
P1: JYD/...

CB495-04Drv CB495/Train KEY BOARDED May 25, 2009 15:52 Char Count= 0

4 GEV

4.1 Introduction

The standard logit model exhibits independence from irrelevant alterna-
tives (IIA), which implies proportional substitution across alternatives.
As we discussed in Chapter 3, this property can be seen either as a
restriction imposed by the model or as the natural outcome of a well-
specified model that captures all sources of correlation over alternatives
into representative utility, so that only white noise remains. Often the
researcher is unable to capture all sources of correlation explicitly, so
that the unobserved portions of utility are correlated and IIA does not
hold. In these cases, a more general model than standard logit is needed.

Generalized extreme value (GEV) models constitute a large class
of models that exhibit a variety of substitution patterns. The unifying
attribute of these models is that the unobserved portions of utility for all
alternatives are jointly distributed as a generalized extreme value. This
distribution allows for correlations over alternatives and, as its name
implies, is a generalization of the univariate extreme value distribution
that is used for standard logit models. When all correlations are zero,
the GEV distribution becomes the product of independent extreme value
distributions and the GEV model becomes standard logit. The class
therefore includes logit but also includes a variety of other models.
Hypothesis tests on the correlations within a GEV model can be used
to examine whether the correlations are zero, which is equivalent to
testing whether standard logit provides an accurate representation of the
substitution patterns.

The most widely used member of the GEV family is called nested
logit. This model has been applied by many researchers in a variety
of situations, including energy, transportation, housing, telecommuni-
cations, and a host of other fields; see, for example, Ben-Akiva (1973),
Train (1986, Chapter 8), Train et al. (1987a), Forinash and Koppelman
(1993), and Lee (1999). Its functional form is simple compared to other
types of GEV models, and it provides a rich set of possible substitution
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patterns. Sections 4.2 and 4.3 describe the specification and estimation
of nested logit models. This description is useful in itself, since nested
logit models are so prominent, and also as background for understand-
ing more complex GEV models. In Section 4.4, we turn to other GEV
models that researchers have implemented, with special emphasis on two
of the most promising of these, namely, the paired combinatorial logit
(PCL) and generalized nested logit (GNL). The chapter’s final section
describes the entire class of GEV models and how new specifications
within the class are generated.

Only a small portion of the possible models within the GEV class
have ever been implemented. This means that the full capabilities of
this class have not yet been fully exploited and that new research in
this area has the potential to find even more powerful models than those
already used. An example of this potential is evidenced by Karlstrom
(2001), who specified a GEV model of a different form than had ever
been used before and found that it fitted his data better than previously
implemented types of GEV models. GEV models have the advantage
that the choice probabilities usually take a closed form, so that they can
be estimated without resorting to simulation. For this reason alone, GEV
models will continue to be the source of new and powerful specifications
to meet researchers’ needs.

4.2 Nested Logit

4.2.1. Substitution Patterns

A nested logit model is appropriate when the set of alternatives
faced by a decision maker can be partitioned into subsets, called nests,
in such a way that the following properties hold:

1. For any two alternatives that are in the same nest, the ratio of
probabilities is independent of the attributes or existence of all
other alternatives. That is, IIA holds within each nest.

2. For any two alternatives in different nests, the ratio of probabil-
ities can depend on the attributes of other alternatives in the two
nests. IIA does not hold in general for alternatives in different
nests.

An example can best explain whether a set of alternatives can be so
partitioned. Suppose the set of alternatives available to a worker for his
commute to work consists of driving an auto alone, carpooling, taking the
bus, and taking rail. If any alternative were removed, the probabilities of
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Table 4.1. Example of IIA holding within nests of alternatives: Change
in probabilities when one alternative is removed

Probability

With Alternative Removed

Alternative Original Auto Alone Carpool Bus Rail

Auto alone .40 — .45 (+12.5%) .52 (+30%) .48 (+20%)
Carpool .10 .20 (+100%) — .13 (+30%) .12 (+20%)
Bus .30 .48 (+60%) .33 (+10%) — .40 (+33%)
Rail .20 .32 (+60%) .22 (+10%) .35 (+70%) —

the other alternatives would increase (e.g., if the worker’s car were being
repaired, so that he could not drive to work by himself, then the probabil-
ities of carpool, bus, and rail would increase). The relevant question in
partitioning these alternatives is: by what proportion would each prob-
ability increase when an alternative is removed? Suppose the changes
in probabilities occur as set forth in Table 4.1. Note that the probabili-
ties for bus and rail always rise by the same proportion whenever one
of the other alternatives is removed. IIA therefore holds between these
two alternatives. Let us put these alternatives in a nest and call the nest
“transit.” Similarly, the probability of auto alone and carpool rise by the
same proportion whenever one of the other alternatives is removed. IIA
holds between these two alternatives, and so we put them into a nest
called “auto.” IIA does not hold between either of the auto alternatives
and either of the transit alternatives. For example, when the auto-alone
alternative is removed, the probability of carpool rises proportionately
more than the probability of bus or rail. With our two nests, we can state
the patterns of substitution succinctly as: IIA holds within each nest but
not across nests. A nested logit model with the two auto alternatives in
one nest and the two transit alternatives in another nest is appropriate to
represent this situation.

A convenient way to picture the substitution patterns is with a tree
diagram. In such a tree, each branch denotes a subset of alternatives
within which IIA holds, and every leaf on each branch denotes an alter-
native. For example, the tree diagram for the worker’s choice of mode
just described is given in Figure 4.1. The (upside down) tree consists
of two branches, labeled “auto” and “transit,” for the two subsets of
alternatives, and each of the branches contains two twigs for the two
alternatives within the subset. There is proportional substitution across
twigs within a branch but not across branches.
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TransitAuto

Bus RailCarpoolAuto
alone

Figure 4.1. Tree diagram for mode choice.

4.2.2. Choice Probabilities

Daly and Zachary (1978), McFadden (1978), and Williams
(1977) showed, independently and using different proofs, that the nested
logit model is consistent with utility maximization. Let the set of al-
ternatives j be partitioned into K nonoverlapping subsets denoted B1,

B2, . . . , BK and called nests. The utility that person n obtains from alter-
native j in nest Bk is denoted, as usual, as Unj = Vnj + εnj , where Vnj

is observed by the researcher and εnj is a random variable whose value
is not observed by the researcher. The nested logit model is obtained
by assuming that the vector of unobserved utility, εn = 〈εn1, . . . , εn J 〉,
has cumulative distribution

(4.1) exp

(
−

K∑
k=1

( ∑
j∈Bk

e−εnj /λk

)λk
)

.

This distribution is a type of GEV distribution. It is a generalization
of the distribution that gives rise to the logit model. For logit, each
εnj is independent with a univariate extreme value distribution. For this
GEV, the marginal distribution of each εnj is univariate extreme value.
However, the εnj ’s are correlated within nests. For any two alternatives
j and m in nest Bk , εnj is correlated with εnm . For any two alternatives
in different nests, the unobserved portion of utility is still uncorrelated:
Cov(εnj , εnm) = 0 for any j ∈ Bk and m ∈ B� with � �= k.

The parameter λk is a measure of the degree of independence in un-
observed utility among the alternatives in nest k. A higher value of λk

means greater independence and less correlation. The statistic 1 − λk

is a measure of correlation, in the sense that as λk rises, indicating less
correlation, this statistic drops. As McFadden (1978) points out, the cor-
relation is actually more complex than 1 − λk , but 1 − λk can be used
as an indication of correlation. A value of λk = 1 indicates complete
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independence within nest k, that is, no correlation. When λk = 1 for all
k, representing independence among all the alternatives in all nests, the
GEV distribution becomes the product of independent extreme value
terms, whose distribution is given in (3.2). In this case, the nested logit
model reduces to the standard logit model.

As shown by the authors cited earlier, this distribution for the unob-
served components of utility gives rise to the following choice proba-
bility for alternative i ∈ Bk :

(4.2) Pni = eVni /λk
( ∑

j∈Bk
eVnj /λk

)λk−1

∑K
�=1

( ∑
j∈B�

eVnj /λ�

)λ�
.

We can use this formula to show that IIA holds within each subset
of alternatives but not across subsets. Consider alternatives i ∈ Bk and
m ∈ B�. Since the denominator of (4.2) is the same for all alternatives,
the ratio of probabilities is the ratio of numerators:

Pni

Pnm
= eVni /λk

( ∑
j∈Bk

eVnj /λk
)λk−1

eVnm/λ�

( ∑
j∈B�

eVnj /λ�

)λ�−1
.

If k = � (i.e., i and m are in the same nest) then the factors in parentheses
cancel out and we have

Pni

Pnm
= eVni /λk

eVnm/λ�
.

This ratio is independent of all other alternatives. For k �= � (i.e., i and m
are in different nests), the factors in parentheses do not cancel out. The
ratio of probabilities depends on the attributes of all alternatives in the
nests that contain i and m. Note, however, that the ratio does not depend
on the attributes of alternatives in nests other than those containing i
and m. A form of IIA holds, therefore, even for alternatives in different
nests. This form of IIA can be loosely described as “independence from
irrelevant nests” or IIN. With a nested logit model, IIA holds over al-
ternatives in each nest and IIN holds over alternatives in different nests.
This property of nested logit models is reinforced in the next section
when we decompose the nested logit probability into two standard logit
probabilities.

When λk = 1 for all k (and hence 1 − λk = 0), indicating no correla-
tion among the unobserved components of utility for alternatives within
a nest, the choice probabilities become simply logit. The nested logit
model is a generalization of logit that allows for a particular pattern of
correlation in unobserved utility.
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The parameter λk can differ over nests, reflecting different correlation
among unobserved factors within each nest. The researcher can con-
strain the λk’s to be the same for all (or some) nests, indicating that the
correlation is the same in each of these nests. Hypothesis testing can be
used to determine whether constraints on the λk’s are reasonable. Testing
the constraint λk = 1 ∀k is equivalent to testing whether the standard
logit model is a reasonable specification against the more general nested
logit. These tests are performed most readily with the likelihood ratio
statistic described in Section 3.8.2.

The value of λk must be within a particular range for the model to be
consistent with utility-maximizing behavior. If λk ∀k is between zero and
one, the model is consistent with utility maximization for all possible
values of the explanatory variables. For λk greater than one, the model
is consistent with utility-maximizing behavior for some range of the
explanatory variables but not for all values. Kling and Herriges (1995)
and Herriges and Kling (1996) provide tests of consistency of nested logit
with utility maximization when λk > 1; and Train et al. (1987a) and Lee
(1999) provide examples of models for which λk > 1. A negative value
ofλk is inconsistent with utility maximization and implies that improving
the attributes of an alternative (such as lowering its price) can decrease
the probability of the alternative being chosen. With positive λk , the
nested logit approaches the “elimination by aspects” model of Tversky
(1972) as λk → 0.

In the notation that we have been using, each λk is a fixed parame-
ter, which implies that all decision makers have the same correlations
among unobserved factors. In reality, correlations might differ over de-
cision makers based on their observed characteristics. To accommodate
this possibility, each λk can be specified to be a parametric function of
observed demographics or other variables, as long as the function main-
tains a positive value. For example, Bhat (1997a) specifies λ = exp(αzn),
where zn is a vector of characteristics of decision maker n, and α is a
vector of parameters to be estimated along with the parameters that enter
representative utility. The exponential transformation assures that λ is
positive.

4.2.3. Decomposition into Two Logits

Expression (4.2) is not very illuminating as a formula. However,
the choice probabilities can be expressed in an alternative fashion that
is quite simple and readily interpretable. Without loss of generality, the
observed component of utility can be decomposed into two parts: (1) a
part labeled W that is constant for all alternatives within a nest, and
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(2) a part labeled Y that varies over alternatives within a nest. Utility is
written as

(4.3) Unj = Wnk + Ynj + εnj

for j ∈ Bk , where:

Wnk depends only on variables that describe nest k. These variables
differ over nests but not over alternatives within each nest.

Ynj depends on variables that describe alternative j . These variables
vary over alternatives within nest k.

Note that this decomposition is fully general, since for any Wnk , Ynj

is defined as Vnj − Wnk .
With this decomposition of utility, the nested logit probability can

be written as the product of two standard logit probabilities. Let the
probability of choosing alternative i ∈ Bk be expressed as the product
of two probabilities, namely, the probability that an alternative within
nest Bk is chosen and the probability that the alternative i is chosen given
that an alternative in Bk is chosen:

Pni = Pni | Bk PnBk ,

where Pni | Bk is the conditional probability of choosing alternative i
given that an alternative in nest Bk is chosen, and PnBk is the marginal
probability of choosing an alternative in nest Bk (with the marginality
being over all alternatives in Bk). This equality is exact, since any prob-
ability can be written as the product of a marginal and a conditional
probability.

The reason for decomposing Pni into a marginal and a conditional
probability is that, with the nested logit formula for Pni , the marginal
and conditional probabilities take the form of logits. In particular, the
marginal and conditional probabilities can be expressed as

(4.4) PnBk = eWnk+λk Ink∑K
�=1 eWn�+λ� In�

,

(4.5) Pni | Bk = eYni /λk∑
j∈Bk

eYnj /λk
,

where

Ink = ln
∑
j∈Bk

eYnj /λk .
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The derivation of these expressions from the choice probability (4.2)
simply involves algebraic rearrangement. For interested readers, it is
given in Section 4.2.5.

Stated in words, the probability of choosing an alternative in Bk takes
the form of the logit formula, as if it resulted from a model for a choice
among nests. This probability includes variables Wnk that vary over
nests but not over alternatives within each nest. It also includes a quan-
tity called Ink , whose meaning we elucidate in subsequent text. The
conditional probability of choosing i given that an alternative in Bk is
chosen is also given by a logit formula, as if it resulted from a model
for the choice among the alternatives within the nest. This conditional
probability includes variables Ynj that vary over alternatives within the
nest. Note that these variables are divided by λk , so that, when Ynj is
linear in parameters, the coefficients that enter this conditional proba-
bility are the original coefficients divided by λk . It is customary to refer
to the marginal probability (choice of nest) as the upper model and to
the conditional probability (choice of alternative within the nest) as the
lower model, reflecting their relative positions in Figure 4.1.

The quantity Ink links the upper and lower models by bringing infor-
mation from the lower model into the upper model. Ben-Akiva (1973)
first identified the correct formula for this link. In particular, Ink is the
log of the denominator of the lower model. This formula has an import-
ant meaning. Recall from the discussion of consumer surplus for a logit
model (Section 3.5) that the log of the denominator of the logit model
is the expected utility that the decision maker obtains from the choice
situation, as shown by Williams (1977) and Small and Rosen (1981).
The same interpretation applies here: λk Ink is the expected utility that
decision maker n receives from the choice among the alternatives in nest
Bk . The formula for expected utility is the same here as for a logit model
because, conditional on the nest, the choice of alternatives within the nest
is indeed a logit, as given by equation (4.5). Ink is often called the inclu-
sive value or inclusive utility of nest Bk . It is also called the “log-sum
term” because it is the log of a sum (of exponentiated representative
utilities). The term “inclusive price” is sometimes used; however, the
negative of Ink more closely resembles a price.

The coefficient λk of Ink in the upper model is often called the log-sum
coefficient. As discussed, λk reflects the degree of independence among
the unobserved portions of utility for alternatives in nest Bk , with a lower
λk indicating less independence (more correlation).

It is appropriate that the inclusive value enters as an explanatory vari-
able in the upper model. Stated loosely, the probability of choosing nest
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Bk depends on the expected utility that the person receives from that
nest. This expected utility includes the utility that he receives no matter
which alternative he chooses in the nest, which is Wnk , plus the expected
extra utility that he receives by being able to choose the best alternative
in the nest, which is λk Ink .

Recall that the coefficients that enter the lower model are divided
by λk , as given in equation (4.5). Models have been specified and es-
timated without dividing by λk in the lower model. Daly (1987) and
Greene (2000) describe such a model, and the software package STATA
includes it as its nested logit model in the nlogit command. The pack-
age NLOGIT allows either specification. If the coefficients in the lower
model are not divided by λk , the choice probabilities are not the same
as those given in equation (4.2). As shown in the derivation in Sec-
tion 4.2.5, the division by λk is needed for the product of the conditional
and marginal probabilities to equal the nested logit probabilities given
by equation (4.2). However, the fact that the model does not give the
probabilities in equation (4.2) does not necessarily mean that the model
is inappropriate. Koppelman and Wen (1998) and Hensher and Greene
(2002) compare the two approaches (dividing by λk versus not) and show
that the latter model is not consistent with utility maximization when
any coefficients are common across nests (such as a cost coefficient that
is the same for bus and car modes). Heiss (2002) points out the con-
verse: if no coefficients are common over nests, then the latter model is
consistent with utility maximization, since the necessary division by λk

in each nest is accomplished implicitly (rather than explicitly) by allow-
ing separate coefficients in each nests such that the scale of coefficients
differs over nests. When coefficients are common over nests, he found
that not dividing by λk leads to counterintuitive implications.

4.2.4. Estimation

The parameters of a nested model can be estimated by standard
maximum likelihood techniques. Substituting the choice probabilities of
expression (4.2) into the log-likelihood function gives an explicit func-
tion of the parameters of this model. The values of the parameters that
maximize this function are, under fairly general conditions, consistent
and efficient (Brownstone and Small, 1989).

Computer routines are available in commercial software packages for
estimating nested models by maximum likelihood. Hensher and Greene
(2002) provide a guide for nested logits using available software. Num-
erical maximization is sometimes difficult, since the log-likelihood func-
tion is not globally concave and even in concave areas is not close to
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a quadratic. The researcher may need to help the routines by trying dif-
ferent algorithms and/or starting values, as discussed in Chapter 8.

Instead of performing maximum likelihood, nested logit models can
be estimated consistently (but not efficiently) in a sequential fashion,
exploiting the fact that the choice probabilities can be decomposed into
marginal and conditional probabilities that are logit. This sequential
estimation is performed “bottom up.” The lower models (for the choice
of alternative within a nest) are estimated first. Using the estimated
coefficients, the inclusive value is calculated for each lower model. Then
the upper model (for choice of nest) is estimated, with the inclusive value
entering as explanatory variables.

Sequential estimation creates two difficulties that argue against its use.
First, the standard errors of the upper-model parameters are biased down-
ward, as Amemiya (1978) first pointed out. This bias arises because the
variance of the inclusive value estimate that enters the upper model is not
incorporated into the calculation of standard errors. With downwardly
biased standard errors, smaller confidence bounds and larger t-statistics
are estimated for the parameters than are true, and the upper model will
appear to be better than it actually is. Ben-Akiva and Lerman (1985,
p. 298) give a procedure for adjusting the standard errors to eliminate
the bias.

Second, it is usually the case that some parameters appear in several
submodels. Estimating the various upper and lower models separately
provides separate estimates of whatever common parameters appear in
the model. Simultaneous estimation by maximum likelihood assures that
the common parameters are constrained to be the same wherever they
appear in the model.

These two complications are symptoms of a more general circum-
stance, namely, that sequential estimation of nested logit models, while
consistent, is not as efficient as simultaneous estimation by maximum
likelihood. With simultaneous estimation, all information is utilized in
the estimation of each parameter, and parameters that are common across
components are necessarily constrained to be equal. Since commercial
software is available for simultaneous estimation, there is little reason
to estimate a nested logit sequentially. If problems arise in simultaneous
estimation, then the researcher might find it useful to estimate the model
sequentially and then use the sequential estimates as starting values in
the simultaneous estimation. The main value of the decomposition of
the nested logit into its upper and lower components comes not in its use
as an estimation tool but rather as an heuristic device: the decomposition
helps greatly in understanding the meaning and structure of the nested
logit model.
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4.2.5. Equivalence of Nested Logit Formulas

We asserted in Section 4.2.3 that the product of the marginal and
conditional probabilities in (4.4) and (4.5) equals the joint probability
in (4.2). We now verify this assertion:

Pni = eVni /λk
(∑

j∈Bk
eVnj /λk

)λk−1

∑K
�=1

(∑
j∈B�

eVnj /λ�

)λ�
by (4.2)

= eVni /λk∑
j∈Bk

eVnj /λk

(∑
j∈Bk

eVnj /λk
)λk

∑K
�=1

(∑
j∈B�

eVnj /λ�

)λ�

= e(Wnk+Yni )/λk∑
j∈Bk

e(Wnk+Ynj )/λk

(∑
j∈Bk

e(Wnk+Ynj )/λk
)λk

∑K
�=1

(∑
j∈B�

e(Wn�+Ynj )/λ�

)λ�
by (4.3)

= eWnk/λk eYni /λk

eWnk/λk
∑

j∈Bk
eYnj /λk

eWnk
(∑

j∈Bk
eYnj /λk

)λk

∑K
�=1 eWn�

(∑
j∈B�

eYnj /λ�

)λ�

= eYni /λk∑
j∈Bk

eYnj /λk

eWnk+λk Ink∑K
�=1 eWn�+λ� In�

= Pni | Bk PnBk ,

where the next-to-last equality is because Ink = ln
∑

j∈Bk
eYnj /λk , recog-

nizing that ex bc = ex+c ln b.

4.3 Three-Level Nested Logit

The nested logit model that we have discussed up to this point is called
a two-level nested logit model, because there are two levels of modeling:
the marginal probabilities (upper model) and the conditional probabili-
ties (lower models). In the case of the mode choice, the two levels are the
marginal model of auto versus transit and the conditional models of type
of auto or transit (auto alone or carpool given auto, and bus or rail given
transit).

In some situations, three- or higher-level nested logit models are ap-
propriate. Three-level models are obtained by partitioning the set of
alternatives into nests and then partitioning each nest into subnests. The
probability formula is a generalization of (4.2) with extra sums for the
subnests within the sums for nests. See McFadden (1978) or Ben-Akiva
and Lerman (1985) for the formula.

As with a two-level nested logit, the choice probabilities for a three-
level model can be expressed as a series of logits. The top model
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Neighborhood

Number of
bedrooms 1      2     3+ 1      2      3+ 1      2     3+ 1      2     3+

Housing unit

Nob 
Hill

Haight 
Ashbury

Telegraph
Hill

Mission 
District

Figure 4.2. Three-level nested logit.

describes the choice of nest; the middle models describe the choice of
subnest within each nest; and the bottom models describe the choice
of alternative within each subnest. The top model includes an inclusive
value for each nest. This value represents the expected utility that the
decision maker can obtain from the subnests within the nest. It is cal-
culated as the log of the denominator of the middle model for that nest.
Similarly, the middle models include an inclusive value for each subnest,
which represents the expected utility that the decision maker can obtain
from the alternatives within the subnest. It is calculated as the log of the
denominator of the bottom model for the subnest.

As an example, consider a household’s choice of housing unit within
a metropolitan area. The household has a choice among all the available
housing units in the city. The housing units are available in different
neighborhoods in the city and with different numbers of bedrooms. It is
reasonable to assume that there are unobserved factors that are common
to all units in the same neighborhood, such as the proximity to shopping
and entertainment. The unobserved portion of utility is therefore ex-
pected to be correlated over all units in a given neighborhood. There
are also unobserved factors that are common to all units with the same
number of bedrooms, such as the convenience of working at home. We
therefore expect the unobserved utility to be even more highly correlated
among units of the same size in the same neighborhood than between
units of different size in the same neighborhood. This pattern of corre-
lation can be represented by nesting the units by neighborhood and then
subnesting them by number of bedrooms. A tree diagram depicting this
situation is given in Figure 4.2 for San Francisco. There are three levels
of submodels: the probability for choice of neighborhood, the probabil-
ity for choice of number of bedrooms given the neighborhood, and the
choice of unit given the neighborhood and number of bedrooms.
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A nested logit model with this nesting structure embodies IIA in the
following ways:

1. The ratio of probabilities of two housing units in the same neigh-
borhood and with the same number of bedrooms is independent
of the characteristics of all other units. For example, lowering
the price of a two-bedroom apartment in Pacific Heights draws
proportionately from all one-bedroom units on Russian Hill.

2. The ratio of probabilities of two housing units in the same neigh-
borhood but with different numbers of bedrooms is indepen-
dent of the characteristics of units in other neighborhoods but
depends on the characteristics of units in the same neighbor-
hood that have the same number of bedrooms as either of these
units. Lowering the price of a two-bedroom apartment in Paci-
fic Heights draws proportionately from one- and two-bedroom
units on Russian Hill, but draws disproportionately from two-
bedroom units in Pacific Heights relative to one-bedroom units
in Pacific Heights.

3. The ratio of probabilities of two housing units in different neigh-
borhoods depends on the characteristics of all the other hous-
ing units in those neighborhoods but not on the characteris-
tics of units in other neighborhoods. Lowering the price of a
two-bedroom apartment in Pacific Heights draws proportion-
ately from all units outside Pacific Heights but draws dispropor-
tionately from units in Pacific Heights relative to units outside
Pacific Heights.

Each layer of a nesting in a nested logit introduces parameters that
represent the degree of correlation among alternatives within the nests.
With the full set of alternatives partitioned into nests, the parameter λk

is introduced for nest k, as described for two-level models. If the nests
are further partitioned into subnests, then a parameter σmk is introduced
for subnest m of nest k. Using the decomposition of the probability into
a series of logit models, σmk is the coefficient of the inclusive value in
the middle model, and λkσmk is the coefficient of the inclusive value in
the top model. Just as for a two-level nested logit, the values of these
parameters must be in certain ranges to be consistent with utility maxi-
mization. If 0 < λk < 1 and 0 < σmk < 1, then the model is consistent
with utility maximization for all levels of the explanatory variables. A
negative value for either parameter is inconsistent with utility maximiza-
tion. And values greater than one are consistent for a range of explanatory
variables.
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4.4 Overlapping Nests

For the nested logit models that we have considered, each alternative
is a member of only one nest (and, for three-level models, only one
subnest). This aspect of nested logit models is a restriction that is some-
times inappropriate. For example, in our example of mode choice, we
put carpool and auto alone into a nest because they have some similar
unobserved attributes. However, carpooling also has some unobserved
attributes that are similar to bus and rail, such as a lack of flexibility in
scheduling (the worker cannot go to work whenever he wants each day
but rather has to go at the time that the carpool has decided, similarly to
taking a bus or rail line with fixed departure times). It would be useful to
have a model in which the unobserved utility for the carpool alternative
could be correlated with that of auto alone and also correlated, though to
a different degree, with that of bus and rail. Stated equivalently, it would
be useful for the carpool alternative to be in two nests: one with auto
alone and another with bus and rail.

Several kinds of GEV models have been specified with overlapping
nests, so that an alternative can be a member of more than one nest.
Vovsha (1997), Bierlaire (1998), and Ben-Akiva and Bierlaire (1999)
have proposed various models called cross-nested logits (CNLs) that
contain multiple overlapping nests. Small (1987) considered a situation
where the alternatives have a natural order, such as the number of cars
that a household owns (0, 1, 2, 3, . . . ) or the destination for shopping
trips, with the shopping areas ordered by distance from the household’s
home. He specified a model, called ordered generalized extreme value
(OGEV), in which the correlation in unobserved utility between any two
alternatives depends on their proximity in the ordering. This model has
overlapping nests like the CNLs, but each nest consists of two alterna-
tives, and a pattern is imposed on the correlations (higher correlation
for closer pairs). Small (1994) and Bhat (1998b) described a nested ver-
sion of the OGEV, which is similar to a nested logit except that the
lower models (for the alternatives given the nests) are OGEV rather than
standard logit. Chu (1981, 1989) proposed a model called the paired
combinatorial logit (PCL) in which each pair of alternatives constitutes
a nest with its own correlation. With J alternatives, each alternative is
a member of J − 1 nests, and the correlation of its unobserved utility
with each other alternative is estimated. Wen and Koppelman (2001)
have developed a generalized nested logit (GNL) model that includes
the PCL and other cross-nested models as special cases. I describe in
the following subsections the PCL and GNL, the former because of its
simplicity and the latter because of its generality.
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4.4.1. Paired Combinatorial Logit

Each pair of alternatives is considered to be a nest. Since each
alternative is paired with each of the other alternatives, each alternative
is member of J − 1 nests. A parameter labeled λi j indicates the degree
of independence between alternatives i and j . Stated equivalently: 1 −
λi j is a measure of the correlation between the unobserved utility of
alternative i and that of alternative j . This parameter is analogous to the
λk in a nested logit model, where λk indicates the degree of independence
of alternatives within the nest and 1 − λk is a measure of correlation
within the nest. And as with nested logit, the PCL model becomes a
standard logit when λi j = 1 for all pairs of alternatives.

The choice probabilities for the PCL model are

(4.6) Pni =
∑

j �=i eVni /λi j (eVni /λi j + eVnj /λi j )λi j −1∑J−1
k=1

∑J
�=k+1(eVnk/λk� + eVn�/λk�)λk�

.

The sum in the numerator is over all J − 1 nests that alternative i is
in. For each of these nests, the term being added is the same as the
numerator of the nested logit probability (4.2). Thus, the PCL is like
the nested logit except that it allows i to be in more than one nest. The
denominator in the PCL also takes the same form as in a nested logit: it
is the sum over all nests of the sum of the exp(V/λ)’s within the nest,
raised to the appropriate power λ. If λi j is between zero and one for all
i j pairs, then the model is consistent with utility maximization for all
levels of the data. It is easy to verify that Pni becomes the standard logit
formula when λi j = 1 ∀i, j . In their application, Koppelman and Wen
(2000) found PCL to perform better than nested logit or standard logit.

The researcher can test the hypothesis that λi j = 1 for some or all of
the pairs, using the likelihood ratio test of Section 3.8.2. Acceptance of
the hypothesis for a pair of alternatives implies that there is no significant
correlation in the unobserved utility for that pair. The researcher can also
place structure on the pattern of correlation. For example, correlations
can be assumed to be the same among a group of alternatives; this
assumption is imposed by setting λi j = λk� for all i , j , k, and � in the
group. Small’s OGEV model is a PCL model in which λi j is specified
to be a function of the proximity between i and j . With a large number
of alternatives, the researcher will probably need to impose some form
of structure on the λi j ’s, simply to avoid the proliferation of parameters
that arises with large J . This proliferation of parameters, one for each
pair of alternatives, is what makes the PCL so flexible. The researcher’s
goal is to apply this flexibility meaningfully for his particular situation.

As discussed near the end of Section 2.5, since the scale and level
of utility are immaterial, at most J (J − 1)/2 − 1 covariance parameters
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can be estimated in a discrete choice model. A PCL model contains
J (J − 1)/2 λ’s: one for each alternative paired with each other alter-
native, recognizing that i paired with j is the same as j paired with i .
The number of λ’s exceeds the number of identifiable covariance pa-
rameters by exactly one. The researcher must therefore place at least
one constraint on the λ’s. This can be accomplished by normalizing one
of the λ’s to 1. If structure is imposed on the pattern of correlation,
as described in the previous paragraph, then this structure will usually
impose the normalization automatically.

4.4.2. Generalized Nested Logit

Nests of alternatives are labeled B1, B2, . . . , BK . Each alterna-
tive can be a member of more than one nest. Importantly, an alternative
can be in a nest to varying degrees. Stated differently, an alternative
is allocated among the nests, with the alternative being in some nests
more than other nests. An allocation parameter α jk reflects the extent
to which alternative j is a member of nest k. This parameter must be
nonnegative: α jk ≥ 0 ∀ j, k. A value of zero means that the alternative is
not in the nest at all. Interpretation is facilitated by having the allocation
parameters sum to one over nests for any alternative:

∑
k α jk = 1 ∀ j .

Under this condition, α jk reflects the portion of the alternative that is
allocated to each nest.

A parameter λk is defined for each nest and serves the same function
as in nested logit models, namely to indicate the degree of independence
among alternatives within the nest: higher λk translates into greater in-
dependence and less correlation.

The probability that person n chooses alternative i is

(4.7) Pni =
∑

k

(
αikeVni

)1/λk
(∑

j∈Bk

(
α jkeVnj

)1/λk
)λk−1

∑K
�=1

(∑
j∈B�

(
α j�eVnj

)1/λ�

)λ�
.

This formula is similar to the nested logit probability given in equa-
tion (4.2), except that the numerator is a sum over all the nests that
contains alternative i , with weights applied to these nests. If each alter-
native enters only one nest, with α jk = 1 for j ∈ Bk and zero otherwise,
the model becomes a nested logit model. And if, in addition, λk = 1 for
all nests, then the model becomes standard logit. Wen and Koppelman
(2001) derive various cross-nested models as special cases of the GNL.

To facilitate interpretation, the GNL probability can be decomposed as

Pni =
∑

k

Pni | Bk Pnk,
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where the probability of nest k is

Pnk =
(∑

j∈Bk

(
α jkeVnj

)1/λk
)λk

∑K
�=1

(∑
j∈B�

(
α j�eVnj

)1/λ�

)λ�

and the probability of alternative i given nest k is

Pni | Bk =
(
αikeVni

)1/λk∑
j∈Bk

(
α jkeVnj

)1/λk
.

4.5 Heteroskedastic Logit

Instead of capturing correlations among alternatives, the researcher may
simply want to allow the variance of unobserved factors to differ over
alternatives. Steckel and Vanhonacker (1988), Bhat (1995), and Recker
(1995) describe a type of GEV model, called heteroskedastic extreme
value (HEV), that is the same as logit except for having a different vari-
ance for each alternative. Utility is specified as Unj = Vnj + εnj , where
εnj is distributed independently extreme value with variance (θ jπ )2/6.
There is no correlation in unobserved factors over alternatives; however,
the variance of the unobserved factors is different for different alterna-
tives. To set the overall scale of utility, the variance for one alternative is
normalized to π2/6, which is the variance of the standardized extreme
value distribution. The variances for the other alternatives are then esti-
mated relative to the normalized variance.

The choice probabilities for this heteroskedastic logit are (Bhat, 1995)

Pni =
∫ [ ∏

j �=i

e−e−(Vni −Vnj +θi w)/θ j

]
e−e−w

e−wdw,

where w = εni/θi . The integral does not take a closed form; however, it
can be approximated by simulation. Note that exp(− exp(−w)) exp(−w)
is the extreme value density, given in Section 3.1. Pni is therefore the
integral of the factor in square brackets over the extreme value den-
sity. It can be simulated as follows: (1) Take a draw from the ex-
treme value distribution, using the procedure described in Section 9.2.3.
(2) For this draw of w, calculate the factor in brackets, namely,∏

j �=i exp(− exp(−(vni − Vnj + θiw)/θ j )). (3) Repeat steps 1 and 2
many times, and average the results. This average is an approximation to
Pni . Bhat (1995) shows that, since the integral is only one-dimensional,
the heteroskedastic logit probabilities can be calculated effectively with
quadrature rather than simulation.
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4.6 The GEV Family

We now describe the processs that McFadden (1978) developed to gen-
erate GEV models. Using this process, the researcher is able to develop
new GEV models that best fit the specific circumstances of his choice
situation. As illustration, we show how the procedure is used to generate
models that we have already discussed, namely logit, nested logit, and
paired combinatorial logit. The same procedure can be applied by a re-
searcher to generate new models with properties that meet his research
needs.

For notational simplicity, we will omit the subscript n denoting the
decision maker. Also, since we will be using exp(Vj ) repeatedly, let’s
denote it more compactly by Y j . That is, let Y j ≡ exp(Vj ). Note that Y j

is necessarily positive.
Consider a function G that depends on Y j for all j . We denote this

function G = G(Y1, . . . , YJ ). Let Gi be the derivative of G with respect
to Yi : Gi = ∂G/∂Yi . If this function meets certain conditions, then a
discrete choice model can be based upon it. In particular, if G satisfies
the conditions that are listed in the next paragraph, then

(4.8) Pi = Yi Gi

G

is the choice probability for a discrete choice model that is consistent
with utility maximization. Any model that can be derived in this way is a
GEV model. This formula therefore defines the family of GEV models.

The properties that the function must exhibit are the following:

1. G ≥ 0 for all positive values of Y j ∀ j .
2. G is homogeneous of degree one. That is, if each Y j is

raised by some proportion ρ, G rises by proportion ρ also:
G(ρY1, . . . , ρYJ ) = ρG(Y1, . . . , YJ ). Actually, Ben-Akiva and
Francois (1983) showed that this condition can be relaxed to
allow any degree of homogeneity. We retain the usage of degree
one, since doing so makes the condition easier to interpret and
is consistent with McFadden’s original description.

3. G → ∞ as Y j → ∞ for any j .
4. The cross partial derivatives of G change signs in a particular

way. That is, Gi ≥ 0 for all i , Gi j = ∂Gi/∂Y j ≤ 0 for all j �= i ,
Gi jk = ∂Gi j/∂Yk ≥ 0 for any distinct i , j , and k, and so on for
higher-order cross-partials.

There is little economic intuition to motivate these properties, particu-
larly the last one. However, it is easy to verify whether a function exhibits
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these properties. The lack of intuition behind the properties is a blessing
and a curse. The disadvantage is that the researcher has little guidance
on how to specify a G that provides a model that meets the needs of his
research. The advantage is that the purely mathematical approach allows
the researcher to generate models that he might not have developed while
relying only on his economic intuition. Karlstrom (2001) provides an
example: he arbitrarily specified a G (in the sense that it was not based
on behavioral concepts) and found that the resulting probability formula
fitted his data better than logit, nested logit, and PCL.

We can now show how logit, nested logit, and PCL models are ob-
tained under appropriate specifications of G.

Logit

Let G = ∑J
j=1 Y j . This G exhibits the four required properties:

(1) The sum of positive Y j ’s is positive. (2) If all Y j ’s are raised by a
factor ρ, G rises by that same factor. (3) If any Y j rises without bound,
then G does also. (4) The first partial derivative is Gi = ∂G/∂Yi = 1,
which meets the criterion that Gi ≥ 0. And the higher-order derivatives
are all zero, which clearly meets the criterion, since they are ≥ 0 or ≤ 0
as required.

Inserting this G and its first derivative Gi into (4.8), the resulting
choice probability is

Pi = Yi Gi

G

= Yi∑J
j=1 Y j

= eVi∑J
j=1 eVj

,

which is the logit formula.

Nested Logit

The J alternatives are partitioned into K nests labeled
B1, . . . , BK . Let

G =
K∑

�=1

( ∑
j∈B�

Y 1/λ�

j

)λ�

,

with each λk between zero and one. The first three properties are easy
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to verify. For the fourth property, we calculate the first partial derivative

Gi = λk

( ∑
j∈Bk

Y 1/λk

j

)λk−1 1

λk
Y (1/λk )−1

i

= Y (1/λk )−1
i

( ∑
j∈Bk

Y 1/λk

j

)λk−1

for i ∈ Bk . Since Y j ≥ 0 ∀ j , we have Gi ≥ 0, as required. The second
cross partial derivative is

Gim = ∂Gi

∂Ym

= (λk − 1)Y (1/λk )−1
i

( ∑
j∈Bk

Y 1/λk

j

)λk−2 1

λk
Y (1/λk )−1

m

= λk − 1

λk
(Yi Ym)(1/λk )−1

( ∑
j∈Bk

Y 1/λk

j

)λk−2

for m ∈ Bk and m �= i . With λk ≤ 1, Gi j ≤ 0, as required. For j in
a different nest than i , Gi j = 0, which also meets the criterion. Higher
cross-partials are calculated similarly; they exhibit the required property
if 0 < λk ≤ 1.

The choice probability becomes

Pi = Yi Gi

G

=
Yi Y

(1/λk )−1
i

( ∑
j∈Bk

Y 1/λ�

j

)λk−1

∑K
�=1

( ∑
j∈B�

Y 1/λ�

j

)λ�

=
Y 1/λk

i

( ∑
j∈Bk

Y 1/λ�

j

)λk−1

∑K
�=1

( ∑
j∈B�

Y 1/λ�

j

)λ�

=
(eVi )1/λk

( ∑
j∈Bk

(eVj )1/λ�

)λk−1

∑K
�=1

( ∑
j∈B�

(eVj )1/λ�

)λ�

=
eVi /λk

( ∑
j∈Bk

eVj /λ�

)λk−1

∑K
�=1

( ∑
j∈B�

eVj /λ�

)λ�
,

which is the nested logit formula (4.2).
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Paired Combinatorial Logit

Let

G =
J−1∑
k=1

J∑
�=k+1

(
Y 1/λk�

k + Y 1/λk�

�

)λk�

.

The required properties are verified in the same way as for the nested
logit. We have

Gi =
∑
j �=i

λ j i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1 1

λi j
Y

(1/λi j )−1

i

=
∑
j �=i

Y
(1/λi j )−1

i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1

.

And so the choice probability is

Pi = Yi Gi

G

=
Yi

∑
j �=i Y

(1/λi j )−1

i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1

∑J−1
k=1

∑J
�=k+1

(
Y 1/λk�

k + Y 1/λk�

�

)λk�

=
∑

j �=i Y
(1/λi j )

i

(
Y

1/λi j

i + Y
1/λi j

j

)λi j −1

∑J−1
k=1

∑J
�=k+1

(
Y 1/λk�

k + Y 1/λk�

�

)λk�

=
∑

j �=i eVi /λi j (eVi /λi j + eVj /λi j )λi j −1∑J−1
k=1

∑J
�=k+1(eVk/λk� + eV�/λk�)λk�

,

which is the PCL formula (4.6).

Generalized Nest Logit

The reader can verify that the GNL probabilities in equation
(4.7) are derived from

G =
K∑

k=1

( ∑
j∈Bk

(α jkY j )
1/λk

)λk

.

Using the same process, researchers can generate other GEV models.


