; = 1,SR; +1n,PP; + ¢,;. The new error terms &,,; cannot pos-
sibly be distributed independently and identically as required for the
logit formulation. Since ., and 7, enter each alternative, &,; is neces-
sarily correlated over alternatives: Cov(&,;, £,r) = Var(u,)SR;SR; +
Var(n,, )PP ;PP; # 0 for any two cars j and k. Furthermore, since SR
and PP; vary over alternatives, the variance of &,; varies over al-
ternatives, violating the assumption of identically distributed errors:
Var(¢,;) = Var(,un)SRi + Var(n, )PP? + Var(g,;), which is different for
different j.

This example illustrates the general point that when tastes vary sys-
tematically in the population in relation to observed variables, the varia-
tion can be incorporated into logit models. However, if taste variation is
at least partly random, logit is a misspecification. As an approximation,
logit might be able to capture the average tastes fairly well even when
tastes are random, since the logit formula seems to be fairly robust to
misspecifications. The researcher might therefore choose to use logit
even when she knows that tastes have a random component, for the sake
of simplicity. However, there is no guarantee that a logit model will
approximate the average tastes. And even if it does, logit does not pro-
vide information on the distribution of tastes around the average. This
distribution can be important in many situations, such as forecasting the
penetration of a new product that appeals to a minority of people rather
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than to the average tastes. To incorporate random taste variation appro-
priately and fully, a probit or mixed logit model can be used instead.

3.3.2. Substitution Patterns

When the attributes of one alternative improve (e.g., its price
drops), the probability of its being chosen rises. Some of the people
who would have chosen other alternatives under the original attributes
now choose this alternative instead. Since probabilities sum to one over
alternatives, an increase in the probability of one alternative necessarily
means a decrease in probability for other alternatives. The pattern of
substitution among alternatives has important implications in many situ-
ations. For example, when a cell-phone manufacturer launches a new
product with extra features, the firm is vitally interested in knowing the
extent to which the new product will draw customers away from its
other cell phones rather than from competitors’ phones, since the firm
makes more profit from the latter than from the former. Also, as we
will see, the pattern of substitution affects the demand for a product and
the change in demand when attributes change. Substitution patterns are
therefore important even when the researcher is only interested in market
share without being concerned about where the share comes from.

The logit model implies a certain pattern of substitution across alter-
natives. If substitution actually occurs in this way given the researcher’s
specification of representative utility, then the logit model is appropri-
ate. However, to allow for more general patterns of substitution and
to investigate which pattern is most accurate, more flexible models are
needed. The issue can be seen in either of two ways, as a restriction on
the ratios of probabilities and/or as a restriction on the cross-elasticities
of probabilities. We present each way of characterizing the issue in the
following discussion.

The Property of Independence
from Irrelevant Alternatives

For any two alternatives i and k, the ratio of the logit probabil-
ities is
Vni Vn'
Pyi e / Z Jj e

Vnk . an
Py e/ e
Vm'
— ¢ — o Vui— Vi
= =e€ .
eVnk

This ratio does not depend on any alternatives other than i and k. That is,
the relative odds of choosing i over k are the same no matter what other
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alternatives are available or what the attributes of the other alternatives
are. Since the ratio is independent from alternatives other than i and «,
it is said to be independent from irrelevant alternatives. The logit model
exhibits this independence from irrelevant alternatives, or I1A.

In many settings, choice probabilities that exhibit ITA provide an ac-
curate representation of reality. In fact, Luce (1959) considered IIA to
be a property of appropriately specified choice probabilities. He derived
the logit model directly from an assumption that choice probabilities ex-
hibit ITA, rather than (as we have done) derive the logit formula from an
assumption about the distribution of unobserved utility and then observe
that ITA is a resulting property.

While the ITA property is realistic in some choice situations, it is
clearly inappropriate in others, as first pointed out by Chipman (1960)
and Debreu (1960). Consider the famous red-bus—blue-bus problem. A
traveler has a choice of going to work by car or taking a blue bus. For
simplicity assume that the representative utility of the two modes are the
same, such that the choice probabilities are equal: P. = Py, = %, where
c is car and bb is blue bus. In this case, the ratio of probabilities is one:
P./ Py, = 1.

Now suppose that ared bus is introduced and that the traveler considers
the red bus to be exactly like the blue bus. The probability that the traveler
will take the red bus is therefore the same as for the blue bus, so that
the ratio of their probabilities is one: P,/ Py, = 1. However, in the logit
model the ratio P,/ Py, is the same whether or not another alternative, in
this case the red bus, exists. This ratio therefore remains at one. The only
probabilities for which P./ Py, =1 and P,/ Py, = 1 are P, = Py =
Py = %, which are the probabilities that the logit model predicts.

Inreal life, however, we would expect the probability of taking a car to
remain the same when a new bus is introduced that is exactly the same as
the old bus. We would also expect the original probability of taking bus
to be split between the two buses after the second one is introduced. That
is, we would expect P, = % and Py, = P, = %. In this case, the logit
model, because of its IIA property, overestimates the probability of tak-
ing either of the buses and underestimates the probability of taking a car.
The ratio of probabilities of car and blue bus, P,/ Py, actually changes
with the introduction of the red bus, rather than remaining constant as
required by the logit model.

This example is rather stark and unlikely to be encountered in the real
world. However, the same kind of misprediction arises with logit models
whenever the ratio of probabilities for two alternatives changes with the
introduction or change of another alternative. For example, suppose a
new transit mode is added that is similar to, but not exactly like, the
existing modes, such as an express bus along a line that already has
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standard bus service. This new mode might be expected to reduce the
probability of regular bus by a greater proportion than it reduces the
probability of car, so that ratio of probabilities for car and regular bus
does not remain constant. The logit model would overpredict demand
for the two bus modes in this situation. Other examples are given by, for
example, Ortuzar (1983) and Brownstone and Train (1999).

Proportional Substitution

The same issue can be expressed in terms of the cross-elasticities
of logit probabilities. Let us consider changing an attribute of alternative
J. We want to know the effect of this change on the probabilities for all
the other alternatives. Section 3.6 derives the formula for the elasticity
of P,; with respect to a variable that enters the representative utility of
alternative j:

Eian = _ﬂzznj Pnjv

where z,,; is the attribute of alternative j as faced by person n and f; is
its coefficient (or, if the variable enters representative utility nonlinearly,
then B, is the derivative of V,; with respect to z,;).

This cross-elasticity is the same for all i : i does not enter the formula.
An improvement in the attributes of an alternative reduces the probabil-
ities for all the other alternatives by the same percentage. If one alter-
native’s probability drops by ten percent, then all the other alternatives’
probabilities also drop by ten percent (except of course the alternative
whose attribute changed; its probability rises due to the improvement).
A way of stating this phenomenon succinctly is that an improvement in
one alternative draws proportionately from the other alternatives. Simi-
larly, for a decrease in the representative utility of an alternative, the
probabilities for all other alternatives rise by the same percentage.

This pattern of substitution, which can be called proportionate shift-
ing, is a manifestation of the IIA property. The ratio of probabilities
for alternatives i and k stays constant when an attribute of alternative
J changes only if the two probabilities change by the same proportion.
With superscript O denoting probabilities before the change and 1 after,
the IIA property requires that

P, P

ni

1 — po
Pnk Pnk

when an attribute of alternative j changes. This equality can only be
maintained if each probability changes by the same proportion: P}”. =
AP and P!, = A P?,, where both A’s are the same.
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Proportionate substitution can be realistic for some situations, in
which case the logit model is appropriate. In many settings, however,
other patterns of substitution can be expected, and imposing propor-
tionate substitution through the logit model can lead to unrealistic fore-
casts. Consider a situation that is important to the California Energy
Commission (CEC), which has the responsibility of investigating poli-
cies to promote energy efficient vehicles in California and reducing the
state’s reliance on gasoline for cars. Suppose for the sake of illustration
that there are three kinds of vehicles: large gas cars, small gas cars,
and small electric cars. Suppose also that under current conditions the
probabilities that a household will choose each of these vehicles are
.66, .33, and .01, respectively. The CEC is interested in knowing the
impact of subsidizing the electric cars. Suppose the subsidy is sufficient
to raise the probability for the electric car from .01 to .10. By the logit
model, the probability for each of the gas cars would be predicted to drop
by the same percentage. The probability for large gas car would drop by
ten percent, from .66 to .60, and that for the small gas car would drop
by the same ten percent, from .33 to .30. In terms of absolute numbers,
the increased probability for the small electric car (.09) is predicted by
the logit model to come twice as much from large gas cars (.06) as from
small gas cars (0.03).

This pattern of substitution is clearly unrealistic. Since the electric car
is small, subsidizing it can be expected to draw more from small gas cars
than from large gas cars. In terms of cross-elasticities, we would expect
the cross-elasticity for small gas cars with respect to an improvement
in small electric cars to be higher than that for large gas cars. This
difference is important in the CEC’s policy analysis. The logit model
will overpredict the gas savings that result from the subsidy, since it over-
predicts the substitution away from large gas cars (the “gas guzzlers”)
and underpredicts the substitution away from small “gas-sipper” cars.
From a policy perspective, this misprediction can be critical, causing
a subsidy program to seem more beneficial than it actually is. This is
the reason that the CEC uses models that are more general than logit to
represent substitution across vehicles. The nested logit, probit, and mixed
logit models of Chapters 4—6 provide viable options for the researcher.

Advantages of IIA

As just discussed, the IIA property of logit can be unrealistic
in many settings. However, when IIA reflects reality (or an adequate
approximation to reality), considerable advantages are gained by its em-
ployment. First, because of the IIA, it is possible to estimate model
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parameters consistently on a subset of alternatives for each sampled
decision maker. For example, in a situation with 100 alternatives, the
researcher might, so as to reduce computer time, estimate on a subset
of 10 alternatives for each sampled person, with the person’s chosen
alternative included as well as 9 alternatives randomly selected from the
remaining 99. Since relative probabilities within a subset of alternatives
are unaffected by the attributes or existence of alternatives not in the
subset, exclusion of alternatives in estimation does not affect the con-
sistency of the estimator. Details of this type of estimation are given in
Section 3.7.1. This fact has considerable practical importance. In ana-
lyzing choice situations for which the number of alternatives is large,
estimation on a subset of alternatives can save substantial amounts of
computer time. At an extreme, the number of alternatives might be so
large as to preclude estimation altogether if it were not possible to utilize
a subset of alternatives.

Another practical use of the IIA property arises when the researcher
is only interested in examining choices among a subset of alternatives
and not among all alternatives. For example, consider a researcher who
is interested in understanding the factors that affect workers’ choice
between car and bus modes for travel to work. The full set of alternative
modes includes walking, bicycling, motorbiking, skateboarding, and so
on. If the researcher believed that the IIA property holds adequately
well in this case, she could estimate a model with only car and bus as the
alternatives and exclude from the analysis sampled workers who used
other modes. This strategy would save the researcher considerable time
and expense developing data on the other modes, without hampering her
ability to examine the factors related to car and bus.

Tests of ITIA

Whether ITA holds in a particular setting is an empirical ques-
tion, amenable to statistical investigation. Tests of IIA were first devel-
oped by McFadden et al. (1978). Two types of tests are suggested. First,
the model can be reestimated on a subset of the alternatives. Under IIA,
the ratio of probabilities for any two alternatives is the same whether or
not other alternatives are available. As a result, if IIA holds in reality,
then the parameter estimates obtained on the subset of alternatives will
not be significantly different from those obtained on the full set of alter-
natives. A test of the hypothesis that the parameters on the subset are the
same as the parameters on the full set constitutes a test of [IA. Hausman
and McFadden (1984) provide an appropriate statistic for this type of
test. Second, the model can be reestimated with new, cross-alternative
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variables, that is, with variables from one alternative entering the utility
of another alternative. If the ratio of probabilities for alternatives i and
k actually depends on the attributes and existence of a third alternative
Jj (in violation of ITA), then the attributes of alternative j will enter sig-
nificantly the utility of alternatives i or k within a logit specification.
A test of whether cross-alternative variables enter the model therefore
constitutes a test of IIA. McFadden (1987) developed a procedure for
performing this kind of test with regressions: with the dependent vari-
able being the residuals of the original logit model and the explanatory
variables being appropriately specified cross-alternative variables. Train
et al. (1989) show how this procedure can be performed conveniently
within the logit model itself.

The advent of models that do not exhibit IIA, and especially the de-
velopment of software for estimating these models, makes testing ITA
easier than before. For more flexible specifications, such as GEV and
mixed logit, the simple logit model with IIA is a special case that arises
under certain constraints on the parameters of the more flexible model. In
these cases, IIA can be tested by testing these constraints. For example, a
mixed logit model becomes a simple logit if the mixing distribution has
zero variance. ITA can be tested by estimating a mixed logit and testing
whether the variance of the mixing distribution is in fact zero.

A test of IIA as a constraint on a more general model necessarily
operates under the maintained assumption that the more general model
is itself an appropriate specification. The tests on subsets of alterna-
tives (Hausman and McFadden, 1984) and cross-alternative variables
(McFadden, 1987; Train et al., 1989), while more difficult to perform,
operate under less restrictive maintained hypotheses. The counterpoint
to this advantage, of course, is that, when IIA fails, these tests do not
provide as much guidance on the correct specification to use instead of
logit.

3.3.3. Panel Data

In many settings, the researcher can observe numerous choices
made by each decision maker. For example, in labor studies, sampled
people are observed to work or not work in each month over several years.
Data on the current and past vehicle purchases of sampled households
might be obtained by aresearcher who is interested in the dynamics of car
choice. In market research surveys, respondents are often asked a series
of hypothetical choice questions, called “stated preference” experiments.
For each experiment, a set of alternative products with different attributes
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is described, and the respondent is asked to state which product he
would choose. A series of such questions is asked, with the attributes
of the products varying so as to determine how the respondent’s choice
changes when the attributes change. The researcher therefore observes
the sequence of choices by each respondent. Data that represent repeated
choices like these are called panel data.

If the unobserved factors that affect decision makers are independent
over the repeated choices, then logit can be used to examine panel data
in the same way as purely cross-sectional data. Any dynamics related to
observed factors that enter the decision process, such as state dependence
(by which the person’s past choices influence their current choices) or
lagged response to changes in attributes, can be accommodated. How-
ever, dynamics associated with unobserved factors cannot be handled,
since the unobserved factors are assumed to be unrelated over choices.

The utility that decision maker n obtains from alternative j in period
or choice situation ¢ is

Unjt = ant + Enjt V], I.

If ¢,j; is distributed extreme value, independent over n, j, and, impor-
tantly, ¢, then, using the same proof as for (3.6), the choice probabilities
are

eVnit

it = v
. ant
2 ;e

Each choice situation by each decision maker becomes a separate ob-
servation. If representative utility for each period is specified to depend
only on variables for that period; for example, V,,j; = B'x,;, where x,,j,
is a vector of variables describing alternative j as faced by n in period
t, then there is essentially no difference between the logit model with
panel data and with purely cross-sectional data.

Dynamic aspects of behavior can be captured by specifying represen-
tative utility in each period to depend on observed variables from other
periods. For example, a lagged price response is represented by entering
the price in period ¢ — 1 as an explanatory variable in the utility for pe-
riod ¢. Prices in future periods can be entered, as by Adamowicz (1994),
to capture consumers’ anticipation of future price changes. Under the as-
sumptions of the logit model, the dependent variable in previous periods
can also be entered as an explanatory variable. Suppose for example
that there is inertia, or habit formation, in people’s choices such that
they tend to stay with the alternative that they have previously chosen

3.9 P,
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unless another alternative provides sufficiently higher utility to warrant
a switch. This behavior is captured as V,j; = ay,j;—1) + BXnj:, Wwhere
Ynjr = lifnchose j inperiod f and O otherwise. Witha > 0, the utility of
alternative j in the current period is higher if alternative j was consumed
in the previous period. The same specification can also capture a type
of variety seeking. If « is negative, the consumer obtains higher utility
from not choosing the same alternative that he chose in the last period.
Numerous variations on these concepts are possible. Adamowicz (1994)
enters the number of times the alternative has been chosen previously,
rather than simply a dummy for the immediately previous choice.
Erdem (1996) enters the attributes of previously chosen alternatives,
with the utility of each alternative in the current period depending on
the similarity of its attributes to the previously experienced attributes.

The inclusion of the lagged dependent variable does not induce in-
consistency in estimation, since for a logit model the errors are assumed
to be independent over time. The lagged dependent variable y,;;—1) is
uncorrelated with the current error ¢,;, due to this independence. The
situation is analogous to linear regression models, where a lagged de-
pendent variable can be added without inducing bias as long as the errors
are independent over time.

Of course, the assumption of independent errors over time is severe.
Usually, one would expect there to be some factors that are not observed
by the researcher that affect each of the decision makers’ choices. In par-
ticular, if there are dynamics in the observed factors, then the researcher
might expect there to be dynamics in the unobserved factors as well. In
these situations, the researcher can either use a model such as probit or
mixed logit that allows unobserved factors to be correlated over time,
or respecify representative utility to bring the sources of the unobserved
dynamics into the model explicitly such that the remaining errors are
independent over time.

3.4  Nonlinear Representative Utility

In some contexts, the researcher will find it useful to allow parameters to
enter representative utility nonlinearly. Estimation is then more difficult,
since the log-likelihood function may not be globally concave and
computer routines are not as widely available as for logit models with
linear-in-parameters utility. However, the aspects of behavior that the
researcher is investigating may include parameters that are interpretable
only when they enter utility nonlinearly. In these cases, the effort of
writing one’s own code can be warranted. Two examples illustrate this
point.
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Example 1: The Goods-Leisure Tradeoff

Consider a workers’ choice of mode (car or bus) for trips to work.
Suppose that workers also choose the number of hours to work based on
the standard trade-off between goods and leisure. Train and McFadden
(1978) developed a procedure for examining these interrelated choices.
As we see in the following, the parameters of the workers’ utility function
over goods and leisure enter nonlinearly in the utility for modes of travel.

Assume that workers’ preferences regarding goods G and leisure L
are represented by a Cobb—Douglas utility function of the form

U=(—-8)1InG+BInL.

The parameter g reflects the worker’s relative preference for goods and
leisure, with higher 8 implying greater preference for leisure relative to
goods. Each worker has a fixed amount of time (24 hours a day) and
faces a fixed wage rate, w. In the standard goods—leisure model, the
worker chooses the number of hours to work that maximizes U subject
to the constraints that (1) the number of hours worked plus the number of
leisure hours equals the number of hours available, and (2) the value of
goods consumed equals the wage rate times the number of hours worked.

When mode choice is added to the model, the constraints on time
and money change. Each mode takes a certain amount of time and costs
a certain amount of money. Conditional on choosing car, the worker
maximizes U subject to the constraint that (1) the number of hours
worked plus the number of leisure hours equals the number of hours
available after the time spent driving to work in the car is subtracted
and (2) the value of goods consumed equals the wage rate times the
number of hours worked minus the cost of driving to work. The utility
associated with choosing to travel by car is the highest value of U that
can be attained under these constraints. Similarly, the utility of taking the
bus to work is the maximum value of U that can be obtained given the
time and money that are left after the bus time and cost are subtracted.
Train and McFadden derived the maximizing values of U conditional
on each mode. For the U given above, these values are

Uj=—a (cj/wﬁ + wl_ﬂtj) for j = car and bus.

The cost of travel is divided by w”, and the travel time is multiplied
by w!#. The parameter B, which denotes workers’ relative prefer-
ence for goods and leisure, enters the mode choice utility nonlinearly.
Since this parameter has meaning, the researcher might want to estimate
it within this nonlinear utility rather than use a linear-in-parameters
approximation.
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Example 2: Geographic Aggregation

Models have been developed and widely used for travelers’ choice of
destination for various types of trips, such as shopping trips, within
a metropolitan area. Usually, the metropolitan area is partitioned into
zones, and the models give the probability that a person will choose to
travel to a particular zone. The representative utility for each zone de-
pends on the time and cost of travel to the zone plus a variety of variables,
such as residential population and retail employment, that reflect reasons
that people might want to visit the zone. These latter variables are called
attraction variables; label them by the vector a; for zone j. Since it
is these attraction variables that give rise to parameters entering nonli-
nearity, assume for simplicity that representative utility depends only
on these variables.

The difficulty in specifying representative utility comes in recognizing
that the researcher’s decision of how large an area to include in each
zone is fairly arbitrary. It would be useful to have a model that is not
sensitive to the level of aggregation in the zonal definitions. If two zones
are combined, it would be useful for the model to give a probability
of traveling to the combined zone that is the same as the sum of the
probabilities of traveling to the two original zones. This consideration
places restrictions on the form of representative utility.

Consider zones j and k, which, when combined, are labeled zone c.
The population and employment in the combined zone are necessarily
the sums of those in the two original zones: a; + a; = a.. In order
for the models to give the same probability for choosing these zones
before and after their merger, the model must satisfy

Pnj+Pnk = Py,
which for logit models takes the form

evnj _|_ e Vnk eVm?

Vaj Viuk Vie£ ~ oVue Ve
eV eV 30, et eV, et

This equality holds only when exp(V,;) + exp(Vux) = exp(Vy). If
representative utility is specified as V,, = In(8’a,) for all zones £,
then the equality holds: exp(In(8'a;)) + exp(In(B'ax)) = p'a; + p'ar =
B'a. = exp(In(B’a.)). Therefore, to specify a destination choice model
that is not sensitive to the level of zonal aggregation, represen-
tative utility needs to be specified with parameters inside a log
operation.
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3.5  Consumer Surplus

For policy analysis, the researcher is often interested in measuring the
change in consumer surplus that is associated with a particular policy.
For example, if a new alternative is being considered, such as building
a light rail system in a city, then it is important to measure the benefits
of the project to see if they warrant the costs. Similarly, a change in the
attributes of an alternative can have an impact on consumer surplus that
is important to assess. Degradation of the water quality of rivers harms
the anglers who can no longer fish as effectively at the damaged sites.
Measuring this harm in monetary terms is a central element of legal
action against the polluter. Often the distributional effects of a policy
are important to assess, such as how the burden of a tax is borne by
different population groups.

Under the logit assumptions, the consumer surplus associated with a
set of alternatives takes a closed form that is easy to calculate. By defi-
nition, a person’s consumer surplus is the utility, in dollar terms, that the
person receives in the choice situation. The decision maker chooses
the alternative that provides the greatest utility. Consumer surplus is
therefore CS,, = (1/a,) max;(U,;), where «, is the marginal utility of
income: dU, /dY, = «,, with Y, the income of person n. The division by
o, translates utility into dollars, since 1/«,, = dY,,/dU,. The researcher
does not observe U,; and therefore cannot use this expression to cal-
culate the decision maker’s consumer surplus. Instead, the researcher
observes V,; and knows the distribution of the remaining portion of util-
ity. With this information, the researcher is able to calculate the expected
consumer surplus:

1
E(CS,) = —E[max;(V,; + &,j)],

n

where the expectation is over all possible values of ¢,,;. Williams (1977)
and Small and Rosen (1981) show that, if each ¢,; is iid extreme value
and utility is linear in income (so that ¢, is constant with respect to
income), then this expectation becomes

1 J
3.10) E(CS,) = —I Vil +C,
(310) ECS)=—In|} " |+

n ]=1

where C is an unknown constant that represents the fact that the absolute
level of utility cannot be measured. As we see in the following, this
constant is irrelevant from a policy perspective and can be ignored.
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Note that the argument in parentheses in this expression is the de-
nominator of the logit choice probability (3.6). Aside from the division
and addition of constants, expected consumer surplus in a logit model
is simply the log of the denominator of the choice probability. It is often
called the log-sum term. This resemblance between the two formulas
has no economic meaning, in the sense that there is nothing about a
denominator in a choice probability that makes it necessarily related to
consumer surplus. It is simply the outcome of the mathematical form of
the extreme value distribution. However, the relation makes calculation
of expected consumer surplus very easy, which is another of the many
conveniences of logit.

Under the standard interpretation for the distribution of errors, as
described in the last paragraph of Section 2.3, E(CS,) is the average
consumer surplus in the subpopulation of people who have the same
representative utilities as person n. The total consumer surplus in the pop-
ulation is calculated as the weighted sum of E(CS,) over a sample of
decision makers, with the weights reflecting the numbers of people in
the population who face the same representative utilities as the sampled
person.

The change in consumer surplus that results from a change in the
alternatives and/or the choice set is calculated from (3.10). In particular,
E(CS,) is calculated twice: first under the conditions before the change,
and again under the conditions after the change. The difference between
the two results is the change in consumer surplus:

1 L A
AE(CS,) = — | In e ] —In e )|,
w |\ 2 2
where the superscripts 0 and 1 refer to before and after the change. The
number of alternatives can change (e.g., a new alternative can be added)
as well as the attributes of the alternatives. Since the unknown constant
C enters expected consumer surplus both before and after the change, it
drops out of the difference and can therefore be ignored when calculating
changes in consumer surplus.

To calculate the change in consumer surplus, the researcher must
know or have estimated the marginal utility of income, «,,. Usually a
price or cost variable enters the representative utility, in which case the
negative of its coefficient is «,, by definition. (A price or cost coefficient
is negative; the negative of a negative coefficient gives a positive «;,.)
For example, in the choice between car and bus, utility is U,,; = Bit,; +
Bac,j, wheret is time, c is cost, and both B; and B, are negative, indicating
that utility decreases as the time or cost for a trip increases. The negative
of the cost coefficient, —f,, is the amount that utility rises due to a
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one-dollar decrease in costs. A one-dollar reduction in costs is equivalent
to a one-dollar increase in income, since the person gets to spend the
dollar that he saves in travel costs just the same as if he got the extra
dollar in income. The amount — g, is therefore the increase in utility
from a one-dollar increase in income: the marginal utility of income. It
is the same amount in this case for all n. If ¢,,; entered the representative
utility interacting with characteristics of the person other than income,
as in the product ¢,; H,, where H, is household size, then the marginal
utility of income would be —f, H,,, which varies over n.

Throughout this discussion, «, has been assumed to be fixed for a
given person independent of his income. The formula (3.10) for ex-
pected consumer surplus depends critically on the assumption that the
marginal utility of income is independent from income. If the marginal
utility of income changes with income, then a more complicated for-
mula is needed, since «,, itself becomes a function of the change in
attributes. McFadden (1999) and Karlstrom (2000) provide procedures
for calculating changes in consumer surplus under these conditions.

The conditions for using expression (3.10) are actually less severe than
stated. Since only changes in consumer surplus are relevant for policy
analysis, formula (3.10) can be used if the marginal utility of income is
constant over the range of implicit income changes that are considered
by the policy. Thus, for policy changes that change consumer surplus by
small amounts per person relative to income, the formula can be used
even though the marginal utility of income in reality varies with income.

The assumption that «,, does not depend on income has implications
for the specification of representative utility. As already discussed, o,
is usually taken as the absolute value of the coefficient of price or cost.
Therefore, if the researcher plans to use her model to estimate changes
in consumer surplus and wants to apply formula (3.10), this coefficient
cannot be specified to depend on income. In the mode choice example,
cost can be multiplied by household size, so that the cost coefficient, and
hence the marginal utility of income, varies over households of different
size. However, if the cost is divided by the household’s income, then the
coefficient of cost depends on income, violating the assumption needed
for expression (3.10). This violation may not be important for small
changes in consumer surplus, but certainly becomes important for large
changes.

3.6 Derivatives and Elasticities

Since choice probabilities are a function of observed variables, it is
often useful to know the extent to which these probabilities change
in response to a change in some observed factor. For example, in a
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household’s choice of make and model of car to buy, a natural question is:
to what extent will the probability of choosing a given car increase if the
vehicle’s fuel efficiency is improved? From competing manufacturers’
points of view, a related question is: to what extent will the probability
of households’ choosing, say, a Toyota decrease if the fuel efficiency of
a Honda improves?

To address these questions, derivatives of the choice probabilities are
calculated. The change in the probability that decision maker n chooses
alternative i given a change in an observed factor, z,;, entering the repre-
sentative utility of that alternative (and holding the representative utility
of other alternatives constant) is

0P, e/ 3, e™)

8Zni N aznl
_ eV QVyi eV v, O Vi
o Z eV"j 8Zni (Z eVn_/)z 8Zni
Vi ’
= E(Pm — Pni)
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= Ppi(1 — Py;).
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If representative utility is linear in z,,; with coefficient §,, the derivative
becomes B, P,;(1 — P,;). This derivative is largest when P,; = 1 — P,;,
which occurs when P,; = .5. It becomes smaller as P,; approaches zero
or one. The sigmoid probability curve in Figure 3.1 is consistent with
these facts. Stated intuitively, the effect of a change in an observed
variable is largest when the choice probabilities indicate a high degree
of uncertainty regarding the choice. As the choice becomes more certain
(i.e., the probabilities approach zero or one), the effect of a change in an
observed variable lessens.

One can also determine the extent to which the probability of choosing

a particular alternative changes when an observed variable relating to
another alternative changes. Let z,; denote an attribute of alternative
J. How does the probability of choosing alternative i change as z,;
increases? We have

0Py 0(e" /Y, e
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When V,,; is linear in z,,; with coefficient 8., then this cross-derivative
becomes —f; P,; P,j. If z,, is a desirable attribute, so that B is positive,
then raising z,; decreases the probability of choosing each alternative
other than j. Furthermore, the decrease in probability is proportional to
the value of the probability before z,,; was changed.

A logically necessary aspect of derivatives of choice probabilities
is that, when an observed variable changes, the changes in the choice
probabilities sum to zero. This is a consequence of the fact that the prob-
abilities must sum to one before and after the change; it is demonstrated
for logit models as follows:

J
=~ p.(1—Py;)+ — Pyi P
; 8an aan nj( n]) ; 8an njni
oV,
=Py [(1 —P)-) Pm‘]
8Zn/ l#]

AVy;

= —LPy[(1 = Pyj) — (1 — Py)]
8z,,j

= 0.

In practical terms, if one alternative is improved so that the probability
of its being chosen increases, the additional probability is necessarily
drawn from other alternatives. To increase the probability of one al-
ternative necessitates decreasing the probability of another alternative.
While obvious, this fact is often forgotten by planners who want to im-
prove demand for one alternative without reducing demand for other
alternatives.

Economists often measure response by elasticities rather than deriva-
tives, since elasticities are normalized for the variables’ units. An elas-
ticity is the percentage change in one variable that is associated with a
one-percent change in another variable. The elasticity of P,; with respect
to z,i, a variable entering the utility of alternative i, is

APy zni
iZni —
8Zni Pni

d Vni ni
= S Pl = Pyt
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If representative utility is linear in z,; with coefficient §,, then E;, =
Bzzni(1 — Pyi).
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The cross-elasticity of P,; with respect to a variable entering alterna-
tive j is

i T
LZnj azn] Pm
8an
= =7 Znj Pnj,
an
which in the case of linear utility reduces to E;; = — B.z,j Pyj. As

discussed in Section 3.3.2, this cross-elasticity is the same for all i: a
change in an attribute of alternative j changes the probabilities for all
other alternatives by the same percent. This property of the logit cross-
elasticities is a manifestation, or restatement, of the IIA property of the
logit choice probabilities.

3.7 Estimation

Manski and McFadden (1981) and Cosslett (1981) describe estimation
methods under a variety of sampling procedures. We discuss in this sec-
tion estimation under the most prominent of these sampling schemes.
We first describe estimation when the sample is exogenous and all alter-
natives are used in estimation. We then discuss estimation on a subset of
alternatives and with certain types of choice-based (i.e., nonexogenous)
samples.

3.7.1. Exogenous Sample

Consider first the situation in which the sample is exogenously
drawn, that is, is either random or stratified random with the strata de-
fined on factors that are exogenous to the choice being analyzed. If the
sampling procedure is related to the choice being analyzed (for example,
if mode choice is being examined and the sample is drawn by selecting
people on buses and pooling them with people selected at toll booths),
then more complex estimation procedures are generally required, as dis-
cussed in the next section. We also assume that the explanatory variables
are exogenous to the choice situation. That is, the variables entering
representative utility are independent of the unobserved component of
utility.

A sample of N decision makers is obtained for the purpose of esti-
mation. Since the logit probabilities take a closed form, the traditional
maximum-likelihood procedures can be applied. The probability of per-
son n choosing the alternative that he was actually observed to choose
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can be expressed as

H(Pm-)>'"f :

where y,; =1 if person n chose i and zero otherwise. Note that since
vni = 0 for all nonchosen alternatives and P,; raised to the power of zero
is 1, this term is simply the probability of the chosen alternative.
Assuming that each decision maker’s choice is independent of that
of other decision makers, the probability of each person in the sample
choosing the alternative that he was observed actually to choose is

N
L) =[] ]E"
n=1 i

where 8 is a vector containing the parameters of the model. The log-
likelihood function is then

N
G111 LLB) =YY yuiIn Py
n=1 i

and the estimator is the value of B that maximizes this function.
McFadden (1974) shows that LL(B) is globally concave for linear-in-
parameters utility, and many statistical packages are available for esti-
mation of these models. When parameters enter the representative utility
nonlinearly, the researcher may need to write her own estimation code
using the procedures described in Chapter 8.

Maximum likelihood estimation in this situation can be reexpressed
and reinterpreted in a way that assists in understanding the nature of
the estimates. At the maximum of the likelihood function, its derivative
with respect to each of the parameters is zero:

dLL(B) _
dp

The maximum likelihood estimates are therefore the values of 8 that
satisfy this first-order condition. For convenience, let the representative
utility be linear in parameters: V,; = p’x,;. This specification is not
required, but makes the notation and discussion more succinct. Using
(3.11) and the formula for the logit probabilities, we show at the end of
this subsection that the first-order condition (3.12) becomes

(B13) DD i = Paidni =0.

(3.12) 0.
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Rearranging and dividing both sides by N, we have

G143 v = SO0 Pt

This expression is readily interpretable. Let X denote the average
of x over the alternatives chosen by the sampled individuals: X =
(1/N)D", > ynixni. Let & be the average of x over the predicted choices
of the sampled decision makers: £ = (1/N))_, >, Pyixni. The ob-
served average of x in the sample is X, while X is the predicted average.
By (3.14), these two averages are equal at the maximum likelihood es-
timates. That is, the maximum likelihood estimates of 8 are those that
make the predicted average of each explanatory variable equal to the
observed average in the sample. In this sense, the estimates induce the
model to reproduce the observed averages in the sample.

This property of the maximum likelihood estimator for logit models
takes on a special meaning for the alternative-specific constants. An
alternative-specific constant is the coefficient of a dummy variable that
identifies an alternative. A dummy for alternative j is a variable whose
value in the representative utility of alternative i is d/ =1 for i = j and
zero otherwise. By (3.14), the estimated constant is the one that gives

— yuid] = — Pyd/,
2 D! =

n i
S =3,

where S is the share of people in the sample who chose alternative j,
and § ; 1s the predicted share for alternative j. With alternative-specific
constants, the predicted shares for the sample equal the observed shares.
The estimated model is therefore correct on average within the sample.
This feature is similar to the function of a constant in a linear regression
model, where the constant assures that the average of the predicted value
of the dependent variable equals its observed average in the sample.
The first-order condition (3.13) provides yet another important inter-
pretation. The difference between a person’s actual choice, y,;, and the
probability of that choice, P,;, is a modeling error, or residual. The left-
hand side of (3.13) is the sample covariance of the residuals with the
explanatory variables. The maximum likelihood estimates are therefore
the values of the 8’s that make this covariance zero, that is, make the
residuals uncorrelated with the explanatory variables. This condition
for logit estimates is the same as applies in linear regression models.
For a regression model y, = B'x, + &,, the ordinary least squares esti-
mates are the values of S thatset ) (v, — B'x,)x, =0. This fact is veri-
fied by solving for B: B = (3_, x,x,) "' (3, Xuyx), which is the formula
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for the ordinary least squares estimator. Since y, — B8'x, is the residual
in the regression model, the estimates make the residuals uncorrelated
with the explanatory variables.

Under this interpretation, the estimates can be motivated as providing
a sample analog to population characteristics. We have assumed that the
explanatory variables are exogenous, meaning that they are uncorrelated
in the population with the model errors. Since the variables and errors
are uncorrelated in the population, it makes sense to choose estimates
that make the variables and residuals uncorrelated in the sample. The
estimates do exactly that: they provide a model that reproduces in the
sample the zero covariances that occur in the population.

Estimators that solve equations of the form (3.13) are called method-
of-moments estimators, since they use moment conditions (correlations
in this case) between residuals and variables to define the estimator.
We will return to these estimators when discussing simulation-assisted
estimation in Chapter 10.

We asserted without proof that (3.13) is the first-order condition for
the maximum likelihood estimator of the logit model. We give that proof
now. The log-likelihood function (3.11) can be reexpressed as

LLB) =)Dy ln Py

,B Xni
= ni In 7
=22 |
= 2> B = DY i In( Y ).
n i n i J
The derivative of the log-likelihood function then becomes

ALLB) X, 3 B %) Sou i (5 ¢# )
ap dp dp

- Z Z VaiXni — Z Z Vi Z Pojiaj

- Z Zi:ym-xni - Z (Z xn,) Zym
= Z Z Vnini = Z (Z P )

= Z Z(ym- — Pui)Xni- J

Setting this derivative to zero gives the first-order condition (3.13).
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Estimation on a Subset of Alternatives

In some situations, the number of alternatives facing the decision
maker is so large that estimating model parameters is very expensive or
even impossible. With a logit model, estimation can be performed on
a subset of alternatives without inducing inconsistency. For example, a
researcher examining a choice situation that involves 100 alternatives can
estimate on a subset of 10 alternatives for each sampled decision maker,
with the person’s chosen alternative included as well as 9 alternatives
randomly selected from the remaining 99. If all alternatives have the
same chance of being selected into the subset, then estimation proceeds
on the subset of alternatives as if it were the full set. If alternatives
have unequal probability of being selected, more complicated estimation
procedures may be required. The procedure is described as follows.

Suppose that the researcher has used some specific method for ran-
domly selecting alternatives into the subset that is used in estimation for
each sampled decision maker. Denote the full set of alternatives as F
and a subset of alternatives as K. Let ¢g(K | i) be the probability under
the researcher’s selection method that subset K is selected given that the
decision maker chose alternative i. Assuming that the subset necessarily
includes the chosen alternative, we have g(K | i) = 0 for any K that does
not include i. The probability that person n chooses alternative i from
the full set is P,;. Our goal is to derive a formula for the probability that
the person chooses alternative i conditional on the researcher selecting
subset K for him. This conditional probability is denoted P, (i | K).

This conditional probability is derived as follows. The joint prob-
ability that the researcher selects subset K and the decision maker
chooses alternative i is Prob(K, i) = q(K | i) P,;. The joint probability
can also be expressed with the opposite conditioning as Prob(K, i) =
P,(i | K)O(K) where Q(K) = ZjeF P,jq(K | j) is the probability of
the researcher selecting subset K marginal over all the alternatives that
the person could choose. Equating these two expressions and solving
for P,(i | K), we have

Pig(K |i)
Y ier Pua(K 1))
VgD
Y jerea(K 1))
Mgk i)
S ek e ma(K 1))

where the second line has canceled out the denominators of P,; and

P,(i|K)=

(3.15)



Logit 65

P,j Vj, and the third equality uses the fact that g(K | j) = O for any j
notin K.

Suppose that the researcher has designed the selection procedure so
that g(K | j) is the same for all j € K. This property occurs if, for exam-
ple, the researcher assigns an equal probability of selection to all noncho-
sen alternatives, so that the probability of selecting j into the subset when
i is chosen by the decision maker is the same as for selecting i into the
subset when j is chosen. McFadden (1978) calls this the “uniform con-
ditioning property,” since the subset of alternatives has a uniform (equal)
probability of being selected conditional on any of its members being
chosen by the decision maker. When this property is satisfied, g(K | j)
cancels out of the preceding expression, and the probability becomes

eVni

Zjel( eV’

which is simply the logit formula for a person who faces the alternatives
in subset K.

The conditional log-likelihood function under the uniform condition-
ing property is

eVni
CLL(B) = > Y yuiln =
ZjeKn e

n iek,

Py(i| K) =

where K, is the subset selected for person n. This function is the same
as the log-likelihood function given in (3.11) except that the subset of
alternatives K, replaces, for each sampled person, the complete set.
Maximization of CLL provides a consistent estimator of 8. However,
since information is excluded from CLL that LL incorporates (i.e., infor-
mation on alternatives not in each subset), the estimator based on CLL
is not efficient.

Suppose that the researcher designs a selection process that does not
exhibit the uniform conditioning property. In this case, the probability
q(K | i) can be incorporated into the model as a separate variable. The
expression in (3.15) can be rewritten as

Vot Ing(K |i)

P, | K) = S eVt K
je

A variable z,; calculated as Ing(K, | j) is added to the representative
utility of each alternative. The coefficient of this variable is constrained
to 1 in estimation.

The question arises: why would a researcher ever want to design
a selection procedure that does not satisfy the uniform conditioning
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property, since satisfying the property makes estimation so straightfor-
ward? An illustration of the potential benefit of nonuniform conditioning
is provided by Train et al. (1987a) in their study of telecommunications
demand. The choice situation in their application included an enormous
number of alternatives representing portfolios of calls by time of day,
distance, and duration. The vast majority of alternatives were hardly
ever chosen by anyone in the population. If alternatives had been se-
lected with equal probability for each alternative, it was quite likely that
the resulting subsets would consist nearly entirely of alternatives that
were hardly ever chosen, coupled with the person’s chosen alternative.
Comparing a person’s chosen alternative with a group of highly unde-
sirable alternatives provides little information about the reasons for a
person’s choice. To avoid this problem, alternatives were selected in
proportion to the shares for the alternatives in the population (or, to be
precise, estimates of the population shares). This procedure increased
the chance that relatively desirable alternatives would be in each subset
of alternatives that was used in estimation.

3.7.2. Choice-Based Samples

In some situations, a sample drawn on the basis of exogenous
factors would include few people who have chosen particular alterna-
tives. For example, in the choice of water heaters, a random sample of
households in most areas would include only a small number who had
chosen solar water-heating systems. If the researcher is particularly in-
terested in factors that affect the penetration of solar devices, a random
sample would need to be very large to assure a reasonable number of
households with solar heat.

In situations such as these, the researcher might instead select the
sample, or part of the sample, on the basis of the choice being analyzed.
For example, the researcher examining water heaters might supplement
a random sample of households with households that are known (per-
haps through sales records at stores if the researcher has access to these
records) to have recently installed solar water heaters.

Samples selected on the basis of decision makers’ choices can be
purely choice-based or a hybrid of choice-based and exogenous. In a
purely choice-based sample, the population is divided into those that
choose each alternative, and decision makers are drawn randomly within
each group, though at different rates. For example, a researcher who is
examining the choice of home location and is interested in identifying
the factors that contribute to people choosing one particular community
might draw randomly from within that community at the rate of one out
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of L households, and draw randomly from all other communities at a
rate of one out of M, where M is larger than L. This procedure assures
that the researcher has an adequate number of people in the sample from
the area of interest. A hybrid sample is like the one drawn by the re-
searcher interested in solar water heating, in which an exogenous sample
is supplemented with a sample drawn on the basis of the households’
choices.

Estimation of model parameters with samples drawn at least partially
on the basis of the decision maker’s choice is fairly complex in general,
and varies with the exact form of the sampling procedure. For inter-
ested readers, Ben-Akiva and Lerman (1985, pp. 234-244) provide a
useful discussion. One result is particularly significant, since it allows
researchers to estimate logit models on choice-based samples without
becoming involved in complex estimation procedures. This result, due to
Manski and Lerman (1977), can be stated as follows. If the researcher is
using a purely choice-based sample and includes an alternative-specific
constant in the representative utility for each alternative, then estimating
a logit model as if the sample were exogenous produces consistent esti-
mates for all the model parameters except the alternative-specific con-
stants. Furthermore, these constants are biased by a known factor and
can therefore be adjusted so that the adjusted constants are consistent.
In particular, the expectation of the estimated constant for alternative j,
labeled &, is related to the true constant ajf by

where A; is the share of decision makers in the population who chose
alternative j, and S; is the share in the choice-based sample who
chose alternative j. Consequently, if A; is known (that is, if population
shares are known for each alternative), then a consistent estimate of the
alternative-specific constant is the constant &; that is estimated on the
choice-based sample plus the log of the ratio of the population share to
the sample share.

3.8 Goodness of Fit and Hypothesis Testing

We discuss goodness of fit and hypothesis testing in the context of logit
models, where the log-likelihood function is calculated exactly. The
concepts apply to other models, with appropriate adjustment for simula-
tion variance, when the log-likelihood function is simulated rather than
calculated exactly.
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3.8.1. Goodness of Fit

A statistic called the likelihood ratio index is often used with
discrete choice models to measure how well the models fit the data.
Stated more precisely, the statistic measures how well the model, with
its estimated parameters, performs compared with a model in which
all the parameters are zero (which is usually equivalent to having no
model at all). This comparison is made on the basis of the log-likelihood
function, evaluated at both the estimated parameters and at zero for all

parameters.
The likelihood ratio index is defined as
_ LB
LL(0)’

where LL( ﬁ ) is the value of the log-likelihood function at the estimated
parameters and LL(0) is its value when all the parameters are set equal to
zero. If the estimated parameters do no better, in terms of the likelihood
function, than zero parameters (that is, if the estimated model is no better
than no model), then LL(,é) = LL(0) and so p = 0. This is the lowest
value that p can take (since if LL(,@) were less than LL(0), then ﬁ would
not be the maximum likelihood estimate).

At the other extreme, suppose the estimated model was so good that
each sampled decision maker’s choice could be predicted perfectly. In
this case, the likelihood function at the estimated parameters would
be one, since the probability of observing the choices that were actually
made is one. And, since the log of one is zero, the log-likelihood function
would be zero at the estimated parameters. With LL(8) = 0, p = 1. This
is the highest value that p can take. In summary, the likelihood ratio index
ranges from zero, when the estimated parameters are no better than zero
parameters, to one, when the estimated parameters perfectly predict the
choices of the sampled decision makers.

Itis important to note that the likelihood ratio index is not at all similar
in its interpretation to the R? used in regression, despite both statistics
having the same range. R? indicates the percentage of the variation
in the dependent variable that is “explained” by the estimated model.
The likelihood ratio has no intuitively interpretable meaning for values
between the extremes of zero and one. It is the percentage increase
in the log-likelihood function above the value taken at zero para-
meters (since p = 1 — LL()/LL(0) = (LL(0) — LL(f))/LL(0)). How-
ever, the meaning of such a percentage increase is not clear. In com-
paring two models estimated on the same data and with the same set
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of alternatives (such that LL(0) is the same for both models), it is usu-
ally valid to say that the model with the higher p fits the data better.
But this is saying no more than that increasing the value of the log-
likelihood function is preferable. Two models estimated on samples that
are not identical or with a different set of alternatives for any sampled
decision maker cannot be compared via their likelihood ratio index
values.

Another goodness-of-fit statistic that is sometimes used, but should
actually be avoided, is the “percent correctly predicted.” This statistic
is calculated by identifying for each sampled decision maker the alter-
native with the highest probability, based on the estimated model, and
determining whether or not this was the alternative that the decision
maker actually chose. The percentage of sampled decision makers for
which the highest-probability alternative and the chosen alternative are
the same is called the percent correctly predicted.

This statistic incorporates a notion that is opposed to the meaning
of probabilities and the purpose of specifying choice probabilities. The
statistic is based on the idea that the decision maker is predicted by
the researcher to choose the alternative for which the model gives the
highest probability. However, as discussed in the derivation of choice
probabilities in Chapter 2, the researcher does not have enough infor-
mation to predict the decision maker’s choice. The researcher has only
enough information to state the probability that the decision maker will
choose each alternative. In stating choice probabilities, the researcher
is saying that if the choice situation were repeated numerous times (or
faced by numerous people with the same attributes), each alternative
would be chosen a certain proportion of the time. This is quite differ-
ent from saying that the alternative with the highest probability will be
chosen each time.

An example may be useful. Suppose an estimated model predicts
choice probabilities of .75 and .25 in a two-alternative situation. Those
probabilities mean that if 100 people faced the representative utilities that
gave these probabilities (or one person faced these representative utilities
100 times), the researcher’s best prediction of how many people would
choose each alternative are 75 and 25. However, the “percent correctly
predicted” statistic is based on the notion that the best prediction for
each person is the alternative with the highest probability. This notion
would predict that one alternative would be chosen by all 100 people
while the other alternative would never be chosen. The procedure misses
the point of probabilities, gives obviously inaccurate market shares, and
seems to imply that the researcher has perfect information.
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3.8.2. Hypothesis Testing

As with regressions, standard ¢-statistics are used to test hy-
potheses about individual parameters in discrete choice models, such as
whether the parameter is zero. For more complex hypotheses, a likeli-
hood ratio test can nearly always be used, as follows. Consider a null
hypothesis H that can be expressed as constraints on the values of the
parameters. Two of the most common hypotheses are (1) several pa-
rameters are zero, and (2) two or more parameters are equal. The con-
strained maximum likelihood estimate of the parameters (labeled ,3 )
is that value of B that gives the highest value of LL without violat-
ing the Constralnts of the null hypothes1s H. Define the ratio of likeli-
hoods, R = L(,B )/L(B), where,B is the (constrained) maximum value
of the likelihood function (not logged) under the null hypothesis H, and
B is the unconstrained maximum of the likelihood function. As in like-
lihood ratio tests for models other than those of discrete choice, the test
statistic defined as —2 log R is distributed chi-squared with degrees of
freedom equal to the number of restrictions 1mphed by the null hypo-
thesis. Therefore, the test statistic is —2(LL(,3 ) — LL(,B)) Since the log
likelihood is always negative, this is simply two times the (magnitude of
the) difference between the constrained and unconstrained maximums
of the log-likelihood function. If this value exceeds the critical value
of chi-squared with the appropriate degrees of freedom, then the null
hypothesis is rejected.

Null Hypothesis I: The Coefficients of Several
Explanatory Variables Are Zero

To test this hypothesis, estimate the model twice: once with these
explanatory variables included, and a second time without them (since
excluding the variables forces their coefficients to be zero). Observe the
maximum value of the log-likelihood function for each estimation; two
times the difference in these maximum values is the value of the test
statistic. Compare the test statistic with the critical value of chi-squared
with degrees of freedom equal to the number of explanatory variables
excluded from the second estimation.

Null Hypothesis II: The Coefficients of the First
Two Variables Are the Same

To test this hypothesis, estimate the model twice: once with each
of the explanatory variables entered separately, including the first two;
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then with the first two variables replaced by one variable that is the sum
of the two variables (since adding the variables forces their coefficients
to be equal). Observe the maximum value of the log-likelihood function
for each of the estimations. Multiply the difference in these maximum
values by two, and compare this figure with the critical value of chi-
squared with one degree of freedom.

3.9  Case Study: Forecasting for a New
Transit System

One of the earliest applications of logit models, and a prominent test of
their capabilities, arose in the mid-1970s in the San Francisco Bay area.
A new rail system, called the Bay Area Rapid Transit (BART), had been
built. Daniel McFadden obtained a grant from the National Science
Foundation to apply logit models to commuters’ mode choices in the Bay
area and to use the models to predict BART ridership. I was lucky enough
to serve as his research assistant on this project. A sample of commuters
was taken before BART was open for service. Mode choice models were
estimated on this sample. These estimates provided important infor-
mation on the factors that enter commuters’ decisions, including their
value of time savings. The models were then used to forecast the choices
that the sampled commuters would make once BART became available.
After BART had opened, the commuters were recontacted and their
mode choices were observed. The predicted share taking BART was
compared with the observed share. The models predicted quite well,
far more accurately than the procedures used by the BART consultants,
who had not used discrete choice models.

The project team collected data on 771 commuters before BART was
opened. Four modes were considered to be available for the trip to work:
(1) driving a car by oneself, (2) taking the bus and walking to the bus stop,
(3) taking the bus and driving to the bus stop, and (4) carpooling. The time
and cost of travel on each mode were determined for each commuter,
based on the location of the person’s home and work. Travel time was
differentiated as walk time (for the bus—walk mode), wait time (for both
bus modes), and on-vehicle time (for all the modes). Characteristics of
the commuter were also collected, including income, household size,
number of cars and drivers in the household, and whether the commuter
was the head of the household. A logit model with linear-in-parameters
utility was estimated on these data.

The estimated model is shown in Table 3.1, which is reproduced
from Train (1978). The cost of travel was divided by the commuter’s
wage to reflect the expectation that workers with lower wages are more
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Table 3.1. Logit model of work trip mode choice

Explanatory Variable“ Coefficient t-Statistic
Cost divided by post-tax wage,
minutes (1—4) —0.0284 431
Auto on-vehicle time, minutes (1, 3, 4) —0.0644 5.65
Transit on-vehicle time, minutes (2, 3) —0.0259 2.94
Walk time, minutes (2, 3) —0.0689 5.28
Transfer wait time, minutes (2, 3) —0.0538 2.30
Number of transfers (2, 3) —0.1050 0.78
Headway of first bus, minutes (2, 3) —0.0318 3.18
Family income with ceiling $7500 (1) 0.00000454  0.05
Family income — $7500 with floor O,
ceiling $3000 (1) —0.0000572 0.43
Family income — $10,500 with floor 0,
ceiling $5000 (1) —0.0000543 0.91
Number of drivers in household (1) 1.02 4.81
Number of drivers in household (3) 0.990 3.29
Number of drivers in household (4) 0.872 4.25
Dummy if worker is head of household (1) 0.627 3.37
Employment density at work location (1) —0.0016 2.27
Home location in or near central
business district (1) —0.502 4.18
Autos per driver with ceiling one (1) 5.00 9.65
Autos per driver with ceiling one (3) 2.33 2.74
Autos per driver with ceiling one (4) 2.38 5.28
Auto alone dummy (1) —5.26 5.93
Bus with auto access dummy (3) —5.49 5.33
Carpool dummy (4) —3.84 6.36
Likelihood ratio index 0.4426
Log likelihood at convergence —595.8
Number of observations 771
Value of time saved as a
percentage of wage:
Auto on-vehicle time 227 3.20
Transit on-vehicle time 91 243
Walk time 243 3.10
Transfer wait time 190 2.01

¢ Variable enters modes in parentheses and is zero in other modes. Modes: 1. Auto alone.
2. Bus with walk access. 3. Bus with auto access. 4. Carpool.

concerned about cost than higher-paid workers. On-vehicle time enters
separately for car and bus travel to indicate that commuters might find
time spent on the bus to be more, or less, bothersome than time spent
driving in a car. Bus travel often involves transfers, and these transfers
can be onerous for travelers. The model therefore includes the number
of transfers and the expected wait time at the transfers. The headway
(i.e., the time between scheduled buses) for the first bus line that the
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commuter would take is included as a measure of the maximum amount
of time that the person would need to wait for this bus.

The estimated coefficients of cost and the various time components
provide information on the value of time. By definition, the value of time
is the extra cost that a person would be willing to incur to save time.
The utility takes the form U,; = ac,;/w, + Bt,j + ..., where c is cost
and ¢ is time. The total derivative with respect to changes in time and
costis dU,; = (a/w,)dc,j + B dt,;, which we set equal to zero and
solve for dc/dt to find the change in cost that keeps utility unchanged
for a change in time: dc/dt = —(f/a)w,. The value of time is therefore
a proportion 8/« of the person’s wage. The estimated values of time
are reported at the bottom of Table 3.1. The time saved from riding
on the bus is valued at 91 percent of wage ((—.0259/—.0284) x 100),
while the time saved from driving in a car is worth more than twice as
much: 227 percent of wage. This difference suggests that commuters
consider driving to be considerably more onerous than riding the bus,
when evaluated on a per-minute basis. Commuters apparently choose
cars not because they like driving per se but because driving is usually
quicker. Walking is considered more bothersome than waiting for a bus
(243 percent of wage versus 190 percent), and waiting for a bus is more
bothersome than riding the bus.

Income enters the representative utility of the auto-alone alternative.
It enters in a piecewise linear fashion to allow for the possibility that
additional income has a different impact depending on the overall level of
income. None of the income variables enters significantly. Apparently
dividing travel cost by wage picks up whatever effect income might
have on the mode choice of a commuter. That is, higher wages induce
the commuter to be less concerned about travel costs but do not induce
a predilection for driving beyond the impact through cost. The number
of people and the number of vehicles per driver in the household have
a significant effect on mode choice, as expected. Alternative-specific
constants are included, with the constant for the bus—walk alternative
normalized to zero.

The model in Table 3.1 was used to predict the mode choices of
the commuters after BART was open for service. The choice set was
considered to be the four modes listed previously plus two BART modes,
differentiated by whether the person takes the bus or drives to the BART
station. Table 3.2 presents the forecasted and actual shares for each
mode. BART demand was forecast to be 6.3 percent, compared with an
actual share of 6.2 percent. This close correspondence is remarkable.

The figures in Table 3.2 tend to mask several complications that
arose in the forecasting. For example, walking to the BART station was
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Table 3.2. Predictions for after BART opened

Actual Share Predicted Share
Auto alone 59.90 55.84
Bus with walk access 10.78 12.51
Bus with auto access 1.426 2411
BART with bus access 0.951 1.053
BART with auto access 5.230 5.286
Carpool 21.71 22.89

originally included as a separate mode. The model forecasted this option
very poorly, overpredicting the number of people who would walk to
BART by a factor of twelve. The problem was investigated and found
to be primarily due to differences between the experience of walking to
BART stations and that of walking to the bus, given the neighborhoods
in which the BART stations are located. These issues are discussed at
greater length by McFadden et al. (1977).

3.10 Derivation of Logit Probabilities

It was stated without proof in Section 3.1 that if the unobserved compo-
nent of utility is distributed iid extreme value for each alternative, then
the choice probabilities take the form of equation (3.6). We now derive
this result. From (3.5) we have
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where s is g,;. Our task is to evaluate this integral. Noting that V,;; —
Vni = 0 and then collecting terms in the exponent of e, we have
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Define t = exp(—s) such that —exp(—s)ds = dt. Note that as s ap-
proaches infinity, ¢ approaches zero, and as s approaches negative
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infinity, ¢ becomes infinitely large. Using this new term,
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as required.
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