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14 EM Algorithms

14.1 Introduction

In Chapter 8, we discussed methods for maximizing the log-likelihood
(L L) function. As models become more complex, maximization by these
methods becomes more difficult. Several issues contribute to the diffi-
culty. First, greater flexibility and realism in a model are usually attained
by increasing the number of parameters. However, the procedures in
Chapter 8 require that the gradient be calculated with respect to each
parameter, which becomes increasingly time consuming as the number
of parameters rises. The Hessian, or approximate Hessian, must be cal-
culated and inverted; with a large number of parameters, the inversion
can be numerically difficult. Also, as the number of parameters grows,
the search for the maximizing values is over a larger-dimensioned space,
such that locating the maximum requires more iterations. In short, each
iteration takes longer and more iterations are required.

Second, the L L function for simple models is often approximately
quadratic, such that the procedures in Chapter 8 operate effectively. As
the model becomes more complex, however, the L L function usually
becomes less like a quadratic, at least in some regions of the parameter
space. This issue can manifest itself in two ways. The iterative procedure
can get “stuck” in the nonquadratic areas of the L L function, taking tiny
steps without much improvement in the L L . Or the procedure can repeat-
edly “bounce over” the maximum, taking large steps in each iteration
but without being able to locate the maximum.

Another issue arises that is more fundamental than the count of param-
eters and the shape of the L L function. Usually, a researcher specifies a
more general, and hence complex, model because the researcher wants
to rely less on assumptions and, instead, obtain more information from
the data. However, the goal of obtaining more information from the data
is inherently at odds with simplicity of estimation.

Expectation-maximization (EM) algorithms are procedures for max-
imizing an L L function when standard procedures are numerically
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difficult or infeasible. The procedure was introduced by Dempster, Laird,
and Rubin (1977) as a way of handling missing data. However, it is appli-
cable far more generally and has been used successfully in many fields
of statistics. McLachlan and Krishnan (1997) provide a review of appli-
cations. In the field of discrete choice modeling, EM algorithms have
been used by Bhat (1997a) and Train (2008a,b).

The procedure consists of defining a particular expectation and then
maximizing it (hence the name). This expectation is related to the L L
function in a way that we will describe, but it differs in a way that
facilitates maximization. The procedure is iterative, starting at some
initial value for the parameters and updating the values in each iteration.
The updated parameters in each iteration are the values that maximize
the expectation in that particular iteration. As we will show, repeated
maximization of this function converges to the maximum of L L function
itself.

In this chapter, we describe the EM algorithm in general and develop
specific algorithms for discrete choice models with random coefficients.
We show that the EM algorithm can be used to estimate very flexi-
ble distributions of preferences, including nonparametric specifications
that can approximate asymptotically any true underlying distribution.
We apply the methods in a case study of consumers’ choice between
hydrogen and gas-powered vehicles.

14.2 General Procedure

In this section we describe the EM procedure in a highly general way
so as to elucidate its features. In subsequent sections, we apply the gen-
eral procedure to specific models. Let the observed dependent variables
be denoted collectively as y, representing the choices or sequence of
choices for an entire sample of decision makers. The choices depend on
observed explanatory variables that, for notational convenience, we do
not explicitly denote. The choices also depend on data that are missing,
denoted collectively as z. Since the values of these missing data are
not observed, the researcher specifies a distribution that represents the
values that the missing data could take. For example, if the income of
some sampled individuals is missing, the distribution of income in the
population can be a useful specification for the distribution of the miss-
ing income values. The density of the missing data is denoted f (x | θ ),
which depends in general on parameters θ to be estimated.

The behavioral model relates the observed and missing data to the
choices. This model predicts the choices that would arise if the missing
data were actually observed instead of being missing. This behavioral
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model is denoted P(y | z, θ ), where θ are parameters that may overlap
or extend those in f . (For notational compactness, we use θ to denote
all the parameters to be estimated, including those entering f and those
entering P .) Since, however, the missing data are in fact missing, the
probability of the observed choices, using the information that the re-
searcher observes, is the integral of the conditional probability over the
density of the missing data:1

P(y | θ ) =
∫

P(y | z, θ ) f (z | θ )dz.

The density of the missing data, f (z | θ ), is used to predict the ob-
served choices and hence does not depend on y. However, we can obtain
some information about the missing data by observing the choices that
were made. For example, in vehicle choice, if a person’s income is
missing but the person is observed to have bought a Mercedes, one can
infer that it is likely that this person’s income is above average. Let us
define g(z | y, θ ) as the density of the missing data conditional on the
observed choices in the sample. This conditional density is related to the
unconditional density through Bayes’ identity:

h(z | y, θ ) = P(y | z, θ ) f (z | θ )

P(y | θ )
.

Stated succinctly, the density of z conditional on observed choices is
proportional to the unconditional density of z times the probability of
the observed choices given this z. The denominator is simply the nor-
malizing constant, equal to the integral of the numerator. This con-
cept of a conditional distribution should be familiar to readers from
Chapter 11.

Now consider estimation. The L L function is based on the information
that the researcher has, which does not include the missing data. The
L L function is

L L(θ ) = logP(y | θ ) = log

(∫
P(y | z, θ ) f (z | θ )dz

)
.

In principle, this function can be maximized using the procedures
described in Chapter 8. However, as we will see, it is often much easier
to maximize L L in a different way.

The procedure is iterative, starting with an initial value of the param-
eters and updating them in a way to be described. Let the trial value of

1 We assume in this expression that z is continuous, such that the unconditional probability is an

integral. If z is discrete, or a mixture of continuous and discrete variables, then the integration is

replaced with a sum over the discrete values, or a combination of integrals and sums.
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the parameters in a given iteration be denoted θ t . Let us define a new
function at θ t that is related to L L but utilizes the conditional density h.
This new function is

E(θ | θ t ) =
∫

h(z | y, θ t )log

(
P(y | z, θ ) f (z | θ )

)
dz,

where the conditional density h is calculated using the current trial value
of the parameters, θ t . This function has a specific meaning. Note that the
part on the far right, P(y | z, θ ) f (z | θ ), is the joint probability of the
observed choices and the missing data. The log of this joint probability
is the L L of the observed choices and the missing data combined. This
joint L L is integrated over a density, namely, h(z | y, θ t ). Our function
E is therefore an expectation of the joint L L of the missing data and
observed choices. It is a specific expectation, namely, the expectation
over the density of the missing data conditional on observed choices.
Since the conditional density of z depends on the parameters, this density
is calculated using the values θ t . Stated equivalently, E is the weighted
average of the joint L L , using h(z | y, θ t ) as weights.

The EM procedure consists of repeatedly maximizing E . Starting with
some initial value of the parameters, the parameters are updated in each
iteration by the following formula:

(14.1) θ t+1 = argmaxθ E(θ | θ t ).

In each iteration, the current values of the parameters, θ t , are used to cal-
culate the weights h and then the weighted, joint L L is maximized. The
name EM derives from the fact that the procedure utilizes an expectation
that is maximized.

It is important to recognize the dual role of the parameters in E . First,
the parameters enter the joint log-likelihood of the observed choices
and the missing data, log P(y | z, θ ) f (z | θ ). Second, the parameters
enter the conditional density of the missing data, h(z | y, θ ). The function
E is maximized with respect to the former holding the latter constant.
That is, E is maximized over the θ entering log P(y | z, θ ) f (z | θ ),
holding the θ that enters the weights h(z | y, θ ) at their current values
θ t . To denote this dual role, E(θ | θ t ) is expressed as a function of θ , its
argument over which maximization is performed, given θ t – the value
used in the weights that are held fixed during maximization.

Under very general conditions, the iterations defined by equation
(14.1) converge to the maximum of L L . Bolyes (1983) and Wu (1983)
provide formal proofs. I provide an intuitive explanation in the next
section. However, readers who are interested in seeing examples of the
algorithm first can proceed directly to Section 14.3.
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14.2.1. Why the EM Algorithm Works

The relation of the EM algorithm to the L L function can be
explained in three steps. Each step is a bit opaque, but the three combined
provide a startlingly intuitive understanding.

Step 1: Adjust E to equal LL at θt

E(θ | θ t ) is not the same as L L(θ ). To aid comparison between them, let
us add a constant to E(θ | θ t ) that is equal to the difference between the
two functions at θ t :

E∗(θ | θ t ) = E(θ | θ t ) + [L L(θ t ) − E(θ t | θ t )].

The term in brackets is constant with respect to θ and so maximization
of E∗ is the same as maximization of E itself. Note, however, that by
construction, E∗(θ | θ t ) = L L(θ ) at θ = θ t .

Step 2: Note that the derivative with respect to θ is the same for E∗

and LL evaluated at θ = θt

Consider the derivative of E∗(θ | θ t ) with respect to its argu-
ment θ :

dE∗(θ | θ t )

dθ
= dE(θ | θ t )

dθ

=
∫

h(z | y, θ t )

(
d logP(y | z, θ ) f (z | θ )

dθ

)
dz

=
∫

h(z | y, θ t )
1

P(y | z, θ ) f (z | θ )

d P(y | z, θ ) f (z |θ )

dθ
dz.

Now evaluate this derivative at θ = θ t :

dE∗(θ | θ t )

dθ

∣∣∣∣∣
θ t

=
∫

h(z | y, θ t )
1

P(y | z, θ t ) f (z | θ t )

(
d P(y | z, θ ) f (z | θ )

dθ

)
θ t

dz

=
∫

P(y | z, θ t ) f (z | θ t )

P(y | θ t )

1

P(y | z, θ t ) f (z | θ t )

×
(

d P(y | z, θ ) f (z | θ )

dθ

)
θ t

dz

=
∫

1

P(y | θ t )

(
d P(y | z, θ ) f (z | θ )

dθ

)
θ t

dz
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= 1

P(y | θ t )

∫ (
d P(y | z, θ ) f (z | θ )

dθ

)
θ t

dz

=
(

d logP(y | θ )

dθ

)
θ t

=
(

d L L(θ )

dθ

)
θ t

.

At θ = θ t , the two functions, E∗ and L L , have the same slope.

Step 3: Note that E∗ ≤ LL for all θ
This relation can be shown as follows:

L L(θ )

= logP(y | θ )(14.2)

= log

∫
P(y | z, θ ) f (z | θ )dz

= log

∫
P(y | z, θ ) f (z | θ )

h(z | y, θ t )
h(z | y, θ t )dz

≥
∫

h(z | y, θ t )log
P(y | z, θ ) f (z | θ )

h(z | y, θ t )
dz(14.3)

=
∫

h(z | y, θ t )log

(
P(y | z, θ ) f (z | θ )

)
dz

−
∫

h(z | y, θ t )log
(

h(z | y, θ t )
)

dz

= E(θ | θ t ) −
∫

h(z | y, θ t )log
(

h(z | y, θ t )
)

dz

= E(θ | θ t ) −
∫

h(z | y, θ t )

× log

(
h(z | y, θ t )

P(y | θ t )

P(y | θ t )

)
dz

= E(θ | θ t ) +
∫

h(z | y, θ t )logP(y | θ t )dz

−
∫

h(z | y, θ t )log

(
h(z | y, θ t )P(y | θ t )

)
dz

= E(θ | θ t ) + logP(y | θ t )

∫
h(z | y, θ t )dz

−
∫

h(z | y, θ t )log

(
h(z | y, θ t )P(y | θ t )

)
dz
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[log (a) + log (b)] / 2
log [(a + b) / 2]

a + b
2

a b x

log (x)

Figure 14.1. Example of Jensen’s inequality.

= E(θ | θ t ) + logP(y | θ t ) −
∫

h(z | y, θ t )(14.4)

× log

(
h(z | y, θ t )P(y | θ t )

)
dz

= E(θ | θ t ) + L L(θ t ) −
∫

h(z | y, θ t )(14.5)

× log

(
P(y | z, θ t ) f (z | θ t )

)
dz

= E(θ | θ t ) + L L(θ t ) − E(θ t | θ t )

= E∗(θ | θ t ).

The inequality in equation (14.3) is due to Jensen’s inequality,
which states that log(E(x)) > E(log(x)). In our case, x is the statistic
P(y|z,θ ) f (z|θ )

h(z|y,θ t )
and the expectation is over density h(z | y, θ t ). An example

of this inequality is shown in Figure 14.1, where the averages are over
two values labeled a and b. The average of log(a) and log(b) is the mid-
point of the dotted line that connects these two points on the log curve.
The log evaluated at the average of a and b is log((a + b)/2), which is
above the midpoint of the dotted line. Jensen’s inequality is simply a
result of the concave shape of the log function.

Equation (14.4) is obtained because the density h integrates to 1. Equa-
tion (14.5) is obtained by substituting h(z | y, θ t ) = P(y | z, θ t ) f (z |
θ t )/P(y | θ t ) within the log and then cancelling the P(y | θ t )’s.
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LL

θ
θθ t t + 1

Figure 14.2. Relation of E∗ and L L .

Combine Results to Compare E∗ and L L

Figure 14.2 shows E∗(θ | θ t ) and L L(θ ) in the appropriate re-
lation to each other. As we have shown, these two functions are equal
and have the same slope at θ = θ t . These results imply that the two
functions are tangent to each other at θ = θ t . We have also shown that
E∗(θ | θ t ) ≤ L L(θ ) for all θ . Consistent with this relation, E∗ is drawn
below L L(θ ) in the graph at all points except θ t where they are the same.

The EM algorithm maximizes E∗(θ | θ t ) to find the next trial value
of θ . The maximizing value is shown as θ t+1. As the graph indicates, the
L L function is necessarily higher at the new parameter value, θ t+1, than
at the original value, θ t . As long as the derivative of the L L function
is not already zero at θ t, maximizing E∗(θ | θ t ) raises L L(θ ).2 Each
iteration of the EM algorithm raises the L L function until the algorithm
converges at the maximum of the L L function.

14.2.2. Convergence

Convergence of the EM algorithm is usually defined as a suffi-
ciently small change in the parameters (e.g., Levine and Casella, 2001)
or in the L L function (e.g., Weeks and Lange, 1989; Aitkin and Aitkin,
1996). These criteria need to be used with care, since the EM algorithm
can move slowly near convergence. Ruud (1991) shows that the conver-
gence statistic in Section 8.4 can be used with the gradient and Hessian
of E instead of L L . However, calculating this statistic can be more com-
putationally intensive than the iteration of the EM algorithm itself, and
can be infeasible in some cases.

2 In fact, any increase in E∗(θ | θ t ) leads to an increase in L L(θ ).
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14.2.3. Standard Errors

There are three ways that standard errors can be calculated. First,
once the maximum of L L(θ ) has been found with the EM algorithm,
the standard errors can be calculated from L L the same as if the L L
function had been maximized directly. The procedures in Section 8.6
are applicable: The asymptotic standard errors can be calculated from
the Hessian or from the variance of the observation-specific gradients
(i.e., the scores), calculated from L L(θ ) evaluated at θ̂ .

A second option arises from the result we obtained in step 2. We
showed thatE and L L have the same gradients at θ = θ t . At convergence,
the value of θ does not change from one iteration to the next, such that
θ̂ = θ t+1 = θ t . Therefore, at θ̂ , the derivatives of these two functions
are the same. This fact implies that the scores can be calculated from E
rather than L L . If E takes a more convenient form than L L , as is usually
the case when applying an EM algorithm, this alternative calculation
can be attractive.

A third option is bootstrap, as also discussed in Section 8.6. Under this
option, the EM algorithm is applied numerous times, using a different
sample of the observations each time. In many contexts for which EM
algorithms are applied, bootstrapped standard errors are more feasible
and useful than the asymptotic formulas. The case study in the last
section provides an example.

14.3 Examples of EM Algorithms

We describe in this section several types of discrete choice models whose
L L functions are difficult to maximize directly but are easy to estimate
with EM algorithms. The purpose of the discussion is to provide con-
crete examples of how EM algorithms are specified as well as to illustrate
the value of the approach.

14.3.1. Discrete Mixing Distribution with Fixed Points

One of the issues that arises with mixed logit models (or, indeed,
with any mixed model) is the appropriate specification of the mixing
distribution. It is customary to use a convenient distribution, such as
normal or lognormal. However, it is doubtful that the true distribution
of coefficients takes a mathematically convenient form. More flexible
distributions are useful, where flexibility means that the specified distri-
bution can take a wider variety of shapes, depending on the values of its
parameters.
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Usually, greater flexibility is attained by including more parameters.
In nonparametric estimation, a family of distributions is specified that
has the property that the distribution becomes more flexible as the num-
ber of parameters rises. By allowing the number of parameters to rise
with sample size, the nonparametric estimator is consistent for any true
distribution. The term “nonparametric” is a bit of a misnomer in this con-
text; “superparametric” is perhaps more appropriate, since the number
of parameters is usually larger than that under standard specifications
and rises with sample size to gain ever-greater flexibility.

The large number of parameters in nonparametric estimation makes
direct maximization of the L L function difficult. In many cases, however,
an EM algorithm can be developed that facilitates estimation consider-
ably. The current section presents one such case.

Consider a mixed logit with an unknown distribution of coefficients.
Any distribution can be approximated arbitrarily closely by a discrete
distribution with a sufficiently large number of points. We can use this
fact to develop a nonparametric estimator of the mixing distribution,
using an EM algorithm for estimation.

Let the density of coefficients be represented by C points, with βc

being the cth point. The location of these points is assumed (for the
current procedure) to be fixed, and the mass at each point (i.e., the share
of the population at each point) is the parameter to be estimated. One
way to select the points is to specify a maximum and minimum for
each coefficient and create a grid of evenly spaced points between the
maxima and minima. For example, suppose there are five coefficients
and the range between the minimum and maximum of each coefficient
is represented by 10 evenly spaced points. The 10 points in each di-
mension create a grid of 105 = 100,000 points in the five-dimensional
space. The parameters of the model are the share of the population at
each of the 100,000 points. As we will see, estimation of such a large
number of parameters is quite feasible with an EM algorithm. By in-
creasing the number of points, the grid becomes ever finer, such that the
estimation of shares at the points approximates any underlying distri-
bution.

The utility that agent n obtains from alternative j is

Unj = βnxnj + εnj ,

where ε is i.i.d. extreme value. The random coefficients have the
discrete distribution described previously, with sc being the share of
the population at point βc. The distribution is expressed function-
ally as
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f (βn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s1 if βn = β1

s2 if βn = β2

...
sC if βn = βC

0 otherwise,

where the shares sum to 1:
∑

c sc = 1. For convenience, denote the shares
collectively as vector s = 〈s1, . . . , sC〉.3

Conditional on βn = βc for some c, the choice model is a standard
logit:

Lni (βc) = eβcxni∑
j eβcxnj

.

Since βn is not known for each person, the choice probability is a mixed
logit, mixed over the discrete distribution of βn:

Pni (s) =
∑

c

sc Lni (βc).

The L L function is L L(s) = ∑
n logPnin (s), where in is the chosen al-

ternative of agent n.
The L L can be maximized directly to estimate the shares s. With a

large number of classes, as would usually be needed to flexibly represent
the true distribution, this direct maximization can be difficult. However,
an EM algorithm can be utilized for this model that is amazingly simple,
even with hundreds of thousands of points.

The “missing data” in this model are the coefficients of each agent.
The distribution f gives the share of the population with each coefficient
value. However, as discussed in Chapter 11, a person’s choice reveals
information about their coefficients. Conditional on person n choosing
alternative in , the probability that the person has coefficients βc is given
by Bayes’ identity:

h(βc | in, s) = sc Lnin (βc)

Pnin (s)
.

3 This specification can be considered a type of latent class model, where there are C classes,

the coefficients of people in class c are βc , and sc is the share of the population in class c.

However, the term “latent class model” usually refers to a model in which the location of the

points are parameters as well as the shares. We consider this more traditional form in our next

example.
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This conditional distribution is used in the EM algorithm. In particular,
the expectation for the EM algorithm is

E(s | st ) =
∑

n

∑
c

h(βc | in, st )log
(

sc Lnin (βc)
)
.

Since log
(

sc Lnin (βc)
)

= log(sc) + logLnin (βc), this expectation can be

rewritten as two parts:

E(s | st ) =
∑

n

∑
c

h(βc | in, st )log(sc)

+
∑

n

∑
c

h(βc | in, st )logLnin (βc).

This expectation is to be maximized with respect to the parameters s.
Note, however, that the second part on the right does not depend on
s: it depends only on the coefficients βc that are fixed points in this
nonparametric procedure. Maximization of the preceding formula is
therefore equivalent to maximization of just the first part:

E(s | st ) =
∑

n

∑
c

h(βc | in, st )log(sc).

This function is very easy to maximize. In particular, the maximizing
value of sc, accounting for the constraint that the shares sum to 1, is

st+1
c =

∑
n h(βc | in, st )∑

n

∑
c′ h(βc′ | in, st )

.

Using the nomenclature from the general description of EM algorithms,
h(βc | in, st ) are weights, calculated at the current value of the shares st .
The updated share for class c is the sum of weights at point c as a share
of the sum of weights at all points.

This EM algorithm is implemented in the following steps:

1. Define the points βc for c = 1, . . . , C .
2. Calculate the logit formula for each person at each point:

Lni (βc) ∀n, c.
3. Specify initial values of the share at each point, labeled col-

lectively as s0. It is convenient for the initial shares to be
sc = 1/C ∀c.

4. For each person and each point, calculate the probability of
the person having those coefficients conditional on the per-
son’s choice, using the initial shares s0 as the unconditional
probabilities: h(βc | in, s0) = s0

c Lni (βc)/Pni (s0). Note that the



P1: JYD/...

CB495-14Drv CB495/Train KEY BOARDED June 3, 2009 2:13 Char Count= 0

EM Algorithms 359

denominator is the sum over points of the numerator. For con-
venience, label this calculated value h0

nc.

5. Update the population share at point c as s1
c =

∑
n h0

nc∑
n

∑
c′ h0

nc′
.

6. Repeat steps 4 and 5 using the updated shares s in lieu of the
original starting values. Continue repeating until convergence.

This procedure does not require calculation of any gradients or inversion
of any Hessian, as the procedures in Chapter 8 utilize for direct max-
imization of L L . Moreover, the logit probabilities are calculated only
once (in step 2), rather than in each iteration. The iterations consist of
recalibrating the shares at each point, which is simple arithmetic. Be-
cause so little calculation is needed for each point, the procedure can
be implemented with a very large number of points. For example, the
application in Train (2008a) included more than 200,000 points, and yet
estimation took only about 30 minutes. In contrast, it is doubtful that
direct maximization by the methods in Chapter 8 would have even been
feasible, since they would entail inverting a 200,000 × 200,000 Hessian.

14.3.2. Discrete Mixing Distribution with Points
as Parameters

We can modify the previous model by treating the coefficients,
βc for each c, as parameters to be estimated rather than fixed points. The
parameters of the model are then the location and share of the population
at each point. Label these parameters collectively as θ = 〈sc, βc, c =
1, . . . , C〉. This specification is often called a latent class model: the
population consists of C distinct classes with all people within a class
having the same coefficients but coefficients being different for different
classes. The parameters of the model are the share of the population in
each class and the coefficients for each class.

The missing data are the class membership of each person. The expec-
tation for the EM algorithm is the same as for the previous specification
except that now the βc’s are treated as parameters:

E(θ | θ t ) =
∑

n

∑
c

h(βc | in, st )log
(
sc Lnin (βc)

)
.

Note that each set of parameters enters only one term inside the log: the
vector of shares s does not enter any of the Lnin (βc)’s, and each βc enters
only Lnin (βc) for class c. Maximization of this function is therefore
equivalent to separate maximization of each of the following functions:

(14.6) E(s | θ t ) =
∑

n

∑
c

h(βc | in, st )log(sc)
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and for each c:

(14.7) E(βc | θ t ) =
∑

n

h(βc | in, st )logLnin (βc).

The maximum of (14.6) is attained, as before, at

st+1
c =

∑
n h(βc | in, st )∑

n

∑
c′ h(βc′ | in, st )

.

For updating the coefficients βc, note that (14.7) is the L L function
for a standard logit model, with each observation weighted by h(βc |
in, st ). The updated values of βc are obtained by estimating a standard
logit model with each person providing an observation that is weighted
appropriately. The same logit estimation is performed for each class c,
but with different weights for each class.

The EM algorithm is implemented in these steps:

1. Specify initial values of the share and coefficients in each class,
labeled β0

c ∀c and s0. It is convenient for the initial shares to be
1/C . I have found that starting values for the coefficients can
easily be obtained by partitioning the sample into C groups and
running a logit on each group.4

2. For each person and each class, calculate the probability of
being in that class conditional on the person’s choice, using
the initial shares s0 as the unconditional probabilities: h(β0

c |
in, s0) = s0

c Lnin (β0
c )/Pnin (s0). Note that the denominator is the

sum over classes of the numerator. For convenience, label this
calculated value h0

nc.

3. Update the share in class c as s1
c =

∑
n h0

nc∑
n

∑
c′ h0

nc′
.

4. Update the coefficients for each class c by estimating a logit
model with person n weighted by h0

nc. A total of C logit models
are estimated, using the same observations but different weights
in each.

5. Repeat steps 2–4 using the updated shares s and coefficients
βc ∀c in lieu of the original starting values. Continue repeating
until convergence.

4 Note that these groups do not represent a partitioning of the sample into classes. The classes

are latent and so such partitioning is not possible. Rather, the goal is to obtain C sets of starting

values for the coefficients of the C classes. These starting values must not be the same for all

classes since, if they were the same, the algorithm would perform the same calculations for each

class and return for all classes the same shares and updated estimates in each iteration. An easy

way to obtain C different sets of starting values is to divide the sample into C groups and estimate

a logit on each group.
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An advantage of this approach is that the researcher can implement non-
parametric estimation, with the class shares and coefficients in each class
treated as parameters, using any statistical package that includes a logit
estimation routine. For a given number of classes, this procedure takes
considerably longer than the previous one, since C logit models must
be estimated in each iteration. However, far fewer classes are probably
needed with this approach than the previous one to adequately represent
the true distribution, since this procedure estimates the “best” location of
the points (i.e, the coefficients), while the previous one takes the points
as fixed.

Bhat (1997a) developed an EM algorithm for a model that is similar to
this one, except that the class shares sc are not parameters in themselves
but rather are specified to depend on the demographics of the person. The
EM algorithm that he used replaces our step 3 with a logit model of class
membership, with conditional probability of class membership serving
as the dependent variable. His application demonstrates the overriding
point of this chapter: that EM algorithms can readily be developed for
many forms of complex choice models.

14.3.3. Normal Mixing Distribution with
Full Covariance

We pointed out in Chapter 12 that a mixed logit with full co-
variance among coefficients can be difficult to estimate by standard
maximization of the L L function, due both to the large number of co-
variance parameters and to the fact that the L L is highly non-quadratic.
Train (2008b) developed an EM algorithm that is very simple and fast
for mixed logits with full covariance. The algorithm takes the following
very simple form:

1. Specify initial values for the mean and covariance of the co-
efficients in the population.

2. For each person, take draws from the population distribution
using this initial mean and covariance.

3. Weight each person’s draws by that person’s conditional density
of the draws.

4. Calculate the mean and covariance of the weighted draws for
all people. These become the updated mean and covariance of
the coefficients in the population.

5. Repeat steps 2–4 using the updated mean and covariance, and
continue repeating until there is no further change (to a toler-
ance) in the mean and covariance.
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The converged values are the estimates of the population mean and
covariance. No gradients are required. All that is needed for estimation
of a model with fully correlated coefficients is to repeatedly take draws
using the previously calculated mean and covariance, weight the draws
appropriately, and calculate the mean and covariance of the weighted
draws.

The procedure is readily applicable when the coefficients are normally
distributed or when they are transformations of jointly normal terms.
Following the notation in Train and Sonnier (2005), the utility that agent
n obtains from alternative j is

Unj = αnxnj + εnj ,

where the random coefficients are transformations of normally dis-
tributed terms: αn = T (βn), with βn distributed normally with mean
b and covariance W . The transformation allows considerable flexibil-
ity in the choice of distribution. For example, a lognormal distribution
is obtained by specifying transformation αn = exp(βn). An Sb distri-
bution, which has an upper and lower bound, is obtained by specifying
αn = exp(βn)/(1 + exp(βn)). Of course, if the coefficient is itself normal
then αn = βn . The normal density is denoted φ(βn | b, W ).

Conditional on βn , the choice probabilities are logit:

Lni (βn) = eT (βn)xni∑
j eT (βn)xnj

.

Since βn is not known, the choice probability is a mixed logit, mixed
over the distribution of βn:

Pni (b, W ) =
∫

Lni (β)φ(β | b, W )dβ.

The L L function is L L(b, W ) = ∑
n logPnin (b, W ), where in is the cho-

sen alternative of agent n.
As discussed in Section 12.7, classical estimation of this model by

standard maximization of L L is difficult, and this difficulty is one of
the reasons for using Bayesian procedures. However, an EM algorithm
can be applied that is considerably easier than standard maximization
and makes classical estimation about as convenient as Bayesian for this
model.

The missing data for the EM algorithm are the βn of each person.
The density φ(β | b, W ) is the distribution of β in the population. For
the EM algorithm, we use the conditional distribution for each person.
By Bayes’ identity, the density of β conditional on alternative i being



P1: JYD/...

CB495-14Drv CB495/Train KEY BOARDED June 3, 2009 2:13 Char Count= 0

EM Algorithms 363

chosen by person n is h(β | i, b, W ) = Lni (β)φ(β | b, W )/Pni (b, W ).
The expectation for the EM algorithm is

E(b, W | bt , W t ) =
∑

n

∫
h(β | in, bt , W t )

× log

(
Lnin (β)φ(β | b, W )

)
dβ.

Note that Lnin (β) does not depend on the parameters b and W . Maxi-
mization of this expectation with respect to the parameters is therefore
equivalent to maximization of

E(b, W | bt , W t ) =
∑

n

∫
h(β | in, bt , W t )log

(
φ(β | b, W )

)
dβ.

The integral inside this expectation does not have a closed form. However
we can approximate the integral through simulation. Substituting the
definition of h(·) and rearranging, we have

E(b, W | bt , W t ) =
∑

n

∫
Lnin (β)

Pnin (bt , W t )
log

(
φ(β | b, W )

)
× φ(β | bt , W t )dβ.

The expectation over φ is simulated by taking R draws from φ(β |
bt , W t ) for each person, labeled βnr for the r th draw for person n. The
simulated expectation is

Ẽ(b, W | bt , W t ) =
∑

n

∑
r

wt
nr log

(
φ(βnr | b, W )

)
/R,

where the weights are

wt
nr = Lnin (βnr )

1
R

∑
r ′ Lnin (βnr ′)

.

This simulated expectation takes a familiar form: it is the L L function for
a sample of draws from a normal distribution, with each draw weighted
by wt

nr .5 The maximum likelihood estimator of the mean and covariance
of a normal distribution, given a weighted sample of draws from that
distribution, is simply the weighted mean and covariance of the sampled
draws. The updated mean is

bt+1 = 1

N R

∑
n

∑
r

wt
nrβnr

5 The division by R can be ignored since it does not affect maximization, in the same way that

division by sample size N is omitted from E .



P1: JYD/...

CB495-14Drv CB495/Train KEY BOARDED June 3, 2009 2:13 Char Count= 0

364 Estimation

and the updated covariance matrix is

W t+1 = 1

N R

∑
n

∑
r

wt
nr (βnr − bt+1)(βnr − bt+1)′.

Note that W t+1 is necessarily positive definite, as required for a covari-
ance matrix, since it is constructed as the covariance of the draws.

The EM algorithm is implemented as follows:

1. Specify initial values for the mean and covariance, labeled b0

and W 0.
2. Create R draws for each of the N people in the sample

as β0
nr = b0 + chol(W 0)ηnr , where chol(W 0) is the lower-

triangular Choleski factor of W 0 and ηnr is a conforming vector
of i.i.d. standard normal draws.

3. For each draw for each person, calculate the logit probability of
the person’s observed choice: Lnin (β0

nr ).
4. For each draw for each person, calculate the weight

w0
nr = Lnin (β0

nr )∑
r ′ Lnin (β0

nr ′)/R
.

5. Calculate the weighted mean and covariance of the N ∗ R
drawsβ0

nr , r = 1, . . . , R, n = 1, . . . , N , using weightw0
nr . The

weighted mean and covariance are the updated parameters b1

and W 1.
6. Repeat steps 2–5 using the updated mean b and variance W

in lieu of the original starting values. Continue repeating until
convergence.

This procedure can be implemented without evoking any estimation
software, simply by taking draws, calculating logit formulas to construct
weights, and then calculating the weighted mean and covariance of the
draws. A researcher can estimate a mixed logit with full covariance and
with coefficients that are possibly transformations of normals with just
these simple steps.

Train (2008a) shows that this procedure can be generalized to a fi-
nite mixture of normals, where β is drawn from any of C normals with
different means and covariances. The probability of drawing β from
each normal (i.e., the share of the population whose coefficients are
described by each normal distribution) is a parameter along with the
means and covariances. Any distribution can be approximated by a fi-
nite mixture of normals, with a sufficient number of underlying nor-
mals. By allowing the number of normals to rise with sample size, the
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approach becomes a form of nonparametric estimation of the true mixing
distribution. The EM algorithm for this type of nonparametrics combines
the concepts of the current section on normal distributions with full co-
variance and the concepts of the immediately previous section on discrete
distributions.

One last note is useful. At convergence, the derivatives of
Ẽ(b, W | b̂, Ŵ ) provide scores that can be used to estimate the asymp-
totic standard errors of the estimates. In particular, the gradient with
respect to b and W is

Ẽ(b, W | b̂, Ŵ )

db
=

∑
n

[
1

R

∑
r

−wnr W −1(βnr − b)

]

and

Ẽ(b, W | b̂, Ŵ )

dW

=
∑

n

[
1

R

∑
r

wnr

(
−1

2
W −1 + 1

2
W −1(βnr − b)(βnr − b)′W −1

)]
,

where the weights wnr are calculated at the estimated values b̂ and Ŵ .
The terms in brackets are the scores for each person, which we can collect
into a vector labeled sn . The variance of the scores is V = ∑

n sns ′
n/N .

The asymptotic covariance of the estimator is then calculated as V −1/N ,
as discussed in Section 8.6.

14.4 Case Study: Demand for Hydrogen Cars

Train (2008a) examined buyers’ preferences for hydrogen-powered
vehicles, using several of the EM algorithms that we have described.
We will describe one of his estimated models as an illustration of the
procedure. A survey of new car buyers in Southern California was con-
ducted to assess the importance that these buyers place on several is-
sues that are relevant for hydrogen vehicles, such as the availability of
refueling stations. Each respondent was presented with a series of 10
stated-preference experiments. In each experiment the respondent was
offered a choice among three alternatives: the conventional-fuel vehicle
(CV) that the respondent had recently purchased and two alternative-
fuel vehicles (AVs) with specified attributes. The respondent was asked
to evaluate the three options, stating which they considered best and
which worst. The attributes represented relevant features of hydrogen
vehicles, but the respondents were not told that the alternative fuel was
hydrogen so as to avoid any preconceptions that respondents might have
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developed with respect to hydrogen vehicles. The attributes included in
the experiments are as follows:

� Fuel cost (FC), expressed as percent difference from the CV.
In estimation, the attribute was scaled as a share, such that fuel
costs of 50 percent less than the conventional-fuel vehicle enters
as −0.5 and 50 percent more enters as 0.5.

� Purchase price (PP), expressed as percent difference from the
CV, scaled analogously to fuel cost when entering the model.

� Driving radius (DR): the farthest distance from home that one
is able to travel and then return, starting on a full tank of fuel.
As defined, driving radius is one-half the vehicle’s range. In the
estimated models, DR was scaled in hundreds of miles.

� Convenient medium-distance destinations (CMDD): the percent
of destinations within the driving radius that “require no ad-
vanced planning because you can refuel along the way or at
your destination” as opposed to destinations that “require re-
fueling (or at least estimating whether you have enough fuel)
before you leave to be sure you can make the round-trip.” This
attribute reflects the distribution of potential destinations and
refueling stations within the driving radius, recognizing that the
tank will not always be full when starting. In the estimated mod-
els, it was entered as a share, such that, for example, 50 percent
enters as 0.50.

� Possible long-distance destinations (PLDD): the percent of des-
tinations beyond the driving radius that are possible to reach
because refueling is possible, as opposed to destinations that
cannot be reached due to limited station coverage. This attribute
reflects the extent of refueling stations outside the driving radius
and their proximity to potential driving destinations. It entered
the models scaled analogously to CMDD.

� Extra time to local stations (ETLS): additional one-way travel
time, beyond the time typically required to find a conventional
fuel station, that is required to get to an alternative fuel station in
the local area. ETLS was defined as having values of 0, 3, and 10
minutes in the experiments; however, in preliminary analysis,
it was found that respondents considered 3 minutes to be no
inconvenience (i.e., equivalent to 0 minutes). In the estimated
models, therefore, a dummy variable for ETLS being 10 or not
was entered, rather than ETLS itself.

In the experiments, the CV that the respondent had purchased was de-
scribed as having a driving radius of 200 miles, CMDD and PLDD equal
to 100 percent, and, by definition, ETLS, FC, and PP of 0.
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Table 14.1. Mixed logit models with discrete distribution
of coefficients and different numbers of classes

Classes Log-Likelihood Parmeters AIC BIC

1 −7,884.6 7 15,783.2 15,812.8
5 −6,411.5 39 12,901.0 13,066.0
6 −6,335.3 47 12,764.6 12,963.4
7 −6,294.4 55 12,698.8 12,931.5
8 −6,253.9 63 12,633.8 12,900.3
9 −6,230.4 71 12,602.8 12,903.2

10 −6,211.4 79 12,580.8 12,915.0
15 −6,124.5 119 12,487.0 12,990.4
20 −6,045.1 159 12,408.2 13,080.8
25 −5,990.7 199 12,379.4 13,221.3
30 −5,953.4 239 12,384.8 13,395.9

As stated previously, the respondent was asked to identify the best
and worst of the three alternatives, thereby providing a ranking of the
three. Conditional on the respondent’s coefficients, the ranking proba-
bilities were specified with the “exploded logit” formula (as described in
Section 7.3.1). By this formulation, the probability of the ranking is the
logit probability of the first choice from the three alternatives in the ex-
periment, times the logit probability for the second choice from the two
remaining alternatives. This probability is mixed over the distribution
of coefficients, whose parameters were estimated.

All three methods that we describe previously were applied. We con-
centrate on the method in Section 14.3.2, since it provides a succinct
illustration of the power of the EM algorithm. For this method, there are
C classes of buyers, and the coefficients βn and share sc of the population
in each class are treated as parameters.

Train (2008a) estimated the model with several different numbers of
classes, ranging from 1 class (which is a standard logit) up to 30 classes.
Table 14.1 gives the L L value for these models. Increasing the num-
ber of classes improves L L considerably, from −7,884.6 with 1 class
to −5,953.4 with 30 classes. Of course, a larger number of classes entail
more parameters, and the question arises of whether the improved fit is
“worth” the extra parameters. In situations such as this, it is customary
to evaluate the models by the Akaike information criterion (AIC) or
Bayesian information criterion (BIC).6 The values of these statistics are

6 See, e.g., Mittelhammer et. al. (2000, section 18.5) for a discussion of information criteria. The

AIC (Akaike, 1974) is −2L L + 2K , where L L is the value of the log-likelihood and K is the

number of parameters. The BIC, also called Schwarz (1978) criterion, is −2L L + log(N )K ,

where N is sample size.
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Table 14.2. Model with eight classes

Class 1 2 3 4

Shares 0.107 0.179 0.115 0.0699

Coefficients
FC −3.546 −2.576 −1.893 −1.665
PP −2.389 −5.318 −12.13 0.480
DR 0.718 0.952 0.199 0.472
CMDD 0.662 1.156 0.327 1.332
PLPP 0.952 2.869 0.910 3.136
ETLS =10 dummy −1.469 −0.206 −0.113 −0.278
CV dummy −1.136 −0.553 −0.693 −2.961

Class 5 6 7 8

Shares 0.117 0.077 0.083 0.252

Coefficients
FC −1.547 −0.560 −0.309 −0.889
PP −2.741 −1.237 −1.397 −2.385
DR 0.878 0.853 0.637 0.369
CMDD 0.514 3.400 −0.022 0.611
PLPP 0.409 3.473 0.104 1.244
ETLS =10 dummy 0.086 −0.379 −0.298 −0.265
CV dummy −3.916 −2.181 −0.007 2.656

also given in Table 14.1. The AIC is lowest (best) with 25 classes, and
the BIC, which penalizes extra parameters more heavily than the AIC,
is lowest with 8 classes.

For the purposes of evaluating the EM algorithm, it is useful to know
that these models were estimated with run times of about 1.5 minutes
per classes, from initial values to convergence. This means that the
model with 30 classes, which has 239 parameters,7 was estimated in
only 45 minutes.

Table 14.2 presents the estimates for the model with 8 classes, which
is best by the BIC. The model with 25 classes, which is best by the AIC,
provides even greater detail but is not given for the sake of brevity. As
shown in Table 14.2, the largest of the 8 classes is the last one with
25 percent. This class has a large, positive coefficient for CV, unlike all
the other classes. This class apparently consists of people who prefer
their CV over AVs even when the AV has the same attributes, perhaps
because of the uncertainty associated with new technologies. Other dis-
tinguishing features of classes are evident. For example, class 3 cares

7 Seven coefficients and 1 share for each of 30 classes, with one class share determined by constraint

that the shares sum to 1.
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Table 14.3. Summary statistics for coefficients

Standard
Means deviation

Est. SE Est. SE

Coefficients
FC −1.648 0.141 0.966 0.200
PP −3.698 0.487 3.388 0.568
DR 0.617 0.078 0.270 0.092
CMDD 0.882 0.140 0.811 0.126
PLPP 1.575 0.240 1.098 0.178
ETLS =10 dummy −0.338 0.102 0.411 0.089
CV dummy −0.463 1.181 2.142 0.216

Est., estimate; SE, standard error.

far more about PP than the other classes, while class 1 places more
importance on FC than the other classes.

Table 14.3 gives the mean and standard deviation of the coefficients
over the 8 classes. As Train (2008a) points out, these means and standard
deviations are similar to those obtained with a more standard mixed
logit with normally distributed coefficients (shown in his paper but not
repeated here). This result indicates that the use of numerous classes
in this application, which the EM algorithm makes possible, provides
greater detail in explaining differences in preferences while maintaining
very similar summary statistics.

It would be difficult to calculate standard errors from asymptotic for-
mulas for this model (i.e., as the inverse of the estimated Hessian),
since the number of parameters is so large. Also, we are interested in
summary statistics, such as the mean and standard deviation of the coef-
ficients over all classes, given in Table 14.4. Deriving standard errors for

Table 14.4. Standard errors for class 1

Est. SE

Share 0.107 0.0566

Coefficients
FC −3.546 2.473
PP −2.389 6.974
DR 0.718 0.404
CMDD 0.662 1.713
PLPP 0.952 1.701
ETLS =10 dummy −1.469 0.956
CV dummy −1.136 3.294

Est., estimate; SE, standard error.
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these summary statistics from asymptotic formulas for the covariance of
the parameters themselves would be computationally difficult. Instead,
standard errors can readily be calculated for this model by bootstrap.
Given the speed of the EM algorithm in this application, bootstrapping
is quite feasible. Also, bootstrapping automatically provides standard
errors for our summary statistics (by calculating the summary statistics
for each bootstrap estimate and taking their standard deviations).

The standard errors for the summary statistics are given in Table 14.3,
based on 20 bootstrapped samples. Standard errors are not given in Ta-
ble 14.2 for each class’s parameters. Instead, Table 14.4 gives standard
errors for class 1, which is illustrative of all the classes. As the table
shows, the standard errors for the class 1 parameters are large. These
large standard errors are expected and arise from the fact that the la-
beling of classes in this model is arbitrary. Suppose, as an extreme but
illustrative example, that two different bootstrap samples give the same
estimates for two classes but with their order changed (i.e., the estimates
for class 1 becoming the estimates for class 2, and vice versa). In this
case, the bootstrapped standard errors for the parameters for both classes
rise even though the model for these two classes together is exactly the
same. Summary statistics avoid this issue. All but one of the means are
statistically significant, with the CV dummy obtaining the only insignifi-
cant mean. All of the standard deviations are significantly different from
zero.

Train (2008a) also estimated two other models on these data using
EM algorithms: (1) a model with a discrete distribution of coefficients
where the points are fixed and the share at each point is estimated, using
the procedure in Section 14.3.1, and (2) a model with a discrete mixture
of two normal distributions with full covariance, using a generalization
of the procedure in Section 14.3.3. The flexibility of EM algorithms
to accommodate a wide variety of complex models is the reason why
they are worth learning. They enhance the researcher’s ability to build
specially tailored models that closely fit the reality of the situation and
the goals of the research – which has been the overriding objective of
this book.


