6 Simulation with Qualitative Choice Models

Qualitative choice models operate at the level of individual decisionmakers.
However, economists and policy analysts are usually interested in aggre-
gate variables, such as national demand or demand within a state or
metropolitan area. Issues concerning the estimation of aggregate variables
from qualitative choice models are described in this chapter.

6.1 Aggregation

Introduction

In standard regression models, estimates of aggregate values of the depen-
dent variable are obtained by inserting aggregate values of the explanatory
variables. For example, suppose h, is housing expenditures of person n, y, is
income of person n, and the model relating them is h, = « + By,. Since this
model is linear, the average expenditure on housing is simply calculated
asa + By, where jis average income. Similarly, total expenditures on hous-
ing within an area (e.g,, state) is o + 8Y, where Y is the total income in the
area.

Qualitative choice models are not linear in explanatory variables, and,
consequently, inserting aggregate values of the explanatory variables into
the models will not provide an unbiased estimate of the aggregate value of
the dependent variable. Consider a simple binary choice situation in which
each household either rents or owns its dwelling. The probability of owning
depends only on the household income; assume for convenience that the

probability is logit:

in = exp(ﬂyn)/(l + exp(ﬂyn))a i= owning.

Given this nonlinear model, the average probability of owning, P, is not
equal to the logit formula evaluated at average income, exp(8y)/(1 +
exp(fy)). This inequality is shown graphically in figure 6.1. Households
one and two have incomes y, and y, and ownership probabilities of P;,
and P,,, respectively. Their average income is y. At this average income,
the ownership probability given by the logit curve (that is, exp(8y)/(1 +
exp(fy))) is the value P(¥). This probability is higher (in this example) than
the average probability, P, which is the midpoint between P;, and P,.

Aggregate estimates can be obtained from qualitative choice models in
any of several ways. Three of these methods are now described.
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Demonstration that B, +# exp(By)/(1 + exp(fy)), where P=(Py + P2 and
¥ = + 32

Sample Enumeration of Choice Probabilities

The most straightforward, and by far the most popular, approach is sample
enumeration, by which the choice probabilities of each decisionmaker in a
sample are summed, or averaged, over decisionmakers. Consider a qualita-
tive choice model that gives the probability, Py, that decisionmaker n will
choose alternative i from a set of alternatives. Supposc a sample of N
decisionmakers, labeled n = 1,..., N, was drawn from the population for
which aggregate estimates are required. Each sampled decisionmaker has
some weight associated with it, representing the number of decisionmakers
similar to it in the population (this weight, for samples based on exogenous
factors, is the inverse of the probability that the decisionmaker was selected
for the sample). Label the weight for decisionmaker n as w,. Note that if the
sample is purely random, then w, is the same for all n; if the sample is
stratified random, then w, is the same for all n within a stratum.

A consistent estimate of the total number of decisionmakers in the
population that choose alternative i (labeled N) is simply the weighted sum
of the individual probabilities:
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Ni = ZWRPiH'

The average probability for alternative i is

P, = N/N = (1/N)Y w,Py.

Obviously, the average probability is the estimated share of decisionmakers
that choose alternative i.

Sample Enumeration of Randomly Generated Choices

Recall from chapter 1 that for qualitative choice models the decisionmaker
is assumed to choose the alternative that provides the greatest utility.
Utility is composed of an observed and an unobserved part, and assump-
tions about the distribution of the unobserved component give rise to the
choice probabilities. These facts can be utilized in an alternative method of
estimating aggregate variables.

Assume each decisionmaker faces a choice among a set J of alternatives,
with utility V,, + e, associated with each i in J. Representative utility is
calculated from observed data and estimated parameters. In the straight-
forward procedure just described, choice probabilities are calculated from
the values of representative utility. Alternatively, the choice of the decision-
maker carr be “mimicked” by selecting a value of ¢;, for each i in J from its
assumed distribution and observing for which alternative the quantity V;, +
e;, is greatest. That is, for each decisionmaker, a random number gen-
erator assigns a value to each e;,, for all i in J. The assumed distribution of e
is used as the basis of the random number generator (e.g., if the model is
logit, then random numbers are generated from the extreme value distribu-
tion; if probit, then from the normal). The value of each e,, generated in this
way is then added to the representative utility for the alternative, and the
decisionmaker is considered to choose the alternative with the highest utility.

The total number of decisionmakers in the population who choose a
particular alternative is estimated as the weighted sum of sampled decision-
makers who “chose” that alternative:

Ivi = anDins
where D,, = one if V,, + éi,, is greater than ¥}, + e, for all j # i, given the

calculated values of V,, and generated values of e;,, and is zero otherwise.
If each sampled decisionmaker’s choice is mimicked numerous times,
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with the random number generator assigning new values of e;, each time,
then the proportion of times the decisionmaker “chooses” each alternative
will approach the choice probability for that alternative. Alternatively, if
the sample size is expanded, then the proportion of the decisionmakers with
the same values of observed variables who choose a particular alternative
will approach the choice probability for that alternative. Therefore, Nisa
consistent estimate of the actual number of decisionmakers in the popu-
lation that choose alternative i.

For a given sample size, sample enumeration on choice probabilities
produces more accurate estimates of aggregate variables than sample
enumeration with randomly generated choices. However, if the choice
probability is complex (e.g., with probit or a complicated GEV structure),
then the computer time required to generate random numbers for each
alternative might be considerably less than that required to calculate choice
probabilities. For given computer costs, therefore, a larger sample is
possible if randomly generated choices are used rather than choice
probabilities.

Segmentation

When the number of explanatory variables in a qualitative choice model is
low, and those variables take only a few values, it is possible to estimate
aggregate variables without utilizing a sample of decisionmakers. Consider,
for example, a model with only two variables entering the representative
utility of each alternative: education level and sex of the decisionmaker.
Suppose the education variable consists of four categories: did not complete
high school (A), completed high school, but had no college (B), had some
college, but did not receive a degree (C), and received a college degree (D).
Then the total number of different types of decisionmakers is eight; these
eight segments are depicted in figure 6.2 and are labeleds =1, ..., 8.

If the researcher has data on the number of people in each segment of the
population (i.e., the number of decisionmakers in each cell in figure 6.2),
then aggregate variables can be estimated by calculating choice proba-
bilities for each of the eight types of decisionmakers and taking the weighted
sum of these choice probabilities. That is, an estimate of the number of
decisionmakers in the population who choose alternative i is

8
Ni = Z wSPis’
s=1
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Male Female
{A) Did not complete high school 1 2
(B) Completed high school, but had no college 3 4
(C) Had some college, but did not receive a degree 5 6
(D) Received a college degree 7 8

Figure 6.2
Segmentation of population.

where P, is the probability that a decisionmaker in segment s (i.e, with a
given education level and sex) chooses alternative i, and w, is the number of
decisionmakers in the population who are in segment s.

Note that this procedure is entirely dependent on the researcher knowing
the number of decisionmakers in the population who are in each segment.
Sometimes this information can be obtained from published population
statistics, such as census summaries. Often, however, the information can
only be estimated from a sample drawn from the population. In these cases,
the procedure does not allow the researcher to avoid taking a sample.
However, if the number of segments is smaller than the sample size, then the
procedure can reduce computer costs; choice probabilities are calculated
for each segment rather than each sampled decisionmaker, and the sample
is used simply to estimate the number of decisionmakers in each segment.

6.2 Forecasting

For forecasting into some future year, the same basic procedures described
are applied. However, the exogenous variables and/or the weights are
adjusted to reflect changes that are anticipated over time. For the sample
enumeration procedures, the sample is adjusted in either of these two ways
so that it looks like a sample that would be drawn in the future year. For
example, to forecast the number of people who will choose a given alterna-
tive five years in the future, a sample drawn in the current year is adjusted to
reflect changes in socioeconomic and other factors that are expected to
occur over the next five years. The sample is adjusted in either or both of
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two ways, (1) by changing the values of the variables relating to each
sampled decisionmaker (e.g, increasing each decisionmaker’s income to
represent real income growth over time) and/or (2) by changing the weight,
w,, attached to each decisionmaker to reflect changes over time in the
number of decisionmakers in the population that are similar to the sampled
decisionmaker (e.g., increasing the weights for one-person households and
decreasing the weights for six-person households to represent expected
decreases in household size over time).

For the segmentation approach, changes in explanatory variables over
time are represented by changes in the number of decisionmakers in each
segment. The explanatory variables themselves cannot fogically be adjusted
since the distinct values of the explanatory variables define the segments.
Changing the variables associated with a decisionmaker in one segment
simply shifts the decisionmaker to another segment.

Changing the weights associated with each sampled decisionmaker in the
sample enumeration procedure, and adjusting the number of decision-
makers in each segment for the segmentation approach, are essentially the
same process. Consider a choice model with one explanatory variable, a
dummy indicating whether the decisionmaker is over 30 years old or under
30. Label the number of decisionmakers over and under 30in the base year
as 030, and U30,, respectively, where b denotes the base year (i.c., the year
in which the sample used for forecasting was drawn). Suppose that the
researcher predicts (or assumes) that in the forecast year the number of
decisionmakers over and under 30 will be 030, and U30;, where f denotes
the forecast year. For sample enumeration, the appropriate adjustment in
weights in this case is the following. For each sampled decisionmaker under
30 in the base year, the weight for the forecast year is calculated as
(U30,/U30,) times the decisionmaker’s original weight in the base year.
Similarly, the forecast year weight fora decisionmaker over 30is (030;/030,)
times the base year weight. For the segmentation approach, the number of
people in the under 30 segment is considered to be U30, instead of U30y;
and similarly for the over 30 segment.

This concept can be generalized to any number of segments. Suppose the
explanatory variables in a particular model can take K distinct combina-
tions of values, labeled k = 1,...,K,and called segments. Assume the num-
ber of decisionmakers in segment k in the base and forecast years is M¥ and
ME, respectively. With sample enumeration, the weight for any sampled
decisionmaker who is in segment k in the base year is adjusted by M¥ /M for
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the forecast year. For estimation of aggregates by the segmentation proce-
dure, the choice probabilities for segment k are weighted by M* in the
forecast year rather than M.

6.3 Recalibration of Alternative-Specific Constants

Often the representative utility for each alternative in a qualitative choice
model includes a constant term, for example,

Ifin = ﬁzin + aia

where z,, is a vector of variables relating to decisionmaker n’s utility for
alternative i, f is a vector of parameters, and g is a scalar parameter. The
true value of o, is the mean of all factors that affect the utility of alternative i
but are not included in the vector z; (see section 2.3).

The value of a; for each i is estimated along with f on the sample used for
estimation. However, if, in simulation, the model is run on a sample from a
different area or different time than the sample used for estimation (e.g., if
the forecasting sample is drawn from one state while the estimation sample
was nationwide, or the forecast sample is drawn in 1984 while the estima-
tion sample was drawn in 1980), then the value of «; for each i will need to
be reestimated to reflect the fact that the mean of unincluded variables in
the area for which forecasts are made is not the same as those in the area
from which the estimation sample was drawn.?

The o; for all i are recalibrated with an iterative procedure that utilizes
information on the number of decisionmakers that actually chose alterna-
tive i in the forecast area in some base year. The procedure can be described
as follows. Let S; denote the number of decisionmakers that chose alterna-
tive i in the forecast area in the base year. Run the model with its original
values of «; for all i on the sample of decisionmakers for the forecast area
and estimate the number of decisionmakers to choose alternative i; label the
predicted number for alternative i as N°, where the superscript o denotes
that these predictions are based on the original values of the «;.

The next step is to compare the proportion of decisionmakers predicted
to choose each alternative with the proportion who actually did. That is, let
the predicted and actual proportions be denoted

n = N.O/Z Ny, $; = Si/z SJ
J J
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The model with its original values of the «; is overpredicting altérnative i if
n?islarger thans;, and underpredicting if s; is larger than n. This mispredic-
tion can be attributed to the fact that the original o, for all i represent the
mean of unincluded variables in the estimation area rather than in the
forecast area. Consequently, each o; should be corrected. In particular, each
%, is adjusted to new values using the formula

of = of + In(s;/nf),

where of is the original value of o; and a} is the first adjusted value. Note
that if s, is larger than n¢, and the model is underpredicting alternative i,
then the adjustment increases the value of a;, thereby increasing its desira-
bility as measured by V. Conversely, if n? is greater than s;, the model is
overpredicting alternative i, and the adjustment decreases a; and hence the
representative utility of alternative i.

The adjustment just described completes the first iteration of the recali-
bration procedure. For the second iteration, the model is run with the new
values of a; (that is, the a}) and new predictions are obtained. Label the
proportion of decisionmakers that are predicted to choose alternative i with
these new o as n}. Compare n} with s; for all i. If these values are close, then
use the o} as the final recalibrated values. If n} and s; are not close for all i,
then adjust each a; by the formula

2 = o} + In(si/n}),

where o is the twice-adjusted value of ;. Continue this process, obtaining
new values of the a; with each iteration, until the predicted proportion for
each alternative is close to the actual proportion.

6.4 Pivot Point Analysis with Logit Models

The standard way to analyze policies and “what if” situations with a
qualitative choice model is to simulate demand with the model twice, once
with “base case” values for explanatory variables (i.e., observed values for
the base year and assumed values for the forecast years) and a second time
with one or more of the explanatory variables changed to represent the
policy or situation being examined. For example, the effect of a gas tax on
automobile demand is usually assessed by simulating aggregate demand for
cach class of vehicle using expected gas prices, and then estimating demand
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again with higher gas prices (representing the tax) entering the model. The
difference in the two simulation results is the estimated impact of the
gasoline tax.

This standard procedure is the most accurate and is applicable for all
qualitative choice models. If the model is logit, however, an approach called
“pivot point analysis” is sometimes used instead. It is much easier and less
expensive than the standard approach. And, for small changes in ex-
planatory variables, it is perhaps not too inaccurate.

The method is based on the derivatives of the logit formula. Suppose a
researcher is interested in examining the impact of a change in a particular
explanatory variable affecting the utility of alternative i for all decision-
makers. For decisionmaker n, this variable is labeled X,,. If the choice
probabilities are logit, the change in the probability that decisionmaker n
will choose alternative i (see section 2.4) is

a})in/aXin = (a I/m/aXm)-Pm(l - Pin)'

That is, the researcher can estimate the effect of the change in X, by running
the model only once, to obtain the choice probabilities prior to the change.
By knowing the derivative of representative utility with respect to X, (e.g., if
V., 1s linear in X, then 8V,,/0X,, is simply the estimated coefficient of X,),
the researcher calculates the impact on decisionmaker n by the formula just
given. The impact at the aggregate level is similarly determined:

a]vi/a)(infornlln = an(av;n/aXm)Rn(l - })in)-:

where N; is the estimated number of decisionmakers who choose alternative
1.

When a sample of decisionmakers is unavailable for the area for which
policy analysis is being performed, a common practice has been to estimate
the impact of changes in explanatory variables by applying pivot point
analysis to the average probabilities. That is, the change in the proportion
of decisionmakers choosing alternative i is estimated as

((9V:/0X)P(1 — P)),

where X, V., and P, are the averages of X, ¥;,, and P,,, respectively, over all
n. P, can be observed from aggregate data. It is simply the proportion of
decisionmakers who actually chose alternative i. The quantity dV,/0X, can
also be known in many cases without sample information; for example, if V,
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is linear in X,, then dV,/0X,is simply the coefficient of X;,. Thus, the change
in average probabilities is estimated without a sample.

This procedure does not produce a consistent estimate of the impact of
changes in explanatory variables. It misses the fundamental point that the
average probability is not the probability calculated at the average of the
explanatory variables and similarly that the derivative of the average
probability is not the derivative of the probability calculated at the average

explanatory variables.



