9  Drawing from Densities

9.1 Introduction

Simulation consists of drawing from a density, calculating a statistic for
each draw, and averaging the results. In all cases, the researcher wants to
calculate an average of the form 7 = f t(e) f(e)de, where t(-) is a statis-
tic of interest and f(-) is a density. To approximate this average through
simulation, the researcher must be able to take draws from the density
f (). For some densities, this task is simple. However, in many situa-
tions, it is not immediately clear how to draw from the relevant density.
Furthermore, even with simple densities, there may be ways of taking
draws that provide a better approximation to the integral than a sequence
of purely random draws.

We explore these issues in this chapter. In the first sections, we de-
scribe the most prominent methods that have been developed for taking
purely random draws from various kinds of densities. These methods
are presented in a progressive sequence, starting with simple procedures
that work with a few convenient densities and moving to ever more com-
plex methods that work with less convenient densities. The discussion
culminates with the Metropolis—Hastings algorithm, which can be used
with (practically) any density. The chapter then turns to the question of
whether and how a sequence of draws can be taken that provides a better
approximation to the relevant integral than a purely random sequence.
We discuss antithetics, systematic sampling, and Halton sequences and
show the value that these types of draws provide in estimation of model
parameters.

9.2 Random Draws

9.2.1. Standard Normal and Uniform

If the researcher wants to take a draw from a standard normal
density (that is, a normal with zero mean and unit variance) or a standard
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uniform density (uniform between O and 1), the process from a program-
ming perspective is very easy. Most statistical packages contain random
number generators for these densities. The researcher simply calls these
routines to obtain a sequence of random draws. In the sections below,
we refer to a draw of a standard normal as 1 and a draw of a standard
uniform as .

The draws from these routines are actually pseudo-random numbers,
because nothing that a computer does is truly random. There are many
issues involved in the design of these routines. The intent in their design
is to produce numbers that exhibit the properties of random draws. The
extent to which this intent is realized depends, of course, on how one
defines the properties of “random” draws. These properties are difficult
to define precisely, since randomness is a theoretical concept that has no
operational counterpart in the real world. From a practical perspective,
my advice is the following: unless one is willing to spend considerable
time investigating and resolving (literally, re-solving) these issues, it is
probably better to use the available routines rather than write a new one.

9.2.2. Transformations of Standard Normal

Some random variables are transformations of a standard nor-
mal. For example, a draw from a normal density with mean b and vari-
ance s is obtained as & = b + sn. A draw from a lognormal density is
obtained by exponentiating a draw from a normal density: & = e”*".
The moments of the lognormal are functions of the mean and vari-
ance of the normal that is exponentiated. In particular, the mean of ¢ is
exp(b + (s%/2)), and its variance is exp(2b + s2) - (exp(s?) — 1). Given
values for the mean and variance of the lognormal, the appropriate val-
ues of b and s to use in the transformation can be calculated. It is more
common, however, to treat b and s as the parameters of the lognormal
and calculate its mean and variance from these parameters.

9.2.3. Inverse Cumulative for Univariate Densities

Consider a random variable with density f(e) and correspond-
ing cumulative distribution F(¢). If F is invertible (that is, if F~! can be
calculated), then draws of & can be obtained from draws of a standard
uniform. By definition, F'(¢) = k means that the probability of obtaining
a draw equal to or below ¢ is k, where k is between zero and one. A draw
w from the standard uniform provides a number between zero and one.
We can set F(g) = n and solve for the corresponding &: ¢ = F~!(u).
When ¢ is drawn in this way, the cumulative distribution of the draws



Drawing from Densities 207
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Figure 9.1. Draw of u! from uniform and create &' = F~'(u).

is equal to F, such that the draws are equivalent to draws directly from
F. Anillustration is provided in Figure 9.1. A draw u! from a standard
uniform translates into the value of ¢ labeled ¢!, at which F(e') = u'.

The extreme value distribution, which is the basis for multinomial
logit models, provides an example. The density is f(e) = exp(—¢) -
exp(—exp(—¢e)) with cumulative distribution F(g) = exp(—exp(—¢)).
A draw from this density is obtained as ¢ = — In(— In w).

Note that this procedure works only for univariate distributions. If
there are two or more elements of &, then F~!(u) is not unique, since
various combinations of the elements of ¢ have the same cumulative

probability.

9.2.4. Truncated Univariate Densities

Consider a random variable that ranges from a to b with den-
sity proportional to f(¢) within this range. That is, the density is
(1/k)f(e) fora < & < b, and O otherwise, where k is the normalizing
constant that insures that the density integrates to 1: k = fab f(e)de =
F(b) — F(a). A draw from this density can be obtained by applying
the procedure in Section 9.2.3 while assuring that the draw is within the
appropriate range.

Draw p from a standard uniform density. Calculate the weighted
average of F(a)and F(b)as i = (1 — w)F(a) + wF(b). Then calculate
e = F~!(jn). Since j1 is between F(a) and F(b), ¢ is necessarily between
a and b. Essentially, the draw of u determines how far to go between a
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Figure 9.2. Draw of ji! between F(a) and F(b) gives draw ¢! from f(g)
between a and b.

and b. Note that the normalizing constant k is not used in the calculations
and therefore need not be calculated. Figure 9.2 illustrates the process.

9.2.5. Choleski Transformation
for Multivariate Normals

As described in Section 9.2.2, a univariate normal with mean b
and variance s? is obtained as ¢ = b + su, where w is standard normal.
An analogous procedure can be used to draw from a multivariate normal.
Let e be a vector with K elements distributed N (b, €2). A Choleski factor
of Q is defined as a lower-triangular matrix L such that LL" = Q. It is
often called the generalized square root of 2 or generalized standard
deviation of &. With K = 1 and variance s2, the Choleski factor is s,
which is just the standard deviation of . Most statistical and matrix
manipulation packages have routines to calculate a Choleski factor for
any positive definite, symmetric matrix.

A draw of ¢ from N (b, 2) is obtained as follows. Take K draws
from a standard normal, and label the vector of these draws n =
(n,...,nkg). Calculate ¢ = b 4+ Ln. We can verify the properties of
e. It is normally distributed, since the sum of normals is normal. Its
mean is b: E(¢) = b+ LE(n) = b. And its covariance is 2: Var(e) =
E(Ln(Ln))=LE(mn)L' = LVar(n)L' = LIL' = LL' = Q.
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To be concrete, consider a three-dimensional & with zero mean. A
draw of ¢ is calculated as

&1 sit 0 0 n
e|=|sa s» O n|.
&3 31 832 833 ns
or
&1 = S11M1,

&2 = 852111 + S2272,
&3 = 8311 + 83212 + 853373 .

From this we see that Var(e;) = 57, , Var(e;) = 53, + 53,, and Var(e;) =
53, + 53, + 53;. Also, Cov(ey, &£2) = 511521, and so on. The elements &,
and g, are correlated because of the common influence of 7, on both
of them. They are not perfectly correlated because 1, enters &, with-
out affecting &;. Similar analysis applies to ¢; and ¢3, and &, and
3. Essentially, the Choleski factor expresses K correlated terms as
arising from K independent components, with each component load-
ing differently onto each term. For any pattern of covariance, there is
some set of loadings from independent components that reproduces that
covariance.

9.2.6. Accept—Reject for Truncated
Multivariate Densities

The procedure in Section 9.2.4 for drawing from truncated den-
sities applies only to univariate distributions. With multivariate densi-
ties, drawing from a truncated support is more difficult. We describe
an accept—reject procedure that can always be applied. However, as we
will see, there are disadvantages of the approach that might cause a
researcher to choose another approach when possible.

Suppose we want to draw from multivariate density g(¢) within the
range a < ¢ < b where a and b are vectors with the same length as ¢.
That is, we want to draw from f(¢e) = %g(s) ifa < e < b, and equal
zero otherwise, where k is the normalizing constant. We can obtain
draws from f by simply drawing from g and retaining (“accepting”)
the draws that are within the relevant range and discarding (“rejecting’)
the draws that are outside the range. The advantage of this procedure
is that it can be applied whenever it is possible to draw from the untrun-
cated density. Importantly, the normalizing constant, k, does not need
to be known for the truncated density. This fact is useful because the
normalizing constant is usually difficult to calculate.
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The disadvantage of the procedure is that the number of draws that
are accepted (that is, the number of draws from f that are obtained)
is not fixed but rather is itself random. If R draws are taken from g,
then the expected number of accepts is kR. This expected number is
not known without knowing k, which, as stated, is usually difficult to
calculate. It is therefore hard to determine an appropriate number of
draws to take from g. More importantly, the actual number of accepted
draws will generally differ from the expected number. In fact, there is
a positive probability of obtaining no accepts from a fixed number of
draws. When the truncation space is small (or, more precisely, when k
is small), obtaining no accepts, and hence no draws from the truncated
density, is a likely event.

This difficulty can be circumvented by drawing from g until a certain
number of accepted draws is obtained. That is, instead of setting in ad-
vance the number of draws from g that will be taken, the researcher can
set the number of draws from f that are obtained. Of course, the re-
searcher will not know how long it will take to attain the set number.

In most situations, other procedures can be applied more easily to
draw from a multivariate truncated density. Nevertheless, it is important
to remember that, when nothing else seems possible with a truncated
distribution, the accept—reject procedure can be applied.

9.2.7. Importance Sampling

Suppose ¢ has a density f(e) that cannot be easily drawn from
by the other procedures. Suppose further that there is another density,
g(e), that can easily be drawn from. Draws from f(¢) can be obtained
as follows. Take a draw from g(e) and label it ¢!. Weight the draw by
f(e')/g(e). Repeat this process many times. The set of weighted draws
is equivalent to a set of draws from f.

To verify this fact, we show that the cumulative distribution of the
weighted draws from g is the same as the cumulative distribution of
draws from f. Consider the share of draws from g that are below some
value m, with each draw weighted by f/g. This share is

f&I(s <m)g(e)de = : @g(s)ds
g(&') —00 g({;‘)

m
:/ f(e)de = F(m).
—0oQ0
In simulation, draws from a density are used to calculate the average

of a statistic over that density. Importance sampling can be seen as a
change in the statistic and a corresponding change in the density that
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makes the density easy to draw from. Suppose we want to calculate
f t(e)f(e)de, but find it hard to draw from f. We can multiply the
integrand by g =+ g without changing its value, so that the integral
is f te) f(e)/ge)lg(e)de. To simulate the integral, we take draws
from g, calculate #(¢)[ f(¢)/g(¢e)] for each draw, and average the re-
sults. We have simply transformed the integral so that it is easier to
simulate.

The density f is called the target density, and g is called the proposal
density. The requirements for importance sampling are that (1) the sup-
port of g(¢) needs to cover the support of f, so that any ¢ that could
arise with f can also arise with g, and (2) the ratio f(e)/g(e) must be
finite for all values of ¢, so that this ratio can always be calculated.

A useful illustration of importance sampling arises with multivariate
truncated normals. Suppose we want to draw from N (0, 2) but with
each element being positive (i.e., truncated below at zero). The density
is

1 —lerQle
)= —————e 2
TS
for ¢ > 0, and O otherwise, where K is the dimension of & and k is the
normalizing constant. (We assume for the purposes of this example that
k is known. In reality, calculating k might itself take simulation.) Draw-
ing from this density is difficult, because the elements of ¢ are correlated
as well as truncated. However, we can use the procedure in Section 9.2.4
to draw independent truncated normals and then apply importance sam-
pling to create the correlation. Draw K univariate normals truncated
below at zero, using the procedure in Section 9.2.4. These draws collec-
tively constitute a draw of a K -dimensional vector & from the positive
quadrant support with density

1 1.

gle) = ———e "
m2m)zK

where m = 1/2K . For each draw, assign the weight

fle) ﬂlm—l/zeg’(srl—ng

gle)  k

The weighted draws are equivalent to draws from N (0, 2) truncated
below at zero.

As a sidelight, note that the accept-reject procedure in Section 9.2.6
is a type of importance sampling. The truncated distribution is the tar-
get, and the untruncated distribution is the proposal density. Each draw
from the untruncated density is weighted by a constant if the draw is
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within the truncation space and weighted by zero if the draw is outside
the truncation space. Weighting by a constant or zero is equivalent to
weighting by one (accept) or zero (reject).

9.2.8. Gibbs Sampling

For multinomial distributions, it is sometimes difficult to draw
directly from the joint density and yet easy to draw from the conditional
density of each element given the values of the other elements. Gibbs
sampling (the term was apparently introduced by Geman and Geman,
1984) can be used in these situations. A general explanation is provided
by Casella and George, (1992), which the reader can use to supplement
the more concise description that I give in the following.

Consider two random variables ¢; and &,. Generalization to higher
dimension is obvious. The joint density is f (&1, &), and the conditional
densities are f(e1]e;)and f(e3]¢1). Gibbs sampling proceeds by drawing
iteratively from the conditional densities: drawing e; conditional on a
value of &,, drawing &, conditional on this draw of ¢, drawing a new ¢&;
conditional on the new value of ¢,, and so on. This process converges to
draws from the joint density.

To be more precise: (1) Choose an initial value for ¢, called 8?.
Any value with nonzero density can be chosen. (2) Draw a value of
&2, called &), from f(e2]€Y). (3) Draw a value of ¢, called ¢{, from
f(e11€)). (4) Draw &) from f(eze]), and so on. The values of &} from
f(e |8§_1) and the values of &} from f(e;|e]) constitute a sequence in
t. For sufficiently large ¢ (that is, for sufficiently many iterations), the
sequence converges to draws from the joint density f (g1, &7).

As an example, consider two standard normal deviates that are inde-
pendent except that they are truncated on the basis of their sum: ) 4 &, <
m.Figure 9.3 depicts the truncated density. The circles are contours of the
untruncated density, and the shaded area represents the truncated density.
To derive the conditional densities, consider first the untruncated nor-
mals. Since the two deviates are independent, the conditional density of
each is the same as its unconditional density. That is, ignoring truncation,
g1|leo ~ N(0O, 1). The truncation rule is &; + &» < m which can be re-
expressed as €1 < m — &;. Therefore, €|¢; is distributed as a univariate
standard normal truncated from above at m — &,. Given &, a draw of &,
is obtained with the procedure in Section 9.2.4: &; = ®~!(ud(m — &,)),
where wu is a standard uniform draw and ®(-) is the cumulative standard
normal distribution. Draws from &, conditional on &; are obtained analo-
gously. Drawing sequentially from these conditional densities eventually
provides draws from the joint truncated density.
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Figure 9.3. Truncated normal density.

9.2.9. Metropolis—Hastings Algorithm

If all else fails, the Metropolis—Hastings (MH) algorithm can be
used to obtain draws from a density. Initially developed by Metropolis
et al. (1953) and generalized by Hastings (1970), the MH algorithm
operates as follows. The goal is to obtain draws from f(g):

1. Start with a value of the vector ¢, labeled &°.

2. Choose a trial value of &' as &' = &° 4+ 5, where 7 is drawn
from a distribution g(#n) that has zero mean. Usually a normal
distribution is specified for g(n).

3. Calculate the density at the trial value !, and compare it with
the density at the original value £°. That is, compare f(&')
with £(€°). If f(&") > f(e), then accept &', label it ¢!, and
move to step 4. If £(§') < f(&), then accept &' with probabil-
ity £(&")/f (&), and reject it with probability 1 — f(&)/f(e°).
To determine whether to accept or reject &' in this case, draw a
standard uniform . If i < f(8")/f(e"), then keep &!. Other-
wise, reject &', If &' is accepted, then label it e If &' is rejected,

then use £° as ¢!,

4. Choose a trial value of £ as § = ¢! + n, where 1 is a new draw
from g(n).

5. Apply the rule in step 3 to either accept & as & or reject &2 and
use &' as &2,

6. Continue this process for many iterations. The sequence &' be-
comes equivalent to draws from f(¢) for sufficiently large 7.

The draws are serially correlated, since each draw depends on the pre-
vious draw. In fact, when a trial value is rejected, the current draw is the
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same as the previous draw. This serial correlation needs to be considered
when using these draws.

The MH algorithm can be applied with any density that can be cal-
culated. The algorithm is particularly useful when the normalizing con-
stant for a density is not known or cannot be easily calculated. Suppose
that we know that ¢ is distributed proportional to f*(¢). This means
that the density of € is f(¢) = % f*(e), where the normalizing constant
k = [ f*(e)de assures that f integrates to 1. Usually k cannot be calcu-
lated analytically, for the same reason that we need to simulate integrals
in other settings. Luckily, the MH algorithm does not utilize k. A trial
value of &’ is tested by first determining whether f(&") > f(¢'~!). This
comparison is unaffected by the normalizing constant, since the con-
stant enters the denominator on both sides. Then, if f(&') < f(e'™1),
we accept the trial value with probability f(8")/f(¢'~!). The normaliz-
ing constant drops out of this ratio.

The MH algorithm is actually more general than I describe here,
though in practice it is usually applied as I describe. Chib and Greenberg,
(1995) provide an excellent description of the more general algorithm
as well as an explanation of why it works. Under the more general
definition, Gibbs sampling is a special case of the MH algorithm, as
Gelman, (1992) pointed out. The MH algorithm and Gibbs sampling
are often called Markov chain Monte Carlo (MCMC, or MC-squared)
methods; a description of their use in econometrics is provided by Chib
and Greenberg (1996). The draws are Markov chains because each value
depends only on the immediately preceding one, and the methods are
Monte Carlo because random draws are taken. We explore further issues
about the MH algorithm, such as how to choose g(¢), in the context of
its use with hierarchical Bayes procedures (in Chapter 12).

9.3 Variance Reduction

The use of independent random draws in simulation is appealing be-
cause it is conceptually straightforward and the statistical properties
of the resulting simulator are easy to derive. However, there are other
ways to take draws that can provide greater accuracy for a given num-
ber of draws. We examine these alternative methods in the following
sections.

Recall that the objective is to approximate an integral of the form
f t(e) f(e)de. In taking a sequence of draws from the density f(-), two
issues are at stake: coverage and covariance. Consider coverage first.
The integral is over the entire density f. It seems reasonable that a more
accurate approximation would be obtained by evaluating ¢(¢) at values of
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¢ that are spread throughout the domain of f. With independent random
draws, it is possible that the draws will be clumped together, with no
draws from large areas of the domain. Procedures that guarantee better
coverage can be expected to provide a better approximation.

Covariance is another issue. With independent draws, the covariance
over draws is zero. The variance of a simulator based on R independent
draws is therefore the variance based on one draw divided by R. If
the draws are negatively correlated instead of independent, then the
variance of the simulator is lower. Consider R = 2. The variance of
= [t(er) + 1(e2)]/2is [V(t(e1)) + V(t(e2)) + 2 Cov(t(e1), t(e2))]/4. 1
the draws are independent, then the variance is V(¢(g,))/2. If the two
draws are negatively correlated with each other, the covariance term
is negative and the variance becomes less than V (¢(¢,))/2. Essentially,
when the draws are negatively correlated within an unbiased simulator,
a value above f = E,(¢(¢)) for one draw will tend to be associated with
a value for the next draw that is below E,(¢(¢)), such that their average
is closer to the true value 7.

The same concept arises when simulators are summed over obser-
vations. For example, the simulated log-likelihood function is a sum
over observations of the log of simulated probabilities. If the draws for
each observation’s simulation are independent of the draws for the other
observations, then the variance of the sum is simply the sum of the vari-
ances. If the draws are taken in a way that creates negative correlation
over observations, then the variance of the sum is lower.

For a given observation, the issue of covariance is related to coverage.
By inducing a negative correlation between draws, better coverage is
usually assured. With R = 2, if the two draws are taken independently,
then both could end up being at the low side of the distribution. If negative
correlation is induced, then the second draw will tend to be high if the
first draw is low, which provides better coverage.

We describe below methods to attain better coverage for each obser-
vation’s integral and to induce negative correlation over the draws for
each observation as well as over observations. We assume for the sake
of discussion that the integral is a choice probability and that the sum
over observations is the simulated log-likelihood function. However, the
concepts apply to other integrals, such as scores, and to other sums, such
as moment conditions and market shares. Also, unless otherwise noted,
we illustrate the methods with only two random terms so that the draws
can be depicted graphically. The random terms are labeled £ and &?,
and collectively as & = (%, £”)’. A draw of & from its density f(e) is
denoted ¢, = (g, sf)/ forr =1,..., R. Thus, &5, for example, is the
third draw of the first random term.
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Figure 9.4. Reverse sign of both elements.

9.3.1. Antithetics

Antithetic draws, suggested by Hammersley and Morton (1956),
are obtained by creating various types of mirror images of a random
draw. For a symmetric density that is centered on zero, the simplest
antithetic variate is created by reversing the sign of all elements of a
draw. Figure 9.4 illustrates. Suppose a random draw is taken from f(g)

and the value & = (e, 8’1’ )" is obtained. The second “draw,” which is

called the antithetic of the first draw, is created as &, = (—e&f, —8’1’ Y.
Each draw from f creates a pair of “draws,” the original draw and its
mirror image (mirrored through the origin). To obtain a total of R draws,
R /2 draws are taken independently from f and the other R /2 are created
as the negative of the original draws.

When the density is not centered on zero, the same concept is applied
but through a different process. For example, the standard uniform den-
sity is between O and 1, centered on 0.5. A draw is taken, labeled 11,
and its antithetic variate is created as up = 1 — ;. The variate is the
same distance from 0.5 as the original draw, but on the other side of 0.5.
In general, for any univariate density with cumulative function F(g),
the antithetic of a draw ¢ is created as F~!'(1 — F(¢)). In the case of a
symmetric density centered on zero, this general formula is equivalent
to simply reversing the sign. In the remaining discussion we assume
that the density is symmetric and centered on zero, which makes the
concepts easier to express and visualize.

The correlation between a draw and its antithetic variate is exactly —1,
so that the variance of their sum is zero: V(e; + &) = V(e1) + V(er) +
2 Cov(eq, &7) = 0. This fact does not mean that there is no variance in the
simulated probability that is based on these draws. The simulated proba-
bility is a nonlinear function of the random terms, and so the correlation
between P(g;) and P(&,) is less than one. The variance of the simulated
probability P = %[P(sl) + P(ey)] is greater than zero. However, the
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Figure 9.5. Reverse sign of each element, then of both.

variance of the simulated probabilities is less than % V,.(P(g;)), which is
the variance with two independent draws.

As shown in Figure 9.4, reversing the sign of a draw gives evaluation
points in opposite quadrants. The concept can be extended to obtain
draws in each quadrant. A draw is taken, and then antithetic draws are
created by reversing the sign of each element alone (leaving the sign
of the other elements unchanged), reversing the sign of each pair of
elements, each triplet of elements, and so on. For ¢ with two elements,
this process creates three antithetic draws for each independent draw.
For &1 = (¢f, 8?)’, the antithetic draws are

b\
& = (—8?, 81) ,
b /
e3 = (ef, —¢7),
b !/
ey = (—ef, —£7).
These draws are shown in Figure 9.5. Each quadrant contains a draw.
Better coverage and higher negative correlation can be obtained by
shifting the position of each element as well as reversing their signs. In
Figure 9.5, g1 and ¢, are fairly close together, as are €3 and 4. This place-
ment leaves large uncovered areas between €, and £3 and between ¢, and
4. Orthogonal draws with even placement can be obtained by switching

element &{ with ef while also reversing the signs. The antithetic draws
are

& = <—811’, 8‘{)’,
&3 = (8?, —8‘1’)/,
e = (—ef, —5117>/’

which are illustrated in Figure 9.6. These concepts can, of course, be
extended to any number of dimensions. For M-dimensional ¢, each
random draw creates 2 antithetic draws (including the original one),
with one in each quadrant.
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Figure 9.6. Switch positions and reverse signs.

Random draws
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Systematic draws

S —

Figure 9.7. Draws from standard uniform.

Comparisons performed by Vijverberg (1997) and Sandor and Andras
(2001) show that antithetics substantially improve the estimation of pro-
bit models. Similarly, Geweke (1988) has shown their value when cal-
culating statistics based on Bayesian posteriors.

9.3.2. Systematic Sampling

Coverage can also be improved through systematic sampling
(McGrath, 1970), which creates a grid of points over the support of the
density and randomly shifts the entire grid. Consider draws from a uni-
form distribution between 0 and 1. If four draws are taken independently,
the points may look like those in the top part of Figure 9.7, which provide
fairly poor coverage. Instead, the unit interval is divided into four seg-
ments and draws taken in a way that assures one draw in each segment
with equal distance between the draws. Take a draw from a uniform
between 0 and 0.25 (by drawing from a standard uniform and dividing
the result by 4). Label the draw ¢;. Three other draws are created as

& =025+ ¢,
&3 =0.50 4+ ¢,
&4 = 0.75 + £1.
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Figure 9.8. Systematic draws in two dimensions.

These draws look like those in the bottom part of Figure 9.7, which
provide better coverage than independent draws.

The issue arises of how finely to segment the interval. For example, to
obtain a total of 100 draws, the unit interval can be divided into 100 seg-
ments. A draw between 0 and 0.01 is taken, and then the other 99 draws
are created from this one draw. Instead, the unit interval can be divided
into fewer than 100 draws and more independent draws taken. If the in-
terval is divided into four segments, then 25 independent draws are taken
between 0 and 0.25, and three draws in the other segments are created
for each of the independent draws. There is a tradeoff that the researcher
must consider in deciding how fine a grid to use in systematic sampling.
More segments provide more even coverage for a given total number
of draws. However, fewer segments provide more randomness to the
process. In our example with R = 100, there is only one random draw
when 100 segments are used, whereas there are 25 random draws when
four segments are used.

The randomness of simulation draws is a necessary component in
the derivation of the asymptotic properties of the simulation-based esti-
mators, as described in Chapter 10. Many of the asymptotic properties
rely on the concept that the number of random draws increases without
bound with sample size. The asymptotic distributions become relatively
accurate only when enough random draws have been taken. Therefore,
for a given total number of draws, the goal of better coverage, which
is attained with a more finely defined segmentation, needs to be traded
off against the goal of having enough randomness for the asymptotic
formulas to apply, which is attained with a more coarsely defined seg-
mentation. The same issue applies to the antithetics discussed earlier.

Systematic sampling can be performed in multiple dimensions. Con-
sider a two-dimensional uniform on the unit square. A grid is created
by dividing each dimension into segments. As shown in Figure 9.8,
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Figure 9.9. Systematic draws for univariate normal.

when each dimension is divided into four segments, the unit square is
partitioned into 16 areas. A draw between 0 and 0.25 is taken for each el-
ement, giving &; = (&f, 8}17),, where 0 < ¢f < 0.25and 0 < 811’ < 0.25.
This draw falls somewhere in the bottom-left area in Figure 9.8. Fif-
teen other draws are then created as the “origin” of each area, plus
(1, 811’ ). For example, the point that is created for the bottom-right area
is &4 = ((0.75 + &%), (0 + &b))".

These draws are defined for a uniform distribution. When f represents
another density, the points are transformed using the method described
in Section 9.2.3. In particular, let F’ be the cumulative distribution associ-
ated with univariate density f. Systematic draws from f are created by
transforming each systematic draw from a uniform by F~!. For example,
for a standard normal, four equal-sized segments of the density
are created with breakpoints: ®~1(0.25) = —0.67, ®~1(0.5) = 0, and
®~1(0.75) = 0.67. As shown in Figure 9.9, these segments are equal-
sized in the sense that each contains the same mass. The draws for the
standard normal are created by taking a draw from a uniform between
0 and 0.25, labeled ;. The corresponding point on the normal is & =
®~!(j11), which falls in the first segment. The points for the other three
segments are createdas g, = ®71(0.25 + 1), 63 = ®71(0.5 4+ 1), and
&4 = @71(0.75 + ).

Draws of multidimensional random terms are obtained similarly, pro-
vided that the elements are independent. For example, if ¢ consists of
two elements each of which is standard normal, then draws analogous
to those in Figure 9.8 are obtained as follows: Draw p{ and u’f from
a uniform between 0 and 0.25. Calculate £; as (dD_l(,u‘f), <I>_l(,ull’))’.
Calculate the other 15 points as €, as (®~'(x, + wi), O I(y, + ,ull’))’,
where (x,, y,)’ is the origin of area r in the unit square.

The requirement that the elements of ¢ be independent is not restric-
tive. Correlated random elements are created through transformations of
independent elements, such as the Choleski transformation. The inde-
pendent elements are drawn from their density, and then the correlation
is created inside the model.
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Figure 9.10. Symmetric systematic draws.

Obviously, numerous sets of systematically sampled draws can be
obtained to gain more randomization. In two dimensions with four seg-
ments in each dimension, 64 draws are obtained by taking 4 independent
draws in the O—to—‘—l‘ square and creating 15 other draws from each. This
procedure provides greater randomization but less fine coverage than
defining the draws in terms of eight segments in each dimension such
that each random draw in the O to é square translates into 64 systematic
draws.

The draws for the normal distribution that are created as just described
are not symmetric around zero. An alternative approach can be used
to assure such symmetry. For a unidimensional normal, 4 draws that
are symmetric around zero are obtained as follows. Draw a uniform
between 0 and 0.25, labeled ;. Create the draw from the normal as | =
®~!(u)). Create the draw for the second segment as &, = ®~1(0.25 +
©1). Then create the draws for the third and fourth segments as the
negative of these draws: €3 = —&; and ¢4 = —¢;. Figure 9.10 illustrates
the draws using the same p; as for Figure 9.9. This procedure combines
systematic sampling with antithetics. It can be extended to multiple
dimensions by creating systematic draws for the positive quadrant and
then creating antithetic variates for the other quadrants.

9.3.3. Halton Sequences

Halton sequences (Halton, 1960) provide coverage and, unlike
the other methods we have discussed, induce a negative correlation over
observations. A Halton sequence is defined in terms of a given number,
usually a prime. The sequence is most easily understood through an ex-
ample. Consider the prime 3. The Halton sequence for 3 is created by
dividing the unit interval into three parts with breaks at % and 2, as shown
in the top panel of Figure 9.11. The first terms in the sequence are these
breakpoints: %, % Then each of the three segments is divided into thirds,
and the breakpoints for these segments are added to the sequences in a
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Figure 9.11. Halton sequence for prime 3.

particular way. The sequence becomes %, %, %, g, g, %, 2, 2. Note that
the lower breakpoints in all three segments (9 4 g) are entered in the

sequence before the higher breakpoints (g, g, g.) Then each of the nine

segments is divided into thirds, With the breakpoints added to the se-
quences. The sequence becomes% 5 é g % % g g %, %, ;—2, 217, ;3,
and so on. This process is continued for as many points as the researcher
wants to obtain.

From a programming perspective, it is easy to create a Halton se-
quence. The sequence is created iteratively. At each iteration ¢, the
sequence is denoted s,, which is a series of numbers. The sequence
is extended in each iteration with the new sequence being s, =
{s¢,s: + 1/3", s, + 2/3"}. Start with O as the initial sequence: so = {0}.
The number zero is not actually part of a Halton sequence, but consid-
ering it to be the first element facilitates creation of the sequence, as we
will see. It can be dropped after the entire sequence is created. In the
first iteration, add 1/3' (= l) and then 2/3! (= 2) to this element and
append the results, to get {0, + 3 2} The sequence has three elements. In
the second iteration, add 1/ 32 (— 9) and then 2/ 3% (= 2) to each element

of the sequence and append the results:

0=0,
1/3 = 1/3,
2/3 =2/3,
0+1/9=1/9,

1/3 + 1/9 = 4/9,
2/3+1/9=1/9,

0+2/9 =2/9,
1/3 +2/9 = 5/9,
2/3 +2/9 = 8/9.

The new sequence consists of nine elements.
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In the third iteration, add 1/3* (= 5-) and then 2/3% (= 5) to each
element of this sequence and append the results:

0=0,
1/3 =1/3,
2/3 =2/3,
1/9 = 1/9,
4/9 = 4/9,
7/9 =17/9,
2/9 =12/9,
5/9=75/9,
8/9 = 8/9,

0+1/27=1/27,
1/3 + 1/27 = 10/27,
2/3 +1/27 = 19/27,
1/9 + 1/27 = 4/27,
4/9 + 1/27 = 13/27,
7/9 + 1/27 = 2227,
2/9 + 1/27 =17/27,
5/9 + 1/27 = 16/27,
8/9 + 1/27 = 25/27,
0 +2/27 =2/27,
1/3 +2/27 = 11/27,
2/3 +2/27 = 20/27,
1/9 +2/27 = 5/27,
4/9 +2/27 = 14/27,
7/9 +2/27 = 2327,
2/9 +2/27 = 8/27,
5/9 +2/27 = 17/27,
8/9 + 2/27 = 26/27.

The sequence now consists of 27 elements. In the fourth iteration, add
1/3* (= g) and then 2/3* (= &) to each element of the sequence and
append the results, and so on.

Note that the sequence cycles over the unit interval every three
numbers:

0o 13 2/3
1/9  4/9  7/9
2/9  5/9  8/9
1/27 10/27 19/27
4/27 13/27 22/27
7/27 16/27 25/27
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2/27 11/27 20/27
5/27 14/27 23/27
8/27 17/27 26/27

Within each cycle the numbers are ascending.

Halton sequences for other prime numbers are created similarly. The
sequence for 2 is %, %, %, %, g, % %, 1—16, 126, ...}. In general, the se-
quence for prime k is created iteratively, with the sequence at iteration
t+ 1being s, = {s;, s, + 1/k", s, +2/k', ..., s, + (k — 1)/k'}. The
sequence contains cycles of length k, where each cycle consists of k
ascending points on the unit interval equidistant from each other.

Since a Halton sequence is defined on the unit interval, its elements
can be considered as well-placed “draws” from a standard uniform den-
sity. The Halton draws provide better coverage than random draws, on
average, because they are created to progressively fill in the unit interval
evenly and ever more densely. The elements in each cycle are equidistant
apart, and each cycle covers the unit interval in the areas not covered by
previous cycles.

When using Halton draws for a sample of observations, one long
Halton sequence is usually created and then part of the sequence is used
for each observation. The initial elements of the sequence are discarded
for reasons we will discuss. The remaining elements are then used in
groups, with each group of elements constituting the “draws” for one
observation. For example, suppose there are two observations, and the
researcher wants R = 5 draws for each. If the prime 3 is used, and the
researcher decides to discard the first 10 elements, then a sequence of

length 20 is created. This sequence is

0 13 2/3
1/9 4/9  7/9
2/9  5/9  8/9
1/27 10/27 19/27
4/27 13/27 22/27
7/27 16/27 25/27
2/27 11/27.

After eliminating the first 10 elements, the Halton draws for the first
observation are {;—(7), ;—3, 24—7, é—;, %} and the Halton draws for the second
observation are {ﬁ, %, %, %, ﬁ} These draws are illustrated in Fig-

ure 9.12. Note that the gaps in coverage for the first observation are filled
by the draws for the second observation. For example, the large gap be-
tween ﬁ and for the first observation is filled in by the mldpomt of
this gap, 27, for the second observation. The gap between > and > 1s
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Figure 9.12. Halton draws for two observations.

filled in by its midpoint, ;—3, for the second observation, and so on. The

pattern by which Halton sequences are created makes them such that
each subsequence fills in the gaps of the previous subsequences.

Because of this filling-in property, simulated probabilities based on
Halton draws tend to be self-correcting over observations. The draws
for one observation tend to be negatively correlated with those for the
previous observation. In our example, the average of the first observa-
tion’s draws is above 0.5, while the average of the draws for the second
observation is below 0.5. This negative correlation reduces error in the
simulated log-likelihood function.

When the number of draws used for each observation rises, the cover-
age for each observation improves. The negative covariance across ob-
servations diminishes, since there are fewer gaps in each observation’s
coverage to be filled in by the next observation. The self-correcting as-
pect of Halton draws over observations is greatest when few draws are
used for each observation so that the correction is most needed. However,
accuracy improves with more Halton draws, since coverage is better for
each observation.

As described so far, the Halton draws are for a uniform density. To
obtain a sequence of points for other univariate densities, the inverse
cumulative distribution is evaluated at each element of the Halton se-
quence. For example, suppose the researcher wants draws from a stan-
dard normal density. A Halton sequence is created for, say, prime 3, and
the inverse cumulative normal is taken for each element. The resulting
sequence is

d~1(1) = —0.43,
d~1(3) =043,
o (5 =12
d-1(3) = —0.14,
®~1(2) =0.76,
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Figure 9.13. Halton draws for a standard normal.
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1/3 = ¢ 81

Figure 9.14. Halton sequence in two dimensions for primes 2 and 3.

This sequence is depicted in Figure 9.13. It can be considered the same
as for the unit interval, as dividing the density into three segments of
equal mass, with breakpoints at —0.43 and +0.43, and then dividing
each segment into three subsegments of equal mass, and so on.

Halton sequences in multiple dimensions are obtained by creating
a Halton sequence for each dimension with a different prime for each
dimension. For example, a sequence in two dimensions is obtained by
creating pairs from the Halton sequence for primes 2 and 3. The points
are

er={53)
&2 =3, 3)
&= {3 5)
e =5 5)
&5 = (5 5
g6 = (5. 5)
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Figure 9.15. Halton sequence for two-dimensional standard normal.

This sequence is depicted in Figure 9.14. To obtain draws for a
two-dimensional independent standard normal, the inverse cumulative
normal is taken of each element of these pairs. The draws are

g1 = (0, —0.43),

g2 = (—0.67,0.43),
3 = (0.67, —1.2),
e = (—1.15, —0.14),
es = (0.32,0.76),
g6 = (—.32, —0.76),

which are shown in Figure 9.15.

When creating sequences in several dimensions, it is customary to
eliminate the initial part of the series. The initial terms of two Halton
sequences are highly correlated, through at least the first cycle of
each sequence. For example, the sequences for 7 and 11 begin with

%, %, %, %, %, 9} and {ﬁ, T %, %, it ﬁ} These first elements fall on
a line in two dlmenswns as shown in Figure 9.16. The correlation dis-
sipates after each sequence has cycled through the unit interval, since
sequences with different primes cycle at different rates. Discarding the
initial part of the sequence eliminates the correlation. The number of
initial elements to discard needs to be at least as large as the largest
prime that is used in creating the sequences.

The potential for correlation is the reason that prime numbers are used
to create the Halton sequences instead of nonprimes. If a nonprime is
used, then there is a possibility that the cycles will coincide throughout

the entire sequence, rather than for just the initial elements. For example,
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Figure 9.16. First six elements of Halton sequence for primes 7 and 11.

if Halton sequences are created for 3 and 6, the sequence for 3 cycles
twice for every one cycle of the sequence for 6. Since the elements within
a cycle are ascending, the elements in each cycle of the sequence for 3
are correlated with the elements in the cycle of the sequence for 6. Using
only prime numbers avoids this overlapping of cycles.

The superior coverage and the negative correlation over observations
that are obtained with Halton draws combine to make Halton draws far
more effective than random draws for simulation. Spanier and Maize
(1991) have shown that a small number of Halton draws provide rela-
tively good integration. In the context of discrete choice models, Bhat
(2001) found that 100 Halton draws provided more precise results for his
mixed logit than 1000 random draws. In fact, the simulation error with
125 Halton draws was half as large as with 1000 random draws and some-
what smaller than with 2000 random draws. Train (2000), Munizaga and
Alvarez-Daziano (2001), and Hensher (2001) confirm these results on
other datasets.

As illustration, consider the mixed logit model that is described ex-
tensively in Chapter 11. Briefly, the model is for households’ choice
of electricity supplier. In a stated-preference survey, respondents were
presented with a series of hypothetical choice situations. In each situa-
tion, four energy suppliers were described and the respondent was asked
which company he would choose. The suppliers were differentiated on
the basis of their price, whether the company required the customer to
sign a long-term contract, whether the supplier was the local energy
utility, whether the supplier was a well-known company, and whether
the supplier offered time-of-day (TOD) or seasonal rates. A mixed
logit model was estimated with these six characteristics as explanatory
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Table 9.1. Means of parameter estimates

1000 Random Draws 100 Halton Draws

Price —0.8607 —0.8588
Contract length:

Mean —0.1955 —0.1965

Std. dev. 0.3092 0.3158
Local utility:

Mean 2.0967 2.1142

Std. dev. 1.0535 1.0236
Known company:

Mean 1.4310 1.4419

Std. dev. 0.8208 0.6894
TOD rates:

Mean —8.3760 —8.4149

Std. dev. 2.4647 2.5466
Seasonal rates:

Mean —8.6286 —8.6381

Std. dev. 1.8492 1.8977

variables. The coefficient of each variable was assumed to be normally
distributed, except for the price coefficient, which was assumed to be
fixed. The model therefore contained five random terms for simulation.
A complete description of the data, the estimated model, and its implica-
tions are given in Chapter 11, where the content of the model is relevant
to the topic of the chapter. For now, we are concerned only with the issue
of Halton draws compared to random draws.

To investigate this issue, the model was estimated with 1000 random
draws and then with 100 Halton draws. More specifically, the model
was estimated five times using five different sets of 1000 random draws.
The mean and standard deviation of the estimated parameters from these
five runs were calculated. The model was then estimated five times with
Halton sequences. The first model used the primes 2,3,5,7, 11 for the
five dimensions of simulation. The order of the primes was switched for
the other models, so that the dimension for which each prime was used
changed in the five runs. The average and standard deviation of the five
sets of estimates were then calculated.

The means of the parameter estimates over the five runs are given in
Table 9.1. The mean for the runs based on random draws are given in
the first column, and the means for the runs based on Halton draws are
given in the second column. The two sets of means are very similar.
This result indicates that the Halton draws provide the same estimates,
on average, as random draws.
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Table 9.2. Standard deviations of parameter

estimates
1000 Random Draws 100 Halton Draws

Price 0.0310 0.0169
Contract length:

Mean 0.0093 0.0045

Std. dev. 0.0222 0.0108
Local utility:

Mean 0.0844 0.0361

Std. dev. 0.1584 0.1180
Known company:

Mean 0.0580 0.0242

Std. dev. 0.0738 0.1753
TOD rates:

Mean 0.3372 0.1650

Std. dev. 0.1578 0.0696
Seasonal rates:

Mean 0.4134 0.1789

Std. dev. 0.2418 0.0679

The standard deviations of the parameter estimates are given in Ta-
ble 9.2. For all but one of the 11 parameters, the standard deviations are
lower with 100 Halton draws than with 1000 random draws. For eight
of the parameters, the standard deviations are half as large. Given that
both sets of draws give essentially the same means, the lower standard
deviations with the Halton draws indicate that a researcher can expect to
be closer to the expected values of the estimates using 100 Halton draws
than 1000 random draws.

These results show the value of Halton draws. Computer time can be
reduced by a factor of ten by using Halton draws instead of random
draws, without reducing, and in fact increasing, accuracy.

These results need to be viewed with caution, however. The use of
Halton draws and other quasi-random numbers in simulation-based es-
timation is fairly new and not completely understood. For example, an
anomaly arose in the analysis that serves as a warning. The model was
reestimated with 125 Halton draws instead of 100. It was estimated five
times under each of the five orderings of the prime numbers as described
earlier. Four of the five runs provided very similar estimates. However,
the fifth run gave estimates that were noticeably different from the others.
For example, the estimated price coefficient for the first four runs was
—0.862, —0.865, —0.863, and —0.864, respectively, while the fifth gave
—0.911. The standard deviations over the five sets of estimates were
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lower than with 1000 random draws, confirming the value of the Halton
draws. However, the standard deviations were greater with 125 Hal-
ton draws than with 100 Halton draws, due to the last run with 125
draws providing such different results. The reason for this anomaly has
not been determined. Its occurrence indicates the need for further in-
vestigation of the properties of Halton sequences in simulation-based
estimation.

9.3.4. Randomized Halton Draws

Halton sequences are systematic rather than random. However,
the asymptotic properties of simulation-based estimators are derived
under the assumption that the draws are random. There are two ways
that this issue can be addressed. First, one can realize that draws from
a random number generator are not actually random either. They are
systematic, like anything done by a computer. A random number gener-
ator creates draws that have many of the characteristics of truly random
draws, but in fact they are only pseudorandom. In this regard, therefore,
Halton draws can be seen as a systematic way of approximating integra-
tion that is more precise than using pseudorandom draws, which are also
systematic. Neither matches the theoretical concept of randomness, and,
in fact, it is not clear that the theoretical concept actually has a real-world
counterpart. Both meet the basic underlying goal of approximating an
integral over a density.

Second, Halton sequences can be transformed in a way that makes
them random, at least in the same way that pseudorandom numbers
are random. Bhat (2003) describes the process, based on procedures
introduced by Tuffin (1996):

1. Take a draw from a standard uniform density. Label this random
draw .

2. Add p to each element of the Halton sequence. If the resulting
element exceeds 1, subtract 1 from it. Otherwise, keep the result-
ing element as is (without subtracting 1).

The formula for this transformation is s, = mod(s, + ), where s,, is the
original element of the Halton sequence, s, is the transformed element,
and mod takes the fractional part of the argument in parentheses.

The transformation is depicted in Figure 9.17. Suppose the draw of p
from the uniform density is 0.40. The number 0.33 is the first element of
the Halton sequence for prime 3. This element is transformed, as shown
in the top panel, to 0.33 4+ 0.40 = 0.73, which is just a 0.40 move up
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Figure 9.17. Random transformation of Halton draws with u = 0.40.
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Figure 9.18. Randomization of Halton sequence in one dimension.

the line. The number 0.67 is the second element of the sequence. It
is transformed by adding 0.4 and then, since the result exceeds 1, by
subtracting 1 to get 0.07 (0.67 4+ 0.40 — 1 = 0.07). As shown in the
bottom panel, this transformation is visualized as moving the original
point up by a distance 0.40, but wrapping around when the end of the
unit interval is reached. The point moves up 0.33 to where the line ends,
and then wraps to the start of the line and continues to move up another
0.07, for a total movement of 0.40.

Figure 9.18 depicts the transformation for the first five elements of the
sequence. The relation between the points and the degree of coverage
are the same before and after the transformation. However, since the
transformation is based on the random draw of w, the numerical values
of the transformed sequence are random. The resulting sequence is called
a randomized Halton sequence. It has the same properties of coverage
and negative correlation over observations as the original Halton draws,
since the relative placement of the elements is the same; however, it is
now random.

With multiple dimensions, the sequence used for each dimension is
transformed separately based on its own draw from the standard uniform
density. Figure 9.19 represents a transformation of a two-dimensional
sequence of length 3 defined for primes 2 and 3. The sequence for
prime 3 is given by the x-axis and obtains a random draw of 0.40. The
sequence for prime 2 obtains a draw of 0.35. Each point in the original
two-dimensional sequence is moved to the right by 0.40 and up by 0.35,
wrapping as needed. The relation between the points in each dimension
is maintained, and yet the sequence is now random.
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Figure 9.19. Randomization of Halton sequence in two dimensions.

9.3.5. Scrambled Halton Draws

Another issue with Halton draws arises when they are used in
high dimensions. For simulation of high-dimensional integrals, Halton
sequences based on large primes are necessary. For example, with 15 di-
mensions, the primes up to 47 are needed. However, Halton draws de-
fined by large primes can be highly correlated with each other over large
portions of the sequence. The correlation is not confined to the initial
elements as described earlier, and so cannot be eliminated by discard-
ing these elements. Two sequences defined by large and similar primes
periodically become synchronized with each other and stay that way for
many cycles.

Bhat (2003) describes the problem and an effective solution. Fig-
ure 9.20 reproduces a graph from his paper that depicts the Halton
sequence for primes 43 and 47. Clearly, these sequences are highly
correlated.

This correlation can be removed while retaining the desirable coverage
of Halton sequences by scrambling the digits of each element of the
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Figure 9.20. Standard Halton sequence.

A B C
|AA BA C4 IAB BB CBIAC BC CC|

Figure 9.21. Segments for scrambling the Halton sequence.

sequences. The scrambling can be done in various ways. Braatan and
Weller (1979) describe a procedure that is most easily explained through
an example. Consider the Halton sequence for prime 3:

121477258

3’379°9°9°9797 97777
Recall that the sequence is created by dividing the unit interval into three
segments, which we label A, B, and C in Figure 9.21. Each segment is
divided into three subsegments, labeled AA (for subsegment A of segment
A), BA (subsegment B of segment A), CA, AB, BB, CB, AC, BC, and CC.
The Halton sequence is the starting point of each segment arranged
alphabetically and ignoring A (i.e., ignore A, % for B, 2 for C), followed
by the starting point of each subsegment arranged alphabetically and
ignoring A (i.e., ignore AA, AB, and AC, é for BA, g for BB, % for
BC, % for CA, g for CB, and % for CC.) Note that the segments and
subsegments starting with A are ignored because their starting points
either are O (for segment A) or are already included in the sequence (e.g.,

the starting point of subsegment AB is the same as the starting point of
segment B).
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Figure 9.22. Scrambled Halton sequence.

The scrambled sequence is obtained by reversing B and C, that is, by
considering C to be before B in the alphabet. The alphabetical listing is
now: segments A C B, subsegments AA AC AB CA CC CB BA BC BB.
The sequence is then created the same way as before but with this new
alphabetical ordering: ignore A, % for C, % for B; ignore AA, AC, and
AB, % for CA, g for CC, g for CB, é for BA, % for BC, g for BB. The
orginal and scrambled sequences are:

Original Scrambled

1/3 2/3
2/3 1/3
1/9 2/9
4/9 8/9
7/9 5/9
2/9 1/9
5/9 7/9
8/9 4/9

Different permutations of the letters are used for different primes.
Figure 9.22, from Bhat (2003), shows the scrambled sequence for primes
43 and 47. The points are not correlated as they are in the original
sequence. Bhat demonstrates that scrambled sequences perform well
for high-dimensional integrals in the same way that unscrambled ones
do for low-dimensional integrals.
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9.3.6. Other Procedures

We have described only a few of the most prominent and
straightforward antithetic and quasi-random procedures. More com-
plex procedures, with desirable theoretical properties, are described by
Niederreiter (1978, 1988), Morokoff and Caflisch (1995), Joe and Sloan
(1993), and Sloan and Wozniakowski (1998), to name only a few in this
burgeoning area of research. As we have seen with Halton sequences,
fairly simple procedures can provide large improvements over random
draws. Comparisons performed by Sandor and Andras (2001) on probit
and Sandor and Train (2004) on mixed logit indicate that the accuracy of
simulation-based estimation of discrete choice models can be improved
even further with the more complex procedures. It is important to re-
member, however, in the excitement of these methods, that accuracy can
always be improved by simply using more draws. The researcher needs
to decide whether learning and coding new methods of taking draws
is more expedient, given her time constraints, than simply running her
model with more draws.



