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7 Variations on a Theme

7.1 Introduction

Simulation gives the researcher the freedom to specify models that ap-
propriately represent the choice situations under consideration, without
being unduly hampered by purely mathematical concerns. This perspec-
tive has been the overarching theme of our book. The discrete choice
models that we have discussed – namely, logit, nested logit, probit, and
mixed logit – are used in the vast majority of applied work. However,
readers should not feel themselves constrained to use these models. In
the current chapter, we describe several models that are derived under
somewhat different behavioral concepts. These models are variations on
the ones already discussed, directed toward specific issues and data. The
point is not simply to describe additional models. Rather, the discussion
illustrates how the researcher might examine a choice situation and de-
velop a model and estimation procedure that seem appropriate for that
particular situation, drawing from, and yet adapting, the standard set of
models and tools.

Each section of this chapter is motivated by a type of data, representing
the outcome of a particular choice process. The arena in which such data
might arise is described, and the limitations of the primary models for
these data are identified. In each case, a new model is described that better
represents the choice situation. Often this new model is only a slight
change from one of the primary models. However, the slight change will
often make the standard software unusable, so that the researcher will
need to develop her own software, perhaps by modifying the codes that
are available for standard models. The ability to revise code to represent
new specifications enables the researcher to utilize the freedom that the
field offers.
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7.2 Stated-Preference and
Revealed-Preference Data

Revealed-preference data relate to people’s actual choices in real-world
situations. These data are so called because people reveal their tastes,
or preferences, through the choices they make in the world. Stated-
preference data are data collected in experimental or survey situations
where respondents are presented with hypothetical choice situations. The
term refers to the fact that the respondents state what their choices would
be in the hypothetical situations. For example, in a survey, a person might
be presented with three cars with different prices and other attributes.
The person is asked which of the three cars he would buy if offered only
these three cars in the real world. The answer the person gives is the
person’s stated choice. A revealed-preference datum for the respondent
is obtained by asking which car he bought when he last bought a car.

There are advantages and limitations to each type of data. Revealed-
preference data have the advantage that they reflect actual choices. This,
of course, is a very big advantage. However, such data are limited to
the choice situations and attributes of alternatives that currently exist
or have existed historically. Often a researcher will want to examine
people’s responses in situations that do not currently exist, such as the
demand for a new product. Revealed-preference data are simply not
available for these new situations. Even for choice situations that cur-
rently exist, there may be insufficient variation in relevant factors to
allow estimation with revealed-preference data. For example, suppose
the researcher wants to examine the factors that affect California house-
holds’ choice of energy supplier. While residential customers have been
able to choose among suppliers for many years, there has been prac-
tically no difference in price among the suppliers’ offers. Customers’
response to price cannot be estimated on data that contain little or no
price variation. An interesting paradox arises in this regard. If customers
were highly price-responsive, then suppliers, knowing this, would offer
prices that met their competitors’ prices; the well-known equilibrium in
this situation is that all firms offer (essentially) the same price. If the
data from this market were used in a choice model, the price coefficient
would be found to be insignificant, since there is little price variation in
the data. The researcher could erroneously conclude from this insigni-
ficance that price is unimportant to consumers. This paradox is inherent
in revealed-preference data. Factors that are the most important to con-
sumers will often exhibit the least variation due to the natural forces
of market equilibrium. Their importance might therefore be difficult to
detect with revealed-preference data.
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Stated-preference data complement revealed-preference data. A ques-
tionnaire is designed in which the respondent is presented with one or
more choice experiments. In each experiment, two or more options are
described, and the respondent is asked which option he would choose
if facing the choice in the real world. For example, in the data that
we examine in Chapter 11, each surveyed respondent is presented with
12 experiments. In each experiment, four hypothetical energy suppliers
were described, with the price, contract terms, and other attributes given
for each supplier. The respondent is asked to state which of the four
suppliers he would choose.

The advantage of stated-preference data is that the experiments can be
designed to contain as much variation in each attribute as the researcher
thinks is appropriate. While there may be little price variation over sup-
pliers in the real world, the suppliers that are described in the experiments
can be given sufficiently different prices to allow precise estimation. At-
tributes can be varied over respondents and over experiments for each
respondent. This degree of variation contrasts with market data, where
often the same products are available to all customers, such that there is
no variation over customers in the attributes of products. Importantly, for
products that have never been offered before, or for new attributes of old
products, stated-preference data allow estimation of choice models when
revealed-preference data do not exist. Louviere et al. (2000) describe the
appropriate collection and analysis of stated-preference data.

The limitations of stated-preference data are obvious: what people say
they will do is often not the same as what they actually do. People may
not know what they would do if a hypothetical situation were real. Or
they may not be willing to say what they would do. In fact, respondents’
idea of what they would do might be influenced by factors that wouldn’t
arise in the real choice situations, such as their perception of what the
interviewer expects or wants as answers.

By combining stated- and revealed-preference data, the advantages
of each can be obtained while mitigating the limitations. The stated-
preference data provide the needed variation in attributes, while the
revealed-preference data ground the predicted shares in reality. To utilize
these relative strengths, an estimation procedure is needed that (1) allows
the ratios of coefficients (which represent the relative importance of the
various attributes) to be estimated primarily from the stated-preference
data (or more generally, from whatever variation in the attributes exists,
which is usually from the stated-preference data), while (2) allowing
the alternative-specific constants and overall scale of the parameters to
be determined by the revealed preference data (since the constants and
scale determine average shares in base conditions).
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Procedures for estimating discrete choice models on a combination
of stated- and revealed-preference data are described by Ben-Akiva
and Morikawa (1990), Hensher and Bradley (1993), and Hensher et al.
(1999) in the context of logit models, and by Bhat and Castelar (2002)
and Brownstone et al. (2000) with mixed logit. These procedures con-
stitute variations on the methods we have already examined. The most
prevalent issue when combining stated- and revealed-preference data is
that the unobserved factors are generally different for the two types of
data. We describe in the following paragraphs how this issue can readily
be addressed.

Let the utility that person n obtains from alternative j in situation t be
specified as Unjt = β ′xnjt + enjt , where xnjt does not include alternative-
specific constants and enjt represents the effect of factors that are not
observed by the researcher. These factors have a mean for each alterna-
tive (representing the average effect of all excluded factors on the utility
of that alternative) and a distribution around this mean. The mean is
captured by an alternative-specific constant, labeled c j , and for a stan-
dard logit model the distribution around this mean is extreme value with
variance λ2π2/6. As described in Chapters 2 and 3, the scale of utility
is set by normalizing the variance of the unobserved portion of utility.
The utility function becomes Unjt = (β/λ)′xnjt + c j/λ + εnjt , where
the normalized error εnjt = (enjt − c j )/λ is now iid extreme value with
variance π2/6. The choice probability is given by the logit formula based
on (β/λ)′xnjt + c j/λ. The parameters that are estimated are the original
parameters divided by the scale factor λ.

This specification is reasonable for many kinds of data and choice
situations. However, there is no reason to expect the alternative-specific
constants and the scale factor to be the same for stated-preference data
as for revealed-preference data. These parameters reflect the effects of
unobserved factors, which are necessarily different in real choice situ-
ations than hypothetical survey situations. In real choices, a multitude
of issues that affect a person but are not observed by the researcher
come into play. In a stated-preference experiment, the respondent is
(usually) asked to assume all alternatives to be the same on factors
that are not explicitly mentioned in the experiment. If the respondent
followed this instruction exactly, there would, by definition, be no un-
observed factors in the stated-preference choices. Of course, respon-
dents inevitably bring some outside concepts into the experiments, such
that unobserved factors do enter. However, there is no reason to expect
that these factors are the same, in mean or variance, as in real-world
choices.
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To account for these differences, separate constants and scale pa-
rameters are specified for stated-preference choice situations and for
revealed-preference situations. Let c s

j and c r
j represent the mean effect

of unobserved factors for alternative j in stated-preference experiments
and revealed-preference choices, respectively. Similarly, let λs and λr

represent the scales (proportional to the standard deviations) of the
distributions of unobserved factors around these means in stated- and
revealed-preference situations, respectively. To set the overall scale of
utility, we normalize either of the scale parameters to 1, which makes the
other scale parameter equal the ratio of the two original scale parameters.
Let’s normalize λr , so that λs reflects the variance of unobserved fac-
tors in stated-preference situations relative to that in revealed-preference
situations. Utility then becomes

Unjt = (β/λs)′xnjt + cs
j/λ

s + εnjt

for each t that is a stated-preference situation, and

Unjt = β ′xnjt + cr
j + εnjt

for each t that is a revealed-preference situation.
The model is estimated on the data from both the revealed- and stated-

preference choices. Both groups of observations are “stacked” together
as input to a logit estimation routine. A separate set of alternative-specific
constants is estimated for the stated-preference and revealed-preference
data. Importantly, the coefficients in the model are divided by a param-
eter 1/λs for the stated-preference observations. This separate scaling
is not feasible in most standard logit estimation packages. However, the
researcher can easily modify available codes (or her own code) to al-
low for this extra parameter. Hensher and Bradley (1993) show how to
estimate this model on software for nested logits.

Note that, with this setup, the elements of β are estimated on both
types of data. The estimates will necessarily reflect the amount of varia-
tion that each type of data contains for the attributes (that is, the elements
of x ). If there is little variance in the revealed-preference data, reflecting
conditions in real-world markets, then the β’s will be determined pri-
marily by the stated-preference data, which contain whatever variation
was built into the experiments. Insofar as the revealed-preference data
contain usable variation, this information will be incorporated into the
estimates.

The alternative-specific constants are estimated separately for the two
types of data. This distinction allows the researcher to avoid many
of the biases that stated-preference data might exhibit. For example,
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respondents often say that they will buy a product far more than they
actually end up doing. The average probability of buying the product is
captured in the alternative-specific constant for the product. If this bias is
occurring, then the estimated constant for the stated-preference data will
be greater than that for the revealed-preference data. When forecasting,
the researcher can use the constant from the revealed-preference data,
thereby grounding the forecast in a market-based reality. Similarly, the
scale for the revealed-preference data (which is normalized to 1) can be
used in forecasting instead of the scale from the stated-preference data,
thereby incorporating correctly the real-world variance in unobserved
factors.

7.3 Ranked Data

In stated-preference experiments, respondents may be asked to rank the
alternatives instead of just identifying the one alternative that they would
choose. This ranking can be requested in a variety of ways. The respon-
dents can be asked to state which alternative they would choose, and then,
after they have made this choice, can be asked which of the remaining
alternatives they would choose, continuing through all the alternatives.
Instead, respondents can simply be asked to rank the alternatives from
best to worst. In any case, the data that the researcher obtains constitute
a ranking of the alternatives that presumably reflects the utility that the
respondent obtains from each alternative.

Ranked data can be handled in a standard logit or mixed logit model
using currently available software without modification. All that is re-
quired is that the input data be constructed in a particular way, which we
describe in the following text. For a probit model, the available software
would need to be modified slightly to handle ranked data. However, the
modification is straightforward. We consider standard and mixed logit
first.

7.3.1. Standard and Mixed Logit

Under the assumptions for standard logit, the probability of any
ranking of the alternatives from best to worst can be expressed as the
product of logit formulas. Consider, for example, a respondent who was
presented with four alternatives labeled A, B, C , and D. Suppose the
person ranked the alternatives as follows: C , B, D, A, where C is the first
choice. If the utility of each alternative is distributed iid extreme value (as
for a logit model), then the probability of this ranking can be expressed
as the logit probability of choosing alternative C from the set A, B, C , D,
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times the logit probability of choosing alternative B from the remaining
alternatives A, B, D, times the probability of choosing alternative D
from the remaining alternatives A and D.

Stated more explicity, let Unj = β ′xnj + εnj for j = A, . . . , D with
εnj iid extreme value. Then

Prob(ranking C, B, D, A)

= eβ ′xnC∑
j=A,B,C,D eβ ′xnj

eβ ′xnB∑
j=A,B,D eβ ′xnj

eβ ′xnD∑
j=A,D eβ ′xnj

.(7.1)

This simple expression for the ranking probability is an outcome of the
particular form of the extreme value distribution, first shown by Luce
and Suppes (1965). It does not apply in general; for example, it does not
apply with probit models.

Equation (7.1) implies that the ranking of the four alternatives can be
represented as being the same as three independent choices by the re-
spondent. These three choices are called pseudo-observations, because
each respondent’s complete ranking, which constitutes an observation,
is written as if it were multiple observations. In general, a ranking of J al-
ternatives provides J − 1 pseudo-observations in a standard logit model.
For the first pseudo-observation, all alternatives are considered available,
and the dependent variable identifies the first-ranked alternative. For the
second pseudo-observation, the first-ranked alternative is discarded. The
remaining alternatives constitute the choice set, and the dependent vari-
able identifies the second-ranked alternative, and so on. In creating the
input file for logit estimation, the explanatory variables for each alterna-
tive are repeated J − 1 times, making that many pseudo-observations.
The dependent variable for these pseudo-observations identifies, respe-
ctively, the first-ranked, second-ranked, and so on, alternatives. For each
pseudo-observation, the alternatives that are ranked above the dependent
variable for that pseudo-observation are omitted (i.e., censored out).
Once the data are constructed in this way, the logit estimation proceeds
as usual.

A logit model on ranked alternatives is often called an exploded logit,
since each observation is exploded into several pseudo-observations for
the purposes of estimation. Prominent applications include Beggs et al.
(1981), Chapman and Staelin (1982), and Hausman and Ruud (1987).

A mixed logit model can be estimated on ranked data with the same
explosion. Assume now that β is random with density g(β | θ ), where
θ are parameters of this distribution. Conditional on β, the probability
of the person’s ranking is a product of logits, as given in equation (7.1).
The unconditional probability is then the integral of this product over
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the density of β:

Prob(ranking C, B, A, D)

=
∫ (

eβ ′xnC∑
j=A,B,C,D eβ ′xnj

eβ ′xnB∑
j=A,B,D eβ ′xnj

eβ ′xnD∑
j=A,D eβ ′xnj

)
× g(β | θ ) dβ.

The mixed logit model on ranked alternatives is estimated with regular
mixed logit routines for panel data, using the input data setup as de-
scribed previously for logit, where the J − 1 pseudo-observations for
each ranking are treated as J − 1 choices in a panel. The mixed logit
incorporates the fact that each respondent has his own coefficients and,
importantly, that the respondent’s coefficients affect his entire ranking,
so that the pseudo-observations are correlated. A logit model on ranked
data does not allow for this correlation.

7.3.2. Probit

Ranked data can also be utilized effectively in a probit model.
Let the utility of the four alternatives be as just stated for a logit
except that the error terms are jointly normal: Unj = β ′xnj + εnj for
j = A, B, C, D, where εn = 〈εn A, . . . , εnD〉′ is distributed N (0, �).
As before, the probability of the person’s ranking is Prob(ranking
C, B, D, A) = Prob(UnC > UnB > UnD > Un A). Decomposing this
joint probability into conditionals and a marginal does not help with
a probit in the way that it does with logit, since the conditional proba-
bilities do not collapse to unconditional probabilities as they do under
independent errors. Another tack is taken instead. Recall that for probit
models, we found that it is very convenient to work in utility differences
rather than the utilities themselves. Denote Ũnjk = Unj − Unk, x̃n jk =
xnj − xnk , and ε̃njk = εnj − εnk . The probability of the ranking can
then be expressed as Prob(ranking C, B, D, A) = Prob(UnC > UnB >

UnD > Un A) = Prob(ŨnBC < 0, ŨnDB < 0, Ũn AD < 0).
To express this probability, we define a transformation matrix M that

takes appropriate differences. The reader might want to review Section
5.6.3 on simulation of probit probabilities for one chosen alternative,
which uses a similar transformation matrix. The same procedure is used
for ranked data, but with a different transformation matrix.

Stack the alternatives A to D, so that utility is expressed in vector
form as Un = Vn + εn , where εn ∼ N (0, �). Define the 3 × 4 matrix

M =
⎛
⎝0 1 −1 0

0 −1 0 1
1 0 0 −1

⎞
⎠ .
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This matrix has a row for each inequality in the argument of the probabil-
ity Prob(ŨnBC < 0, ŨnDB < 0, Ũn AD < 0). Each row contains a 1 and
a −1, along with zeros, where the 1 and −1 identify the alternatives that
are being differenced for the inequality. With this matrix, the probability
of the ranked alternatives becomes

Prob(ranking C, B, D, A) = Prob(ŨnBC < 0, ŨnDB < 0, Ũn AD < 0)
= Prob(MUn < 0)
= Prob(MVn + Mεn < 0)
= Prob(Mεn < −MVn).

The error differences defined by Mεn are distributed jointly normal
with zero mean and covariance M�M ′. The probability that these cor-
related error differences fall below −MVn is simulated by GHK in the
manner given in Section 5.6.3. The procedure has been implemented by
Hajivassiliou and Ruud (1994) and Schechter (2001).

7.4 Ordered Responses

In surveys, respondents are often asked to provide ratings of various
kinds. Examples include:

How good a job do you think the president is doing? Check one:

1. very good job
2. good job
3. neither good nor bad
4. poor job
5. very poor job

How well do you like this book? Rate the book from 1 to 7, where
1 is the worst you have ever read (aside from The Bridges of Madison
County, of course) and 7 is the best

1 2 3 4 5 6 7

How likely are you to buy a new computer this year?

1. Not likely at all
2. Somewhat likely
3. Very likely

The main characteristic of these questions, from a modeling perspec-
tive, is that the potential responses are ordered. A book rating of 6 is
higher than 5, which is higher than 4; and a presidential rating of “very
poor” is worse than “poor,” which is worse than “neither good nor bad.”
A standard logit model could be specified with each potential response
as an alternative. However, the logit model’s assumption of independent
errors for each alternative is inconsistent with the fact that the alternatives
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are ordered: with ordered alternatives, one alternative is similar to those
close to it and less similar to those further away. The ordered nature
could be handled by specifying a nested logit, mixed logit, or probit
model that accounts for the pattern of similarity and dissimilarity among
the alternatives. For example, a probit model could be estimated with
correlation among the alternatives, with the correlation between 2 and
3 being greater than that between 1 and 3, and the correlation between
1 and 2 also being greater than that between 1 and 3. However, such
a specification, while it might provide fine results, does not actually fit
the structure of the data. Recall that the traditional derivation for these
models starts with a specification of the utility associated with each alter-
native. For the ratings question about the president’s job, the derivation
would assume that there are five utilities, one for each potential response,
and that the person chooses the number 1 to 5 that has the greatest utility.
While it is perhaps possible to think of the decision process in this way
(and the resulting model will probably provide useful results), it is not
a very natural way to think about the respondent’s decision.

A more natural representation of the decision process is to think of
the respondent as having some level of utility or opinion associated with
the object of the question and answering the question on the basis of
how great this utility is. For example, on the presidential question, the
following derivation seems to better represent the decision process. As-
sume that the respondent has an opinion on how well the president is
doing. This opinion is represented in a (unobservable) variable that we
label U , where higher levels of U mean that the person thinks the pres-
ident is doing a better job and lower levels mean he thinks the president
is doing a poorer job. In answering the question, the person is asked to
express this opinion in one of five categories: “very good job,” “good
job,” and so on. That is, even though the person’s opinion, U , can take
many different levels representing various levels of liking or disliking
the job the president is doing, the question allows only five possible
responses. The person chooses a response on the basis of the level of his
U . If U is above some cutoff, which we label k1, the respondent chooses
the answer “very good job.” If U is below k1 but above another cutoff, k2,
then he answers “good job.” And so on. The decision is represented as

� “very good job” if U > k1
� “good job” if k1 > U > k2
� “neither good or bad” if k2 > U > k3
� “poor job” if k3 > U > k4
� “very poor job” if k4 > U .

The researcher observes some factors that relate to the respondent’s
opinion, such as the person’s political affiliation, income, and so on.
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f (U )

k4 k3 k2 k1

U

Prob (very poor)

Prob (poor)

Prob (neither good nor poor)

Prob (good)

Prob (very good)

Figure 7.1. Distribution of opinion about president’s job.

However, other factors that affect the person’s opinion cannot be ob-
served. Decompose U into observed and unobserved components:
U = β ′x + ε. As usual, the unobserved factors ε are considered ran-
dom. Their distribution determines the probability for the five possible
responses.

Figure 7.1 illustrates the situation. U is distributed around β ′x with
the shape of the distribution following the distribution of ε. There are
cutoff points for the possible responses: k1, . . . , k4. The probability that
the person answers with “very poor job” is the probability that U is
less than k4, which is the area in the left tail of the distribution. The
probability that the person says “poor job” is the probability that U is
above k4, indicating that he doesn’t think that the job is very poor, but
is below k3. This probability is the area between k4 and k3.

Once a distribution for ε is specified, the probabilities can be cal-
culated exactly. For simplicity, assume that ε is distributed logistic,
which means that the cumulative distribution of ε is F(ε) = exp(ε)/(1 +
exp(ε)). The probability of the answer “very poor job” is then

Prob(“very poor job”) = Prob(U < k4)
= Prob(β ′x + ε < k4)
= Prob(ε < k4 − β ′x)

= ek4−β ′x

1 + ek4−β ′x .

The probability of “poor job” is

Prob(“poor job”) = Prob(k4 < U < k3)
= Prob(k4 < β ′x + ε < k3)
= Prob(k4 − β ′x < ε < k3 − β ′x)
= Prob(ε < k3 − β ′x) − Prob(ε < k4 − β ′x)

= ek3−β ′x

1 + ek3−β ′x − ek4−β ′x

1 + ek4−β ′x .
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Probabilities for the other answers are obtained analogously. The
probabilities enter the log-likelihood function as usual, and maximiza-
tion of the likelihood function provides estimates of the parameters. Note
that the parameters consist of β, which gives the impact of the explana-
tory variables on people’s opinion of the president, as well as the cutoff
points k1, . . . , k4.

The model is called ordered logit, since it uses the logistic distribution
on ordered alternatives. Unfortunately, nested logit models have occa-
sionally been called ordered logits; this nomenclature causes confusion
and will hopefully be avoided in the future.

Note that the probabilities in the ordered logit model incorporate the
binary logit formula. This similarity to binary logit is only incidental: the
traditional derivation of a binary logit specifies two alternatives with util-
ity for each, while the ordered logit model has one utility with multiple
alternatives to represent the level of that utility. The similarity in formula
arises from the fact that, if two random variables are iid extreme value,
then their difference follows a logistic distribution. Therefore, assuming
that both utilities in a binary logit are iid extreme value is equivalent
to assuming that the difference in the utilities is distributed logistic, the
same as the utility in the ordered logit model.

A similar model is obtained under the assumption that ε is distributed
standard normal instead of logistic (Zavoina and McKelvey, 1975). The
only difference arises in that the binary logit formula is replaced with
the cumulative standard normal distribution. That is,

Prob(“very poor job”) = Prob(ε < k4 − β ′x)
= �(k4 − β ′x)

and

Prob(“poor job”) = Prob(ε < k3 − β ′x) − Prob(ε < k4 − β ′x)
= �(k3 − β ′x) − �(k4 − β ′x),

where � is the standard cumulative normal function. This model is called
ordered probit. Software for ordered logit and probit is available in many
commercial packages.

The researcher might believe that the parameters vary randomly in the
population. In that case, a mixed version of the model can be specified, as
in Bhat (1999). Let the density of β be g(β | θ ). Then the mixed ordered
logit probabilities are simply the ordered logit probabilities integrated
over the density g(·). For example,

Prob(“very poor job”) =
∫ (

ek4−β ′x

1 + ek4−β ′x

)
g(β | θ ) dβ
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and

Prob(“poor job”) =
∫ (

ek3−β ′x

1 + ek3−β ′x − ek4−β ′x

1 + ek4−β ′x

)
g(β | θ ) dβ,

and so on. These probabilities are simulated in the same way as mixed
logits, by drawing values of β from g(·), calculating the ordered logit
probability for each draw, and averaging the results. Mixed ordered
probit is derived similarly.

7.4.1. Multiple Ordered Responses

Respondents’ answers to different questions are often related.
For example, a person’s rating of how well the president is doing is
probably related to the person’s rating of how well the economy is do-
ing. The researcher might want to incorporate into the analysis the fact
that the answers are related. To be concrete, suppose that respondents
are asked to rate both the president and the economy on a five-point
scale, like the rating given for the president. Let U be the respondent’s
opinion of the job the president is doing, and let W be the respon-
dent’s assessment of the economy. Each of these assessments can be
decomposed into observed and unobserved factors: U = β ′x + ε and
W = α′z + μ. Insofar as the assessments are related due to observed
factors, the same variables can be included in x and z. To allow for the
possibility that the assessments are related due to unobserved factors,
we specify ε and μ to be jointly normal with correlation ρ (and unit
variances by normalization). Let the cutoffs for U be denoted k1, . . . , k4

as before, and the cutoffs for W be denoted c1, . . . , c4. We want to de-
rive the probability of each possible combination of responses to the two
questions.

The probability that the person says the president is doing a “very
poor job” and also that the economy is doing “very poorly” is derived
as follows:

Prob(President “very poor” and economy “very poor”)
= Prob(U < k4 and W < c4)
= Prob(ε < k4 − β ′x and μ < c4 − α′z)
= Prob(ε < k4 − β ′x)

× Prob(μ < c4 − α′z | ε < k4 − β ′x).

Similarly, the probability of a rating of “very poor” for the president and
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“good” for the economy is

Prob(President “very poor” and economy “good”)
= Prob(U < k4 and c2 < W < c1)
= Prob(ε < k4 − β ′x and c2 − α′z < μ < c1 − α′z)
= Prob((ε < k4 − β ′x)

× Prob(c2 − α′z < μ < c1 − α′z | ε < k4 − β ′x).

The probabilities for other combinations are derived similarly, and gen-
eralization to more than two related questions is straightforward. The
model is called multivariate (or multiresponse) ordered probit. The prob-
abilities can be simulated by GHK in a manner similar to that described
in Chapter 5. The explanation in Chapter 5 assumes that truncation of the
joint normal is only on one side (since for a standard probit the proba-
bility that is being calculated is the probability that all utility differences
are below zero, which is truncation from above), while the probabili-
ties for multivariate ordered probit are truncated on two sides (as for
the second probability listed earlier). However, the logic is the same,
and interested readers can refer to Hajivassiliou and Ruud (1994) for an
explicit treatment of GHK with two-sided truncation.

7.5 Contingent Valuation

In some surveys, respondents are asked to express their opinions or
actions relative to a specific number that the interviewer states. For
example, the interviewer might ask: “Consider a project that protected
the fish in specific rivers in Montana. Would you be willing to spend $50
to know that the fish in these rivers are safe?” This question is sometimes
followed by another question that depends on the respondent’s answer
to the first question. For example, if the person said “yes” to the above
question, the interviewer might follow up by asking, “How about $75?
Would you be willing to pay $75?” If the person answered “no” to the first
question, indicating that he was not willing to pay $50, the interviewer
would follow up with “Would you be willing to pay $25?”

These kinds of questions are used in environmental studies where the
lack of markets for environmental quality prevent valuation of resources
by revelation procedures; the papers edited by Hausman (1993) provide
a review and critique of the procedure, which is often called “contingent
valuation.” When only one question is asked, such as whether the person
is willing to pay $50, the method is called single-bounded, since the
person’s answer gives one bound on his true willingness to pay. If the
person answers “yes,” the researcher knows that his true willingness to
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pay is at least $50, but she does not know how much more. If the person
answers “no,” the researcher knows that the person’s willingness to pay
is less than $50. Examples of studies using single-bounded methods are
Cameron and James (1987) and Cameron (1988).

When a follow-up question is asked, the method is called double-
bounded. If the person says that he is willing to pay $50 but not $75, the
researcher knows his true willingness to pay is between $50 and $75,
that is, is bounded on both sides. If the person says he is not willing to
pay $50 but is willing to pay $25, his willingness to pay is known to be
between $25 and $50. Of course, even with a double-bounded method,
some respondents’ willingness to pay is only singly bounded, such as
that of a person who says he is willing to pay $50 and also willing to
pay $75. Examples of this approach include Hanemann et al. (1991),
Cameron and Quiggin (1994), and Cai et al. (1998).

The figure that is used as the prompt (i.e., the $50 in our example) is
varied over respondents. The answers from a sample of people are then
used to estimate the distribution of willingness to pay. The estimation
procedure is closely related to that just described for ordered logits
and probits, except that the cutoff points are given by the questionnaire
design rather than estimated as parameters. We describe the procedure
as follows.

Let Wn represent the true willingness to pay of person n. Wn varies
over people with distribution f (W | θ ), where θ are the parameters of the
distribution, such as the mean and variance. The researcher’s goal is to
estimate these population parameters. Suppose the researcher designs a
questionnaire with a single-bounded approach, giving a different prompt
(or reference value) for different respondents. Denote the prompt that
is given to person n as kn . The person answers the question with a
“yes” if Wn > kn and “no” otherwise. The researcher assumes that Wn

is distributed normally in the population with mean W̄ and variance σ 2.
The probability of “yes” is Prob(Wn > kn) = 1 − Prob(Wn < kn) =

1 − �((kn − W̄ )/σ ), and the probability of “no” is �((kn − W̄ )/σ ),
where �(·) is the standard cumulative normal function. The log-
likelihood function is then

∑
n yn ln(1 − �((kn − W̄ )/σ )) + (1 − yn) ln

(�((kn − W̄ )/σ )), where yn = 1 if person n said “yes” and 0 otherwise.
Maximizing this function provides estimates of W̄ and σ .

A similar procedure is used if the researcher designs a double-bounded
questionnaire. Let the prompt for the second question be knu if the person
answered “yes” to the first question, where knu > kn , and let knl be the
second prompt if the person initially answered “no,” where knl < kn .
There are four possible sequences of answers to the two questions. The
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f (W )

knuknknl

W

Prob (no, no)

Prob (no, yes)

Prob (yes, no)

Prob (yes, yes)

Figure 7.2. Distribution of willingness to pay.

probabilities for these sequences are illustrated in Figure 7.2 and given
below:

� “no” then “no”: P = Prob(Wn < knl) = �((knl − W̄ )/σ )
� “no” then “yes”: P = Prob(knl < Wn < kn) = �((kn − W̄ )/
σ ) − �((knl − W̄ )/σ )

� “yes” then “no”: P = Prob(kn < Wn < knu) = �((knu − W̄ )/
σ ) − �((kn − W̄ )/σ )

� “yes” then “yes”: P = Prob(Wn > knu) = 1 − �((knu − W̄ )/σ ).

These probabilities enter the log-likelihood function, which is maxi-
mized to obtain estimates of W̄ and σ . Other distributions can of course
be used instead of normal. Lognormal is attractive if the researcher as-
sumes that all people have a positive willingness to pay. Or the researcher
might specify a distribution that has a mass at zero to represent the share
of people who are not willing to pay anything, and a lognormal for the
remaining share. Generalization to multiple dimensions is straightfor-
ward, to reflect, for example, that people’s willingness to pay for one
environmental package might also be related to their willingness to pay
for another. As with multiresponse ordered probit, the GHK simulator
comes in handy when the multiple values are assumed to be distributed
jointly normal.

7.6 Mixed Models

We have discussed mixed logit and mixed ordered logit. Of course,
mixed models of all kinds can be developed using the same logic. Any
model whose probabilities can be written as a function of parameters can
also be mixed by allowing the parameters to be random and integrating
the function over the distribution of parameters (Greene, 2001). The



P1: JYD/...

CB495-07Drv CB495/Train KEY BOARDED May 25, 2009 20:56 Char Count= 0

Variations on a Theme 167

probability is simulated by drawing from the distribution, calculating the
function for each draw, and averaging the results. We give two examples
in the following section, but researchers will inevitably develop others
that meet the needs of their particular projects, such as Bhat’s (1999)
use of mixed ordered logit.

7.6.1. Mixed Nested Logit

The mixed logit model does not exhibit the independence from
irrelevant alteratives property as logit does, and can approximate any
substitution pattern by appropriate specification of variables and mixing
distribution. This fact has led some people to feel that there is no fur-
ther need for nested logit models. A mixed logit can be estimated that
provides correlation–substitution patterns analogous to those of a nested
logit. For example, consider a nested logit with two nests of alternatives
labeled A and B. Provided the log-sum coefficients are between 0 and
1, substitution within each nest is greater than substitution across nests.
This substitution pattern can be represented in a mixed logit model by
specifying a dummy variable for each nest and allowing the coefficients
on the dummies to be random (constraining, for identification purposes,
the means to be zero if a full set of alternative-specific constants are
included, and the two variances to be the same).

While a mixed logit can be specified in this way, doing so misses the
point of simulation. As discussed in Chapter 1, simulation is used as a
way to approximate integrals when a closed form does not exist. Analytic
integration is always more accurate than simulation and should be used
whenever feasible, unless there is a compelling reason to the contrary.
Using a mixed logit to represent the substitution patterns of a nested logit,
while feasible, replaces the closed-form integral of the nested logit with
an integral that needs to be simulated. From a numerical perspective, this
replacement can only reduce accuracy. The only possible advantages of
mixed logit in this context are that (1) it might be easier for the researcher
to test numerous nesting structures, including overlapping nests, within
a mixed logit than a nested logit, and (2) the researcher might have
specified other coefficients to be random, so that a mixed logit is already
being used.

The second reason suggests a mixed nested logit. Suppose the re-
searcher believes that some of the coefficients in the model are random
and also that, conditional on these coefficients, the unobserved factors
are correlated over alternatives in a way that can be represented by a
nested logit. A mixed nested logit model can be specified to represent
this situation. Conditional on the coefficients that enter utility, the choice
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probabilities are nested logit, which is a closed form and can be calcu-
lated exactly. The unconditional probability is the nested logit formula
integrated over the distribution of the random coefficients. Software for
mixed logit can be modified by simply locating the logit formula within
the code and changing it to the appropriate nested logit formula. Ex-
perience indicates that maximizing the likelihood function for unmixed
nested logits is often difficult numerically, and mixing the model will
compound this difficulty. Hierarchical Bayes estimation (Chapter 12)
could prove particularly useful in this situation, since it does not involve
maximizing the likelihood function.

7.6.2. Mixed Probit

A constraint of probit models, and in fact their defining charac-
teristic, is that all random terms enter utility linearly and are randomly
distributed in such a way that utility itself is normally distributed. This
constraint can be removed by specifying a mixed probit. Suppose that
some random terms enter nonlinearly or are not randomly distributed,
but that conditional on these, utility is normally distributed. For example,
a price coefficient might be lognormal to assure that it is negative for
all people, and yet all other coefficients be either fixed or normal, and
the final error terms jointly normal. A mixed probit model is appropri-
ate for this specification. Conditional on the price coefficient, the choice
probabilities follow the standard probit formula. The unconditional prob-
abilities are the integral of this probit formula over the distribution of
the price coefficient. Two layers of simulation are used to approximate
the probabilities: (1) a draw of the price coefficient is taken, and (2) for
this draw, the GHK or other probit simulator is used to approximate the
conditional choice probability. This process is repeated many times, and
the results are averaged.

Long run times can be expected for the mixed probit model, since
the GHK simulator is calculated for each draw of the price coefficient.
However, the number of draws in the GHK simulator can be reduced,
since the averaging over draws of the price coefficient reduces the vari-
ance generated by the GHK simulator. In principle, the GHK simulator
can be based on only one draw for each draw of the price coefficient. In
practice, it may be advisable to use more than one draw, but far fewer
than would be used in an unmixed probit.

The mixed probit model provides a way for the researcher to avoid
some of the practical difficulties that can arise with a mixed logit model.
For example, to represent pure heteroskedasticity (i.e., a different vari-
ance for each alternative’s utility) or a fixed correlation pattern among
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alternatives (i.e., a covariance matrix that does not depend on the vari-
ables), it can often be easier to estimate a probit instead of specifying
numerous error components within a mixed logit. As emphasized by
Ben-Akiva et al. (2001), specification of covariance and heteroskedas-
ticity can be more complex in a mixed logit model than in a probit,
because iid extreme value terms are necessarily added to whatever other
random elements the researcher specifies. Probit is a more natural spec-
ification in these situations. However, if the researcher wants to include
some nonnormal random terms, an unmixed probit cannot be used. Mix-
ing the probit allows the researcher to include nonnormal terms while
still maintaining the simplicity of probit’s representation of fixed covari-
ance for additive errors. Conceptually, the specification and estimation
procedure are straightforward. The cost comes only in extra computation
time, which becomes less relevant as computers get faster.

7.7 Dynamic Optimization

In previous chapters we examined certain types of dynamics, by which
choices in one period affect choices in another period. For example, we
described how a lagged dependent variable can be included to capture
inertia or variety-seeking behavior. These discussions suggest a much
wider realm of dynamics than we had actually considered. In particular:
if past choices affect current choices, then current choices affect future
choices, and a decision maker who is aware of this fact will take these
future effects into consideration. A link from the past to the present
necessarily implies a link from the present to the future.

In many situations, the choices that a person makes at one point in his
life have a profound influence on the options that are available to him in
the future. Going to college, while expensive and sometimes irritating,
enhances future job possibilities. Saving money now allows a person to
buy things later that he otherwise would not be able to afford. Going
to the gym today means that we can skip going tomorrow. Most of us
take future effects like these into consideration when choosing among
current alternatives.

The question is: how can behavior such as this be represented in dis-
crete choice models? In general the situation can be described as follows.
A person makes a series of choices over time. The alternative that is
chosen in one period affects the attributes and availability of alternatives
in the future. Sometimes the future effects are not fully known, or depend
on factors that have not yet transpired (such as the future state of the
economy). However, the person knows that he will, in the future, maxi-
mize utility among the alternatives that are available at that time under
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the conditions that prevail at that time. This knowledge enables him to
choose the alternative in the current period that maximizes his expected
utility over the current and future periods. The researcher recognizes
that the decision maker acts in this way, but does not observe everything
that the decision maker considers in the current and future periods. As
usual, the choice probability is an integral of the decision maker’s be-
havior over all possible values of the factors that the researcher does not
observe.

In this section we specify models in which the future consequences
of current decisions are incorporated. For these models, we will assume
that the decision maker is fully rational in the sense that he optimizes
perfectly in each time period given the information that is available to
him at that point in time and given that he knows he will act optimally in
the future when future information is revealed. The procedures for mod-
eling these decisions were first developed for various applications by,
for example, Wolpin (1984) on women’s fertility, Pakes (1986) on patent
options, Wolpin (1987) on job search, Rust (1987) on engine replace-
ment, Berkovec and Stern (1991) on retirement, and others. Eckstein
and Wolpin (1989) provide an excellent survey of these early contribu-
tions. The thrust of more recent work has primarily been toward solving
some of the computational difficulties that can arise in these models, as
discussed below.

Before embarking on this endeavor, it is important to keep the concept
of rationality in perspective. A model of rational decision making over
time does not necessarily represent behavior more accurately than a
model of myopic behavior, where the decision maker ignores future
consequences. In fact, the truth in a given situation might lie between
these two extremes: decision makers might be acting in ways that are
neither completely myopic nor completely rational. As we will see,
the truly optimizing behavior is very complex. People might engage in
behavior that is only approximately optimal simply because they (we)
can’t figure out the truly optimal way to proceed. Viewed in another
light, one could argue that people always optimize when the realm of
optimization is broadened sufficiently. For example, rules of thumb or
other behavior that seem only to approximate optimality may actually
turn out to be optimal when the costs of optimization are considered.

The concepts and procedures that are developed to examine optimiz-
ing behavior carry over, in modified form, to other types of behavior that
recognize future effects of current choices. Furthermore, the researcher
can often test alternative behavioral representations. Myopic behavior
nearly always appears as a testable restriction on a fully rational model,
namely, a zero coefficient for the variable that captures future effects.
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Sometimes, the standard rational model is a restriction on a supposedly
nonrational one. For example, O’Donoghue and Rabin (1999), among
others, argue that people are time-inconsistent: when it is Monday, we
weigh the benefits and costs that will come on, say, Wednesday only
marginally more than those that will arrive on Thursday, and yet when
Wednesday actually arrives, we weigh Wednesday’s (today’s) benefits
and costs far more than Thursday’s. Essentially, we have a bias for the
present. The standard rational model, where the same discount rate is
used between any two periods independent of whether the person is
in one of the periods, constitutes a restriction on the time-inconsistent
model.

The concepts in this area of analysis are more straightforward than the
notation. To develop the concepts with a minimum of notation, we will
start with a two-period model in which the decision maker knows the
exact effect of first-period choices on the second-period alternatives and
utilities. We will then expand the model to more periods and to situations
where the decision maker faces uncertainty about future effects.

7.7.1. Two Periods, No Uncertainty
about Future Effects

To make the explication concrete, consider a high school stu-
dent’s choice of whether or not to go to college. The choice can be
examined in the context of two periods: the college years and the post-
college years. In the first period, the student either goes to college or
not. Even though these are called the college years, the student need not
go to college but can take a job instead. In the second period the student
chooses among the jobs that are available to him at that time. Going to
college during the college years means less income during that period
but better job options in the post-college years. U1C is the utility that the
student obtains in period 1 from going to college, and U1W is the utility
he obtains in the first period if he works in the first period instead of
going to college. If the student were myopic, he would choose college
only if U1C > U1W . However, we assume that he is not myopic. For the
second period, let J denote the set of all possible jobs. The utility of job
j in period 2 is U C

2 j if the student went to college and U W
2 j if he worked

in the first period. The utility from a job depends on the wage that the
person is paid as well as other factors. For many jobs, people with a
college degree are paid higher wages and granted greater autonomy and
responsibility. For these jobs, U C

2 j > U W
2 j . However, working in the first

period provides on-the-job experience that commands higher wages and
responsibility than a college degree for some jobs; for these, U W

2 j > U C
2 j .
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A job not being available is represented as having a utility of negative
infinity. For example, if job j is available only to college graduates, then
U W

2 j = −∞.
How will the high school student decide whether to go to college? We

assume for now that the student knows U C
2 j and U W

2 j for all j ∈ J when
deciding whether to go to college in the first period. That is, the student
has perfect knowledge of his future options under whatever choice he
makes in the first period. We will later consider how the decision process
changes when the student is uncertain about these future utilities. The
student knows that when the second period arrives he will choose the job
that provides the greatest utility. That is, he knows in the first period that
the utility that he will obtain in the second period if he chooses college
in the first period is the maximum of U C

2 j over all possible jobs. We label
this utility as U C

2 = max j (U C
2 j ). The student therefore realizes that, if

he chooses college in the first period, his total utility over both periods
will be

TUC = U1C + λU C
2

= U1C + λ max j
(
U C

2 j

)
,

where λ reflects the relative weighting of the two periods’ utilities in
the student’s decision process. Given the way we have defined time
periods, λ incorporates the relative time spans of each period as well
as the traditional discounting of future utility relative to current utility.
Thus, λ can exceed one, even with discounting, if the second period
represents say forty years while the first period is four years. Myopic
behavior is represented as λ = 0.

The same logic is applied to the option of working in the first period
instead of going to school. The student knows that he will choose the
job that offers the greatest utility, so that U W

2 = max j (U W
2 j ) and the total

utility over both period from choosing to work in the first period is

TUW = U1W + λU W
2

= U1W + λ max j
(
U W

2 j

)
.

The student chooses college if TUC > TUW and otherwise chooses to
work in the first period.

This completes the description of the decision maker’s behavior. We
now turn to the researcher. As always, the researcher observes only some
of the factors that affect the student’s utility. Each utility in each period
is decomposed into an observed and unobserved component:

U1C = V1C + ε1C ,

U1W = V1W + ε1W
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and

U C
2 j = V C

2 j + εC
2 j ,

U W
2 j = V W

2 j + εW
2 j

for all j ∈ J . Collect the unobserved components into vector ε =
〈ε1C , ε1W , εC

2 j , ε
W
2 j , ∀ j〉, and denote the density of these terms as f (ε).

The probability of the student choosing college is

PC = Prob(TUC > TUW )

= Prob
[
U1C + λmax j

(
U C

2 j

)
> U1W + λmax j

(
U W

2 j

)]
= Prob

[
V1C + ε1C + λmax j

(
V C

2 j + εC
2 j

)
> V1W + ε1W + λmax j

(
V W

2 j + εW
2 j

)]
=

∫
I
[
V1C + ε1C + λmax j

(
V C

2 j + εC
2 j

)
> V1W + ε1W + λmax j

(
V W

2 j + εW
2 j

)]
f (ε) dε,

where I [·] is an indicator of whether the statement in brackets is true.
The integral can be approximated through simulation. For an accept–

reject simulator:

1. Take a draw from f (ε), with its components labeled εr
1C ,

εCr
2 j , . . . .

2. Calculate U C
2 j = V C

2 j + εCr
2 j for all j , determine the highest one,

and label it U Cr
2 . Similarly, calculate U Wr

2 .
3. Calculate the total utilities as TUr

C = V r
1C + εr

1C + λU Cr
2 , and

similarly for TUr
W .

4. Determine whether TUr
C > TUr

W . If so, set I r = 1. Otherwise,
let I r= 0.

5. Repeat steps 1–4 R times. The simulated probability of choosing
college is P̃C = ∑

r I r/R.

Convenient error partitioning (as explained in Section 1.2) can be uti-
lized to obtain a smooth and more accurate simulator than accept–reject,
provided that the integral over the first-period errors has a closed form
conditional on the second-period errors. Suppose for example that ε1C

and ε1W are iid extreme value. Label the second-period errors collec-
tively as ε2 with any density g(ε2). Conditional on the second-period
errors, the probability of the student going to college is given by a stan-
dard logit model with an extra explanatory variable that captures the
future effect of the current choice. That is,

PC (ε2) = eV1C+λU C
2 (ε2)

eV1C+λU C
2 (ε2) + eV1W +λU W

2 (ε2)
,
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where U C
2 (ε2) is calculated from the second-period errors as U C

2 (ε2) =
max j (V C

2 j + εC
2 j ), and similarly for U W

2 (ε2). The unconditional proba-
bility is then the integral of this logit formula over all possible values of
the second-period errors:

PC =
∫

PC (ε2)g(ε2) dε2.

The probability is simulated as follows: (1) Take a draw from density
g(·) and label it εr

2 . (2) Using this draw of the second-period errors,
calculate the utility that would be obtained from each possible job if the
person went to college. That is, calculate U Cr

2 j = V C
2 j + εCr

2 j for all j .
(3) Determine the maximum of these utilities, and label it U Cr

2 . This is
the utility that the person would obtain in the second period if he went to
college in the first period, based on this draw of the second-period errors.
(4)–(5) Similarly, calculate U Wr

2 j ∀ j , and then determine the maximum
U Wr

2 . (6) Calculate the conditional choice probability for this draw as

Pr
C = eV1C+λU Cr

2

eV1C+λU Cr
2 + eV1W +λU Wr

2

.

(7) Repeat steps 1–6 many times, labeled r = 1, . . . , R. (8) The simu-
lated probability is P̃C = ∑

r Pr
C/R.

If the second-period errors are also iid extreme value, then the prob-
ability of taking a particular job in the second period is standard logit.
The probability of going to college and taking job j is

PC j =
(∫ [

eV1C + λU C
2 (ε2)

eV1C+λU C
2 (ε2) + eV1W +λU W

2 (ε2)

]
g(ε2)dε2

)(
eV C

2 j∑
keV C

2k

)
.

The choice probabilities for the first period are simulated by taking
draws of the second-period errors, as just described, with g(·) being the
extreme value distribution. However, the probabilities for the second
period are calculated exactly. The draws of the second-period errors
are used only in calculating the first-period probabilities where they
do not integrate out in closed form. The second-period errors integrate
out of the second-period probabilities in closed form, which is used to
calculate the second-period probabilities exactly. Application to other
distributions that allow correlation over alternatives, such as GEV or
normal, is straightforward. Allowing the errors to be correlated over time
can be accomplished with a joint normal distribution and simulation of
both periods’ probabilities.
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7.7.2. Multiple Periods

We first expand to three periods and then generalize to any
number of periods. The model of college choice can be extended by
considering retirement options. When a person reaches retirement age,
there are usually several options available. He can continue working
full time, or work part time and spend part of his retirement funds,
or retire fully and collect social security and perhaps a pension. The
person’s income under these alternatives depends largely on the job that
the person has held and the retirement plan that the job provided. Three
periods are sufficient to capture the decision process. The person goes to
college or not in the first period, chooses a job in the second period, and
chooses among the available retirement-age options in the third period.
The high school student knows, when deciding whether to go to college,
that this decision will affect his job opportunities, which in turn will
affect his retirement options. (This foreknowledge is starting to seem
like a mighty big burden for a high school student.)

The set of retirement-age alternatives is labeled S, and its elements
indexed by s. In the third period, the utility that the person obtains from
alternative s if he went to college in the first period and had job j in
the second period is U C j

3s . Conditional on these previous choices, the
person chooses option s if U C j

3s > U C j
3t for all s 	= t and s, t ∈ S. Similar

notation and behavior apply conditional on other choices in the first and
second periods.

In the second period, the person recognizes that his job choice will
affect his retirement-age options. He knows he will maximize among the
available options when retirement age arrives. Suppose he chose college
in the first period. In the second period, he knows that the utility he will
obtain in the third period if he chooses job j is maxsU

C j
3s . The total utility

of choosing job j in the second period, given that he chose college in
the first period, is therefore TUC

j = U C
2 j + θ maxsU

C j
3s , where θ weights

period three relative to period two. He chooses job j if TUC
j > TUC

k for
all k 	= j and j, k ∈ J . Similar notation and behavior occur if he chose
to work in the first period.

Consider now the first period. He knows that, if he chooses college,
he will choose the job that maximizes his utility from jobs conditional
on going to college, and then will choose the retirement-age option that
maximizes his utility conditional on that chosen job. The total utility
from college is

TUC = U1c + λ max j TUC
j

= U1c + λ max j
(
U C

2 j + θ maxs U C j
3s

)
.
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This expression is similar to that in the two-period model except that it
includes an additional layer of maximization: the maximization for the
third period is contained in each maximization for the second period. A
similar expression gives the total utility of working in the first period,
TUW . The person chooses college if TUC > TUW .

This completes the description of the person’s behavior. The re-
searcher observes a portion of each utility function: U1C , U1W , U C

2 j , and
U W

2 j ∀ j ∈ J , and U C j
3s and U W j

3s ∀s ∈ S, j ∈ J . The unobserved portions
are collectively labeled by the vector ε with density f (ε). The probability
that the person chooses college is

PC =
∫

I (ε) f (ε) dε,

where

I (ε) = 1

if

V1C + ε1C + λ max j
(
V C

2 j + εC
2 j + θ maxs

(
V C j

3s + ε
C j
3s

))
> V1W + ε1W + λ max j

(
V W

2 j + εW
2 j + θ maxs

(
V W j

3s + ε
W j
3s

))
.

This expression is the same as in the two-period model except that
now the term inside the indicator function has an extra level of maxi-
mization. An accept–reject simulator is obtained: (1) draw from f (ε);
(2) calculate the third-period utility U C j

3s for each s; (3) identify the
maximum over s; (4) calculate TUC

2 j with this maximum; (5) repeat
steps (2)–(5) for each j , and identify the maximum of TUC

2 j over j ;
(6) calculate TUC using this maximum; (7) repeat steps (2)–(6) for TUW ;
(8) determine whether TUC > TUW , and set I = 1 if it is; (9) repeat steps
(1)–(8) many times, and average the results. Convenient error partition-
ing can also be used. For example if all errors are iid extreme value,
then the first-period choice probabilities, conditional on draws of the
second- and third-period errors, are logit; the second-period probabili-
ties, conditional on the third-period errors, are logit; and the third-period
probabilities are logit.

We can now generalize these concepts and introduce some widely
used terminology. Note that the analysis of the person’s behavior and
the simulation of the choice probabilities by the researcher start with
the last period and work backward in time to the first period. This pro-
cess is called backwards recursion. Suppose there are J alternatives in
each of T equal-length time periods. Let a sequence of choices up to
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period t be denoted {i1, i2, . . . , it}. The utility that the person obtains in
period t from alternative j is Ut j (i1, i2, . . . , it−1), which depends on all
previous choices. If the person chooses alternative j in period t , he will
obtain this utility plus the future utility of choices conditioned on this
choice. The total utility (current and future) that the person obtains from
choosing alternative j in period t is TUt j (i1, i2, . . . , it−1). He chooses
the alternative in the current period that provides the greatest total utility.
Therefore the total utility he receives from his optimal choice in period
t is TUt (i1, i2, . . . , it−1) = max j TUt j (i1, i2, . . . , it−1). This total utility
from the optimal choice at time t , TUt , is called the valuation function
at time t .

The person chooses optimally in the current period with knowledge
that he will choose optimally in the future. This fact establishes a con-
venient relation between the valuation function in successive periods. In
particular,

TUt (i1, . . . , it−1) = max j [Ujt (i1, . . . , it−1) + δTUt+1(i1, . . . , it = j)],

where δ is a parameter that discounts the future. TUt+1 on the right-
hand side is the total utility that the person will obtain from period
t + 1 onward if he chooses alternative j in period t (i.e., if it = j).
The equation states that the total utility that the person obtains from
optimizing behavior from period t onward, given previous choices, is the
maximum over j of the utility from j in period t plus the discounted total
utility from optimizing behavior from period t + 1 onward conditional
on choosing j in period t . This relation is Bellman’s equation (1957)
applied to discrete choice with perfect information.

TUt j (i1, . . . , it−1) is sometimes called the conditional valuation func-
tion, conditional on choosing alternative j in period t . A Bellman equa-
tion also operates for this term:

TUt j (i1, . . . , it−1) = Ujt (i1, . . . , it−1)
+ δ maxk[TUt+1,k(i1, . . . , it = j)].

Since by definition TUt (i1, . . . , it−1) = max j [TUt j (i1, . . . , it−1)], the
Bellman equation in terms of the conditional valuation function is equiv-
alent to that in terms of the unconditional valuation function.

If T is finite, the Bellman equation can be applied with backward
recursion to calculate TUt j for each time period. At t = T , there is
no future time period, and so TUT j (i1, . . . , iT −1) = UT j (i1, . . . , iT −1).
Then TUT −1, j (i1, . . . , iT −2) is calculated from TUT j (i1, . . . , iT −1) using
Bellman’s equation, and so on forward to t = 1. Note that
Ut j (i1, . . . , it−1) must be calculated for each t , each j , and, importantly,
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each possible sequence of past choices, i1, . . . , it−1. With J alternatives
in T time periods, the recursion requires calculation of (J T )T utilities
(that is, J T possible sequences of choices, with each sequence contain-
ing T one-period utilities). To simulate the probabilities, the researcher
must calculate these utilities for each draw of unobserved factors. And
these probabilities must be simulated for each value of the parameters in
the numerical search for the estimates. This huge computational burden
is called the curse of dimensionality and is the main stumbling block to
application of the procedures with more than a few time periods and/or
alternatives. We discuss in the next subsection procedures that have been
suggested to avoid or mitigate this curse, after showing that the curse is
even greater when uncertainty is considered.

7.7.3. Uncertainty about Future Effects

In the analysis so far we have assumed that the decision maker
knows the utility for each alternative in each future time period and how
this utility is affected by prior choices. Usually, the decision maker does
not possess such foreknowledge. A degree of uncertainty shrouds the
future effects of current choices.

The behavioral model can be adapted to incorporate uncertainty. For
simplicity, return to the two-period model for our high school student.
In the first period, the student does not know for sure the second-period
utilities, U C

2 j and U W
2 j ∀ j . For example, the student does not know, before

going to college, how strong the economy, and hence his job possibilities,
will be when he graduates. These utilities can be expressed as functions
of unknown factors U C

2 j (e), where e refers collectively to all factors in
period two that are unknown in period one. These unknown factors will
become known (that is, will be revealed) when the student reaches the
second period, but are unknown to the person in the first period. The
student has a subjective distribution on e that reflects the likelihood that
he ascribes to the unknown factors taking a particular realization in the
second period. This density is labeled g(e). He knows that, whatever
realization of e actually occurs, he will, in the second period, choose
the job that gives him the maximum utility. That is, he will receive
utility max jU C

2 j (e) in the second period if he chooses college in the
first period and the unknown factors end up being e. In the first period,
when evaluating whether to go to college, he takes the expectation of
this future utility over all possible realizations of the unknown factors,
using his subjective distribution over these realizations. The expected
utility that he will obtain in the second period if he chooses college in
the first period is therefore

∫
[max j U C

2 j (e)]g(e) de. The total expected
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utility from choosing college in the first period is then

TEUC = U1C + λ

∫ [
max j U C

2 j (e)
]
g(e) de.

TEUW is defined similarly. The person chooses college if TEUC >

TEUW . In the second period, the unknown factors become known, and
the person chooses job j if he had chosen college if U C

2 j (e
∗) > U C

2k(e∗)
for all k 	= j , where e∗ is the realization that actually occurred.

Turning to the researcher, we have an extra complication introduced
by g(e), the decision maker’s subjective distribution for unknown fac-
tors. In addition to not knowing utilities in their entirety, the researcher
has only partial knowledge of the decision maker’s subjective probability
g(e). This lack of information is usually represented through parameter-
ization. The researcher specifies a density, labeled h(e | θ ), that depends
on unknown parameters θ . The researcher then assumes that the person’s
subjective density is the specified density evaluated at the true param-
eters θ∗. That is, the researcher assumes h(e | θ∗) = g(e). Stated more
persuasively and accurately: the true parameters are, by definition, the
parameters for which the researcher’s specified density h(e | θ ) becomes
the density g(e) that the person actually used. With a sufficiently flexible
h, any g can be represented as h evaluated at some parameters, which
are called the true parameters. These parameters are estimated along
with the parameters that enter utility. (Other ways of representing the
researcher’s lack of knowledge about g(e) can be specified; however,
they are generally more complex.)

Utilities are decomposed into their observed and unobserved portions,
with the unobserved portions collectively called ε with density f (ε). The
probability that the person goes to college is

PC = Prob(TEUC > TEUW )

= ∫
I (TEUC > TEUW ) f (ε)dε.

where TEUC and TEUW , by the definitions above, each include an inte-
gral over e with density h(e | θ ). The probability can be approximated
by simulating the integrals in TEUC and TEUW within the simulation
of the integral over I (TEUC > TEUW ). (1) Take a draw of ε. (2a) Take
a draw of e from h(e | θ ). (2b) Using this draw, calculate the integrands
in TEUC and TEUW . (2c) Repeat steps 2a–b many times and average
the results. (3) Using the value from 2c, calculate I (TEUC > TEUW ).
(4) Repeat steps 1–3 many times and average the results. As the reader
can see, the curse of dimensionality grows worse.

Several authors have suggested ways to reduce the computational
burden. Keane and Wolpin (1994) calculate the valuation function at
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selected realizations of the unknown factors and past choices; they then
approximate the valuation function at other realizations and past choices
through interpolating from the calculated valuations. Rust (1997) sug-
gests simulating future paths and using the average over these simulated
paths as an approximation in the valuation function. Hotz and Miller
(1993) and Hotz et al. (1993) show that there is a correspondence be-
tween the valuation function in each time period and the choice prob-
abilities in future periods. This correspondence allows the valuation
functions to be calculated with these probabilities instead of backward
recursion.

Each of these procedures has limitations and is applicable only in cer-
tain situations, which the authors themselves describe. As Rust (1994)
has observed, it is unlikely that a general-purpose breakthrough will arise
that makes estimation simple for all forms of dynamic optimization mod-
els. Inevitably the researcher will need to make trade-offs in specifying
the model to assure feasibility, and the most appropriate specification
and estimation method will depend on the particulars of the choice pro-
cess and the goals of the research. In this regard, I have found that two
simplifications are very powerful in that they often provide a large gain
in computational feasibility for a relatively small loss (and sometimes a
gain) in content.

The first suggestion is for the researcher to consider ways to capture
the nature of the choice situation with as few time periods as possible.
Sometimes, in fact usually, time periods will need to be defined not by
the standard markers, such as the year or month, but rather in a way that is
more structural with respect to the decision process. For example, for the
high school student deciding whether to go to college, it might seem na-
tural to say that he makes a choice each year among the jobs and school-
ing options that are available in that year, given his past choices. Indeed,
this statement is true: the student does indeed make annual (or even
monthly, weekly, daily) choices. However, such a model would clearly
face the curse of dimensionality. In contrast, the specification that we
discussed earlier involves only two time periods, or three if retirement is
considered. Estimation is quite feasible for this specification. In fact, the
two-period model might be more accurate than an annual model: students
deciding on college probably think in terms of the college years and their
post-college options, rather than trying to anticipate their future choices
in each future year. McFadden and Train (1996) provide an example
of how a dynamic optimization model with only a few well-considered
periods can accurately capture the nature of the choice situation.

A second powerful simplification was first noted by Rust (1987). Sup-
pose that the factors that the decision maker does not observe beforehand
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are also the factors that the researcher does not observe (either before or
after), and that these factors are thought by the decision maker to be iid
extreme value. Under this admittedly restrictive assumption, the choice
probabilities take a closed form that is easy to calculate. The result can
be readily derived for our model of college choice. Assume that the stu-
dent, when in the first period, decomposes second-period utility into a
known and unknown part, e.g., U C

2 j (e) = V C
2 j + eC

2 j , and assumes that
eC

2 j follows an extreme value distribution independent of all else. This
unknown factor becomes known to the student in the second period,
so that second-period choice entails maximization over known U C

2 j ∀ j .
However, in the first period it is unknown. Recall from Section 3.5 that
the expected maximum of utilities that are iid extreme value takes the
familiar log-sum formula. In our context, this result means that

E
(
max j

(
V C

2 j + εC
2 j

)) = α ln

( ∑
j

eV C
2 j

)
,

which we can label LSC
2 . LSW

2 is derived similarly. The person chooses
college if then

TEUC > TEUW ,

U1C + λ LSC
2 > U1W + λ LSW

2 .

Note that this decision rule is in closed form: the integral over un-
known future factors becomes the log-sum formula. Consider now the
researcher. Each first-period utility is decomposed into an observed and
an unobserved part (U1C = V1C + ε1C , U1W = V1W + ε1W ), and we as-
sume that the unobserved parts are iid extreme value. For the second-
period utilities, we make a fairly restrictive assumption. We assume
that the part of utility that the researcher does not observe is the same
as the part that the student does not know beforehand. That is, we as-
sume U C

2 j = V C
2 j + εC

2 j ∀ j , where the researcher’s εC
2 j is the same as

the student’s eC
2 j . Under this assumption, the researcher can calculate

the log-sum terms for future utility, LCC
2 and LSW

2 , exactly, since these
terms depend only on the observed portion of utility in the second period,
V C

2 j ∀ j , which is observed by the researcher and known beforehand by the
decision maker. The probability of the student choosing college is then

PC = Prob(TEUC > TEUW )

= Prob
(
U1C + λ LSC

2 > U1W + λ LSW
2

)
= Prob

(
V1C + ε1C + λ LSC

2 > V1W + ε1W + λ LSW
2

)
= eV1C+LSC

2

eV1C+λ LSC
2 + eV1W +λ LSW

2

.
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The model takes the same form as the upper part of a nested logit model:
the first-period choice probability is the logit formula with a log-sum
term included as an extra explanatory variable. Multiple periods are
handled the same way as multilevel nested logits.

It is doubtful that the researcher, in reality, observes everything that
the decision maker knows beforehand. However, the simplification that
arises from this assumption is so great, and the curse of dimensionality
that would arise otherwise is so severe, that proceeding as if it were true
is perhaps worthwhile in many situations.


