6  Mixed Logit

6.1 Choice Probabilities

Mixed logit is a highly flexible model that can approximate any random
utility model (McFadden & Train, 2000). It obviates the three limitations
of standard logit by allowing for random taste variation, unrestricted
substitution patterns, and correlation in unobserved factors over time.
Unlike probit, it is not restricted to normal distributions. Its derivation
is straightforward, and simulation of its choice probabilities is compu-
tationally simple.

Like probit, the mixed logit model has been known for many years
but has only become fully applicable since the advent of simulation.
The first application of mixed logit was apparently the automobile de-
mand models created jointly by Boyd & Mellman (1980) and Cardell
& Dunbar (1980). In these studies, the explanatory variables did not
vary over decision makers, and the observed dependent variable was
market shares rather than individual customers’ choices. As a result, the
computationally intensive integration that is inherent in mixed logit (as
explained later) needed to be performed only once for the market as a
whole, rather than for each decision maker in a sample. Early applica-
tions on customer-level data, such as Train et al. (1987a) and Ben-Akiva
etal. (1993), included only one or two dimensions of integration, which
could be calculated by quadrature. Improvements in computer speed
and in our understanding of simulation methods have allowed the full
power of mixed logits to be utilized. Among the studies to evidence
this power are those by Bhat (1998a) and Brownstone & Train (1999)
on cross-sectional data, and Erdem (1996), Revelt & Train (1998), and
Bhat (2000) on panel data. The description in the current chapter draws
heavily from Train (1999).

Mixed logit models can be derived under a variety of different behav-
ioral specifications, and each derivation provides a particular interpre-
tation. The mixed logit model is defined on the basis of the functional
form for its choice probabilities. Any behavioral specification whose

134



Mixed Logit 135

derived choice probabilities take this particular form is called a mixed
logit model.

Mixed logit probabilities are the integrals of standard logit probabil-
ities over a density of parameters. Stated more explicitly, a mixed logit
model is any model whose choice probabilities can be expressed in the
form

Pni = /Lill(ﬁ)f(ﬁ)dﬂv

where L,;(f8) is the logit probability evaluated at parameters S:
Vi (B)

S eVu®

and f(B) is a density function. V,;(8) is the observed portion of the
utility, which depends on the parameters 8. If utility is linear in 8, then
Vi (B) = B'xy;. In this case, the mixed logit probability takes its usual
form:

B xni
6.1) Pu= / (ﬁ)ﬂﬁ)dﬁ-
J

The mixed logit probability is a weighted average of the logit formula
evaluated at different values of §, with the weights given by the density
f(B). Inthe statistics literature, the weighted average of several functions
is called a mixed function, and the density that provides the weights is
called the mixing distribution. Mixed logit is a mixture of the logit
function evaluated at different 8’s with f(8) as the mixing distribution.

Standard logit is a special case where the mixing distribution f(8) is
degenerate at fixed parameters b: f(f8) = 1 for § = b and 0 for 8 # b.
The choice probability (6.1) then becomes the simple logit formula

Lni(IB) =

eb’xm-

N Zj el

The mixing distribution f(B) can be discrete, with g taking a fi-
nite set of distinct values. Suppose g takes M possible values labeled
by, ..., by, with probability s,, that 8 = b,,. In this case, the mixed logit
becomes the latent class model that has long been popular in psychol-
ogy and marketing; examples include Kamakura & Russell (1989) and
Chintagunta et al. (1991). The choice probability is

M eb,/nxni
P, = E S| =—— |-
n m Z b
m=1 J

Pni
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This specification is useful if there are M segments in the population,
each of which has its own choice behavior or preferences. The share of
the population in segment m is s,,, which the researcher can estimate
within the model along with the b’s for each segment.

In most applications that have actually been called mixed logit (such
as those cited in the introductory paragraphs in this chapter), f(B) is
specified to be continuous. For example, the density of 8 can be specified
to be normal with mean b and covariance W. The choice probability
under this density becomes

PLEZ
Pi= [ <W>¢(ﬂ b, W)dp.

where ¢(B | b, W) is the normal density with mean b and covariance
W. The researcher estimates b and W. The lognormal, uniform, triangu-
lar, gamma, or any other distribution can be used. As will be shown in
Section 6.5, by specifying the explanatory variables and density appro-
priately, the researcher can represent any utility-maximizing behavior by
a mixed logit model, as well as many forms of non-utility-maximizing
behavior.

Tests for the need for a nondegenerate mixing distribution, as well
as the adequacy of any given distribution, have been developed by
McFadden & Train (2000) and Chesher & Santos-Silva (2002). Sev-
eral studies have compared discrete and continuous mixing distributions
within the context of mixed logit; see, for example, Wedel & Kamakura
(2000) and Andrews et al. (2002).

Anissue of terminology arises with mixed logit models. There are two
sets of parameters in a mixed logit model. First, we have the parameters
B, which enter the logit formula. These parameters have density f(8).
The second set are parameters that describe this density. For example,
if B is normally distributed with mean b and covariance W, then b and
W are parameters that describe the density f(8). Usually (though not
always, as noted in the following text), the researcher is interested in
estimating the parameters of f.

Denote the parameters that describe the density of 8 as 6. The more
appropriate way to denote this density is f(8 | 8). The mixed logit
choice probabilities do not depend on the values of 8. These proba-
bilities are P,; = fLm»(ﬂ)f(ﬁ | 0) dB, which are functions of 6. The
parameters § are integrated out. Thus, the B’s are similar to the ¢,;’s, in
that both are random terms that are integrated out to obtain the choice
probability.
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Under some derivations of the mixed logit model, the values of 8 have
interpretable meaning as representing the tastes of individual decision
makers. In these cases, the researcher might want to obtain information
about the B’s for each sampled decision maker, as well as the 6 that
describes the distribution of B’s across decision makers. In Chapter 11,
we describe how the researcher can obtain this information from es-
timates of 6 and the observed choices of each decision maker. In the
current chapter, we describe the estimation and interpretation of 6, us-
ing classical estimation procedures. In Chapter 12, we describe Bayesian
procedures that provide information about 6 and each decision maker’s
B simultaneously.

6.2 Random Coefficients

The mixed logit probability can be derived from utility-maximizing be-
havior in several ways that are formally equivalent but provide different
interpretations. The most straightforward derivation, and most widely
used in recent applications, is based on random coefficients. The deci-
sion maker faces a choice among J alternatives. The utility of person n
from alternative j is specified as

/
Unj = ByXnj + €nj,

where x,; are observed variables that relate to the alternative and deci-
sion maker, S, is a vector of coefficients of these variables for person
n representing that person’s tastes, and ¢,; is a random term that is iid
extreme value. The coefficients vary over decision makers in the pop-
ulation with density f(8). This density is a function of parameters 6
that represent, for example, the mean and covariance of the 8’s in the
population. This specification is the same as for standard logit except
that B varies over decision makers rather than being fixed.

The decision maker knows the value of his own B, and ¢,;’s for all j
and chooses alternative i if and only if U,,; > U,; Vj # i.The researcher
observes the x,;’s but not B, or the ,;’s. If the researcher observed B,,
then the choice probability would be standard logit, since the ¢,;’s are
iid extreme value. That is, the probability conditional on B, is

e:By/lxni
P
L

However, the researcher does not know $,, and therefore cannot condition
on B. The unconditional choice probability is therefore the integral of

Li(Bn) =



138 Behavioral Models

L,;(B,) over all possible variables of §,,:

eﬂ/xni
Py = /<W>f(ﬂ)dﬁ,

which is the mixed logit probability (6.1).

The researcher specifies a distribution for the coefficients and
estimates the parameters of that distribution. In most applications,
such as Revelt & Train (1998), Mehndiratta (1996), and Ben-Akiva
& Bolduc (1996), f(B) has been specified to be normal or lognormal:
B~ Nb,W)orln g~ N, W) with parameters b and W that are
estimated. The lognormal distribution is useful when the coefficient is
known to have the same sign for every decision maker, such as a price
coefficient that is known to be negative for everyone. Revelt & Train
(2000), Hensher & Greene (2003), and Train (2001) have used triangular
and uniform distributions. With the uniform density, g is distributed
uniformly between b — s and b + s, where the mean b and spread s are
estimated. The triangular distribution has positive density that starts at
b — s,rises linearly to b, and then drops linearly to b + s, taking the form
of a tent or triangle. The mean b and spread s are estimated, as with the
uniform, but the density is peaked instead of flat. These densities have the
advantage of being bounded on both sides, thereby avoiding the problem
that can arise with normals and lognormals having unreasonably large
coefficients for some share of decision makers. By constraining s = b,
the researcher can assure that the coefficients have the same sign for all
decision makers. Siikamaki (2001) and Siikamaki & Layton (2001) use
the Rayleigh distribution (Johnson et al., 1994), which is on one side of
zero like the lognormal but, as these researchers found, can be easier for
estimation than the lognormal. Revelt (1999) used truncated normals. As
these examples indicate, the researcher is free to specify a distribution
that satisfies his expectations about behavior in his own application.

Variations in tastes that are related to observed attributes of the deci-
sion maker are captured through specification of the explanatory vari-
ables and/or the mixing distribution. For example, cost might be divided
by the decision maker’s income to allow the value or relative importance
of cost to decline as income rises. The random coefficient of this vari-
able then represents the variation over people with the same income in
the value that they place on cost. The mean valuation of cost declines
with increasing income while the variance around the mean is fixed.
Observed attributes of the decision maker can also enter f(8), so that
higher-order moments of taste variation can also depend on attributes
of the decision maker. For example, Bhat (1998a, 2000) specify f(8)
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to be lognormal with mean and variance depending on decision maker
characteristics.

6.3  Error Components

A mixed logit model can be used without a random-coefficients interpre-
tation, as simply representing error components that create correlations
among the utilities for different alternatives. Utility is specified as

’ ’
Unj = o Xpj + U, Znj T Enjs

where x,; and z,; are vectors of observed variables relating to alterna-
tive j, a is a vector of fixed coefficients, u is a vector of random terms
with zero mean, and ¢,; is iid extreme value. The terms in z,,; are error
components that, along with ¢,;, define the stochastic portion of utility.
That is, the unobserved (random) portion of utility is 1,; = 1}, 2,j + €nj,
which can be correlated over alternatives depending on the specifica-
tion of z,,;. For the standard logit model, z,; is identically zero, so that
there is no correlation in utility over alternatives. This lack of correla-
tion gives rise to the IIA property and its restrictive substitution patterns.
With nonzero error components, utility is correlated over alternatives:
CoV(nis Mnj) = E(yzni + €0i) (0, 2nj + €nj) = 2,; W2,j, where W is
the covariance of w,. Utility is correlated over alternatives even when,
as in most specifications, the error components are independent, such
that W is diagonal.

Various correlation patterns, and hence substitution patterns, can be
obtained by appropriate choice of variables to enter as error components.
For example, an analog to nested logit is obtained by specifying adummy
variable for each nest that equals 1 for each alternative in the nest and
zero for alternatives outside the nest. With K non-overlapping nests, the
error components are [, z,j = Zle Mnkdji, where dj = 11if j is in
nest k and zero otherwise. It is convenient in this situation to specify
the error components to be independently normally distributed: p,,; iid
N(0, ox). The random quantity w,; enters the utility of each alternative
in nest k, inducing correlation among these alternatives. It does not enter
any of the alternatives in other nests, thereby not inducing correlation
between alternatives in the nest with those outside the nest. The variance
oy captures the magnitude of the correlation. It plays an analogous role
to the inclusive value coefficient of nested logit models.

To be more precise, the covariance between two alternatives in nest is
Cov(Nni, Mnj) = E(uk + €ni)(tk + ) = ox. The variance for each of
the alternatives in nest k is Var(1,;) = E(ux + €ni)*> = ox + w2 /6, since
the variance of the extreme value term, ,;, is 72/6 (see Section 3.1).
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The correlation between any two alternatives within nest & is therefore
o0y /(ox + % /6). Constraining the variance of each nest’s error compo-
nent to be the same for all nests (i.e., constrainingoy = o, k=1, ..., K)
is analogous to constraining the log-sum coefficient to be the same for
all nests in a nested logit. This constraint also assures that the mixed
logit model is normalized for scale and level.

Allowing different variances for the random quantities for different
nests is analogous to allowing the inclusive value coefficient to differ
across nests in a nested logit. An analog to overlapping nests is captured
with dummies that identify overlapping sets of alternatives, as in Bhat
(1998a). An analog to heteroskedastic logit (discussed in Section 4.5)
is obtained by entering an error component for each alternative. Walker
et al. (2007) provide guidance on how to specify these variables appro-
priately.

Error-component and random-coefficient specifications are formally
equivalent. Under the random-coefficient motivation, utility is specified
as U,j = B,xnj + €,; with random pB,. The coefficients B, can be de-
composed into their mean o and deviations p,, so that U,; = o'x,; +
W, Xnj + €nj, which has error components defined by z,; = x,;. Con-
versely, under an error-component motivation, utility is U,; = o'x,; +
W, Znj + €nj, Whichis equivalent to arandom-parameter model with fixed
coefficients for variables x,; and random coefficients with zero means
for variables z,;. If x,; and z,; overlap (in the sense that some of the
same variables enter x,; and z,;), the coefficients of these variables can
be considered to vary randomly with mean « and the same distribution
as u, around their means.

Though random coefficients and error components are formally equiv-
alent, the way a researcher thinks about the model affects the specifica-
tion of the mixed logit. For example, when thinking in terms of random
parameters, it is natural to allow each variable’s coefficient to vary and
perhaps even to allow correlations among the coefficients. This is the
approach pursued by Revelt & Train (1998). However, when the primary
goal is to represent substitution patterns appropriately through the use
of error components, the emphasis is placed on specifying variables that
can induce correlations over alternatives in a parsimonious fashion so as
to provide sufficiently realistic substitution patterns. This is the approach
taken by Brownstone & Train (1999). The goals differed in these studies,
Revelt and Train being interested in the pattern of tastes, while Brown-
stone and Train were more concerned with prediction. The number of
explanatory variables also differed, Revelt and Train examining 6 vari-
ables, so that estimating the joint distribution of their coefficients was
a reasonable goal, while Brownstone and Train included 26 variables.
Expecting to estimate the distribution of 26 coefficients is unreasonable,
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and yet thinking in terms of random parameters instead of error com-
ponents can lead the researcher to such expectations. It is important to
remember that the mixing distribution, whether motivated by random
parameters or by error components, captures variance and correlations
in unobserved factors. There is a natural limit on how much one can
learn about things that are not seen.

6.4 Substitution Patterns

Mixed logit does not exhibit independence from irrelevant alternatives
(ITA) or the restrictive substitution patterns of logit. The ratio of mixed
logit probabilities, P,;/ P,;, depends on all the data, including attributes
of alternatives other than i or j. The denominators of the logit formula are
inside the integrals and therefore do not cancel. The percentage change
in the probability for one alternative given a percentage change in the
mth attribute of another alternative is

By =~ 2 / B Loi(B)Ly () (B) dB

m m Lni(lB)
= / 8 Lnj(,B)[ o ]f(ﬂ)dﬂ,

where B is the mth element of 8. This elasticity is different for each
alternative i. A ten-percent reduction for one alternative need not imply
(as with logit) a ten-percent reduction in each other alternative. Rather,
the substitution pattern depends on the specification of the variables and
mixing distribution, which can be determined empirically.

Note that the percentage change in probability depends on the cor-
relation between L,;(B) and L,;(B) over different values of 8, which
is determined by the researcher’s specification of variables and mixing
distribution. For example, to represent a situation where an improvement
in alternative j draws proportionally more from alternative i than from
alternative k, the researcher can specify an element of x that is positively
correlated between i and j but uncorrelated or negatively correlated be-
tween k and j, with a mixing distribution that allows the coefficient of
this variable to vary.

6.5  Approximation to Any Random Utility Model

McFadden & Train (2000) show that any random utility model (RUM)
can be approximated to any degree of accuracy by a mixed logit with
appropriate choice of variables and mixing distribution. This proof is
analogous to the RUM-consistent approximations provided by Dagsvik
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(1994). An intuitive explanation can easily be provided. Suppose the
true model is U,; = a;,z,, where z,,; are variables related to alternative
Jj» and o follows any distribution f(«). Any RUM can be expressed in
this form. (The more traditional notation U,; = B, x,; + €,; is obtained
by letting z;lj = (x,/lj, dj), o' = (B, €sj), and f(a) be the joint density
of B, and ¢,; Vj.) Conditional on «, the person’s choice is fully deter-
mined, since U,,; is then known for each j. The conditional probability is

therefore
Gni(@) = I()zp > oty zn; Vj #0),

where /(-) is the 1-0 indicator of whether the event in parentheses oc-
curs. This conditional probability is deterministic in the sense that the
probability is either zero or one: conditional on all the unknown ran-
dom terms, the decision maker’s choice is completely determined. The
unconditional choice probability is the integral of g,; () over «:

Oni = fl(a;Zni > O[;an Vji#i)f(a)da.

We can approximate this probability with a mixed logit. Scale utility
by 4, so that U;; = («/A)z,;. This scaling does not change the model,
since behavior is unaffected by the scale of utility. Then add an iid
extreme value term: ¢,;. The addition of the extreme value term does
change the model, since it changes the utility of each alternative. We add
it because doing so gives us a mixed logit. And, as we will show (this is
the purpose of the proof), adding the extreme value term is innocuous.
The mixed logit probability based on this utility is

e(a/)»)’zm'
Pi= [ <—Z,» — M_) /) dor

As X approaches zero, the coefficients «/A in the logit formula grow
large, and P,; approaches a 1-0 indicator for the alternative with the
highest utility. That is, the mixed logit probability P,; approaches the
true probability Q,; as A approaches zero. By scaling the coefficients
upward sufficiently, the mixed logit based on these scaled coefficients
is arbitrarily close to the true model. Srinivasan & Mahmassani (2005)
use this concept of raising the scale of coefficients to show that a mixed
logit can approximate a probit model; the concept applies generally to
approximate any RUM.

Recall that we added an iid extreme value term to the true utility of each
alternative. These terms change the model, because the alternative with
highest utility before the terms are added may not have highest utility
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afterward (since a different amount is added to each utility). However,
by raising the scale of utility sufficiently, we can be essentially sure
that the addition of the extreme value terms has no effect. Consider a
two-alternative example. Suppose, using the true model with its original
scaling, that the utility of alternative 1 is 0.5 units higher than the utility
of alternative 2, so that alternative 1 is chosen. Suppose we add an
extreme value term to each alternative. There’s a good chance, given the
variance of these random terms, that the value obtained for alternative 2
will exceed that for alternative 1 by at least half a unit, so that alternative
2 now obtains the higher utility instead of 1. The addition of the extreme
value terms thus changes the model, since it changes which alternative
has the higher utility. Suppose, however, that we scale up the original
utility by a factor of 10 (i.e., . = 0.10). The utility for alternative 1 now
exceeds the utility for alternative 2 by 5 units. It is highly unlikely that
adding extreme value terms to these utilities will reverse this difference.
That is, it is highly unlikely, in fact next to impossible, that the value
of &, that is added to the utility of alternative 2 is larger by 5 than the
€n1 that is added to the utility of alternative 1. If scaling up by 10 is not
sufficient to assure that adding the extreme value term has no effect, then
the original utilities can be scaled up by 100 or 1000. At some point, a
scale will be found for which the addition of the extreme value terms has
no effect. Stated succinctly, adding an extreme value term to true utility,
which makes the model into a mixed logit, does not change utility in
any meaningful way when the scale of the utility is sufficiently large.
A mixed logit can approximate any RUM simply by scaling up utility
sufficiently.

This demonstration is not intended to suggest that raising the scale
of utility is actually how the researcher would proceed in specifying a
mixed logit as an approximation to the true model. Rather, the demon-
stration simply indicates that if no other means for specifying a mixed
logit to approximate the true model can be found, then this rescaling
procedure can be used to attain the approximation. Usually, a mixed
logit can be specified that adequately reflects the true model without
needing to resort to an upward scaling of utility. For example, the true
model will usually contain some iid term that is added to the utility of
each alternative. Assuming an extreme value distribution for this term is
perhaps close enough to reality to be empirically indistinguishable from
other distributional assumptions for the iid term. In this case, the scale
of utility is determined naturally by the variance of this iid term. The re-
searcher’s task is simply to find variables and a mixing distribution that
capture the other parts of utility, namely, the parts that are correlated
over alternatives or heteroskedastic.
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6.6 Simulation

Mixed logit is well suited to simulation methods for estimation. Utility is
U,j = B, Xxnj + €nj, Where the coefficients B, are distributed with density
f(B | 0), where 6 refers collectively to the parameters of this distribution
(such as the mean and covariance of 8). The researcher specifies the
functional form f(-) and wants to estimate the parameters 6. The choice
probabilities are

Po = f L(B)F (B | 0)dB.

where

L,i(B) Zle e

The probabilities are approximated through simulation for any given
value of 6: (1) Draw a value of 8 from f(8 | 6), and label it 8" with
the superscript r = 1 referring to the first draw. (2) Calculate the logit
formula L,;(8") with this draw. (3) Repeat steps 1 and 2 many times,
and average the results. This average is the simulated probability:

y 1 &
Pm':_ Lni r’
R; (8

where R is the number of draws. Pm- is an unbiased estimator of P,; by
construction. Its variance decreases as R increases. It is strictly positive,
so that In P,; is defined, which is useful for approximating the log-
likelihood function below. P,; is smooth (twice differentiable) in the
parameters 6 and the variables x, which facilitates the numerical search
for the maximum likelihood function and the calculation of elasticities.
And P,; sums to one over alternatives, which is useful in forecasting.

The simulated probabilities are inserted into the log-likelihood func-
tion to give a simulated log likelihood:

N J

SLL =Y "> "d,;In Py,

n=1 j=1

where d,,; = 1if n chose j and zero otherwise. The maximum simulated
likelihood estimator (MSLE) is the value of 6 that maximizes SLL.
The properties of this estimator are discussed in Chapter 10. Usually,
different draws are taken for each observation. This procedure maintains
independence over decision makers of the simulated probabilities that
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enter SLL. Lee (1992) describes the properties of MSLE when the same
draws are used for all observations.

The simulated mixed logit probability can be related to accept-reject
(AR) methods of simulation. AR simulation is described in Section 5.6
for probit models, but it is applicable more generally. For any random
utility model, the AR simulator is constructed as follows: (1) A draw of
the random terms is taken. (2) The utility of each alternative is calculated
from this draw, and the alternative with the highest utility is identified.
(3) Steps 1 and 2 are repeated many times. (4) The simulated probability
for an alternative is calculated as the proportion of draws for which
that alternative has the highest utility. The AR simulator is unbiased by
construction. However, it is not strictly positive for any finite number of
draws. It is also not smooth, but rather a step function: constant within
ranges of parameters for which the identity of the alternative with the
highest utility does not change for any draws, and with jumps where
changes in the parameters change the identity of the alternative with
the highest utility. Numerical methods for maximization based on the
AR simulator are hampered by these characteristics. To address these
numerical problems, the AR simulator can be smoothed by replacing
the 0-1 indicator with the logit formula. As discussed in Section 5.6.2,
the logit-smoothed AR simulator can approximate the AR simulator
arbitrarily closely by scaling utility appropriately.

The mixed logit simulator can be seen as a logit-smoothed AR simu-
lator of any RUM: draws of the random terms are taken, utility is cal-
culated for these draws, the calculated utilities are inserted into the
logit formula, and the results are averaged. The theorem that a mixed
logit can approximate any random utility model (Section 6.5) can be
viewed from this perspective. We know from Section 5.6.2 that the logit-
smoothed AR simulator can be arbitrarily close to the AR simulator for
any model, with sufficient scaling of utility. Since the mixed logit sim-
ulator is equivalent to a logit-smoothed AR simulator, the simulated
mixed logit model can be arbitrarily close to the AR simulator of any
model.

6.7 Panel Data

The specification is easily generalized to allow for repeated choices by
each sampled decision maker. The simplest specification treats the coef-
ficients that enter utility as varying over people but being constant over
choice situations for each person. Utility from alternative j in choice
situation ¢ by person n is U,j; = B,Xnjs + €4j:, With &,j; being iid ex-
treme value over time, people, and alternatives. Consider a sequence of
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alternatives, one for each time period, i = {iy, ..., ir}. Conditional on
B the probability that the person makes this sequence of choices is the
product of logit formulas:

T BriXniye
ePnnit
(6.2) Lu(B) = [72 — ]
H ] eﬁ” njt

since the ,,’s are independent over time. The unconditional probability
is the integral of this product over all values of g:

63) Pu= / L.i(8)(B)dp.

The only difference between a mixed logit with repeated choices and one
with only one choice per decision maker is that the integrand involves a
product of logit formulas, one for each time period, rather than just one
logit formula. The probability is simulated similarly to the probability
with one choice period. A draw of 8 is taken from its distribution. The
logit formula is calculated for each period, and the product of these logits
is taken. This process is repeated for many draws, and the results are
averaged.

Past and future exogenous variables can be added to the utility in
a given period to represent lagged response and anticipatory behavior,
as described in Section 5.5 in relation to probit with panel data. How-
ever, unlike probit, lagged dependent variables can be added in a mixed
logit model without changing the estimation procedure. Conditional on
By, the only remaining random terms in the mixed logit are the ¢,;’s,
which are independent over time. A lagged dependent variable enter-
ing U,;; is uncorrelated with these remaining error terms for period ¢,
since these terms are independent over time. The conditional probabil-
ities (conditional on ) are therefore the same as in equation (6.2), but
with the x’s including lagged dependent variables. The unconditional
probability is then the integral of this conditional probability over all
values of f, which is just equation (6.3). In this regard, mixed logit is
more convenient than probit for representing state dependence, since
lagged dependent variables can be added to mixed logit without adjust-
ing the probability formula or simulation method. Erdem (1996) and
Johannesson & Lundin (2000) exploit this advantage to examine habit
formation and variety seeking within a mixed logit that also captures
random taste variation.

If choices and data are not observed from the start of the process
(i.e., from the first choice situation that the person faces), the issue of
initial conditions must be confronted, just as with probit. The researcher
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must somehow represent the probability of the first observed choice,
which depends on the previous, unobserved choices. Heckman & Singer
(1986) provide ways to handle this issue. However, when the researcher
observes the choice process from the beginning, the initial conditions
issue does not arise. In this case, the use of lagged dependent variables
to capture inertia or other types of state dependence is straightforward
with mixed logit. Stated-preference data (that is, answers to a series of
choice situations posed to respondents in a survey) provide a prominent
example of the researcher observing the entire sequence of choices.

In the specification so far and in nearly all applications, the coefficients
B, are assumed to be constant over choice situations for a given decision
maker. This assumption is appropriate if the decision maker’s tastes are
stable over the time period that spans the repeated choices. However, the
coefficients associated with each person can be specified to vary over
time in a variety of ways. For example, each person’s tastes might be
serially correlated over choice situations, so that utility is

Unjt = ,Bntxnjt + Enjt>
ﬁnt = b + ﬁnt’
IBM = Ioﬁm,l + /“Lntv

where b is fixed and p,,, is iid over n and ¢. Simulation of the probability
for the sequence of choices proceeds as follows:

1. Draw p;, for the initial period, and calculate the logit formula
for this period using B, = b+ ).

2. Draw u!, for the second period, calculate B/, = b+ pu’, +

5, and then calculate the logit formula based on this 3] ,.

Continue for all T time periods.

Take the product of the T logits.

Repeat steps 1-4 for numerous sequences of draws.

Average the results.

kW

The burden placed on simulation is greater than with coefficients being
constant over time for each person, requiring 7' times as many draws.

6.8 Case Study

As illustration, consider a mixed logit of anglers’ choices of fishing
sites (Train, 1999). The specification takes a random-coefficients form.
Utility is U,j; = BuXnji + &nji, With coefficients B, varying over anglers
but not over trips for each angler. The probability of the sequence of
sites chosen by each angler is given by equation (6.3).
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The sample consists of 962 river trips taken in Montana by 258 an-
glers during the period of July 1992 through August 1993. A total of
59 possible river sites were defined, based on geographical and other
relevant factors. Each site contains one or more of the stream segments
used in the Montana River Information System. The following variables
enter as elements of x for each site:

1. Fish stock, measured in units of 100 fish per 1000 feet of river.

2. Aesthetics rating, measured on a scale of 0 to 3, with 3 being
the highest.

3. Trip cost: cost of traveling from the angler’s home to the site,
including the variable cost of driving (gas, maintenance, tires,
oil) and the value of time spent driving (with time valued at
one-third the angler’s wage.)

4. Indicator that the Angler’s Guide to Montana lists the site as a
major fishing site.

5. Number of campgrounds per U.S. Geological Survey (USGS)
block in the site.

6. Number of state recreation access areas per USGS block in the
site.

7. Number of restricted species at the site.

8. Log of the size of the site, in USGS blocks.

The coefficients of variables 4—7 can logically take either sign; for
example, some anglers might like having campgrounds and others pre-
fer the privacy that comes from not having nearby campgrounds. Each
of these coefficients is given an independent normal distribution with
mean and standard deviation that are estimated. The coefficients for trip
cost, fish stock, and aesthetics rating of the site are expected to have
the same sign for all anglers, with only their magnitudes differing over
anglers. These coefficients are given independent lognormal distribu-
tions. The mean and standard deviation of the log of the coefficient are
estimated, and the mean and standard deviation of the coefficient itself
are calculated from these estimates. Since the lognormal distribution
is defined over the positive range and trip cost is expected to have a
negative coefficient for all anglers, the negative of trip cost enters the
model. The coefficient for the log of size is assumed to be fixed. This
variable allows for the fact that the probability of visiting a larger site is
higher than that for a smaller site, all else equal. Having the coefficient of
this variable vary over people, while possible, would not be particularly
meaningful. A version of the model with correlated coefficients is given
by Train (1998). The site choice model is part of an overall model, given
by Desvousges et al. (1996), of the joint choice of trip frequency and
site choice.
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Table 6.1. Mixed logit model of river fishing site choice

Variable Parameter Value Std. Error
Fish stock Mean of In(coefficient) —2.876 0.6066
Std. dev. of In(coefficient) 1.016 0.2469
Aesthetics Mean of In(coefficient) —0.794 0.2287
Std. dev. of In(coefficient) 0.849 0.1382
Total cost (neg.) Mean of In(coefficient) —2.402 0.0631
Std. dev. of In(coefficient) 0.801 0.0781
Guide lists as major Mean coefficient 1.018 0.2887
Std. dev. of coefficient 2.195 0.3518
Campgrounds Mean coefficient 0.116 0.3233
Std. dev. of coefficient 1.655 0.4350
Access areas Mean coefficient —0.950 0.3610
Std. dev. of coefficient 1.888 0.3511
Restricted species Mean coefficient —0.499 0.1310
Std. dev. of coefficient 0.899 0.1640
Log(size) Mean coefficient 0.984 0.1077
Likelihood ratio index 0.5018
SLL at convergence —1932.33

Simulation was performed using one thousand random draws for each
sampled angler. The results are given in Table 6.1. The standard deviation
of each random coefficient is highly significant, indicating that these
coefficients do indeed vary in the population.

Consider first the normally distributed coefficients. The estimated
means and standard deviations of these coefficients provide information
on the share of the population that places a positive value on the site
attribute and the share that places a negative value. The distribution of
the coefficient of the indicator that the Angler’s Guide to Montana lists
the site as a major site obtains an estimated mean of 1.018 and estimated
standard deviation of 2.195, such that 68 percent of the distribution is
above zero and 32 percent below. This implies that being listed as a
major site in the Angler’s Guide to Montana is a positive inducement
for about two-thirds of anglers and a negative factor for the other third,
who apparently prefer more solitude. Campgrounds are preferred by
about half (53 percent) of anglers and avoided by the other half. And
about one-third of anglers (31 percent) are estimated to prefer having
numerous access areas, while the other two-thirds prefer there being
fewer access areas.

Consider now the lognormal coefficients. Coefficient g* follows a
lognormal if the log of B* is normally distributed. We parameterize the
lognormal distribution in terms of the underlying normal. That is, we
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estimate parameters m and s that represent the mean and variance of the
log of the coefficient: In 8¥ ~ N(m, s). The mean and variance of g*
are then derived from the estimates of m and s. The median is exp(m),
the mean is exp(m + s/2), and the variance is exp(2m + s) [exp(s) — 1].
The point estimates imply that the coefficients of fish stock, aesthetics,
and trip cost have the following median, mean, and standard deviations:

Variable Median Mean Std. Dev.

Fish stock  0.0563  0.0944 0.1270
Aesthetics  0.4519  0.6482  0.6665
Trip cost 0.0906  0.1249 0.1185

The ratio of an angler’s fish stock coefficients to the trip cost co-
efficient is a measure of the amount that the angler is willing to pay
to have additional fish in the river. Since the ratio of two independent
lognormally distributed terms is also lognormally distributed, we can
calculate moments for the distribution of willingness to pay. The log
of the ratio of the fish stock coefficient to the trip cost coefficient has
estimated mean —0.474 and standard deviation of 1.29. The ratio itself
therefore has median 0.62, mean 1.44, and standard deviation 2.96. That
is, the average willingness to pay to have the fish stock raised by 100
fish per 1000 feet of river is estimated to be $1.44, and there is very
wide variation in anglers’ willingness to pay for additional fish stock.
Similarly, $9.87 is the estimated average willingness to pay for a site
that has an aesthetics rating that is higher by 1, and again the variation
is fairly large.

As this application illustrates, the mixed logit provides more informa-
tion than a standard logit, in that the mixed logit estimates the extent to
which anglers differ in their preferences for site attributes. The standard
deviations of the coefficients enter significantly, indicating that a mixed
logit provides a significantly better representation of the choice situa-
tion than standard logit, which assumes that coefficients are the same
for all anglers. The mixed logit also allows for the fact that several trips
are observed for each sampled angler and that each angler’s preferences
apply to each of the angler’s trips.



