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2.1 Function Form of Choice Probabilities

By far the most widely used qualitative choice model is logit. Its popularity
is due to the fact that the formula for logit choice probabilities is readily
interpretable, particularly compared with other qualitative choice models,
and the parameters of logit models are relatively inexpensive to estimate.

Following the discussion of section 1.3, the logit probabilities are derived
under a particular assumption regarding the distribution of the unobserved
portion of utility. The basic notation of section 1.3 will be repeated for
convenience, followed by the specification of the logit probabilities.

Suppose a decisionmaker, denoted n, faces a set of J, alternatives. The
utility that the decisionmaker obtains from alternative i in J,, denoted U,,,
is decomposed into (1) a part that is known by the researcher, labeled as V,,
and (2) an unknown part that is assumed to be a random variable, labeled
e;,. This is expressed as Uy, = V,, + ¢;,. Recall that the known part of utility
V,, is a function that depends on the observed characteristics of the alterna-
tive as faced by the decisionmaker (labeled z;,), the observed characteristics
of the decisionmaker (s,), and a vector of parameters (f) that are either
known a priori by the researcher or estimated: ¥;, = V(z,,s,, B)- For nota-
tional simplicity this functional dependence is suppressed; however, it is
important to remember that V,, depends on observed data and known or
estimated parameters.

Assume that each e,,, for all i in J,, is distributed independently, identi-
cally in accordance with the extreme value distribution. Given this distri-
bution for the unobserved components of utility, the probability that the
decisionmaker will choose alternative i is

Von
P,=a— forall iin J,. (2.1)
Lies €
The proof of this fact, while straightforward, is tedious and not particularly
illuminating; for readers who are interested it is given, along with the
formula for the extreme value distribution, at the end of this chapter (see
section 2.9).

Since the unobserved component of utility is assumed, through the
extreme value distribution, to have zero mean, the observed part of utility,
V,,, is often called representative, expected, or average utility. It should be
clear in using these terms, however, that the expectation or average is over
all possible values of factors unobserved by the researcher rather than by
the decisionmaker.
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Figure 2.1
Graph of logit curve.

Three properties of the choice probabilities are important to note. First,
each of the choice probabilities is necessarily between zero and one. If
alternative i were as unpleasant as possible in the eyes of the decisionmaker,
and hence its representative utility approached negative infinity, then P,
would approach zero. On the other hand, if alternative i were as wonderful
as possible in the eyes of the decisionmaker, and hence its representative
utility approached infinity, then P,, would approach one (given finite values
for the representative utilities of the other alternatives).

Second, the choice probabilities necessarily sum to one:

e¥in 1
P, = = | = 1
l.EZJN " iez',n (ZJEJn ev_m)

This follows from the fact that the choice set in a qualitative choice situation
is exhaustive, so that the decisionmaker must choose one of the alternatives,
and the alternatives are mutually exclusive, so that the decisionmaker
cannot choose more than one alternative.

Third, the relation of the choice probability for an aiternative to the
representative utility of that alternative, holding the representative utilities
of the other alternatives fixed, is sigmoid, or S-shaped (figure 2.1).

If the representative utility of one alternative is very low, compared with -
other alternatives, a small increase in the utility of this alternative will not
much affect the probability of its being chosen; the other alternatives will
still be generally preferred. Similarly, if one alternative is far superior to the
others, so that its representative utility is very high, an additional increase in
its utility will not much affect the probability of its being chosen; it will
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usually be chosen even without the extra utility. The point at which an
increase in the representative utility of an alternative has the greatest effect
on its probability of being chiosen is when its representative utility is very
similar to that of other alternatives. In this case, a small increase in the
utility of one alternative could, in a way, “tip the balance,” and thereby
induce a large increase in the probability of the alternative being chosen.

Examples Consider first a binary choice situation: a household’s choice
between a gas or electric oven. Suppose that the utility the household
obtains from each type of oven depends only on the oven’s purchase price, '
operating cost, and the household’s view of the relative accuracy or ease of
cooking with the oven. The first two of these factors are observed by the
researcher, but the researcher cannot observe the third factor. If the re-
searcher considers the observed part of utility to be a linear function of the
observed facfors, then the utility of each type of oven can be written as
U, = B, PP, + B, 0C; + e;and U, = B, PP, + B, OC, + e, where the sub-
script g denotes gas and r denotes electric; PP and OC are the purchase
price and operating cost, respectively, of the oven type denoted by the
subscript; B, and B, are scalar parameters; and the subscript n denoting
household is suppressed for convenience. The utility of a household is
higher the less it has to pay for an oven, in either purchasing or operating it,
since the household can purchaser other goods with the money saved.
Therefore, B, and B, are negative.

The unobserved component of utility for each alternative, e, and e,,
varies over household with respect to households’ differing views of the
accuracy and ease of cooking by each type of oven. If this component hasan
extreme value distribution, then the probability that the household will

choose a gas oven is

eﬁl PPg+B, OCg

By = JRP8.78;0C, | B PR, 0C: (2.2)

and the probability that it will choose an electric one is expressed analo-
gously. Note that, since §; and f, are negative, the probability of choosing
a gas oven decreases as the cost of purchasing or operating it increases (if
the costs of an electric oven are constant). Furthermore, the probability of
choosing a gas oven increases as the purchase price or operating cost of an

electric oven increases.
A multinomial case is a simple extension of the binary case. Consider, for
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example, that the household could choose a microwave oven instead of
either a gas or electric one (ignore, for the sake of this example, the
possibility of owning a microwave in addition to a2 convection oven). Under
analogous assumptions to those given, the utility of each type of oven is

U, =B, PP+ B,OC, + ¢
Uvr=ﬂ1 PPr+ ﬁZOCr+ er;
Um = Bl PPm + BZ OCm + €ms

where the subscript m denotes microwave. Under the assumption that e, e,,
and e, are each distributed independently extreme value, the probability
that the household chooses a gas oven is :

eP1PPgtp; OC,

(2.3)

b= mon + ePtPP¥B20C; | By PPo+p; OC -

The probabilities for electric and microwave ovens are analogous.
Expression (2.3) has the same numerator in the binary case of expression

(2.2), but the denominator is larger by the quantity exp(fS, PP,, + 5, OC_).

Therefore, as one would expect in the real world, the probability of choos-

ing a gas oven is lower when the possibility of buying a microwave oven is

available than when it is not.

22 The Independence from Irrelevant Alternatives Property

Three properties of logit probabilities are discussed in section 2.1, namely,
that they (1) range from zero to one, (2) sum to one over alternatives, and (3)
are a sigmoid or S-shaped function of representative utility. Each of these
properties is quite reasonable, and in fact the first two are logically neces-
sary. Logit probabilities also exhibit a property, however, that, at least in
some contexts, is not desirable. This is called the independence from irrel-
evant alternatives property, or the ITA property for short.

The IIA property has been the focus of considerable discussion in the
literature and not 2 small amount of confusion. In the next pages, the basics
of the ITA property are presented first, followed by a discussion of relatively
recent concepts that place the ITA property in clearer perspective.

ITA Basics

Consider the ratio of the choice probabilities for two alternatives, i and k:
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Note that the ratio of these two probabilities does not depend on any
alternatives other than i and k. That is, the ratios of probabilities is neces-
sarily the same no matter what other alternatives are in J, or what the
characteristics of other alternatives are. Since the ratio is independent from
alternatives other than i and k, it is said to be independent from “irrelevant”
alternatives, that is, alternatives other than those for which the ratio is
calculated.

While this property is an accurate reflection of reality in some choice
situations, it is clearly inappropriate in other situations. Consider, for
example, the classic red bus/blue bus problem. Suppose there is a traveler
who has a choice of going by auto or taking a blue bus and that both
alternatives have the same representative utility. Because the representative
utilities are equal, the choice probabilities are equal (P, = 1/2 = P,,, where
a denotes auto and bb denotes blue bus) and the ratio of probabilities is one
(Pa/Pop = 1). ‘

Now suppose that a red bus were introduced and that the traveler
considered the red bus to be exactly like the blue bus. Consequently, the
ratio of probabilities for taking the two differently colored buses is one
{(Pys/P., = 1, where rb denotes red bus). However, since in the logit model
the ratio P,/P,, is the same independent of the existence of other alterna-
tives, this ratio remains constant at one. The only probabilities for which
P,/P,, = 1and P, /P,, = 1 are P, = P,, = P,, = 1/3, which are the proba-
bilities that the logit model predicts.

In real life, however, we would expect the probability of taking an auto to
remain the same when a new bus is introduced that is essentially the same as
the old bus. We would also expect the original probability of taking bus to
be split, after the introduction of the new bus, between the two buses. That
is, we would expect P, = 1/2 and P, = P,, = 1/4. In this case, the logit
model, because of its IIA property, overestimates the probability of taking
either of the buses and underestimates the probability of taking an auto.

In cases like that of the red bus/blue bus, the ITA property of logit models
is inappropriate. However, in situations in which the ITA property reflects
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reality, considerable advantages are gained by its employment. First,
because of the IIA property, it is possible to estimate model parameters
consistently on a subset of alternatives for each sampled decisionmaker.
For example, in a situation with 100 alternatives, the researcher might (so as
to reduce computer costs) estimate on a subset of 10 alternatives for each
sampled person, with the person’s chosen alternative included as well as 9
alternatives randomly selected from the remaining 99. Since relative proba-
bilities within a subset of alternatives are unaffected by exclusion of alterna-
tives not in the subset, exclusion of alternatives in estimation does not affect
the consistency of the estimation. (Details of this type of estimation and its
consistency are given in section 2.6.) '

This fact has considerable practical importance. In analyzing choice
situations for which the number of alternatives is large, estimating on a
subset of alternatives can save substantial amounts of computer time and
expense. At the extreme, the number of alternatives might be so large as to
preclude estimation altogether (due to core capacity of computers) if it were
not possible to utilize a subset of alternatives.

Another practical use of this ability to estimate on subsets of alternatives
arises when a researcher is only interested in examining choices among a
subset of alternatives and not among all alternatives. For example, consider
a researcher who is interested in identifying the factors that contribute to a
worker’s choice of taking an auto or a bus to work. The full set of
alternative modes includes walking, bicycling, etc., in addition to auto and
bus. However, the researcher, if he believed the I1A property to be appropri-
ate in this case, could estimate a model with only the alternatives of bus and -
auto included for each sampled person, thereby saving considerable time
and money. Sampled workers who did not choose either auto or bus would
be excluded from the sample (since their chosen alternatives are not in the
estimation subset) and the model would be estimated on the remaining
sampled workers. _

The IIA property also allows the researcher to predict demand for
alternatives that do not currently exist, such as the demand for a new make
of car, a new mode of travel, a new product, and so on. Consider, for
example, a researcher examining households’ choices of make and model of
auto. If the researcher thinks that the ITA property is appropriate in this
setting, he can estimate a model describing the choice of make and model of
auto using currently available makes and models in the estimation, and
then use the estimated model to calculate the probability that a household
would choose a make and model that will be introduced shortly.
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The appropriateness of this procedure is conceptually related to the
consistency of estimation on a subset of alternatives. If the full set of
alternatives is considered to be all the currently available makes and models
plus the soon-to-be-introduced make and model, then estimation on cur-
rently available makes and models is equivalent to estimating on a subset
of alternatives, which, as discussed, provides consistent estimates of the
model parameters.

TIA Revisited

Despite its practical advantages, the ITA property is a restriction that is not
realistic in many situations. Recent work has indicated, however, that the
T1A property in logit models is not as restrictive as it might at first seem, or,
in particular, as indicated by the red bus/blue bus problem.

McFadden (1975) has shown that any model that specifies choice proba-
bilities, including models that do not exhibit IIA, can be expressed in the
form of logit models. That is, it is possible to express any choice probability
as

eWin

Yies emm
where W,,, for all j in J,, is some function of observed data.

The proof is simple. Let P} = f(z;,; z;, for all j # 4 s,) be the “true”
model, where z,, is observed data relating to alternative i as faced by
decisionmaker n, and s, is a vector of characteristics of the decisionmaker.
Note that this specification is completely general; in particular, choice
probabilities that do not exhibit IIA are allowed. Taking logs,

P, =

log P* = 108 f(Zin; 2jn, for all j # i; 5,).
Now, define W,, = log P and evaluate logit probabilities based on W,

*
eW,-,l elog Pin R;i:

I)in = — = - =
Vi€ Yjes, €t Yjer, P
where the last equality is due to the fact that choice probabilities necessarily
sum to one. This shows that logit probabilities, with the appropriate
specification of W, equal the true probabilities. Stated another way, any
choice model can, with an appropriate choice of W,,, be put into the logit

form. This concept has given rise to the term “mother logit.”
The logit model derived from the extreme value distribution, which

— P*
_Pirn
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exhibits the IIA property, is a special case of “mother logit.” The term W,, in
the mother logit model depends in general on all observed data including
characteristics of alternatives other than i. However, ¥, in equation (2.1),
which can be called the standard logit model, depends only on character-
istics of alternative i and of the decisionmaker; characteristics of alterna-
tives other than i do not enter V,,. Therefore, when W,, depends only on
characteristics of the decisionmaker and alternative i, mother logit becomes
standard logit and exhibits IIA; otherwise, the mother logit model need not
exhibit ITA.

What this discussion implies is that the logit specification can be used in
situations for which ITA does not hold. All that is required is that additional
variables be added to representative utility, in particular, variables that
relate to alternatives other than the one for which the representative utility
is designated.

An example of how this can be done, that is, of how adding terms to
representative utility within the logit specification can enable the model to
represent situations in which ITA does not hold, is provided by reexamining
the red bus/blue bus problem. The representative utility of auto, red bus,
and blue bus is assumed to be the same:

Vo= Voo = Vip-

As discussed, the standard logit model gives equal probabilities for all
three alternatives, while we know that the true probabilities are .5 for auto
and .25 each for blue bus and red bus. However, if the term In(1/2) is added
to the representative utility of the two bus alternatives, then the logit model
gives the true probabilities. The probability of auto is

Va

. e
k= /oot In(i2) | gPmtin(i/2) | gha

e”
(€")(1/2) + (€"™)(1/2) + &

Va

e
T 2e"

N =

where the next to last equality is due to the fact that ¥, = V,, = V,.Itcan be
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similarly shown that Py, = P,, = .25.In summary, if appropriate terms are
added to representative utility in the logit model, the red bus/blue bus
“problem” is not a problem at all.

The difficulty, in general, is knowing what terms to add to representative
utility to account for true probabilities not exhibiting ITA. In some cases,
however, the researcher need not know the adjustment factor a priori, since
it can be estimated. In the red bus/blue bus case, for example, the researcher
need not know that In(1/2) should be added to the representative utilities of
the bus alternatives. Suppose the researcher estimates the model with all
three alternatives in the choice set and includes a constant term in the
specification of the representative utility of the bus alternatives; that is,
suppose the researcher specified the representative utility of each alterna-

tive as

Vr=V;
Vot = @ + Vi
VE=a+ Ve

The estimation procedure would automatically estimate a value of o
equal to In(1/2). (This is due to the fact, explained in section 2.6, that the
estimated value of a constant in the representative utility of each alternative
is that at which the average estimated probability for each alternative
exactly equals the share of sampled decisionmakers who actually chose that
alternative. If the true shares for auto, blue bus, and red bus are .5, .25, and
25, respectively, and V, = V,, = ¥, then the only value of « that would
cause the estimated probabilities to equal these shares is In(1/2).)

Using the logit model when the true probabilities do not exhibit IIA is
not as problematic, therefore, as it at first appeared. There are three
contexts, however, in which the problem still arises. First, in a situation like
the red bus/blue bus case, if the researcher is estimating a model with all
alternatives (three in the red bus/blue bus case) and does not include a
constant in the representative utility of each alternative, then the estimation
cannot incorporate the needed adjustment term. This implies that, when-
ever possible, the researcher should include constants in the representative
utility of each alternative. Second, in a situation like the red bus/blue bus
case, if the researcher estimates the model on a subset of aiternatives (e.g.,
auto and blue bus) and then forecasts for a third alternative (e.g., red bus),
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then the estimated probability for the new alternative will not represent the
true probability. This is because the representative utility of the new alter-
native will not incorporate the necessary adjustment. (If the researcher
somehow knows the required adjustment factor, then he can apply it and
calculate consistent probabilities for the new alternatives.) Third, if the
situation is not like a red bus/blue bus case and an adjustment other than to
the constant in representative utility is required to enable the logit specifi-
cation to represent the true probabilities, then, unless the researcher can
determine the necessary adjustments a priori, the estimated logit model will
not represent the true probabilities.

2.3 Specification of Representative Utility

We turn now to several issues regarding the specification of representative
utility. Since representative utility is usually assumed to be linear in
parameters, this assumption is maintained through most of the section;
nonlinear-in-parameters representative utility is discussed at the end of this
section.

A linear-in-parameters representative utility function is written as

Vin = ﬁw(zim sn)a

where w is a vector-valued function of the observed data and f is a vector of
parameters. For notational simplicity the functional relation of the vari-
ables w to the observed data z;,, s, can be suppressed by writing V;, = fw,,,
where w;, = w(z,,, s,)- The logit choice probabilities therefore become

eﬁwin
r = Bw,, °
Zje.l,,e ”m

Within this context, issues regarding the specification of representative
utility are questions of what variables to enter as elements of w;,.

P, forall iinJ,.

Alternative-Specific Constants

Recall that the utility that decisionmaker n obtains from alternative iin J, is
composed of a part observed by the researcher and a part not observed,
U,, = Bw;, + e;,. For alogit model, e, is assumed to be distributed extreme
value, which means it has zero mean. It will usually not be the case that the
average of all unobserved factors that affect the decisionmaker’s utility is
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zero. Suppose the average of e, is «;, a scalar parameter unknown to the
researcher. Then the representative utility of alternative i can be expanded
to include this constant:

IJin = ﬁwin + o; + ei*:l’

where eX = e, — o; and hence has zero mean. The parameter a; is then
estimated along with the other parameters of the model (i.e., with ) in the
manner described in section 2.6. Conceptually, it is similar to the intercept
term in a regression, except that in the decomposition of utility the left-
hand-side variable, U,,, is not observed.

Including an alternative-specific constant for each alternative serves two
functions in addition to providing a zero mean for unobserved utility. First,
as demonstrated in section 2.6, the estimated values for the alternative-
specific constant are those at which the average probability over the
estimation sample for each alternative exactly equals the proportion of
"decisionmakers in the sample that actually chose that alternative. That is, a
model estimated with alternative-specific constants will exactly reproduce
the observed shares in the estimation sample. Second, for reasons that are
discussed in section 2.2, the inclusion of alternative-specific constants can
mitigate, and in some cases remove, inaccuracies due to logit’s indepen-
dence of irrelevant alternatives property.

While one speaks of entering an alternative-specific constant for each
alternative, in actuality the constant for one alternative is necessarily
normalized to zero and so constants are estimated for, at most, one fewer
alternative than there are available. This is not a restriction of the model,
only a normalization whose motivation is an aspect of the following topic.

Differences in Representative Ultility

A fundamental property of logit models is that only differences in represen-
tative utility affect the choice probabilities, not their absolute levels. Con-
sider the probability of choosing alternative i. The standard expression for
this probability is

The probability can equivalently be expressed in terms of the difference
between each alternative’s representative utility and the representative
utility for any alternative in the choice set:
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eﬁwin_ﬂwkn
7 S

where k is any alternative in J,, including perhaps i. These two expressions
are equal since

F;

eﬁwin‘ﬂwkn ebWin. e BWin eﬂ“’in
ZJEJ,, eP¥in—FWin ZJEJ,. ePW¥in . @~ B%kn ZJEJH ePwin”

This fact has several implications. First, it allows the logit probabilities in
binary choice situations to be expressed in a simplified form. Consider the
choice between gas and electric water heaters. The probability of choosing a
gas water heater is

efve

Fe= efvs 4 gfwe’

where the subscripts g and r denote gas and electricity, respectively, and the
subscript n denoting decisionmaker is suppressed. This expression can be
rewritten as

1
5T 1+ PP

which is the form used in most of the binary logit literature.

Second, since only differences in representative utility matter, alternative-
specific constants cannot meaningfully be entered in each alternative; as
stated, at least one must be normalized to zero. Consider a binary choice
situation in which the representative utility of the two alternatives are
written as

VIn = ﬂwln + al;
VZn = ﬁw2n + oy

The probabilities that result from these representative utilities are exactly
the same as those that result from

I/Iu = ﬁwln + af;

I/Zn = ﬁw2m

in which af = a; — «,. In fact, any pair of alternative-specific constants
whose difference is &, — a, is equivalent.
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It is impossible to estimate a constant for each alternative in a chotice set
since the choice probabilities depend only on differences in the constants
and an infinite number of combinations of constants have the same
differences. By convention, the constant for one alternative is set equal
to zero. The constant for each other alterpative is then interpreted as the
difference between the average impact of unobserved factors for the two
alternatives.

Third, since only differences in representative utility are relevant, vari-
ables that do not vary over alternatives cannot affect the choice proba-
bilities. For example, consider the choice of make and model of car. Let
representative utility for each alternative i in J, be V,, = B, PP, + B, A,,
where PP,, is the amount that person n must pay to purchase make/model
i and A, is the age of person n. In taking differences across alternatives,
Vi — Vjp» the term §,A, drops out. The representative utility given is
equivalent in terms of the decisionmaker’s choices to ¥, = B; PP,,. Simply
adding a constant to the utility of each alternative does not change the
decisionmakers choices or, consequently, the choice probabilities.

If the researcher believes that a factor that does not vary over alternatives
(e.g., any characteristic of the decisionmaker) affects the decisionmaker’s
choices, then it must be entered into representative utility in a meaningful
fashion. In particular, it must interact with a variable that varies over
alternatives.

In the example of the choice of make and model of car, the researcher
might think that households with more members are more likely to pur-
chase large cars because they value the extra room more than smaller
families. This effect can be captured in the model by (1) defining a dummy
variabie that is one for large makes and models, then (2) interacting house-
hold size with this dummy variable, and finally (3) entering the interaction

variable in representative utility:
Vin = ,Bl PPin + BZMnDis

where D, is one if i is a large car and zero otherwise, and M, is the number of
members in household n. The coefficient 8, represents a preference for large
cars that increases with household size.

Another example is useful. Consider a household’s choice of how many
cars to own, with the alternatives being 0, 1, or 2. Suppose the only factor
affecting this choice that the researcher observes is the number of members
in the household, again labeled M, for household n. Suppose further that
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the researcher feels that M, affects the representative utility for each alterna-
tive differently, so that

If()n = ﬁOMn;
Ifln = ﬁl Mn;
I/Zn = ﬂZMn;

where V,,,, ¥4,., and V,, are the representative utility of owning no, one, and
two cars, respectively, and S, f,, and B, are scalar parameters.

Recognizing that only differences in representative utility are relevant,
two reformulations are necessary. First, one of the parameters f,, §,, or f,
must be normalized to zero for reasons that are analogous to the normaliza-
tion of one alternative-specific constant. An equivalent, normalized set of
representative utilities is

Von=0;
Vln = ﬂl*Mn;
Von = BXM,;

where B = (f; — Bo) and B¥ = (B, — Bo). Second, even though M, does
not vary over alternatives, it enters with a different coefficient in each
alternative. This is equivalent to M, being interacted with dummy variables
for each alternative. That is, an equivalent expression for representative
utilities that explicitly recognizes this interaction is

V;n = ﬂ;.anDil + ﬁZ*MnD;Z’ i= 0> l: 2:

where D/ equals one when i = 1 and zero otherwise, and D? equals one
when i = 2 and zero otherwise. Note that since f, is zero by normalization,
no variable is included that interacts M,, with a duromy for the alternatives
of owning no cars.

The parameters S and B3 reflect the difference in the impact of M, on
representative utility for the alternative of owning one or two cars, respec-
tively, compared with that of owning no cars. If 8 is positive, then increas-
ing the number of members in the household increases the probability of
owning one car relative to the probability of owning no car. If ¥ is also
positive, increasing M, also increases the probability of owning two cars
over owning none. Whether the probability of owning two cars increases
relative to the probability of owning one car depends on whether B is
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larger than . If B3 is greater than B, increasing the number of household
members increases the probability of owning two cars over one and the
probability of owning one car over none.

Taste Variation

The value, or importance, that decisionmakers place on each characteristic
of the alternatives varies, in general, over decisionmakers. As discussed, for
example, the size of a car was presumed to be more important to households
with many members than smaller households. Other examples are readily
identifiable. Low income households are probably more concerned about
the purchase price of a good, relative to its other characteristics, than higher
income households; younger decisionmakers might care more about the
horsepower of a car than older people (or vice versa);, in choosing a
neighborhood to live in, households with young children will be more
concerned about the accessibility and quality of schools than those without
children; and so on. In addition, decisionmakers’ tastes vary for reasons
that are not observable or identifiable, just because people are different.

Logit models can capture taste variations, but only within limits. In
particular, tastes that vary systematically with respect to observed variables
can be incorporated in logit models, while tastes that vary with unobserved
variables, or purely randomly, cannot be handled. The following example
will demonstrate the distinction.

Consider households’ choices among makes and models of cars to buy.
Suppose, for simplicity, that the only two characteristics of cars that the
researcher observes is the purchase price (PP, for make/model i) and inches
of shoulder room (SR,).2 The value that different households place on these
two characteristics varies over households, and so total utility can be
written as

Uin = 0y SR: + Bn PP: + €ins (2‘4)

where «, and f, are parameters specific to household n.

The parameters vary over househoids reflecting differences in taste.
Suppose, for example, that the value of shoulder room varies with the
number of members in the household (M,) but nothing else:

a’l = pMn?

so that as M, increases, the value of shoulder room, a,, also increases.
Similarly, suppose the importance of purchase price is inversely related to
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income (I,), so that low income households place larger importance on
purchase price:

B, = 0/1,.
Substituting these relations into (2.4) produces
U, = p(M,SR;) + 8(PP,/1,) + e;,.

Under the assumption that each ¢, is an independently distributed extreme
value, a standard logit model obtains with two variables entering represen-
tative utility, both of which are interactions of a vehicle characteristic with a
household characteristic.

Other specifications for the variation in tastes can be substituted. For
example, the value of shoulder room might be assumed to increase with
household size, but at a decreasing rate, so that o, = pM, + ¢M?, where pis
expected to be positive and ¢ negative. Then U,, = p(M, SR;) + ¢(M?2 SR,) +
0(PP,/I,) + e;,, which results in a standard logit model with three vari-
ables entering representative utility.

The limitation of the logit model arises when we attempt to allow tastes
to vary with respect to unobserved variables or purely randomly. Suppose,
for example, that the value of shoulder room varied with household size
plus some other factors (e.g., size of the people themselves, or frequency with
which the household travels together) that are unobserved by the re-
searcher and hence considered random:

oy = pMn + Hp,

where 4, is 2 random variable. Similarly, the importance of purchase price
consists of its observed and unobserved components:

B, = 6(1/L) + 1,.
Substituting into (2.4) produces
Uy, = p(M,SR;) + 1, SR; + O(PP/L,) + , PP, + e,,.

Since u, and 1, are not observed, the terms u, SR, and #, PP, become part of
the unobserved component of utility,

U, = p(M,SR;) + O8(PP/L) + &,

where ¢;, = u, SR; + 1, PP; + e;,. The new error term &;, cannot possibly be
distributed independently, identically random as required for the logit
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formulation. Since y, and 7, are constant over alternatives for each deci-
sionmaker, &, is necessarily correlated over alternatives, violating the
independence assumption (i.e., COV(Z;,, &) #* 0 for j # i). Furthermore,
since SR; and PP; vary across alternatives, the variance of &, will vary over
alternatives, violating the assumption of identically distributed errors (ie.,
Var(é;,) # Var(é;,) for j # i).

This example demonstrates the general point that when tastes vary
systematically in the population in relation to observed variables, the
variation can be incorporated in logit models. However, if taste variation is
random, logit is inappropriate. A probit model, discussed in chapter 3,
should be used instead.

Utility Theory as a Specification Tool

The researcher decides what variables to enter in representative utility on
the basis of a priori information, both formal and informal. The researcher
must decide not just which factors affect the choice probabilities, but how to
enter them, that is, what types of interaction terms to specify and by what
arithmetic operations, if any, to transform the variables (e.g., log, squared
terms). It is often difficult to know the implications of various specifications
of representative utility and to determine whether and how, for example,
one specification is intrinsically different from another. In these situations,
utility theory can often be a useful aid for interpreting and motivating
specifications. The appropriate application of utility theory is different in
each choice situation. However, an example will illustrate the point of how
utility theory can aid in specifying variables to enter representative utility.

In logit models of workers’ choice of mode (auto, bus, rail, etc.) for
commuting, the wage of the worker often enters as an explanatory variable.
In some cases (Train, 1980a, for example) the cost of travel is divided by the
worker’s wage to reflect the presumption that a worker with a high wage is
less concerned about cost than a worker with a low wage. In other cases
(McFadden, 1974, for example) travel time is multiplied by the worker’s
wage to reflect the presumption that a worker with a high wage is more
concerned with lost time than a worker with a low wage.

Representative utility is assumed in both specifications to be of the form

I/in = Bntin + gncim

where t,, is the time that it would take personn to travel to work by mode i,
¢,, is the cost of travel by mode i for person n, and B, and 6, are parameters
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specific to person n. With this formulation, the value of money relative to

time is 6,/5,.
In the first specification, the parameters are assumed to vary as

B. = B*;
6, = 04/w,;

where w, is the wage of person n and f# and 6“4 are parameters constant
over all people. The relative value of money compared with time therefore
becomes 64/84w,. In the second specification

By = B®wa;
0, = 6°;

so that the value of money relative to time is 85/83w,.

The relative value of time and money depends on wage in the same way in
these two specifications. The question therefore arises: How are the two
specifications different, or are they essentially the same? Does it matter
which specification the researcher uses?

To address this question, the neoclassical theory of the tradeoff between
goods and leisure is used to derive representative utility for workers’ mode
choice models. It is shown through this derivation that the two specifi-
cations have quite different implications regarding the worker’s tradeoff
between goods and leisure and that the shape of the worker’s indifference
mapping for goods and leisure determines the manner in which wage
should enter representative utility.

Under the standard treatment of the goods/leisure tradeoff, a worker
chooses how many hours to work and in doing so determines how many
goods he can consume and how much leisure he has. For every extra hour
worked, the worker has one less hour of leisure but can purchase more
goods with the money earned in that hour. The worker values both goods
and leisure and has a utility function that reflects his preferences regarding
various combinations of goods and leisure. The worker chooses the amount
to work that maximizes his utility subject to the constraints that (1) his
leisure time is necessarily the total time available (24 hours per day) minus
the amount worked and (2) the value of the goods he consumes is equal to
the value of his wage earnings plus any unearned income. _

The standard theory is expanded as follows to allow for the worker



Logit 33

choosing a mode to work as well as the number of hours to work. Let the
utility function be U = U(G, L), where G is goods and L is leisure. Assuming
the price index for goods is constant and normalized to one, the worker
faces the constraints that '

G=V+wW —c;
L=T-W-1

where V is unearned income (i.e., not related to amount worked), W is the
number of hours worked, w is the hourly wage rate, c is the cost of travel to
work (which takes values c; for each mode i), T is the total number of hours
available, and ¢ is the time required for travel to work (which takes value ;

for each mode). )
We can determine the number of hours that the worker would choose to

work conditional upon a particular mode being used to travel to work, and
then examine the choice of mode. Given mode i, the worker chooses the
number of hours to work that maximizes U subject to

G=V+wW-—c3 2.5
L=T—-W-r¢,. (2.6)

Substituting the maximizing value of W into U gives the utility that could
be obtained given that mode i is chosen, labeled U*. The worker then
chooses the mode with the highest U¥.

Let us consider two polar cases for the U(G, L). We shall find that the
two specifications of representative utility used in mode choice models arise

from these two cases.

CASE A: LET U = a,log G + a,L With this utility function, the worker
will respond to additional unearned income by reducing the number of
hours worked and not by consuming additional goods (to be shown as an

intermediate result).
Substituting the constraints (2.5) and (2.6) into the utility function, we

have
U,=a, log(V+wW —c¢)+ a,(T— W —1t). 2.7
Maximizing U, with respect to W,

oU oW = o w/(V + wW —¢;) —a, =0,
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so that the utility maximizing number of hours to work is
W = (a,/a;) + (c:/w) — (V/w). 28

Substituting this into (2.5), we know that the utility maximizing amount of
goods consumed is

G =V + w((a,/a;) + (c;/w) — (V/W)) — ¢; = wa [a,.

Note that utility maximizing G does not vary with unearned income V, but
that utility maximizing W decreases with V, implying that if a worker with
the utility function given above were given additional unearned income, he
would respond by reducing his work hours (i.e., increasing leisure) and not
increasing consumption.

Substituting the utility maximizing W into the utility function (i.e., subst-
ituting (2.8) into (2.7)) gives

U¥ = alog(V + w((a,/a;) + (c;/w) — (V/w)) — ¢;)
+ (T — (& /2)) — (ci/w) + (V/w) — &)
= o, log(wa, fa,) + a, T — oy + (a V/w) — op((ci/w) + £;).

In the choice of mode, all terms that do not vary over i drop out (since
only difference in utility matter), and so

U* = —ay((cy/w) + t,).

In this case, the correct specification of representative utility is for cost to be
divided by wage and time not to be interacted.

casE B: LET U = o, G + a,log L  Using analogous steps to those for case
A, we can show that (1) this U implies that the worker would consume all
additional unearned income in goods and would not reduce the number of
hours worked at all and (2) the maximum utility that the worker can receive
conditional upon mode i is

Ur=o;,V+a,Tw—a, —a,(t;w + ¢} + oy log((ay/ay)w).

The representative utility in the choice of mode includes only those terms
that vary over modes and therefore takes the form

U* = —oy(t;w + ¢);

that is, time is multiplied by wage and cost is not interacted.
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These two cases show that if the researcher believes that a worker would
respond to additional unearned income by working fewer hours (i.c., that
U = a, log G + a, L reflects workers’ preferences), then he should enter cost
divided by wage. On the other hand, if he feels that workers would purchase
additional goods and not reduce work hours (ie. if U=0uo,G+ a,logl),
then he should enter time multiplied by wage.

Nonlinear-in-Parameters Representative Utility

Thus far in this section, representative utility has been assumed to be linear
in parameters. This assumption is maintained in the great majority of
applications. Since, under fairly general conditions, any parametric func-
tion can be approximated arbitrarily closely by a function that is linear in
parameters, the assumption does not necessarily introduce significant
erTors.

In some situations, however, it is useful to specify representative utility as
not being linear in parameters. Estimation is more difficult and computer
routines are not as widely available for logit models with nonlinear-in-
parameters representative utility. However, the additional accuracy or
information obtained might warrant the additional effort and expense.

Such cases arise when the form of representative utility can be deter-
mined theoretically and contains parameters that enter nonlinearly but
nevertheless are interesting or important to estimate. Two examples will

illustrate this point.

Example1 Inthe previous example concerning the goods/leisure tradeoff,
the conclusion was reached that (1) if the researcher believed that workers
would respond to additional unearned income by reducing the amount they
worked but not consuming more goods, then representative utility in a
. mode choice model should be —a, ((¢c;/w) + t;), where ¢; and ¢, are the time
and cost of mode i, respectively, and w is the wage of the worker; however,
(2) if the researcher felt that workers would consume any additional income
in goods and not work less, then the appropriate representative utility is
—a,(c; + wiy).

It is probably the case, however, that neither of these two extreme
situations accurately describe workers’ behavior. If given additional un-
earned income, workers would probably consume somewhat more goods
and reduce somewhat the number of hours they worked. The same type
of analysis as given above for the extreme cases can be used to construct
a more realistic in-between case. In particular, suppose, using the same
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notation, that workers’ preferences regarding goods and leisure are repre-
sented by a utility function of the form

U=(1-PpflogG + BloglL.

With this utility function, workers respond to additional unearned income
by consuming more goods and working less. It can be shown (see Train and
McFadden, 1978, for details) that the representative utility entering a mode
choice model, given this utility function for goods and leisure, is

Ui = —al(cy/w?) + w'™Pt).

That is, the cost of travel is divided by w” and travel time is multiplied by
w! ™8 This is a generalization of the polar cases described, since (1) as
approaches one, U; becomes —a((c;/w) + t;), and (2) as f approaches zero,
U, becomes —a(c; + wt;). Estimating the general form of U,, even though f
enters nonlinearly, is valuable since it is more realistic on theoretical
grounds and the estimated value of f provides information on workers’
preference mapping for goods and leisure.

Example 2 Logit models have been used to describe urban travelers’
choice of destination conditional upon their deciding to take a trip within
the metropolitan area in which they live. Generally, the metropolitan area is
partitioned into zones, and models are specified for the probability that a
person taking a trip within the city will choose to go to a particular zone.
Representative utility for each zone depends in these models on the time
and cost of travel to the zone plus a variety of variables, such as residential
population and retail employment in the zone, that reflect reasons that
travelers would want to visit the zone. These latter variables are called
“attraction” variables; label them by the vector ag; for zone i. Since it is these
attraction variables that give rise to parameters entering nonlinearly, as-
sume for simplicity that representative utility depends only on these vari-
ables, so that

V= f(ai’ ﬁ)9

where f is a vector of parameters.

The difficulty in specifying representative utility (that is, in determining f)
comes in recognizing that, since zonal definitions are largely arbitrary, an
accurate model would not be sensitive to different zonal definitions. In
particular, if two zones are combined, it would be desirable for the model to
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predict a probability of choosing the combined zone that is equal to the sum
of the probabilities that it predicted of choosing each of the two original
zones. This consideration places restrictions on the form that ¥, can take.
Consider zones i and k, which, when combined, are labeled zone c. Since
population and employment in the combined zone is the sum of that in the
two original zones, we have a, = @; + . Also, in order for the model to give
the same probabilities for choosing these zones before and after merger, V;,
must be specified such that

1)in + Pkn = Pcn;
(" + €¥n) / (eV.-.. + e+ Y e”f") = (&%) / (e"m + Y er">.
jelJ jeJ
J#Lk JALk
This equality holds only if
exp(V;,) + exp(Vin) = exp(Ven)- 29
If we let V,, = In(Ba;,) for all i, then relation (2.9) holds given that a; +

a, = a,.

Therefore, to specify a destination choice model that is not sensitive to
the definition of zones, representative utility must be specified with para-
meters inside a log operation. Special computer routines have been written
to estimate such parameters.

24 Derivatives and Elasticities of Choice Probabilities

Since choice probabilities are a function of observed variables, it is often
useful to know the extent to which these probabilities change in response to
a change in some observed factor. For example, ina household’s choice of
make and model of car to buy, a natural question is to what extent will the
probability of choosing a given car increase if the vehicle’s fuel efficiency is
improved. From a competing manufacturers point of view, a related ques-
tion is to what extent will the probability of choosing a given car decrease if
the fuel efficiency of a competing make and model improves.

To address these questions, derivatives of the choice probabilities are
calculated. The change in the probability of choosing alternative i given a
change in an observed factor, y;,, entering the representative utility of
alternative i (and holding the representative utility of other alternatives
constant) is
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Usually V,, is linear in the observed variables, with parameters as coeffi-
cients. If the coefficient of y,, is the scalar f,, then 0V,,/0y;, = B, and
0P, /0y;, = B, P,(1 — P,). This derivative is particularly easy to evaluate.
Note that, since f, is constant, the derivative is largest when P, = 1 — P,
which occurs when P,, = 1/2, and becomes smaller as P,, approaches zero
or one. This fact is a natural result of the sigmoid shape of the logit function.
Consider figure 2.2. The derivative of the choice probability at any level of
¥:. 1 the slope of the probability curve at that point. This slope is obviously
highest at P,, = 1/2 and becomes lower as P;, moves in either direction away
from 1/2.

Stated intuitively, the effect of a change in an observed variable is highest
when the choice probabilities indicate a high degree of uncertainty regard-
ing the choice; as the choice becomes more certain (i.e., the probabilities
approach zero or one), the effect of a given change in an observed variable
lessens.

‘Pm—I)lﬁ
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One can also determine the extent to which the probability of choosing
a particular alternative changes when an observed variable relating to
another alternative changes. Let y;,, denote an attribute of alternative j
(e.g., the fuel efficiency of vehicle j). How does the probability of choosing
alternative i change as the y;, increases?

0Py o) (Yjes, @)}
ayjn ayjn

= ST

= - (al/]n/ayjn)})m})]n'

In the case of ¥, being linear in observed variables, with a scalar coefficient
B, for y;,, then

: aPin/ayjn = —ﬁyl)inl?in'

If y;, is a desirable attribute such that B, is positive, then increasing y;,
decreases the probability of choosing each alternative other than j. Fur-
thermore, the decrease in probability is proportional to the value of the
probability before y;, was changed.

This latter fact is a property of logit models that can be undesirable in
some situations. For example, consider a traveler’s choice among auto, bus,
and rail. If the probability of taking an auto is .60 and bus and rail each have
a .20 probability, then an improvement in the attributes of bus travel (e.g., 2
reduction in its price} would reduce the probability of taking an auto three
times as much as the probability of going by rail. If in reality most of the
additional bus probability is drawn from the rail mode, then the standard
logit model is inappropriate. The underlying problem in this situation is the
independence of irrelevant alternatives (IIA) property of logit models,
which is discussed in section 2.2. The solution is to take one of the corrective
measures indicated in that discussion or to utilize a model, such as probit or
GEYV, as described in chapters 3 and 4, respectively, that does not exhibit
the IIA property.

A logically necessary aspect of derivatives of choice probabilities is that,
when an observed variable changes, the changes in the choice probabilities
sum to zero. This is 2 necessary consequence of the fact that the proba-
bilities must sum to one before and after the change; it is demonstrated as

follows:
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In practical terms, if one alternative is improved so that its probability of
being chosen increases, the additional probability is necessarily “drawn”
from other alternatives. That is, to increase the probability of one alterna-
tive necessitates decreasing the probability of another alternative. While
obvious, this fact is often forgotten by planners who want to improve
demand for one alternative without reducing demand for other

alternatives.®

Economists often measure response by elasticities rather than deriva-
tives, since elasticities are normalized for the variables’ units. An elasticity is
the percent change in one variable that is associated with a percent change
in another variable. The elasticity of choice probabilities with respect to
observed factors affecting the probabilities are mow given. The elasticity of
P, with respect to y;,, a variable entering the utility of alternative i, is

Eiy, = (0P./0Y1:) (Vin! Pr)

= (0Vn/0ia) Pl — Py)(Yin/Py)

= (OVin/0Yin)yin(l — Py,).
If representative utility is linear in y,,, with coefficient g, then
E;y, = B,yi(1 — Py).

The elasticity of P, with respect to a variable entering alternative j # i,
called a cross-elasticity, is calculated as

Eiyj = —(a V_;'n/a}ﬂ'n)){inlbjm

which in the case of linear utility reduces to

Eiyj = - ﬂyyjn Rin'
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2.5 Average Probabilities, Derivatives, and Elasticities

Different individuals facing the same set of alternatives will, in general, have
different representative utility for each alternative, because the character-
istics of each alternative vary over people (€.g., the time required to travel
to work by auto varies by place of home and place of work) and because
individuals’ characteristics (such as income, age, etc.) vary in the popula-
tion. Decisionmakers with different representative utility for each alterna-
tive will have different choice probabilities. And, given that derivatives and
elasticities depend on the choice probabilities, different individuals will be
predicted to respond differently to changes in factors entering representa-
tive utility.

Usually a researcher is interested in the average probability or average
response within a population, rather than the probability or response of
any one individual. Methods for predicting population behavior with
qualitative choice models are discussed in detail in chapter 6. It is useful at
this point, however, to introduce the most straightforward and widely used
method and to warn against an erroneous method that is nevertheless
common. ‘

Suppose the researcher has a random or stratified random* sample of
individuals drawn from a population. Aggregate, or population, variables
are predicted by taking the weighted average of the variables calculated for
each individual. For example, to calculate the average probability in the
population for a particular alternative, choice probabilities are calculated
for each individual on the basis of the individual’s characteristics and the
characteristics of the alternatives as faced by the individual. The average
probability for alternative i is then estimated as '

E = Z WnPim

where w, is sampling weight associated with individual n, and the sum-
mation is over all sampled individuals. If the sample is purely random, then
w,, is the same for all sampled individuals and equals 1/N, where N is the
sample size. For stratified random samples, w, varies over strata.

The number of individuals in the population predicted to choose alterna-
tive i is estimated as the average probability for alternative i times the
population size:

Ni= ME’
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where M is the number of decisionmakers in the population and N; is the
estimated number that will choose alternative i. Average derivatives and
elasticities are calculated similarly as the weighted average of individual
derivatives and elasticities.

An alternative method of estimating average probabilities and responses
is common but not consistent. Instead of calculating the probabilities and
responses for a sample of decisionmakers and then taking averages, this
alternative approach is to calculate probabilities and responses for an
average decisionmaker and consider these to be in some way representative
of average population behavior. For example, consider a mode choice
model in which each traveler chooses between auto and transit on the basis
of the cost and time associated with each. A consistent way to estimate the
average probability of auto is to determine the times and costs faced by each
person in a sample, calculate the probability of choosing auto for each
person, and take the weighted average of these probabilities. The simpler,
but inconsistent method, is to calculate the average cost and time associated
with each mode and determine the probability of choosing auto given these
average costs and times.

The inconsistency of this approach results from the fact that the choice
probabilities, derivatives, and elasticities are nonlinear functions of the
observed data and, as is well known, the average value of a nonlinear
function over a range of data is not equal to the value of the function
evaluated at the average of the data. The point can be made visually.
Consider figure 2.3, which gives the probabilities of choosing a particular
alternative for two individuals with representative utility for this alternative
of a and b (assuming the representative utility of other alternatives is the
same for the two individuals). The average probability is the average of the
probabilities for the two individuals, namely, (P, + P,)/2. The probability
evaluated at the average representative utility is given by the point on the
logit curve above (a + b)/2. As shown for this case, the average probability
is above the probability at the average representative utility. In general, the
probability evaluated at the average utility underestimates the average
probability when the individuals’ choice probabilities are low and over-
estimates when they are high.

Estimating average responses by calculating derivatives and elasticities
at the average representative utility is usually even more problematic than
for average probabilities. Consider figure 2.4, depicting two individuals
with representative utility a and b. The derivative of the choice probability
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for a change in representative utility is small for both of these individuals
(the slope of the logit curve above a and b). Consequently, the average
derivative is also small. However, the derivative at the average representa-
tive utility is very high (the slope above (a + b)/2). Estimating average
responses in this way can be seriously misleading. In fact, Talvitie (1976) has
found, in a mode choice situation, that elasticities at the average representa-
tive utility can be as much as two to three times greater or less than the
average of individual elasticities.

2.6 Estimation

In order to calculate the choice probabilities for a particular decisionmaker
the researcher must (unless a priori information is utilized) estimate the
value of the parameter vector f. If the researcher does not intend to predict
decisionmakers’ choices, he might nevertheless be interested in knowing the
value of B for other reasons. For example, suppose an auto manufacturer
considers the utility consumers obtain from a make and mode! of vehicle to
be — B, PP + B, FE plus a term for unobserved factors, where PP is the
purchase price of the vehicles and FE is its fuel efficiency. This manufacturer
could use information on the relative value of 8, and j, to decide whether to
incorporate into the vehicle that he produces a device that would increase
its fuel efficiency but also increase its price.

Standard Estimation on Exogenous Sample

Assume that the researcher observes the choices of a sample of decision-
makers, along with the characteristics of each decisionmaker and each
alternative faced by the decisionmaker. Consider first the situation in which
the sample is exogenously drawn, that is, is either random or stratified
random with the strata defined on factors that are exogenous to the choice
being analyzed. If the sampling procedure is related to the choice being
analyzed (for example, if mode choice is being examined and the sample is
drawn by selecting people on buses and pooling them with people selected
at toll booths), then more complex estimation procedures are generally
required, as described later in this section.

The parameter vector f is estimated by maximum likelihood methods,
which can be described as follows for exogenously chosen samples. (For
readers who are unfamiliar with maximum likelihood estimation, a
straightforward discussion is given on pages 69—71 of the widely used
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econometrics text by Pindyck and Rubinfeld, 1981.) Consider one sampled

decisionmaker, labeled n. The probability of person n choosing the alterna-

tive that he was actually observed to choose is

H R_iin’

ield,

where §,, is one if person n chose alternative i, and zero otherwise. Note

that since 8, = O for all nonchosen alternatives and P2 = 1, this term is}
simply the probability of the chosen alternative.

Consider now the entire sample. Since each decisionmaker’s choice is’
independent of that of other decisionmakers, the probability of each person
in the sample choosing the alternative that he was observed actually to
choose is

L=T] IT Pa~ (2.10)
neN ield,

where N is the set of decisionmakers in the sample. This expression is simply

the probability of each person’s chosen alternative multiplied across all

people in the sample.

Each P,, in expression (2.10) is a function of § and the observed data.
Holding the observed data fixed, L can therefore be considered a function of
B and written L(B). In particular, it is the likelihood function for g, giving
for each value of § the probability that the sampled decisionmakers would
choose the alternatives that they actually did choose. The value of § that
gives the highest such probability, that is, that maximizes the likelihood
function, is called the maximum likelihood estimate of f. Under fairly
general conditions, this estimator is consistent and efficient, as is usually
the case with maximum likelihood estimators (see McFadden, 1973).

Rather than deal with the likelihood function itself, it is usually easier to
maximize the log of the likelihood function. (Since the log operation is a
monotonic function, the value of B that maximizes L(f) will also maximize
the log of L(B).) This log likelihood function, designated LL, is written as
LL(B)= Y. Y OwlogPy. (2.11)

neN iel,
Recalling that §,, is zero for nonchosen alternatives, LL( B)is simply the log
of the probability of the chosen alternative of each person, summed over all
sampled decisionmakers. The estimate of § is that which maximizes this
sum. (Note that, since L is a probability and consequently cannot exceed
one, LL is always negative, since the log of one is zero. Therefore, maximiz-
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ing LL is the same as minimizing its magnitude, a point that oftemr-causes
confusion.) Several computer software packages are available that perform
this maximization specifically in the context of logit models.

Given that the estimated value of 8 is that which maximizes LL(f), we
can easily demonstrate that the estimated values of alternative-specific
constants are those that equate the average probability for each alternative
with the share of decisionmakers in the sample who actually chose that
alternative. For ease of notation, consider a binary choice situation in
which the representative utility of choosing the first alternative is zero by
normalization and the representative utility of the second alternative is
o + V,, where o is a constant and ¥, varies over n (with its dependence on
parameters suppressed in this notation). Then

1 ea+ Vn

B =1 and P =7 + =t

Let §, equal one if person n chose alternative one and zero if person n chose
alternative two (hence, 1 — §, equals one if alternative two is chosen). The
log likelihood function in this case is

LL =Y [d,log Py, + (1 — 6,)log Py, ]

=381 ! 1 - )log(
= X log (e ) (0 - Wloe( e

=Y [-6,logl + e + (1 =)+ V)
— (1 = §,)log(l + e**"™)]
=Y [(1 — )@ + V) — log(1 + &**")].

To maximize LL with respect to «, we take the derivative of LL with respect
to a, equate the derivative to zero, and solve for a:

JLL e*thn
W=;[(l — % ‘W]

=>[(1 =4,)— Pl
:Z[(l“5n)_(1-P1n)]=;(P1n— ) = 0.

Therefore,
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Z&l = Zplm

and

1 1
N;én = I—V'ngm

where N is the total sample size. That is, the value of o that maximizes the
log likelihood function (that is, the estimated value of «) is that which
equates the average probability for each alternative ((1/N) Y. Py,) with the
share of sampled decisionmakers who chose that alternative ((1/N. )Y 8,)
Though the proof is more tedious, the same result applies in the multi-
nomial case. That is, if a constant is included in the represcntati\}e utility of
each alternative (except, of course, for one alternative, whose constant is
normalized to zero; see section 2.3), then the estimated values of these
constants are such that the average probability for.each alternative equals
the share of sampled decisionmakers who actually chose that alternative.
This fact has considerable practical importance—for example (see in sec-
tion 2.2), the mitigation of the ill effects of the independence from irrelevant
alternatives property not holding for the choice situation being examined.

Estimation on a Subset of Alternatives

In some situations, the number of alternatives facing the decisionmaker is
so large that estimating model parameters is very expensive or even impos-
sible (due perhaps to core capacity limitations of the researcher’s com-
puter). As mentioned in the discussion of the independence from irrelevant
alternatives property, estimation can be performed on a subset of alterna-
tives and not lose consistency. For example, a researcher examining a
choice situation that involves 100 alternatives can estimate on a subset of 10
alternatives for each sampled decisionmaker, with the person’s chosen
alternative included as well as 9 alternatives randomly selected from the
remaining 99.

In general, estimation with a subset of alternatives for each sampled
decisionmaker proceeds as if each decisionmaker actually faced only the
alternatives in the subset. Denote the subset of alternatives selected for
person n as K,, which can be the same or different for different persons.
Label the set of sampled individuals who actually chose an alternative
within their subset as M. A “quasi” log likelihood function is constructed as
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3

QLL(AB) = z éin IOg in>
neM iek,
where
Vin
P ¢

in = V. -
Zjel(,,e m

This is the same as the log likelihood function given in equation (2.11)
except (1) the subset of alternatives K, replaces, for each sampled person,
the complete set J, in both the calculation of the probabilities and in the
summation within the function, and (2) only the sampled persons in subset
M are included in the summation rather than all sampled persons (that is,
those whose chosen alternative is not in their subset of alternatives are
excluded). Since, in accordance with the independence from irrelevant
alternatives property, relative probabilities within a subset of alternatives
are unaffected by exclusion of aiternatives not in the subset, maximization
of QLL(B) provides a consistent estimate of f. However, since information
is excluded from QLL(f) that LL(B) incorporates (ie., information on
alternatives not in each subset and on decisionmakers whose chosen alter-
natives are not in their subsets), the value of # that maximizes QLL(p) is
not an efficient estimator.

Estimation with Choice Based Samples

In some situations, a sample drawn on the basis of exogenous factors would
include few people who have chosen particular alternatives. For example, in
the choice of water heaters, a random sample of housholds in most areas
would include only a small proportion who had chosen solar water heating
systems. If the researcher is particularly interested in factors that affect the
penetration of solar devices, estimation on a random sample of households
would require a very large total sample size.

In situations such as these, the researcher might instead select the sample,
or part of the sample, on the basis of the choice being analyzed. For
example, the researcher examining water heaters might supplement a ran-
dom sample of households with households that are known (perhaps
through sales records at stores if the researcher has access to these records)
to have recently installed solar water heater systems.

Samples selected on the basis of decisionmakers’ choices can be purely
choice based or a hybrid of choice based and exogenous. For a purely
choice based sample, the population is divided into those that choose each
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alternative and decisionmakers within each group are drawn randomly,
though at different rates. For example, a researcher who is examining the
choice of home location and is interested in identifying the factors that
contribute to people choosing one particular community might draw ran-
domly from within that community at the rate of one out of N households,
and draw randomly from all other communities at a rate of one out of M,
where M is larger than N. A hybrid sample is like the one drawn by the
researcher interested in solar water heating, in which an exogenous sample
is supplemented with a sample drawn on the basis of the households’
choices.

Estimation of model parameters with samples drawn at least partially on
the basis of the decisionmaker’s choice is fairly complex in general, and
varies with the exact form of the sampling procedure. For interested
readers, details are given by Ben-Akiva and Lerman (1985).

One result, however, is particularly significant, since it allows researchers
to use choice based samples without becoming involved in complex esti-
mation procedures. This result can be stated as follows. If the researcher is
using a purely choice based sample and includes an alternative-specific
constant in the representative utility for each alternative, then estimating
the model parameters as if the sample were exogenous produces consistent
estimates for all the model parameters except the alternative-specific con-
stants. Furthermore, these constants are biased by a known factor and can
therefore be adjusted so that the adjusted constants are consistent. In
particular, the expectation of the estimated constant for alternative i,
labeled 4;, is related to the true constant of,

E(%) = of — In(4,/S)),

where 4, is the proportion of decisionmakers in the population that choose
alternative i and S; is the proportion in the choice based sample that choose
alternative i. Consequently, if 4; is known (that is, if population shares are
known for each alternative), then a consistent estimate of the alternative-
specific constant is the estimated constant &; plus In(4,/S;).

2.7 Goodness of Fit

A statistic, called the likelihood ratio index, is often used with qualitative
choice models to measure how well the model fits the data. Stated more
precisely, the statistic measures how well the model, with its estimated
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parameters, performs compared with a model in which all the parameters
are zero (which is usually equivalent to having no model at all). This
comparison is made on the basis of the log likelihood function,-evaluated at
both the estimated parameters and at zero for all parameters.

The likelihood ratio index is defined as

p =1— (LL(B*)/LL(0)),

where LL(f*) is the value of the log likelihood function at the estimated
parameters and LL(0) is its value when all the parameters are set equal to
zero. If the estimated parameters do no better, in terms of the likelihood
function, than zero parameters (that is, if the estimated model is no better
than no model), then LL(8*) = LL(0)and so p = 0. This is the lowest value
that p can take (since if LL(8*)is less than LL(0), then f* would not be the
maximum likelihood estimate).

At the other extreme, suppose the estimated model were so good that
each sampled decisionmaker’s choice could be predicted perfectly. In this
case, the likelihood function at the estimated parameters would be one,
since the probability of observing the choices that were actually made is
one. And, since the log of one is zero, the log likelihood function would be
zero at the estimated parameters. With LL(f*) = 0, p = 1. This is the
highest value that p can take.

In summary, the likelihood ratio index ranges from zero, when the
estimated parameters are no better than zero parameters, to one, when the
estimated parameters allow for perfectly predicting the choices of the
sampled decisionmakers.

It is important to note that the likelihood ratio index is not at all similar
In its interpretation to the R-squared used in regression, despite both
statistics having the same range. R-squared indicates the percent of the
variation in the dependent variable that is “explained” by the estimated
model. The likelihood ratio has no intuitively interpretable meaning for
values between the extremes of zero and one. It is the percent increase in the
log likelihood function above the value taken at zero parameters (since p =
1 — (LL(B8*)/LL(0)) = (LL(0) — LL(B*))/LL(0)). However, the meaning of
such a percent increase is not clear. In comparing two models estimated
on the same data and with the same set of alternatives (such that LL(0) is the
same for both models), it is usually valid to say that the model with the
higher p fits the data better. But this is saying no more than that increasing
the value of the log likelihood function is preferable. Two models estimated
on samples that are not identical or with a different set of alternatives for
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any sampled decisionmaker cannot be compared via their likelihood ratio
index values.

Another goodness-of-fit statistic that is sometimes used, but is of even less
value than the likelihood ratio index, is the “percent correctly predicted.”
This statistic is calculated by identifying for each sampled decisionmaker
the alternative with the highest probability, based on the estimated model,
and determining whether or not this was the alternative that the decision-
maker actually chose; the percent of sampled decisionmakers for which the
highest probability alternative and the chosen alternative are the same is
called the percent correctly predicted.

This statistic, while popular in the early applications of qualitative choice
models, incorporates a notion that is opposed to the meaning of proba-
bilities and the purpose of specifying choice probabilities. The statistic is
based on the idea that the decisionmaker is predicted by the researcher to
choose the alternative for which the model gives the highest probability.
Recall from section 1.3, however, that the researcher does not have enough
information to predict the decisionmaker’s choice; he has only enough
information to state the probability that the decisionmaker will choose
each alternative. In stating choice probabilities, the researcher is saying that
if the choice situation were repeated numerous times, each alternative
would be chosen a certain proportion of the time. This is quite different
from saying that the alternative with the highest probability will be chosen
each time.

An example might be useful. Suppose an estimated model predicts choice
probabilities of .75 and .25 in a two-alternative situation. Those proba-
bilities mean that if the situation were repeated 100 times, the researcher’s
best predictions of how many times each alternative would be chosen are 75
and 25. However, the percent correctly predicted statistic is based on the
notion that the best prediction in each situation is the alternative with the
highest probability. With 100 repetitions, this notion would predict that
one alternative would be chosen all 100 times and the other alternative
never chosen. This misses the point of probabilities and seems to imply that
the researcher has perfect information.

2.8 Hypothesis Testing

A likelihood ratio test is a very general test that is used in nearly all contexts.
(The one major exception is for testing hypotheses on individual param-



52 Chapter 2

eters for which standard t-tests are performed.) Consider a null hypoth-
esis H that can be expressed as constraints on the values of the parameters.
Two of the most common such hypotheses are (1) several parameters being
zero, and (2) two or more parameters being equal to each other. The
constrained maximum likelihood estimate of the parameters (labeled %) is
that value of § that gives the highest value of LL without violating the
constraints of the null hypothesis H. For example, if H is the hypothesis that
the first two elements of N-tuple B are equal, then * is the value of B that,
out of the set of all N-tuples whose first two elements are equal, results in -
the highest value of the likelihood function.

Define the ratio of likelihoods, R = L(BY)/L(B*), where L(B") is the
(constrained) maximum value of the likelihood function under the null
hypothesis H and L(f*) is the unconstrained maximum of the likelihood
function. As in likelihood ratio tests for models other than those of qualita-
tive choice, the test statistic defined as —2log R is distributed chi-squared
with degrees of freedom equal to the number of restrictions implied by the
null hypothesis. Therefore, the test statisticis —2(LL(8") — LL(*)). Since
the log likelihood is always negative, this is simply two times the (magnitude
of the) difference between the constrained and unconstrained maximums of
the log likelihood function. If this value exceeds the critical value of chi-
squared with the appropriate degrees of freedom, then the null hypothesis is
rejected.

Examples

NULL HYPOTHESIS I: THE COEFFICIENTS OF SEVERAL EXPLANATORY VARIABLES
ARE ZERO To test this hypothesis, estimate the model twice: once with
these explanatory variables included and a second time without them (since
excluding the variables forces their coefficients to be zero). Observe the
maximum value of the log likelihood function for each estimation; two
times the difference in these maximum values is the value of the test statistic.
Compare the test statistic with the critical value of chi-squared with degrees
of freedom equal to the number of explanatory variables excluded from the
second estimation.

NULL HYPOTHESIS II: THE COEFFICIENTS OF THE FIRST TWO VARIABLES ARE THE
samME To test this hypothesis, estimate the model twice: once with each of
the explanatory variables entered separately including the first two; then
with the first two variables replaced by one variable that is the sum of the
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two variables (since summing the variables forces their coefficients to be
equal). Observe the maximum value of the log likelihood function for each
of the estimations. Multiply the difference in these maximum values by two
and compare this figure with the critical value of chi-squared with one
degree of freedom.

2.9 Derivation of Logit Probabilities

It was stated without proof in section 2.1 that if the utility of alternative iis
decomposed into observed and unobserved parts U,, = V,, + e;, and each
e,, is independently identically distributed in accordance with the extreme
value distribution, then the choice probabilities have the logit form
P _ eVI.’I

n Zi eVJ"
This statement is demonstrated as follows.

Under the extreme value distribution, the density function for each e,, is

exp(—e;,)* exp(—e™ "),
with a cumulative distribution of
exp(—e %n).
The probability that alternative i is chosen is
P,, = Prob(V;, + €;, > Vs + €5, for alljin J,, j # i).
Rearranging terms within the parentheses, we can write
P,, = Prob(e;, < €y + Vi — Vo forall jin J,, j # i). (2.12)

Suppose, for the moment, that e, takes a particular value, say, s. The
probability that alternative i is chosen is then the probability that each e;, is
less than s + V, — ¥, respectively, for all j in J,,j # i. The probability that
e,, = s and, simultaneously, that ¢;, <s + Viy — Vi foralljin J,, j # i, is
the density of e;, evaluated at s times the cumulative distribution for each ¢;,
except e;, evaluated at s + V;, — V},. From the extreme value distribution,
this is

e~sexp(—e™) [] exp(—e V"),

jedn
J#i
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Since ¥, — V,, = 0, this expression can be rewritten as

e™® [] exp(—e 6Vin=Vim), (2.13)
Jjed,

The random variable e, need not equal s, however; it can take any value

within its range. The right-hand side of equation (2.12) is, therefore, the sum

of expression (2.13) over all possible values of s. That is, since e;, is con-

tinuous, equation (2.12) becomes

P,= f e []exp(—ectVmVin) gs.

= ~a0

Our task in deriving the choice probabilities is to evaluate this integral.
Collecting terms in the exponent of e,

0
P, = f e"*exp { -y e"’“’iﬂ"’iﬂ’} ds
§

=—c jelt,

f e “exp { —e Y e‘("‘""’fﬂ)} ds.

= - jeJ,

Lete™ = t. Then —e™°ds = dt and ds = —(dt/1). Note that as s approaches
infinity, t approaches zero, and as s approaches negative infinity, ¢ becomes
infinitely large. Using these new terms,

P, = fotexp{—t- > e“"’-'"“'f"’}(—dt/t)

© jeJ,

i v
=J cxp{—t- > e“""'"’i"’}dt
0 jedn

DL g, e [
- —ZjEJ e_(Vin-an)
1

e
= Wi Vi) Vin?
Dies,€ ’ Yies, €

as required.

o

Vi n




