11 Individual-Level Parameters

11.1 Introduction

Mixed logit and probit models allow random coefficients whose distri-
bution in the population is estimated. Consider, for example, the model
in Chapter 6, of anglers’ choice among fishing sites. The sites are differ-
entiated on the basis of whether campgrounds are available at the site.
Some anglers like having campgrounds at the fishing sites, since they
can use the grounds for overnight stays. Other anglers dislike the crowds
and noise that are associated with campgrounds and prefer fishing at
more isolated spots. To capture these differences in tastes, a mixed logit
model was specified that included random coefficients for the camp-
ground variable and other site attributes. The distribution of coefficients
in the population was estimated. Figure 11.1 gives the estimated distri-
bution of the campground coefficient. The distribution was specified to
be normal. The mean was estimated as 0.116, and the standard deviation
was estimated as 1.655. This distribution provides useful information
about the population. For example, the estimates imply that 47 percent
of the population dislike having campgrounds at their fishing sites, while
the other 53 percent like having them.

The question arises: where in the distribution of tastes does a particular
angler lie? Is there a way to determine whether a given person tends to
like or dislike having campgrounds at fishing sites?

A person’s choices reveal something about his tastes, which the re-
searcher can, in principle, discover. If the researcher observes that a
particular angler consistently chooses sites without campgrounds, even
when the cost of driving to these sites is higher, then the researcher
can reasonably infer that this angler dislikes campgrounds. There is a
precise way for performing this type of inference, given by Revelt and
Train (2000).

We explain the procedure in the context of a mixed logit model; how-
ever, any behavioral model that incorporates random coefficients can
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Mean
=0.116

Figure 11.1. Distribution of coefficient of campgrounds in population of all
anglers.

be used, including probit. The central concept is a distinction between
two distributions: the distribution of tastes in the population, and the
distribution of tastes in the subpopulation of people who make particu-
lar choices. Denote the random coefficients as vector . The distribution
of B in the population of all people is denoted g(f | €), where 6 are the
parameters of this distribution, such as the mean and variance.

A choice situation consists of several alternatives described collec-
tively by variables x. Consider the following thought experiment. Sup-
pose everyone in the population faces the same choice situation described
by the same variables x. Some portion of the population will choose each
alternative. Consider the people who choose alternative i. The tastes of
these people are not all the same: there is a distribution of coefficients
among these people. Let h(B | i, x, 8) denote the distribution of g in the
subpopulation of people who, when faced with the choice situation de-
scribed by variables x, would choose alternative i. Now g(8 | 6) is the
distribution of g in the entire population. h(8 | i, x, 6) is the distribution
of B in the subpopulation of people who would choose alternative i when
facing a choice situation described by x.

We can generalize the notation to allow for repeated choices. Let y de-
note a sequence of choices in a series of situations described collectively
by variables x. The distribution of coefficients in the subpopulation of
people who would make the sequences of choices y when facing situa-
tions described by x is denoted h(8 | y, x, 0).

Note that 4(-) conditions on y, while g(-) does not. It is sometimes
useful to call & the conditional distribution and g the unconditional
distribution. Two such distributions are depicted in Figure 11.2. If we
knew nothing about a person’s past choices, then the best we can do
in describing his tastes is to say that his coefficients lie somewhere in
g(B|9). However, if we have observed that the person made choices y
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Figure 11.2. Unconditional (population) distribution g and conditional (sub-
population) distribution /4 for subpopulation of anglers who chose sites without
campgrounds.

when facing situations described by x, then we know that that person’s
coefficients are in the distribution 2(8 | y, x, 6). Since A is tighter than g,
we have better information about the person’s tastes by conditioning on
his past choices.

Inference of this form has long been conducted with linear regression
models, where the dependent variable and the distribution of coeffi-
cients are both continuous (Griffiths, 1972; Judge et al., 1988). Regime-
switching models, particularly in macroeconomics, have used an anal-
ogous procedure to assess the probability that an observation is within
a given regime (Hamilton and Susmel, 1994; Hamilton, 1996). In these
models, the dependent variable is continuous and the distribution of coef-
ficients is discrete (representing one set of coefficients for each regime.)
In contrast to both of these traditions, our models have discrete depen-
dent variables. Kamakura and Russell (1989) and DeSarbo et al. (1995)
developed an approach in the context of a discrete choice model with a
discrete distribution of coefficients (that is, a latent class model). They
used maximum likelihood procedures to estimate the coefficients for
each segment, and then calculated the probability that an observation is
within each segment based on the observed choices of the observation.
The approach that we describe here applies to discrete choice models
with continuous or discrete distributions of coefficients and uses maxi-
mum likelihood (or other classical methods) for estimation. The models
of Kamakura and Russell (1989) and DeSarbo et al. (1995) are a spe-
cial case of this more general method. Bayesian procedures have been
also developed to perform this inference within discrete choice models
(Rossi et al. 1996; Allenby and Rossi 1999). We describe the Bayesian
methods in Chapter 12.
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11.2 Derivation of Conditional Distribution

The relation between /& and g can be established precisely. Consider

a choice among alternatives j = 1,...,J in choice situations ¢t =
1,..., T. The utility that person n obtains from alternative j in situ-
ation ¢ is

’
Unjt = ,annjt + Enjts

where ¢,,;; ~ iid extreme value, and 8, ~ g(B | 0) in the population. The
variables x,;; can be denoted collectively for all alternatives and choice
situations as x,. Let y, = (Vu1, ..., yur) denote the person’s sequence
of chosen alternatives. If we knew §,,, then the probability of the person’s
sequence of choices would be a product of logits:

T
P | X B) = [ Lusue | B,

t=1
where

eﬁ,xnymr
. ﬂ/xnjl :
2.

Since we do not know S,,, the probability of the person’s sequence of
choices is the integral of P(y, | x,, 8) over the distribution of j:

Lnt(ynt | /3) =

(IL1) P(ynIxn,9)=/P(ynlxn,ﬂ)g(ﬁIH)dﬂ

This is the mixed logit probability that we discussed in Chapter 6.
We can now derive h(8 | y,, x,, 6). By Bayes’ rule,

h(B | Yns Xn, 0) X P(yu | Xn, 0) = P(yn | xn, B) x g(B0).

This equation simply states that the joint density of 8 and y, can be
expressed as the probability of y, times the probability of 8 conditional
on y, (which is the left-hand side), or with the other direction of condi-
tioning, as the probability of B times the probability of y, conditional
on B (which is the right-hand side.) Rearranging,

P(yn | X0, BIEB10)
P(ulxa,0)

We know all the quantities on the right-hand side. From these, we can
calculate 4.

Equation (11.2) also provides a way to interpret 4 intuitively. Note that
the denominator P(y, | x,,, 0) is the integral of the numerator, as given by

(A1L2) h(B | yn, X, 0) =




Individual-Level Parameters 263

the definition in (11.1). As such, the denominator is a constant that
makes /4 integrate to 1, as required for any density. Since the denomina-
tor is a constant, 4 is proportional to the numerator, P(y, | x,, 8)g(8 | 0).
This relation makes interpretation of 4 relatively easy. Stated in words,
the density of 8 in the subpopulation of people who would choose
sequence y, when facing x, is proportional to the density of 8 in the
entire population times the probability that y, would be chosen if the
person’s coefficients were .

Using (11.2), various statistics can be derived conditional on y,. The
mean S in the subpopulation of people who would choose y, when
facing x,, is

_n = /:B : h(ﬁ|yn’ Xns e)dﬂ

This mean generally differs from the mean 8 in the entire population.
Substituting the formula for 4,

B = JB - PGynlxa, Bg(B16)dB
! P(yn | X0, 0)

B PGalxa, B)g(B16)dB

POl X, Pg(B10)dB

The integrals in this equation do not have a closed form; however, they
can be readily simulated. Take draws of § from the population den-
sity g(B|60). Calculate the weighted average of these draws, with the
weight for draw 8" being proportional to P(y, | x,, 8”). The simulated
subpopulation mean is

Bo=Y wp,
where the weights are
P(yn | xn, B")

T PO 2 BT

Other statistics can also be calculated. Suppose the person faces a
new choice situation described by variables x, ;741 Vj. If we had no
information on the person’s past choices, then we would assign the
following probability to his choosing alternative i:

(11.3)

(11.4) '

(IL5) P [xa741,0) = anT+1(i | B)g(B|6)dp
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where

B it

B xniT "
D€

This is just the mixed logit probability using the population distribution
of B. If we observed the past choices of the person, then the probability
can be conditioned on these choices. The probability becomes

Lyr(Q]B) =

(116) P(l |an+1’ yn’xn,e) = /LnT+l(i | ,3)]1(,8 | Yns Xn, Q)dﬁ

This is also a mixed logit probability, but using the conditional distribu-
tion 4 instead of the unconditional distribution g. When we do not know
the person’s previous choices, we mix the logit formula over density of 8
in the entire population. However, when we know the person’s previous
choices, we can improve our prediction by mixing over the density of
B in the subpopulation who would have made the same choices as this
person.

To calculate this probability, we substitute the formula for 4 from
(11.2):

JLur41G | BYP(ya | X0, B)g(B16)dP
JSPOulxa, Bg(B10)dp
The probability is simulated by taking draws of 8 from the population

distribution g, calculating the logit formula for each draw, and taking a
weighted average of the results:

P(l |an+1’ Yn,xn,e) =

%

Poir1Ons %0, 0) = Y _w Lyrai | B,

where the weights are given by (11.4).

11.3 Implications of Estimation of 0

The population parameters 6 are estimated in any of the ways described
in Chapter 10. The most common approach is maximum simulated
likelihood, with the simulated value of P(y, |x,,6) entering the log-
likelihood function. An estimate of 6, labeled @, 1s obtained. We know
that there is sampling variance in the estimator. The asymptotic co-
variance of the estimator is also estimated, which we label W. The
asymptotic distribution is therefore estimated to be N (8, W).

The parameter 6 describes the distribution of § in the population,
giving, for example, the mean and variance of 8 over all decision makers.
For any value of 6, equation (11.2) gives the conditional distribution of 8
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in the subpopulation of people who would make choices y,, when faced
with situations described by x,,. This relation is exact in the sense that
there is no sampling or other variance associated with it. Similarly, any
statistic based on /4 is exact given a value of 6. For example, the mean
of the conditional distribution, B,, is exactly equation (11.3) for a given
value of 6.

Given this correspondence between 6 and /, the fact that 6 is estimated
can be handled in two different ways. The first approach is to use the
point estimate of 6 to calculate statistics associated with the conditional
distribution /. Under this approach, the mean of the condition distribu-
tion, B,, is calculated by inserting @ into (11.3). The probability in a new
choice situation is calculated by inserting @ into (11.6). If the estimator
of 0 is consistent, then this approach is consistent for statistics based
on 6.

The second approach is to take the sampling distribution of & into
consideration. Each possible value of 6 implies a value of %, and hence a
value of any statistic associated with &, such as f, . The sampling variance
in the estimator of 6 induces sampling variance in the statistics that are
calculated on the basis of 8. This sampling variance can be calculated
through simulation, by taking draws of 6 from its estimated sampling
distribution and calculating the corresponding statistic for each of these
draws.

For example, to represent the sampling distribution of @ in the calcu-
lation of B,, the following steps are taken:

1. Take a draw from N(@, W), which is the estimated sampling
distribution of . This step is accomplished as follows. Take
K draws from a standard normal density, and label the vector
of these draws n", where K is the length of 6. Then create
6" =0 + Ly’ where L is the Choleski factor of W.

2. Calculate ] based on this 6. Since the formula for 3, involves
integration, we simulate it using formula (11.3).

3. Repeat steps 1 and 2 many times, with the number of times
labeled R.

The resulting values are draws from the sampling distribution of 8,
induced by the sampling distribution of §. The average of B, over the R
draws of " is the mean of the sampling distribution of B,. The standard
deviation of the draws gives the asymptotic standard error of j, that is
induced by the sampling variance of 6.

Note that this process involves simulation within simulation. For each
draw of §", the statistic B, is simulated with multiple draws of 8 from
the population density g(8]6").
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Suppose either of these approaches is used to estimate j,. The question
arises: can the estimate of B, be considered an estimate of 8,? That is:
is the estimated mean of the conditional distribution A(8 | y,, X, 6),
which is conditioned on person n’s past choices, an estimate of person
n’s coefficients?

There are two possible answers, depending on how the researcher
views the data-generation process. If the number of choice situations
that the researcher can observe for each decision maker is fixed, then
the estimate of f8, is not a consistent estimate of 8,. When T is fixed,
consistency requires that the estimate converges to the true value when
sample size rises without bound. If sample size rises, but the choice sit-
uations faced by person n are fixed, then the conditional distribution and
its mean do not change. Insofar as person n’s coefficients do not happen
to coincide with the mean of the conditional distribution (an essentially
impossible event), the mean of the conditional distribution will never
equal the person’s coefficients no matter how large the sample is. Raising
the sample size improves the estimate of 6 and hence provides a better
estimate of the mean of the conditional distribution, since this mean
depends only on 6. However, raising the sample size does not make the
conditional mean equal to the person’s coefficients.

When the number of choice situations is fixed, then the conditional
mean has the same interpretation as the population mean, but for a dif-
ferent, and less diverse, group of people. When predicting the future
behavior of the person, one can expect to obtain better predictions using
the conditional distribution, as in (11.6), than the population distribu-
tion. In the case study presented in the next section, we show that the
improvement can be large.

If the number of choice situations that a person faces can be consid-
ered to rise, then the estimate of 3, can be considered to be an estimate
of B,. Let T be the number of choice situations that person n faces. If
we observe more choices by the person (i.e., T rises), then we are better
able to identify the person’s coefficients. Figure 11.3 gives the condi-
tional distribution h(8 | y,, x,, 0) for three different values of 7. The
conditional distribution tends to move toward the person’s own g, as T
rises, and to become more concentrated. As 7T rises without bound, the
conditional distribution collapses onto 8,,. The mean of the conditional
distribution converges to the true value of 8, as the number of choice
situations rises without bound. The estimate of B, is therefore consistent
for B,.

In Chapter 12, we describe the Bernstein—von Mises theorem. This
theorem states that, under fairly mild conditions, the mean of a posterior
distribution for a parameter is asymptotically equivalent to the maximum
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h with ten
observed choices

h with one
observed choice

g=h with no
observed choices

Figure 11.3. Conditional distribution with 7 = 0, 1, and 10.

of the likelihood function. The conditional distribution 4 is a posterior
distribution: by (11.2) 4 is proportional to a density g, which can be in-
terpreted as a prior distribution on f,,, times the likelihood of person n’s
T choices given §,,, which is P(y, | x,, B,). By the Bernstein—von Mises
theorem, the mean of / is therefore an estimator of 8, that is asymptot-
ically equivalent to the maximum likelihood estimator of §,, where the
asymptotics are defined as 7T rising. These concepts are described more
fully in Chapter 12; we mention them now simply to provide another
interpretation of the mean of the conditional distribution.

11.4 Monte Carlo Illustration

To illustrate the concepts, I constructed a hypothetical data set where
the true population parameters 6 are known as well as the true g, for
each decision maker. These data allow us to compare the mean of the
conditional distribution for each decision maker’s choices, Bn, with the
B, for that decision maker. It also allows us to investigate the impact
of increasing the number of choice situations on the conditional distri-
bution. For this experiment, I constructed data sets consisting of 300
“customers” each facing T = 1, 10, 20, and 50 choice situations. There
are three alternatives and four variables in each data set. The coefficients
for the first two variables are held fixed for the entire population at 1.0,
and the coefficients for the last two variables are distributed normal with
amean and variance of 1.0. Utility is specified to include these variables
plus a final iid term that is distributed extreme value, so that the model
is a mixed logit. The dependent variable for each customer was created
by taking a draw from the density of the random terms, calculating the
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Table 11.1. Monte Carlo illustration

1st Coef. 2nd Coef.

1 choice situation:

Standard deviation of B, . 0.413 0.416

Absolute difference between B, and B, 0.726 0.718
10 choice situations: ~

Standard deviation of j, 0.826 0.826

Absolute difference between 8, and B, 0.422 0.448
20 choice situations: B

Standard deviation of g, B 0.894 0.886

Absolute difference between f, and g, 0.354 0.350
50 choice situations:

Standard deviation of B, . 0.951 0.953

Absolute difference between B, and B, 0.243 0.243

utility of each alternative with this draw, and determining which alter-
native had the highest utility. To minimize the effect of simulation noise
in the creation of the data, I constructed 50 datasets for each level of T'.
The results that are reported are the average over these 50 datasets.

The mean of the conditional distribution for each customer, B,, was
calculated. The standard deviation of B, over the 300 customers was
calculated, as well as the average absolute deviation of B, from the
customer’s B, (i.e., the average over n of | B, — B, |). Table 11.1 presents
these statistics. Consider first the standard deviation. If there were no
observed choice situations on which to condition (7" = 0), then the con-
ditional distribution for each customer would be the unconditional (pop-
ulation) distribution. Each customer would have the same 8, equal to the
population mean of B. In this case, the standard deviation of 8, would be
zero, since all customers have the same Bn. At the other extreme, if we
observed an unboundedly large number of choice situations (T — 00),
then the conditional distribution for each customer would collapse to
their own S,. In this case, the standard deviation of 8, would equal the
standard deviation of the population distribution of §,, which is 1 in
this experiment. For T between 0 and 0o, the standard deviation of 8,
is between 0 and the standard deviation of 8, in the population.

In Table 11.1, we see that conditioning on only a few choice situations
captures a large share of the variation in 8’s over customers. With only
one choice situation, the standard deviation of B, is over 0.4. Since the
standard deviation of §, in the population is 1 in this experiment, which
means that conditioning on one choice situation captures over 40 per-
cent of the variation in 8,. With 10 choice situations, over 80 percent
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of the variation is captured. There are strongly decreasing returns to ob-
serving more choice situations. Doubling from 7" = 10 to T = 20 only
increases the proportion of variation captured from about .83 to about
.89. Increasing 7' to 50 increases it to about .95.

Consider now the absolute difference between the mean of the cus-
tomer’s conditional distribution, B,, and the customer’s actual 8,. With
no conditioning (7" = 0), the average absolute difference would be 0.8,
which is the expected absolute difference for deviates that follow a stan-
dard normal as we have in our experiment. With perfect conditioning
(T — 00), B, = B, for each customer, and so the absolute difference
is 0. With only one choice situation, the average absolute deviation drops
from 0.8 (without conditioning) to about 0.72, for a 10 percent improve-
ment. The absolute deviation drops further as the number of choice
situations rises.

Notice that the drop in the absolute deviation is smaller than the in-
crease in the standard deviation. For example, with one choice situation
the absolute deviation moves 10 percent of the way from no conditioning
to perfect knowledge (from .80 with 7 = 0 to .72 with T = 1, which
is 10 percent of the way to O with T — 00). Yet the standard devia-
tion moves about 40 percent of the way from no conditioning to perfect
knowledge (.4 with T =1 is 40 percent of the distance from 0 with
T =0 to 1 with T — o0). This difference is due to the fact that the
standard deviation incorporates movement of B, away from B, as well
as movement toward S,,. This fact is important to recognize when eval-
uating the standard deviation of B, in empirical applications, where the
absolute difference cannot be calculated since 8, is not known. That is,
the standard deviation of B, expressed as a percentage of the estimated
standard deviation in the population is an overestimate of the amount
of information that is contained in the B,’s. With ten choice situations,
the average standard deviation in B, is over 80 percent of the value that
it would have with perfect knowledge, and yet the absolute deviation is
less than half as high as would be attained without conditioning.

11.5 Average Conditional Distribution

For a correctly specified model at the true population parameters, the
conditional distribution of tastes, aggregated over all customers, equals
the population distribution of tastes. Given a series of choice situa-
tions described by x,, there is a set of possible sequences of choices.
Label these possible sequences as y; for s = 1, ..., S. Denote the true
frequency of y; as m(y,|x,,0%), expressing its dependence on the
true parameters 6*. If the model is correctly specified and consistently
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estimated, then P(ys | x,, é) approaches m(yy | x,, 6*) asymptotically.
Conditional on the explanatory variables, the expected value of
h(B | ys, xn, 0) is then

A P s n» n’é
Evh(Bly, 0,0 = 30 L Lo P8P L6 Oy gy

§ P(ys|xnsé)
- ZP(ys EANICIEAN)

This relation provides a diagnostic tool (Allenby and Rossi 1999). If
the average of the sampled customers’ conditional taste distributions is
similar to the estimated population distribution, the model is correctly
specified and accurately estimated. If they are not similar, the differ-
ence could be due to (1) specification error, (2) an insufficient number
of draws in simulation, (3) an inadequate sample size, and/or (4) the
maximum likelihood routine converging at a local rather than global
maximum.

11.6  Case Study: Choice of Energy Supplier

11.6.1. Population Distribution

We obtained stated-preference data on residential customers’
choice of electricity supplier. Surveyed customers were presented with
8—12 hypothetical choice situations called experiments. In each exper-
iment, the customer was presented with four alternative suppliers with
different prices and other characteristics. The suppliers differed in price
(fixed price given in cents per kilowatthour (c/kWh), TOD prices with
stated prices in each time period, or seasonal prices with stated prices in
each time period), the length of the contract (during which the supplier
is required to provide service at the stated price and the customer would
need to pay a penalty for leaving the supplier), and whether the sup-
plier was their local utility, a well-known company other than their local
utility, or an unfamiliar company. The data were collected by Research
Triangle Institute (1997) for the Electric Power Research Institute and
have been used by Goett (1998) to estimate mixed logits. We utilize a
specification similar to Goett’s, but we eliminate or combine variables
that he found to be insignificant.

Two mixed logit models were estimated on these data, based on dif-
ferent specifications for the distribution of the random coefficients. All
choices except the last situation for each customer are used to estimate
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Table 11.2. Mixed logit model of energy supplier choice

Model 1 Model 2
Price, kWh —0.8574 —0.8827
(0.0488) (0.0497)
Contract length, years
m —0.1833 —0.2125
(0.0289) (0.0261)
s 0.3786 0.3865
(0.0291) (0.0278)
Local utility
m 2.0977 2.2297
(0.1370) (0.1266)
s 1.5585 1.7514
(0.1264) (0.1371)
Known company
m 1.5247 1.5906
(0.1018) (0.0999)
s 0.9520 0.9621
(0.0998) (0.0977)
TOD rate®
m —8.2857 2.1328
(0.4577) (0.0543)
s 2.5742 0.4113
(0.1676) (0.0397)
Seasonal rate”
m —8.5303 2.1577
(0.4468) (0.0509)
s 2.1259 0.2812
(0.1604) (0.0217)
Log likelihood at convergence —3646.51 —3618.92

Standard errors in parentheses.

¢ TOD rates: 11c/kWh, 8 A.M.—8 P.M., 5¢c/kWh, 8 P.M.—8 A.M.

b Seasonal rates: 10c/kWh, summer; 8c/kWh, winter, 6¢/kWh, spring
and fall.

the parameters of the population distribution, and the customer’s last
choice situation was retained for use in comparing the predictive ability
of different models and methods.

Table 11.2 gives the estimated population parameters. The price co-
efficient in both models is fixed across the population in such a way
that the distribution of willingness to pay for each nonprice attribute
(which is the ratio of the attribute’s coefficient to the price coefficient)
has the same distribution as the attribute’s coefficient. For model 1, all of
the nonprice coefficients are specified to be normally distributed in the
population. The mean m and standard deviation s of each coefficient are
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estimated. For model 2, the first three nonprice coefficients are spec-
ified to be normal, and the fourth and fifth are log-normal. The fourth
and fifth variables are indicators of TOD and seasonal rates, and their
coefficients must logically be negative for all customers. The lognormal
distribution (with the signs of the variables reversed) provides for this
necessity. The log of these coefficients is distributed normal with mean
m and standard deviation s, which are the parameters that are estimated.
The coefficients themselves have mean exp(m + (s2/2)) and standard
deviation equal to the mean times /exp(s2) — 1.
The estimates provide the following qualitative results:

» The average customer is willing to pay about % to i ¢/kWh in
higher price, depending on the model, in order to have a contract
that is shorter by one year. Stated conversely, a supplier that
requires customers to sign a four- to five-year contract must
discount its price by 1 ¢/kWh to attract the average customer.

 There is considerable variation in customers’ attitudes toward
contract length, with a sizable share of customers preferring a
longer to a shorter contract. A long-term contract constitutes
insurance for the customer against price increases, the supplier
being locked into the stated price for the length of the con-
tract. Such contracts, however, prevent the customer from tak-
ing advantage of lower prices that might arise during the term of
the contract. Apparently, many customers value the insurance
against higher prices more than they mind losing the option to
take advantage of lower prices. The degree of customer hetero-
geneity implies that the market can sustain contracts of different
lengths with suppliers making profits by writing contracts that
appeal to different segments of the population.

» The average customer is willing to pay a whopping 2.5 ¢/kWh
more for its local supplier than for an unknown supplier. Only
a small share of customers prefer an unknown supplier to their
local utility. This finding has important implications for compe-
tition. Itimplies that entry in the residential market by previously
unknown suppliers will be very difficult, particularly since the
price discounts that entrants can offer in most markets are fairly
small. The experience in California, where only 1 percent of res-
idential customers have switched away from their local utility
after several years of open access, is consistent with this finding.

e The average customer is willing to pay 1.8 c¢/kWh more for a
known supplier than for an unknown one. The estimated values
of s imply that a sizable share of customers would be willing
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to pay more for a known supplier than for their local utility,
presumably because of a bad experience or a negative attitude
toward the local utility. These results imply that companies
that are known to customers, such as their long-distance car-
riers, local telecommunications carriers, local cable companies,
and even retailers like Sears and Home Depot, may be more
successful in attracting customers for electricity supply than
companies that were unknown prior to their entry as an energy
supplier.

The average customer evaluates the TOD rates in a way that is
fairly consistent with TOD usage patterns. In model 1, the mean
coefficient of the dummy variable for the TOD rates implies that
the average customer considers these rates to be equivalent to a
fixed price of 9.7 ¢/kWh. In model 2, the estimated mean and
standard deviation of the log of the coefficient imply a median
willingness to pay of 8.4 and a mean of 10.4 ¢/kWh, which span
the mean from model 1. Here 9.5 ¢/kWh is the average price
that a customer would pay under the TOD rates if 75 percent of
its consumption occurred during the day (between 8 A.M. and
8 p.M.) and the other 25 percent occurred at night. These shares,
while perhaps slightly high for the day, are not unreasonable.
The estimated values of s are highly significant, reflecting het-
erogeneity in usage patterns and perhaps in customers’ ability
to shift consumption in response to TOD prices. These values
are larger than reasonable, implying that a nonnegligible share
of customers treat the TOD prices as being equivalent to a fixed
price that is higher than the highest TOD price or lower than the
lowest TOD price.

The average customer seems to avoid seasonal rates for reasons
beyond the prices themselves. The average customer treats the
seasonal rates as being equivalent to a fixed 10 c/kWh, which is
the highest seasonal price. A possible explanation for this result
relates to the seasonal variation in customers’ bills. In many ar-
eas, electricity consumption is highest in the summer, when air
conditioners are being run, and energy bills are therefore higher
in the summer than in other seasons, even under fixed rates. The
variation in bills over months without commensurate variation
in income makes it more difficult for customers to pay their sum-
mer bills. In fact, nonpayment for most energy utilities is most
frequent in the summer. Seasonal rates, which apply the high-
est price in the summer, increase the seasonal variation in bills.
Customers would rationally avoid a rate plan that exacerbates
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an already existing difficulty. If this interpretation is correct,
then seasonal rates combined with bill smoothing (by which
the supplier carries a portion of the summer bills over to the
winter) could provide an attractive arrangement for customers
and suppliers alike.

Model 2 attains a higher log-likelihood value than model 1, presum-
ably because the lognormal distribution assures negative coefficients for
the TOD and seasonal variables.

11.6.2. Conditional Distributions

We now use the estimated models to calculate customers’ con-
ditional distributions and the means of these distributions. We calculate
B, for each customer in two ways. First, we calculate 8, using equation
(11.3) with the point estimates of the population parameters, 6. Sec-
ond, we use the procedure in Section 11.3 to integrate over the sampling
distribution of the estimated population parameters.

The means and standard deviations of 8, over the sampled customers
calculated by these two methods are given in Tables 11.3 and 11.4,
respectively. The price coefficient is not listed in Table 11.3, since it
is fixed across the population. Table 11.4 incorporates the sampling
distribution of the population parameters, which includes variance in
the price coefficient.

Consider the results in Table 11.3 first. The mean of B, is very close
to the estimated population mean given in Table 11.2. This similarity
is expected for a correctly specified and consistently estimated model.
The standard deviation of B, would be zero if there were no conditioning
and would equal the population standard deviation if each customer’s
coefficient were known exactly. The standard deviations in Table 11.3
are considerably above zero and are fairly close to the estimated popu-
lation standard deviations in Table 11.2. For example, in model 1, the
conditional mean of the coefficient of contract length has a standard
deviation of 0.318 over customers, and the point estimate of the stan-
dard deviation in the population is 0.379. Thus, variation in B, captures
more than 70 percent of the total estimated variation in this coefficient.
Similar results are obtained for other coefficients. This result implies
that the mean of a customer’s conditional distribution captures a fairly
large share of the variation in coefficients across customers and has the
potential to be useful in distinguishing customers.

As discussed in Section 11.5, a diagnostic check on the specification
and estimation of the model is obtained by comparing the sample average
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Table 11.3. Average B, using point estimate 0

Model 1 Model 2

Contract length

Mean —0.2028 —0.2149

Std. dev. 0.3175 0.3262
Local utility

Mean 2.1205 2.2146

Std. dev. 1.2472 1.3836
Known company

Mean 1.5360 1.5997

Std. dev. 0.6676 0.6818
TOD rate

Mean —8.3194 —9.2584

Std. dev. 2.2725 3.1051
Seasonal rate

Mean —8.6394 —9.1344

Std. dev. 1.7072 2.0560

Table 11.4. Average B, with sampling
distribution of 6

Model 1 Model 2

Price

Mean —0.8753 —0.8836

Std. dev. 0.5461 0.0922
Contract length

Mean —0.2004 —0.2111

Std. dev. 0.3655 0.3720
Local utility

Mean 2.1121 2.1921

Std. dev. 1.5312 1.6815
Known company

Mean 1.5413 1.5832

Std. dev. 0.9364 0.9527
TOD rate

Mean —9.1615 —-9.0216

Std. dev. 2.4309 3.8785
Seasonal rate

Mean —9.4528 —8.9408

Std. dev. 1.9222 2.5615
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of the conditional distributions with the estimated population distribu-
tion. The means in Table 11.3 represent the means of the sample average
of the conditional distributions. The standard deviation of the sample-
average conditional distribution depends on the standard deviation of
B,, which is given in Table 11.3, plus the standard deviation of 8, — B,,.
When this latter portion is added, the standard deviation of each coeffi-
cient matches very closely the estimated population standard deviation.
This equivalence suggests that there is no significant specification error
and that the estimated population parameters are fairly accurate. This
suggestion is somewhat tempered, however, by the results in Table 11.4.

Table 11.4 gives the sample mean and standard deviation of the
mean of the sampling distribution of B, that is induced by the sampling
distribution of §. The means in Table 11.4 are the means of the sample
average of h(B | y., x,, 0) integrated over the sampling distribution of 6.
For model 1, a discrepancy occurs that indicates possible misspecifica-
tion. In particular, the means of the TOD and seasonal rates coefficients
in Table 11.4 exceed their estimated population means in Table 11.2. In-
terestingly, the means for these coefficients in Table 11.4 for model 1 are
closer to the analogous means for model 2 than to the estimated popula-
tion means for model 1 in Table 11.2. Model 2 has the more reasonably
shaped lognormal distribution for these coefficients and obtains a con-
siderably better fit than model 1. The conditioning in model 1 appears
to be moving the coefficients closer to the values in the better-specified
model 2 and away from its own misspecified population distributions.
This is an example of how a comparison of the estimated population
distribution with the sample average of the conditional distribution can
reveal information about specification and estimation.

The standard deviations in Table 11.4 are larger than those in Ta-
ble 11.3. This difference is due to the fact that the sampling variance in the
estimated population parameters is included in the calculations for Table
11.4 but not for Table 11.3. The larger standard deviations do not mean
that the portion of total variance in B, that is captured by variation in 8,
is larger when the sampling distribution is considered than when not.

Useful marketing information can be obtained by examining the B, of
each customer. The value of this information for targeted marketing has
been emphasized by Rossi ez al. (1996). Table 11.5 gives the calculated
B, for the first three customers in the data set, along with the population
mean of j,,.

The first customer wants to enter a long-term contract, in contrast
with the vast majority of customers who dislike long-term contracts.
He is willing to pay a higher energy price if the price is guaranteed
through a long term contract. He evaluates TOD and seasonal rates very
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Table 11.5. Condition means for three customers

Population Customer 1 Customer 2 Customer 3
Contract length —-0.213 0.198 —0.208 —0.401
Local utility 2.23 291 2.17 0.677
Known company 1.59 1.79 2.15 1.24
TOD rates —-9.19 -5.59 —8.92 —12.8
Seasonal rates -9.02 —5.86 —11.1 —-10.9

generously, as if all of his consumption were in the lowest-priced period
(note that the lowest price under TOD rates is 5 ¢/kWh and the lowest
price under seasonal rates is 6 c¢/kWh). That is, the first customer is
willing to pay, to be on TOD or seasonal rates, probably more than the
rates are actually worth in terms of reduced energy bills. Finally, this
customer is willing to pay more than the average customer to stay with
the local utility. From a marketing perspective, the local utility can easily
retain and make extra profits from this customer by offering a long-term
contract under TOD or seasonal rates.

The third customer dislikes seasonal and TOD rates, evaluating them
asif all of his consumption were in the highest-priced periods. He dislikes
long-term contracts far more than the average customer, and yet, unlike
most customers, prefers to receive service from a known company that
is not his local utility. This customer is a prime target for capture by a
well-known company if the company offers him a fixed price without
requiring a commitment.

The second customer is less clearly a marketing opportunity. A well-
known company is on about an equal footing with the local utility in
competing for this customer. This in itself might make the customer a
target of well-known suppliers, since he is less tied to the local utility
than most customers. However, beyond this information, there is little
beyond low prices (which all customers value) that would seem to attract
the customer. His evaluation of TOD and seasonal rates is sufficiently
negative that it is unlikely that a supplier could attract and make a profit
from the customer by offering these rates. The customer is willing to
pay to avoid a long-term contract, and so a supplier could attract this
customer by not requiring a contract if other suppliers were requiring
contracts. However, if other suppliers were not requiring contracts either,
there seems to be little leverage that any supplier would have over its
competitors. This customer will apparently be won by the supplier that
offers the lowest fixed price.

The discussion of these three customers illustrates the type of infor-
mation that can be obtained by conditioning on customer’s choices, and
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how the information translates readily into characterizing each customer
and identifying profitable marketing opportunities.

11.6.3. Conditional Probability for the Last Choice

Recall that the last choice situation faced by each customer was
not included in the estimation. It can therefore be considered a new
choice situation and used to assess the effect of conditioning on past
choices. We identified which alternative each customer chose in the
new choice situation and calculated the probability of this alternative.
The probability was first calculated without conditioning on previous
choices. This calculation uses the mixed logit formula (11.5) with the
population distribution of S, and the point estimates of the popula-
tion parameters. The average of this unconditional probability over cus-
tomers is 0.353. The probability was then calculated conditioned on pre-
vious choices. Four different ways of calculating this probability were
used:

1. Based on formula (11.6) using the point estimates of the popu-
lation parameters.

2. Based onformula (11.6) along with the procedurein Section 11.3
that takes account of the sampling variance of the estimates of
the population parameters.

3—4. With the logit formula

/
eﬁnxniT+l
’
§ . ePXn T
J

with the conditional mean f, being used for B,. This method is
equivalent to using the customer’s B, as if it were an estimate
of the customer’s true coefficients, §,. The two versions differ
in whether B, is calculated on the basis of the point estimate
of the population parameters (method 3) or takes the sampling
distribution into account (method 4).

Results are given in Table 11.6 for model 2. The most prominent result
is that conditioning on each customer’s previous choices improves the
forecasts for the last choice situation considerably. The average proba-
bility of the chosen alternative increases from 0.35 without conditioning
to over 0.50 with conditioning. For nearly three-quarters of the 361 sam-
pled customers, the prediction of their last choice situation is better with
conditioning than without, with the average probability rising by more
than 0.25. For the other customers, the conditioning makes the prediction
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Table 11.6. Probability of chosen alternative in last choice situation

Method 1 Method 2 Method 3 Method 4

Average probability 0.5213 0.5041 0.5565 0.5487
Number of customers
whose probability

rises with conditioning 266 260 268 264
Average rise in

probability for

customers with a rise 0.2725 0.2576 0.3240 0.3204

Number of customers
whose probability

drops with conditioning 95 101 93 97
Average fall in

probability for

customers with a drop 0.1235 0.1182 0.1436 0.1391

in the last choice situations less accurate, with the average probability
for these customers dropping.

There are several reasons why the predicted probability after condi-
tioning is not always greater. First, the choice experiments were con-
structed so that each situation would be fairly different from the other
situations, so as to obtain as much variation as possible. If the last sit-
uation involves new trade-offs, the previous choices will not be useful
and may in fact be detrimental to predicting the last choice. A more
appropriate test might be to design a series of choice situations that
elicited information on the relevant trade-offs and then design an extra
“holdout” situation that is within the range of trade-offs of the previous
ones.

Second, we did not include in our model all of the attributes of the
alternatives that were presented to customers. In particular, we omit-
ted attributes that did not enter significantly in the estimation of the
population parameters. Some customers might respond to these omit-
ted attributes, even though they are insignificant for the population as
a whole. Insofar as the last choice situation involves trade-offs of these
attributes, the conditional distributions of tastes would be misleading,
since the relevant tastes are excluded. This explanation suggests that,
if a mixed logit is going to be used for obtaining conditional densities
for each customer, the researcher might include attributes that could be
important for some individuals even though they are insignificant for the
population as a whole.

Third, regardless of how the survey and model are designed, some
customers might respond to choice situations in a quixotic manner, such
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that the tastes that are evidenced in previous choices are not applied by
the customer in the last choice situation.

Last, random factors can cause the probability for some customers to
drop with conditioning even when the first three reasons do not.

While at least one of these reasons may be contributing to the lower
choice probabilities for some of the customers in our sample, the gain
in predictive accuracy for the customers with an increase in probability
after conditioning is over twice as great as the loss in accuracy for those
with a decrease, and the number of customers with a gain is almost three
times as great as the number with a loss.

The third and easiest method, which simply calculates the standard
logit formula using the customers’ B, based on the point estimate of
the population parameters, gives the highest probability. This procedure
does not allow for the distribution of g, around B, or for the sampling
distribution of 6. Allowing for either variance reduces the average prob-
ability: using the conditional distribution of §, rather than just the mean
B, (methods 1 and 2 compared with methods 3 and 4, respectively)
reduces the average probability, and allowing for the sampling distribu-
tion of & rather than the point estimate (methods 2 and 4 compared with
methods 1 and 3, respectively) also reduces the average probability. This
result does not mean that method 3, which incorporates the least vari-
ance, is superior to the others. Methods 3 and 4 are consistent only if the
number of choice situations is able to rise without bound, so that 3, can
be considered to be an estimate of §8,,. With fixed 7', methods 1 and 2 are
more appropriate, since they incorporate the entire conditional density.

11.7 Discussion

This chapter demonstrates how the distribution of coefficients condi-
tioned on the customer’s observed choices are obtained from the distri-
bution of coefficients in the population. While these conditional distri-
butions can be useful in several ways, it is important to recognize the
limitations of the concept. First, the use of conditional distributions in
forecasting is limited to those customers whose previous choices are
observed. Second, while the conditional distribution of each customer
can be used in cluster analysis and for other identification purposes,
the researcher will often want to relate preferences to observable demo-
graphics of the customers. Yet, these observable demographics of the
customers could be entered directly into the model itself, so that the
population parameters vary with the observed characteristics of the cus-
tomers in the population. In fact, entering demographics into the model
is more direct and more accessible to hypothesis testing than estimating
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a model without these characteristics, calculating the conditional distri-
bution for each customer, and then doing cluster and other analyses on
the moments of the conditional distributions.

Given these issues, there are three main reasons that a researcher might
benefit from calculating customers’ conditional distributions. First, in-
formation on the past choices of customers is becoming more and more
widely available. Examples include scanner data for customers with
club cards at grocery stores, frequent flier programs for airlines, and
purchases from internet retailers. In these situations, conditioning on
previous choices allows for effective targeted marketing and the devel-
opment of new products and services that match the revealed preferences
of subgroups of customers.

Second, the demographic characteristics that differentiate customers
with different preferences might be more evident through cluster analysis
on the conditional distributions than through specification testing in the
model itself. Cluster analysis has its own unique way of identifying
patterns, which might in some cases be more effective than specification
testing within a discrete choice model.

Third, examination of customers’ conditional distributions can often
identify patterns that cannot be related to observed characteristics of
customers but are nevertheless useful to know. For instance, knowing
that a product or marketing campaign will appeal to a share of the popu-
lation because of their particular preferences is often sufficient, without
needing to identify the people on the basis of their demographics. The
conditional densities can greatly facilitate analyses that have these goals.



