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8 Numerical Maximization

8.1 Motivation

Most estimation involves maximization of some function, such as the
likelihood function, the simulated likelihood function, or squared mo-
ment conditions. This chapter describes numerical procedures that are
used to maximize a likelihood function. Analogous procedures apply
when maximizing other functions.

Knowing and being able to apply these procedures is critical in our new
age of discrete choice modeling. In the past, researchers adapted their
specifications to the few convenient models that were available. These
models were included in commercially available estimation packages,
so that the researcher could estimate the models without knowing the
details of how the estimation was actually performed from a numerical
perspective. The thrust of the wave of discrete choice methods is to free
the researcher to specify models that are tailor-made to her situation
and issues. Exercising this freedom means that the researcher will often
find herself specifying a model that is not exactly the same as any in
commercial software. The researcher will need to write special code for
her special model.

The purpose of this chapter is to assist in this exercise. Though not
usually taught in econometrics courses, the procedures for maximiza-
tion are fairly straightforward and easy to implement. Once learned, the
freedom they allow is invaluable.

8.2 Notation

The log-likelihood function takes the form LL(8) = Z;V: InP,(B)/N,
where P,(f) is the probability of the observed outcome for decision
maker n, N is the sample size, and 8 is a K x 1 vector of parameters.
In this chapter, we divide the log-likelihood function by N, so that LL
is the average log-likelihood in the sample. Doing so does not affect the
location of the maximum (since N is fixed for a given sample) and yet
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Figure 8.1. Maximum likelihood estimate.

facilitates interpretation of some of the procedures. All the procedures
operate the same whether or not the log-likelihood is divided by N. The
reader can verify this fact as we go along by observing that N cancels
out of the relevant formulas.

The goal is to find the value of 8 that maximizes LL(8). In terms of
Figure 8.1, the goal is to locate 3. Note in this figure that LL is always
negative, since the likelihood is a probability between 0 and 1 and the log
of any number between 0 and 1 is negative. Numerically, the maximum
can be found by “walking up” the likelihood function until no further
increase can be found. The researcher specifies starting values By. Each
iteration, or step, moves to a new value of the parameters at which LL(8)
is higher than at the previous value. Denote the current value of 8 as 3,
which is attained after ¢ steps from the starting values. The question is:
what is the best step we can take next, that is, what is the best value for

Br+1?
The gradient at §; is the vector of first derivatives of LL(8) evaluated

at B;:
_(LLB)
g"( op ),3,'

This vector tells us which way to step in order to go up the likelihood
function. The Hessian is the matrix of second derivatives:

n=(5), = (i)
\ap ), \apap ),

The gradient has dimension K x 1, and the Hessian is K x K. As we
will see, the Hessian can help us to know how far to step, given that the
gradient tells us in which direction to step.
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8.3  Algorithms

Of the numerous maximization algorithms that have been developed over
the years, I next describe only the most prominent, with an emphasis on
the pedagogical value of the procedures as well as their practical use.
Readers who are induced to explore further will find the treatments by
Judge et al. (1985, Appendix B) and Ruud (2000) rewarding.

8.3.1. Newton—Raphson

To determine the best value of f, 1, take a second-order Taylor’s
approximation of LL(8;) around LL(j;):

(8.1)
LL(Bi+1) = LL(B) + (Bis1 — B) & + 5Bt — B Hi(Biv1 — Bo)-

Now find the value of B,,; that maximizes this approximation to
LL(B:+1):

JLL(B;
OLLGB) _ o 4 HBor — B =0,
01

Hi(Biv1 — Br) = — &>
Bit1— B = _Ht_lgt,
By = B+ (—H g,

The Newton—Raphson (NR) procedure uses this formula. The step
from the current value of B to the new value is (—H[])g,, that is,
the gradient vector premultiplied by the negative of the inverse of the
Hessian.

This formula is intuitively meaningful. Consider K = 1, as illustrated
in Figure 8.2. The slope of the log-likelihood function is g;. The second
derivative is the Hessian H;, which is negative for this graph, since the
curve is drawn to be concave. The negative of this negative Hessian is
positive and represents the degree of curvature. That is, — H; is the posi-
tive curvature. Each step of S is the slope of the log-likelihood function
divided by its curvature. If the slope is positive, § is raised as in the first
panel, and if the slope if negative, § is lowered as in the second panel. The
curvature determines how large a step is made. If the curvature is great,
meaning that the slope changes quickly as in the first panel of Figure 8.3,
then the maximum is likely to be close, and so a small step is taken.



188 Estimation

B, — «— B,
| |
| P P
|
Positive slope = move forward Negative slope=» move backward
LL(B) LL(B)
Figure 8.2. Direction of step follows the slope.
B, B B, B
Il I I
/Ikl\ B /',f'\ '
Greater curvature =p Less curvature =
smaller step larger step
LL(B) LL(B)

Figure 8.3. Step size is inversely related to curvature.

(Dividing the gradient by a large number gives a small number.) Con-
versely, if the curvature is small, meaning that the slope is not changing
much, then the maximum seems to be further away and so a larger step is

taken.
Three issues are relevant to the NR procedure.

Quadratics

If LL(B) were exactly quadratic in g, then the NR procedure
would reach the maximum in one step from any starting value. This fact
can easily be verified with K = 1. If LL() is quadratic, then it can be

written as
LL(B) = a + b + B>

The maximum is

dLL(B)

=b+2B =0,
op + 2¢p
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Figure 8.4. Step may go beyond maximum to lower LL.

The gradient and Hessian are g, = b + 2¢f; and H, = 2c¢, and so NR
gives us

Biv1 = Br — Ht_lgt

— B — (b +2e8)
2¢

b

=b—5 Pk

b N

2c

Most log-likelihood functions are not quadratic, and so the NR proce-
dure takes more than one step to reach the maximum. However, knowing
how NR behaves in the quadratic case helps in understanding its behavior
with nonquadratic LL, as we will see in the following discussion.

Step Size

It is possible for the NR procedure, as for other procedures
discussed later, to step past the maximum and move to a lower LL(B).
Figure 8.4 depicts the situation. The actual LL is given by the solid line.
The dashed line is a quadratic function that has the slope and curvature
that LL has at the point ;. The NR procedure moves to the top of the
quadratic, to B;,1. However, LL(8;41) is lower than LL(J;) in this case.

To allow for this possibility, the step is multiplied by a scalar X in the
NR formula:

Bis1 = B + M—H) g

The vector (— H,)~'g; is called the direction, and A is called the step size.
(This terminology is standard even though (— H,)~'g; contains step-size
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Figure 8.5. Double A as long as LL rises.

information through H;, as already explained in relation to Figure 8.3.)
The step size X is reduced to assure that each step of the NR procedure
provides an increase in LL(8). The adjustment is performed separately
in each iteration, as follows.

Start with A = 1. If LL(B;41) > LL(8;), move to ;11 and start a new
iteration. If LL(8,41) < LL(B;), then set A = % and try again. If, with
A= % LL(B;+1) is still below LL(B;), then set A = ‘—1‘ and try again.
Continue this process until a X is found for which LL(8,41) > LL(8;). If
this process results in a tiny A, then little progress is made in finding the
maximum. This can be taken as a signal to the researcher that a different
iteration procedure may be needed.

An analogous step-size adjustment can be made in the other direc-
tion, that is, by increasing A when appropriate. A case is shown in
Figure 8.5. The top of the quadratic is obtained with a step size of A = 1.
However, the LL(B) is not quadratic, and its maximum is further away.
The step size can be adjusted upward as long as LL(8) continues to rise.
That is, calculate 8,4+ with A = 1 at 8,41. If LL(B,4+1) > LL(B;), then
try A = 2. If the 8,1, based on A = 2 gives a higher value of the log-
likelihood function than with A = 1, then try A = 4, and so on, doubling
A as long as doing so further raises the likelihood function. Each time,
LL(B;+1) with a doubled X is compared with its value at the previously
tried A, rather than with A = 1, in order to assure that each doubling
raises the likelihood function further than it had previously been raised
with smaller A’s. In Figure 8.5, a final step size of 2 is used, since the
likelihood function with A = 4 is lower than when A = 2, even though
it is higher than with A = 1.

The advantage of this approach of raising A is that it usually reduces
the number of iterations that are needed to reach the maximum. New
values of A can be tried without recalculating g, and H,, while each new



Numerical Maximization 191

iteration requires calculation of these terms. Adjusting A can therefore
quicken the search for the maximum.

Concavity

If the log-likelihood function is globally concave, then the NR
procedure is guaranteed to provide an increase in the likelihood function
at each iteration. This fact is demonstrated as follows. LL(8) being con-
cave means that its Hessian is negative definite at all values of 8. (In one
dimension, the slope of LL() is declining, so that the second derivative
is negative.) If H is negative definite, then H ! is also negative definite,
and —H ! is positive definite. By definition, a symmetric matrix M
is positive definite if x’Mx > 0 for any x # 0. Consider a first-order
Taylor’s approximation of LL(8,41) around LL(S;):

LL(Br+1) = LL(B) + (Br+1 — B) &

Under the NR procedure, 8,11 — B; = )»(—Hfl)g,. Substituting gives

LL(Bi41) = LL(B) + (A (= H ) g.) &
= LL(B) + rg/(— H;")g:.

Since —H™! is positive definite, we have g/(—H, ')g, >0 and
LL(B:+1) > LL(B;). Note that since this comparison is based on a first-
order approximation, an increase in LL(8) may only be obtained in a
small neighborhood of ;. That is, the value of A that provides an in-
crease might be small. However, an increase is indeed guaranteed at each
iteration if LL(B) is globally concave.

Suppose the log-likelihood function has regions that are not concave.
In these areas, the NR procedure can fail to find an increase. If the
function is convex at B, then the NR procedure moves in the opposite
direction to the slope of the log-likelihood function. The situation is
illustrated in Figure 8.6 for K = 1. The NR step with one parameter
is LL'(B)/(—LL"(B)), where the prime denotes derivatives. The second
derivative is positive at ;, since the slope is rising. Therefore, —LL"(B)
is negative, and the step is in the opposite direction to the slope. With
K > 1, if the Hessian is positive definite at B, then —H,™! is negative
definite, and NR steps in the opposite direction to g;.

The sign of the Hessian can be reversed in these situations. However,
there is no reason for using the Hessian where the function is not concave,
since the Hessian in convex regions does not provide any useful infor-
mation on where the maximum might be. There are easier ways to find
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Figure 8.6. NR in the convex portion of LL.

an increase in these situations than calculating the Hessian and reversing
its sign. This issue is part of the motivation for other procedures.

The NR procedure has two drawbacks. First, calculation of the Hessian
is usually computation-intensive. Procedures that avoid calculating the
Hessian at every iteration can be much faster. Second, as we have just
shown, the NR procedure does not guarantee an increase in each step if
the log-likelihood function is not globally concave. When —H,~! is not
positive definite, an increase is not guaranteed.

Other approaches use approximations to the Hessian that address these
two issues. The methods differ in the form of the approximation. Each
procedure defines a step as

,Bt-H = ,31 + AM, g,

where M, is a K x K matrix. For NR, M, = —H~!. Other procedures
use M,’s that are easier to calculate than the Hessian and are necessarily
positive definite, so as to guarantee an increase at each iteration even in
convex regions of the log-likelihood function.

8.3.2. BHHH

The NR procedure does not utilize the fact that the function be-
ing maximized is actually the sum of log likelihoods over a sample of
observations. The gradient and Hessian are calculated just as one would
do in maximizing any function. This characteristic of NR provides gen-
erality, in that the NR procedure can be used to maximize any function,
not just a log likelihood. However, as we will see, maximization can be
faster if we utilize the fact that the function being maximized is a sum
of terms in a sample.

We need some additional notation to reflect the fact that the log-
likelihood function is a sum over observations. The score of an
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observation is the derivative of that observation’s log likelihood with
respect to the parameters: s,(8,) = dIn P,(8)/9p8 evaluated at 8;. The
gradient, which we defined earlier and used for the NR procedure, is the
average score: g; = » . 5,(B;)/N. The outer product of observation n’s
score is the K x K matrix

SuSa SuSa SuSn

1.2 2.2 2 K

IO S ST

/
sn(Bsn(Be) = | """ E
1. K  2.K K K
SnSn SuSn S, 8y
where s,’f is the kth element of s,(8;) with the dependence on S,

omitted for convenience. The average outer product in the sample is
By =, su(B)sn(B:)'/N. This average is related to the covariance ma-
trix: if the average score were zero, then B would be the covariance
matrix of scores in the sample. Often B, is called the “outer prod-
uct of the gradient.” This term can be confusing, since B; is not the
outer product of g,. However, it does reflect the fact that the score is
an observation-specific gradient and B, is the average outer product of
these observation-specific gradients.

At the parameters that maximize the likelihood function, the average
score is indeed zero. The maximum occurs where the slope is zero,
which means that the gradient, that is, the average score, is zero. Since
the average score is zero, the outer product of the scores, B;, becomes
the variance of the scores. That is, at the maximizing values of the
parameters, By is the variance of scores in the sample.

The variance of the scores provides important information for locat-
ing the maximum of the likelihood function. In particular, this vari-
ance provides a measure of the curvature of the log-likelihood function,
similar to the Hessian. Suppose that all the people in the sample have
similar scores. Then the sample contains very little information. The log-
likelihood function is fairly flat in this situation, reflecting the fact that
different values of the parameters fit the data about the same. The first
panel of Figure 8.7 depicts this situation: with a fairly flat log likelihood,
different values of B give similar values of LL(8). The curvature is small
when the variance of the scores is small. Conversely, scores differing
greatly over observations mean that the observations are quite different
and the sample provides a considerable amount of information. The log-
likelihood function is highly peaked, reflecting the fact that the sample
provides good information on the values of 8. Moving away from the
maximizing values of B causes a large loss of fit. The second panel
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Figure 8.7. Shape of log-likelihood function near maximum.

of Figure 8.7 illustrates this situation. The curvature is great when the
variance of the scores is high.

These ideas about the variance of the scores and their relation to the
curvature of the log-likelihood function are formalized in the famous
information identity. This identity states that the covariance of the scores
at the true parameters is equal to the negative of the expected Hessian. We
demonstrate this identity in the last section of this chapter; Theil (1971)
and Ruud (2000) also provide useful and heuristic proofs. However, even
without proof, it makes intuitive sense that the variance of the scores
provides information on the curvature of the log-likelihood function.

Berndt, Hall, Hall, and Hausman (1974), hereafter referred to as
BHHH (and commonly pronounced B-triple H), proposed using this re-
lationship in the numerical search for the maximum of the log-likelihood
function. In particular, the BHHH procedure uses B, in the optimization
routine in place of — H,. Each iteration is defined by

Biv1 =B + )»B,_lgt-

This step is the same as for NR except that B, is used in place of —H,.
Given the preceding discussion about the variance of the scores indicat-
ing the curvature of the log-likelihood function, replacing — H, with B,
makes sense.

There are two advantages to the BHHH procedure over NR:

1. B, is far faster to calculate that H;. The scores must be calcu-
lated to obtain the gradient for the NR procedure anyway, and
so calculating B, as the average outer product of the scores takes
hardly any extra computer time. In contrast, calculating H, re-
quires calculating the second derivatives of the log-likelihood
function.

2. B, is necessarily positive definite. The BHHH procedure is
therefore guaranteed to provide an increase in LL(8) in each
iteration, even in convex portions of the function. Using the
proof given previously for NR when —H, is positive definite,
the BHHH step ABt_lg, raises LL(B) for a small enough A.
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Our discussion about the relation of the variance of the scores to the
curvature of the log-likelihood function can be stated a bit more precisely.
For a correctly specified model at the true parameters, B — —H as
N — oo. This relation between the two matrices is an implication of
the information identity, discussed at greater length in the last section.
This convergence suggests that B, can be considered an approximation
to —H,. The approximation is expected to be better as the sample size
rises. And the approximation can be expected to be better close to the
true parameters, where the expected score is zero and the information
identity holds, than for values of § that are farther from the true values.
That is, B, can be expected to be a better approximation close to the
maximum of the LL(8) than farther from the maximum.

There are some drawbacks of BHHH. The procedure can give small
steps that raise LL(8) very little, especially when the iterative process is
far from the maximum. This behavior can arise because B; is not a good
approximation to — H, far from the true value, or because LL() is highly
nonquadratic in the area where the problem is occurring. If the function
is highly nonquadratic, NR does not perform well, as explained earlier;
since BHHH is an approximation to NR, BHHH would not perform well
even if B, were a good approximation to — H,.

8.3.3. BHHH-2

The BHHH procedure relies on the matrix B;, which, as we have
described, captures the covariance of the scores when the average score
is zero (i.e., at the maximizing value of ). When the iterative process
is not at the maximum, the average score is not zero and B, does not
represent the covariance of the scores.

A variant on the BHHH procedure is obtained by subtracting out the
mean score before taking the outer product. For any level of the average
score, the covariance of the scores over the sampled decision makers is

(5n(Br) — 8)(su(Br) — &)
wi=2, ’
- N
where the gradient g; is the average score. W, is the covariance of the
scores around their mean, and B; is the average outer product of the
scores. W, and B, are the same when the mean gradient is zero (i.e., at
the maximizing value of g), but differ otherwise.
The maximization procedure can use W, instead of B;:

Bir1 =B + )»W,_lgt-
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This procedure, which I call BHHH-2, has the same advantages as
BHHH. W, is necessarily positive definite, since it is a covariance matrix,
and so the procedure is guaranteed to provide an increase in LL(B) at
every iteration. Also, for a correctly specified model at the true para-
meters, W — —H as N — o0, so that W, can be considered an approx-
imation to — H,. The information identity establishes this equivalence,
as it does for B.

For B’s that are close to the maximizing value, BHHH and BHHH-2
give nearly the same results. They can differ greatly at values far from
the maximum. Experience indicates, however, that the two methods are
fairly similar in that either both of them work effectively for a given
likelihood function, or neither of them does. The main value of BHHH-2
is pedagogical, to elucidate the relation between the covariance of the
scores and the average outer product of the scores. This relation is critical
in the analysis of the information identity in Section 8.7.

8.3.4. Steepest Ascent

This procedure is defined by the iteration formula

Biv1 = Br + g

The defining matrix for this procedure is the identity matrix /. Since [ is
positive definite, the method guarantees an increase in each iteration. Itis
called “steepest ascent” because it provides the greatest possible increase
in LL(B) for the distance between §; and B, 1, at least for small enough
distance. Any other step of the same distance provides less increase. This
fact is demonstrated as follows. Take a first-order Taylor’s expansion of
LL(B,+1) around LL(8,): LL(B+1) = LL(B,) + (Bi+1 — B)g;- Maximize
this expression for LL(8; 1) subject to the Euclidian distance from §; to
B:+1 being +/k. That is, maximize subject to (B, — B:) (Bir1 — Br) = k.
The Lagrangian is

1
L=LLB) + Brr = Bg = 5 [(Bri1 — B (Bi+1 — Br) — kI,

and we have

T _ 1(,3 B) =0

Bro1 = & Iy t+1 t) =V,
ﬂt+1 _ﬂl =)\'gtv

Brr1 = Br + Ag:,

which is the formula for steepest ascent.
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At first encounter, one might think that the method of steepest ascent is
the best possible procedure, since it gives the greatest possible increase
in the log-likelihood function at each step. However, the method’s prop-
erty is actually less grand than this statement implies. Note that the
derivation relies on a first-order approximation that is only accurate in
a neighborhood of B;. The correct statement of the result is that there is
some sufficiently small distance for which the method of steepest ascent
gives the greatest increase for that distance. This distinction is critical.
Experience indicates that the step sizes are often very small with this
method. The fact that the ascent is greater than for any other step of the
same distance is not particularly comforting when the steps are so small.
Usually, BHHH and BHHH-2 converge more quickly than the method
of steepest ascent.

8.3.5. DFP and BFGS

The Davidon—Fletcher—Powell (DFP) and Broyden—Fletcher—
Goldfarb—Shanno (BFGS) methods calculate the approximate Hessian
in a way that uses information at more than one point on the likelihood
function. Recall that NR uses the actual Hessian at 8, to determine the
step to B;+1, and BHHH and BHHH-2 use the scores at 8, to approximate
the Hessian. Only information at g, is being used to determine the step
in these procedures. If the function is quadratic, then information at one
point on the function provides all the information that is needed about
the shape of the function. These methods work well, therefore, when the
log-likelihood function is close to quadratic. In contrast, the DFP and
BFGS procedures use information at several points to obtain a sense of
the curvature of the log-likelihood function.

The Hessian is the matrix of second derivatives. As such, it gives the
amount by which the slope of the curve changes as one moves along
the curve. The Hessian is defined for infinitesimally small movements.
Since we are interested in making large steps, understanding how the
slope changes for noninfinitesimal movements is useful. An arc Hessian
can be defined on the basis of how the gradient changes from one point
to another. For example, for function f(x), suppose the slope at x = 3
is 25 and at x = 4 the slope is 19. The change in slope for a one unit
change in x is —6. In this case, the arc Hessian is —6, representing the
change in the slope as a step is taken from x = 3 to x = 4.

The DFP and BFGS procedures use these concepts to approximate
the Hessian. The gradient is calculated at each step in the iteration pro-
cess. The difference in the gradient between the various points that have
been reached is used to calculate an arc Hessian over these points. This
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arc Hessian reflects the change in gradient that occurs for actual move-
ment on the curve, as opposed to the Hessian, which simply reflects the
change in slope for infinitesimally small steps around that point. When
the log-likelihood function is nonquadratic, the Hessian at any point pro-
vides little information about the shape of the function. The arc Hessian
provides better information.

At each iteration, the DFP and BFGS procedures update the arc
Hessian using information that is obtained at the new point, that is,
using the new gradient. The two procedures differ in how the updating
is performed; see Greene (2000) for details. Both methods are extremely
effective —usually far more efficient that NR, BHHH, BHHH-2, or steep-
est ascent. BFGS refines DFP, and my experience indicates that it nearly
always works better. BFGS is the default algorithm in the optimization
routines of many commercial software packages.

8.4 Convergence Criterion

In theory the maximum of LL(8) occurs when the gradient vector is
zero. In practice, the calculated gradient vector is never exactly zero:
it can be very close, but a series of calculations on a computer cannot
produce a result of exactly zero (unless, of course, the result is set to
zero through a Boolean operator or by multiplication by zero, neither of
which arises in calculation of the gradient). The question arises: when
are we sufficiently close to the maximum to justify stopping the iterative
process?

The statistic m, = gt’(—H[I) g: is often used to evaluate convergence.
The researcher specifies a small value for m, such as m = 0.0001, and
determines in each iteration whether g/(— H, ')g, < . If this inequality
is satisfied, the iterative process stops and the parameters at that iteration
are considered the converged values, that is, the estimates. For proce-
dures other than NR that use an approximate Hessian in the iterative
process, the approximation is used in the convergence statistic to avoid
calculating the actual Hessian. Close to the maximum, where the crite-
rion becomes relevant, each form of approximate Hessian that we have
discussed is expected to be similar to the actual Hessian.

The statistic m;, is the test statistic for the hypothesis that all elements
of the gradient vector are zero. The statistic is distributed chi-squared
with K degrees of freedom. However, the convergence criterion 7 is
usually set far more stringently (that is, lower) than the critical value of
a chi-squared at standard levels of significance, so as to assure that the
estimated parameters are very close to the maximizing values. Usually,
the hypothesis that the gradient elements are zero cannot be rejected for a
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fairly wide area around the maximum. The distinction can be illustrated
for an estimated coefficient that has a ¢-statistic of 1.96. The hypothesis
cannot be rejected if this coefficient has any value between zero and
twice its estimated value. However, we would not want convergence to
be defined as having reached any parameter value within this range.

It is tempting to view small changes in 8, from one iteration to the
next, and correspondingly small increases in LL(f;), as evidence that
convergence has been achieved. However, as stated earlier, the iterative
procedures may produce small steps because the likelihood function is
not close to a quadratic rather than because of nearing the maximum.
Small changes in 8; and LL(8;) accompanied by a gradient vector that
is not close to zero indicate that the numerical routine is not effective at
finding the maximum.

Convergence is sometimes assessed on the basis of the gradient vector
itself rather than through the test statistic m,. There are two procedures:
(1) determine whether each element of the gradient vector is smaller in
magnitude than some value that the researcher specifies, and (2) divide
each element of the gradient vector by the corresponding element of 3,
and determine whether each of these quotients is smaller in magnitude
than some value specified by the researcher. The second approach nor-
malizes for the units of the parameters, which are determined by the
units of the variables that enter the model.

8.5 Local versus Global Maximum

All of the methods that we have discussed are susceptible to converg-
ing at a local maximum that is not the global maximum, as shown in
Figure 8.8. When the log-likelihood function is globally concave, as for
logit with linear-in-parameters utility, then there is only one maximum
and the issue doesn’t arise. However, most discrete choice models are
not globally concave.

A way to investigate the issue is to use a variety of starting values
and observe whether convergence occurs at the same parameter values.
For example, in Figure 8.8, starting at By will lead to convergence
at B;. Unless other starting values were tried, the researcher would
mistakenly believe that the maximum of LL(,B) had been achieved.
Starting at f», convergence is achieved at . By comparing LL(A)
with LL(8,), the researcher finds that 8; is not the maximizing value.
Liu and Mahmassani (2000) propose a way to select starting values that
involves the researcher setting upper and lower bounds on each para-
meter and randomly choosing values within those bounds.
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Figure 8.8. Local versus global maximum.

8.6 Variance of the Estimates

In standard econometric courses, it is shown that, for a correctly specified
model,

VN@B - B S NO, (-H)™)

as N — oo, where * is the true parameter vector, A is the maximum
likelihood estimator, and H is the expected Hessian in the population.
The negative of the expected Hessian, —H, is often called the informa-
tion matrix. Stated in words, the sampling distribution of the difference
between the estimator and the true value, normalized for sample size,
converges asymptotically to a normal distribution centered on zero and
with covariance equal to the inverse of the information matrix, —H™!.
Since the asymptotic covariance of +/N(B — p*) is —H™', the asymp-
totic covariance of B itself is —H'/N.

The boldface type in these expressions indicates that H is the average
in the population, as opposed to H, which is the average Hessian in the
sample. The researcher calculates the asymptotic covariance by using H
as an estimate of H. That is, the asymptotic covariance of j is calculated
as —H~'/N, where H is evaluated at j.

Recall that W is the covariance of the scores in the sample. At the
maximizing values of §, B is also the covariance of the scores. By the
information identity just discussed and explained in the last section, —H,
which is the (negative of the) average Hessian in the sample, converges
to the covariance of the scores for a correctly specified model at the true
parameters. In calculating the asymptotic covariance of the estimates 3,
any of these three matrices can be used as an estimate of —H. The
asymptotic variance of f is calculated as W~'/N, B~'/N,or—H~'/N,
where each of these matrices is evaluated at A.
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If the model is not correctly specified, then the asymptotic covariance
of B is more complicated. In particular, for any model for which the
expected score is zero at the true parameters,

N@B = 95 NO, H'VH ),

where V is the variance of the scores in the population. When the model is
correctly specified, the matrix —H =V by the information identity, such
that H-'VH~! = —H~! and we get the formula for a correctly specified
model. However, if the model is not correctly specified, this simplifica-
tion does not occur. The asymptotic variance of 8 is H-'VH~! /N . This
matrix is called the robust covariance matrix, since it is valid whether
or not the model is correctly specified.

To estimate the robust covariance matrix, the researcher must cal-
culate the Hessian H. If a procedure other than NR is being used to
reach convergence, the Hessian need not be calculated at each iteration;
however, it must be calculated at the final iteration. Then the asymptotic
covariance is calculated as H 'WH™', or with B instead of W. This
formula is sometimes called the “sandwich” estimator of the covariance,
since the Hessian inverse appears on both sides.

An alternative way to estimate the covariance matrix is through boot-
strapping, as suggested by Efron (1979). Under this procedure, the model
is re-estimated numerous times on different samples taken from the orig-
inal sample. Let the original sample be labeled A, which consists of the
decision-makers that we have been indexing by n = 1, ..., N. That is,
the original sample consists of N observations. The estimate that is
obtained on this sample is 8. Bootstapping consists of the following
steps:

1. Randomly sample with replacement N observations from the
original sample A. Since the sampling is with replacement, some
decision-makers might be represented more than once in the new
sample and others might not be included at all. This new sample
is the same size as the original, but looks different from the
original because some decision-makers are repeated and others
are not included.

2. Re-estimate the model on this new sample, and label the estimate
B, with r = 1 for this first new sample.

3. Repeated steps 1 and 2 numerous times, obtaining estimates £,
forr =1, ..., R where R is the number of times the estimation
is repeated on a new sample.

4. Calculate the covariance of the resulting estimates around the

original estimate: V = % > (B — BB — B).
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This V is an estimate of the asymptotic covariance matrix. The sampling
variance for any statistics that is based on the parameters is calculated
similarly. For scalar statistic 7(8), the sampling variance is ) [¢(8,) —
t(B)F/R.

The logic of the procedure is the following. The sampling covariance
of an estimator is, by definition, a measure of the amount by which the
estimates change when different samples are taken from the population.
Our original sample is one sample from the population. However, if this
sample is large enough, then it is probably similar to the population,
such that drawing from it is similar to drawing from the population
itself. The bootstrap does just that: draws from the original sample, with
replacement, as a proxy for drawing from the population itself. The
estimates obtained on the bootstrapped samples provide information on
the distribution of estimates that would be obtained if alternative samples
had actually been drawn from the population.

The advantage of the bootstrap is that it is conceptually straightfor-
ward and does not rely on formulas that hold asymptotically but might
not be particularly accurate for a given sample size. Its disadvantage is
that it is computer-intensive since it entails estimating the model numer-
ous times. Efron and Tibshirant (1993) and Vinod (1993) provide useful
discussions and applications.

8.7  Information Identity

The information identity states that, for a correctly specified model at
the true parameters, V = —H, where V is the covariance matrix of the
scores in the population and H is the average Hessian in the population.
The score for a person is the vector of first derivatives of that person’s
In P(B) with respect to the parameters, and the Hessian is the matrix
of second derivatives. The information identity states that, in the popu-
lation, the covariance matrix of the first derivatives equals the average
matrix of second derivatives (actually, the negative of that matrix). This
is a startling fact, not something that would be expected or even believed
if there were not proof. It has implications throughout econometrics. The
implications that we have used in the previous sections of this chapter
are easily derivable from the identity. In particular:

(1) At the maximizing value of B, W — —H as N — oo, where W
is the sample covariance of the scores and H is the sample average of
each observation’s Hessian. As sample size rises, the sample covariance
approaches the population covariance: W — V. Similarly, the sample
average of the Hessian approaches the population average: H — H.



Numerical Maximization 203

Since V= —H by the information identity, W approaches the same ma-
trix that — H approaches, and so they approach each other.

(2) At the maximizing value of B, B — —H as N — oo, where B is
the sample average of the outer product of the scores. At B, the average
score in the sample is zero, so that B is the same as W. The result for W
applies for B.

We now demonstrate the information identity. We need to expand our
notation to encompass the population instead of simply the sample. Let
P;(x, B) be the probability that a person who faces explanatory variables
x chooses alternative i given the parameters 8. Of the people in the
population who face variables x, the share who choose alternative i is this
probability calculated at the true parameters: S;(x) = P;(x, 8*) where
B* are the true parameters. Consider now the gradient of In P;(x, 8) with
respect to 8. The average gradient in the population is

dln P;(x,
82 g= f Z#Si(x)f(x)dx,

where f(x) is the density of explanatory variables in the population.
This expression can be explained as follows. The gradient for people
who face x and choose i is d In P,;(8)/9df8. The average gradient is the
average of this term over all values of x and all alternatives i. The share
of people who face a given value of x is given by f(x), and the share of
people who face this x that choose i is S;(x). So S;(x) f(x) is the share
of the population who face x and choose i and therefore have gradient
dIn P;(x, B)/0B. Summing this term over all values of i and integrating
over all values of x (assuming the x’s are continuous) gives the average
gradient, as expressed in (8.2).

The average gradient in the population is equal to zero at the true
parameters. This fact can be considered either the definition of the true
parameters or the result of a correctly specified model. Also, we know
that S;(x) = P;(x, B*). Substituting these facts into (8.2), we have

dln P;(x,
0=/Z#Pi(x,ﬁ)f(m dx,

where all functions are evaluated at 8*. We now take the derivative of
this equation with respect to the parameters:

821n Py(x, B) 31n P(x, B) I Pi(x, B)
/Z< pop Pt T g )f()d
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Since dIn P/dB = (1/P)dP /3B by the rules of derivatives, we can
substitute [ In P;(x, B)/3B']1P;(x, B) for d P;(x, 8)/9B  in the last term
in parentheses:

~ P In P, ) ,
0= /Z( opop P
| AP p) dInPi(x, B)
3B o

Pi(x, ﬁ)) f(x)dx.

Rearranging,

921n P,(x, B)
/Z R B () da

81nP(x B)d1n Pi(x, B)
/Z ap’

Since all terms are evaluated at the true parameters, we can replace
P;(x, B) with S;(x) to obtain

3%1n Pi(x, B)
/ Z I Si(x) £ (x) dx

31n Pi(x, B) 3 1n P.(x, B)
- [yt ninn

The left-hand side is the negative of the average Hessian in the popula-
tion, —H. The right-hand side is the average outer product of the gradient,
which is the covariance of the gradient, V, since the average gradient
is zero. Therefore, —H = V, the information identity. As stated, the
matrix —H is often called the information matrix.

Pi(x, B)f(x)dx.

Si(x) f(x)dx.



