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5 Probit

5.1 Choice Probabilities

The logit model is limited in three important ways. It cannot represent
random taste variation. It exhibits restrictive substitution patterns due to
the IIA property. And it cannot be used with panel data when unobserved
factors are correlated over time for each decision maker. GEV models
relax the second of these restrictions, but not the other two. Probit models
deal with all three. They can handle random taste variation, they allow
any pattern of substitution, and they are applicable to panel data with
temporally correlated errors.

The only limitation of probit models is that they require normal distri-
butions for all unobserved components of utility. In many, perhaps most
situations, normal distributions provide an adequate representation of
the random components. However, in some situations, normal distribu-
tions are inappropriate and can lead to perverse forecasts. A prominent
example relates to price coefficients. For a probit model with random
taste variation, the coefficient of price is assumed to be normally dis-
tributed in the population. Since the normal distribution has density on
both sides of zero, the model necessarily implies that some people have
a positive price coefficient. The use of a distribution that has density
only on one side of zero, such as the lognormal, is more appropriate and
yet cannot be accommodated within probit. Other than this restriction,
the probit model is quite general.

The probit model is derived under the assumption of jointly normal
unobserved utility components. The first derivation, by Thurstone (1927)
for a binary probit, used the terminology of psychological stimuli, which
Marschak (1960) translated into economic terms as utility. Hausman
and Wise (1978) and Daganzo (1979) elucidated the generality of the
specification for representing various aspects of choice behavior. Utility
is decomposed into observed and unobserved parts: Unj = Vnj + εnj ∀ j .
Consider the vector composed of each εnj , labeled ε′

n = 〈εn1, . . . , εn J 〉.

101



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-05Drv CB495/Train KEY BOARDED August 20, 2002 12:28 Char Count= 0

102 Behavioral Models

We assume that εn is distributed normal with a mean vector of zero and
covariance matrix �. The density of εn is

φ(εn) = 1

(2π )J/2|�|1/2
e− 1

2 ε′
n�

−1εn .

The covariance � can depend on variables faced by decision maker n, so
that �n is the more appropriate notation; however, we omit the subscript
for the sake of simplicity.

The choice probability is

Pni = Prob(Vni + εni > Vnj + εnj ∀ j 
= i)

=
∫

I (Vni + εni > Vnj + εnj ∀ j 
= i)φ(εn) dεn,(5.1)

where I (·) is an indicator of whether the statement in parentheses holds,
and the integral is over all values of εn . This integral does not have a
closed form. It must be evaluated numerically through simulation.

The choice probabilities can be expressed in a couple of other ways
that are useful for simulating the integral. Let Bni be the set of error
terms εn that result in the decision maker choosing alternative i : Bni =
{εn s.t. Vni + εni > Vnj + εnj ∀ j 
= i}. Then

(5.2) Pni =
∫

εn∈Bni

φ(εn) dεn,

which is an integral over only some of the values of εn rather than all
possible values, namely, the εn’s in Bni .

Expressions (5.1) and (5.2) are J -dimensional integrals over the J
errors εnj , j = 1, . . . , J . Since only differences in utility matter,
the choice probabilities can be equivalently expressed as (J − 1)-
dimensional integrals over the differences between the errors. Let us dif-
ference against alternative i , the alternative for which we are calculating
the probability. Define Ũnji = Unj − Uni , Ṽnji = Vnj − Vni , and ε̃nji =
εnj − εni . Then Pni = Prob(Ũnji < 0 ∀ j 
= i). That is, the probabil-
ity of choosing alternative i is the probability that all the utility dif-
ferences, when differenced against i , are negative. Define the vector
ε̃ni = 〈ε̃n1i , . . . , ε̃n J1〉 where the “. . .” is over all alternatives except i ,
so that ε̃ni has dimension J − 1. Since the difference between two nor-
mals is normal, the density of the error differences is

φ(ε̃ni ) = 1

(2π )−
1
2 (J−1)|�̃i |1/2

e− 1
2 ε̃′

ni �̃i ε̃ni ,
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where �̃i is the covariance of ε̃ni , derived from �. Then the choice
probability expressed in utility differences is

(5.3) Pni =
∫

I (Ṽnji + ε̃nji < 0 ∀ j 
= i)φ(ε̃ni ) d ε̃ni ,

which is a (J − 1)-dimensional integral over all possible values of the
error differences. An equivalent expression is

(5.4) Pni =
∫

ε̃ni ∈B̃ni

φ(ε̃ni ) d ε̃ni ,

where B̃ni = {ε̃ni s.t. Ṽnji + ε̃nji < 0 ∀ j 
= i}, which is a (J − 1)-
dimensional integral over the error differences in B̃ni .

Expressions (5.3) and (5.4) utilize the covariance matrix �̃i of the
error differences. There is a straightforward way to derive �̃i from the
covariance of the errors themselves, �. Let Mi be the (J − 1) identity
matrix with an extra column of −1’s added as the i th column. The extra
column makes the matrix have size J − 1 by J . For example, with J = 4
alternatives and i = 3,

Mi =

1 0 −1 0

0 1 −1 0
0 0 −1 1


 .

This matrix can be used to transform the covariance matrix of errors
into the covariance matrix of error differences: �̃i = Mi�M ′

i . Note that
�̃i is (J − 1) × (J − 1) while � is J × J , since Mi is (J − 1) × J .
As an illustration, consider a three-alternative situation with errors
〈εn1, εn2, εn3〉 that have covariance

� =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 .

Suppose we takes differences against alternative 2. We know from first
principles that the error differences 〈ε̃n12, ε̃n32〉 have covariance

�̃2 = Cov

(
εn1 − εn2

εn3 − εn2

)

=
(

σ11 + σ22 − 2σ12 σ13 + σ22 − σ12 − σ23

σ13 + σ22 − σ12 − σ23 σ33 + σ22 − 2σ23

)
.
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This covariance matrix can also be derived by the transformation �̃2 =
M2�M ′

2:

�̃n =
(

1 −1 0
0 −1 1

) 
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33





 1 0

−1 −1
0 1




=
(

σ11 − σ12 σ12 − σ22 σ13 − σ23

−σ12 + σ13 −σ22 + σ23 −σ23 + σ33

) 
 1 0

−1 −1
0 1




=
(

σ11 − σ12 − σ12 + σ22 −σ12 + σ22 + σ13 − σ23

−σ12 + σ13 + σ22 − σ23 σ22 − σ23 − σ23 + σ33

)

=
(

σ11 + σ22 − 2σ12 σ13 + σ22 − σ12 − σ23

σ13 + σ22 − σ12 − σ23 σ33 + σ22 − 2σ23

)
.

As we will see, this transformation by Mi comes in handy when simu-
lating probit probabilities.

5.2 Identification

As described in Section 2.5, any discrete choice model must be normal-
ized to take account of the fact that the level and scale of utility are irrele-
vant. The level of utility is immaterial because a constant can be added to
the utility of all alternatives without changing which alternative has the
highest utility: the alternative with the highest utility before the constant
is added still has the highest utility afterward. Similarly, the scale of
utility doesn’t matter because the utility of each alternative can be mul-
tiplied by a (positive) constant without changing which alternative has
the highest utility. In logit and nested logit models, the normalization for
scale and level occurs automatically with the distributional assumptions
that are placed on the error terms. As a result, normalization does not
need to be considered explicitly for these models. With probit models,
however, normalization for scale and level does not occur automatically.
The researcher must normalize the model directly.

Normalization of the model is related to parameter identification. A
parameter is identified if it can be estimated, and is unidentified if it
cannot be estimated. An example of an unidentified parameter is k in
the utility specification Unj = Vnj + k + εnj . While the researcher might
write utility in this way, and might want to estimate k to obtain a measure
of the overall level of utility, doing so is impossible. The behavior of the
decision maker is unaffected by k, and so the researcher cannot infer its
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value from the choices that decision makers have made. Stated directly,
parameters that do not affect the behavior of decision makers cannot be
estimated. In an unnormalized model, parameters can appear that are not
identified; these parameters relate to the scale and level of utility, which
do not affect behavior. Once the model is normalized, these parameters
disappear. The difficulty arises because it is not always obvious which
parameters relate to scale and level. In the preceding example, the fact
that k is unidentified is fairly obvious. In many cases, it is not at all
obvious which parameters are identified. Bunch and Kitamura (1989)
have shown that the probit models in several published articles are not
normalized and contain unidentified parameters. The fact that neither
the authors nor the reviewers of these articles could tell that the models
were unnormalized is testimony to the complexity of the issue.

I provide in the following a procedure that can always be used to
normalize a probit model and assure that all parameters are identified. It is
not the only procedure that can be used; see, for example, Bunch (1991).
In some cases a researcher might find other normalization procedures
more convenient. However, the procedure I give can always be used,
either by itself or as a check on another procedure.

I describe the procedure in terms of a four-alternative model. Gen-
eralization to more alternatives is obvious. As usual, utility is ex-
pressed as Unj = Vnj + εnj , j = 1, . . . , 4. The vector of errors is ε′

n =
〈εn1, . . . , εn4〉. It is normally distributed with zero mean and a covariance
matrix that can be expressed explicitly as

(5.5) � =




σ11 σ12 σ13 σ14

· σ22 σ23 σ24

· · σ33 σ34

· · · σ44


 ,

where the dots refer to the corresponding elements on the upper part
of the matrix. Note that there are ten elements in this matrix, that is,
ten distinct σ ’s representing the variances and covariances among the
four errors. In general, a model with J alternatives has J (J + 1)/2
distinct elements in the covariance matrix of the errors.

To take account of the fact that the level of utility is irrelevant, we take
utility differences. In my procedure, I always take differences with re-
spect to the first alternative, since that simplifies the analysis in a way that
we will see. Define error differences as ε̃nj1 = εnj − εn1 for j = 2, 3, 4,
and define the vector of error differences as ε̃n1 = 〈ε̃n21, ε̃n31, ε̃n41〉. Note
that the subscript 1 in ε̃n1 means that the error differences are against
the first alternative, rather than that the errors are for the first alternative.
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The covariance matrix for the vector of error differences takes the form

�̃1 =

θ22 θ23 θ24

· θ33 θ34

· · θ44


 ,

where the θ ’s relate to the original σ ’s as follows:

θ22 = σ22 + σ11 − 2σ12,

θ33 = σ33 + σ11 − 2σ13,

θ44 = σ44 + σ11 − 2σ14,

θ23 = σ23 + σ11 − σ12 − σ13,

θ24 = σ24 + σ11 − σ12 − σ14,

θ34 = σ34 + σ11 − σ13 − σ14.

Computationally, this matrix can be obtained using the transformation
matrix Mi defined in Section 5.1 as �̃1 = M1�M ′

1.
To set the scale of utility, one of the diagonal elements is normalized.

I set the top-left element of �̃1, which is the variance of ε̃n21, to 1. This
normalization for scale gives us the following covariance matrix:

(5.6) �̃∗
1 =




1 θ∗
23 θ∗

24

· θ∗
33 θ∗

34

· · θ∗
44


 .

The θ∗’s relate to the original σ ’s as follows:

θ∗
33 = σ33 + σ11 − 2σ13

σ22 + σ11 − 2σ12
,

θ∗
44 = σ44 + σ11 − 2σ14

σ22 + σ11 − 2σ12
,

θ∗
23 = σ23 + σ11 − σ12 − σ13

σ22 + σ11 − 2σ12
,

θ∗
24 = σ24 + σ11 − σ12 − σ14

σ22 + σ11 − 2σ12
,

θ∗
34 = σ34 + σ11 − σ13 − σ14

σ22 + σ11 − 2σ12
.

There are five elements in �̃∗
1. These are the only identified parameters

in the model. This number is less than the ten elements that enter �. Each
θ∗ is a function of the σ ’s. Since there are five θ∗’s and ten σ ’s, it is not
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possible to solve for all the σ ’s from estimated values of the θ∗’s. It is
therefore not possible to obtain estimates of all the σ ’s.

In general, a model with J alternatives and an unrestricted covariance
matrix will have [(J − 1)J/2] − 1 covariance parameters when normal-
ized, compared to the J (J + 1)/2 parameters when unnormalized. Only
[(J − 1)J/2] − 1 parameters are identified. This reduction in the num-
ber of parameters is not a restriction. The reduction in the number of
parameters is a normalization that simply eliminates irrelevant aspects
of the original covariance matrix, namely the scale and level of utility.
The ten elements in � allow for variance and covariance that is due
simply to scale and level, which has no relevance for behavior. Only the
five elements in �̃∗

1 contain information about the variance and covari-
ance of errors independent of scale and level. In this sense, only the five
parameters have economic content, and only the five parameters can be
estimated.

Suppose now that the researcher imposes structure on the covariance
matrix. That is, instead of allowing a full covariance matrix for the
errors, the researcher believes that the errors follow a pattern that implies
particular values for, or relations among, the elements in the covariance
matrix. The researcher restricts the covariance matrix to incorporate this
pattern.

The structure can take various forms, depending on the application.
Yai et al. (1997) estimate a probit model of route choice where the covari-
ance between any two routes depends only on the length of shared route
segments; this structure reduces the number of covariance parameters to
only one, which captures the relation of the covariance to shared length.
Bolduc et al. (1996) estimate a model of physicians’ choice of location
where the covariance among locations is a function of their proximity
to one another, using what Bolduc (1992) has called a “generalized au-
toregressive” structure. Haaijer et al. (1998) impose a factor-analytic
structure that arises from random coefficients of explanatory variables;
this type of structure is described in detail in Section 5.3. Elrod and Keane
(1995) impose a factor-analytic structure, but one that arises from error
components rather than random coefficients per se.

Often the structure that is imposed will be sufficient to normalize
the model. That is, the restrictions that the researcher imposes on the
covariance matrix to fit her beliefs about the way the errors relate to
each other will also serve to normalize the model. However, this is not
always the case. The examples cited by Bunch and Kitamura (1989) are
cases where the restrictions that the researcher placed on the covariance
matrix seemed sufficient to normalize the model but actually were not.



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-05Drv CB495/Train KEY BOARDED August 20, 2002 12:28 Char Count= 0

108 Behavioral Models

The procedure that I give in the preceding text can be used to deter-
mine whether the restrictions on the covariance matrix are sufficient to
normalize the model. The researcher specifies � with her restrictions
on its elements. Then the stated procedure is used to derive �̃∗

1, which
is normalized for scale and level. We know that each element of �̃∗

1
is identified. If each of the restricted elements of � can be calculated
from the elements of �̃∗

1, then the restrictions are sufficient to normalize
the model. In this case, each parameter in the restricted � is identified.
On the other hand, if the elements of � cannot be calculated from the
elements of �̃∗

1, then the restrictions are not sufficient to normalize the
model and the parameters in � are not identified.

To illustrate this approach, suppose the researcher is estimating a four-
alternative model and assumes that the covariance matrix for the errors
has the following form:

� =




1 + ρ ρ 0 0
· 1 + ρ 0 0
· · 1 + ρ ρ

· · · 1 + ρ


 .

This covariance matrix allows the first and second errors to be correlated,
the same as the third and fourth alternatives, but allows no other corre-
lation. The correlation between the appropriate pairs is ρ/(1 + ρ). Note
that by specifying the diagonal elements as 1 + ρ, the researcher assures
that the correlation is between −1 and 1 for any value of ρ, as required
for a correlation. Is this model, as specified, normalized for scale and
level? To answer the question, we apply the described procedure. First,
we take differences with respect to the first alternative. The covariance
matrix of error differences is

�̃1 =

θ22 θ23 θ24

· θ33 θ34

· · θ44


 ,

where the θ ’s relate to the original σ ’s as follows:

θ22 = 2,

θ33 = 2 + 2ρ,

θ44 = 2 + 2ρ,

θ23 = 1,

θ24 = 1,

θ34 = 1 + 2ρ.
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We then normalize for scale by setting the top-left element to 1. The
normalized covariance matrix is

�̃∗
1 =




1 θ∗
23 θ∗

24

· θ∗
33 θ∗

34

· · θ∗
44


 ,

where the θ∗’s relate to the original σ ’s as follows:

θ∗
33 = 1 + ρ,

θ∗
44 = 1 + ρ,

θ∗
23 = 1

2 ,

θ∗
24 = 1

2 ,

θ∗
34 = 1

2 + ρ.

Note that θ∗
33 = θ∗

44 = θ∗
34 − 1

2 and that the other θ∗’s have fixed values.
There is one parameter in �̃∗

1, as there is in �. Define θ = 1 + ρ. Then
�̃∗

1 is

�̃∗
1 =




1 1
2

1
2

· θ θ − 1
2

· · θ


 .

The original ρ can be calculated directly from θ . For example, if θ

is estimated to be 2.4, then the estimate of ρ is θ − 1 = 1.4 and the
correlation is 1.4/2.4 = .58. The fact that the parameters that enter � can
be calculated from the parameters that enter the normalized covariance
matrix �̃∗

1 means that the original model is normalized for scale and level.
That is, the restrictions that the researcher placed on � also provided
the needed normalization.

Sometimes restrictions on the original covariance matrix can appear to
be sufficient to normalize the model when in fact they do not. Applying
our procedure will determine whether this is the case. Consider the same
model, but now suppose that the researcher allows a different correlation
between the first and second errors than between the third and fourth
errors. The covariance matrix of errors is specified to be

� =




1 + ρ1 ρ1 0 0
· 1 + ρ1 0 0
· · 1 + ρ2 ρ2

· · · 1 + ρ2


 .
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The correlation between the first and second errors is ρ1/(1 + ρ1), and
the correlation between the third and fourth errors is ρ2/(1 + ρ2). We
can derive �̃1 for error differences and then derive �̃∗

1 by setting the
top-left element of �̃1 to 1. The resulting matrix is

�̃∗
1 =




1 1
2

1
2

· θ θ − 1
2

· · θ


 ,

where now θ = 1 + (ρ1 + ρ2)/2. The values of ρ1 and ρ2 cannot be cal-
culated from a value of θ . The original model is therefore not normalized
for scale and level, and the parameters ρ1 and ρ2 are not identified. This
fact is somewhat surprising, since only two parameters enter the origi-
nal covariance matrix �. It would seem, unless the researcher explicitly
tested in the manner we have just done, that restricting the covariance
matrix to consist of only two elements would be sufficient to normalize
the model. In this case, however, it is not.

In the normalized model, only the average of the ρ’s appears: (ρ1 +
ρ2)/2. It is possible to calculate the average ρ from θ , simply as θ − 1.
This means that the average ρ is identified, but not the individual values.
When ρ1 = ρ2, as in the previous example, the model is normalized
because each ρ is equal to the average ρ. However, as we now see, any
model with the same averageρ’s is equivalent, after normalizing for scale
and level. Hence, assuming that ρ1 = ρ2 is no different than assuming
that ρ1 = 3ρ2, or any other relation. All that matters for behavior is the
average of these parameters, not their values relative to each other. This
fact is fairly surprising and would be hard to realize without using our
procedure for normalization.

Now that we know how to assure that a probit model is normalized
for level and scale, and hence contains only economically meaningful
information, we can examine how the probit model is used to represent
various types of choice situations. We look at three situations in which
logit models are limited and show how the limitation is overcome with
probit. These situations are taste variation, substitution patterns, and
repeated choices over time.

5.3 Taste Variation

Probit is particularly well suited for incorporating random coefficients,
provided that the coefficients are normally distributed. Hausman and
Wise (1978) were the first, to my knowledge, to give this derivation.
Haaijer et al. (1998) provide a compelling application. Assume that
representative utility is linear in parameters and that the coefficients
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vary randomly over decision makers instead of being fixed as we have
assumed so far in this book. The utility is Unj = β ′

nxnj + εnj , where
βn is the vector of coefficients for decision maker n representing that
person’s tastes. Suppose the βn is normally distributed in the population
with mean b and covariance W : βn ∼ N (b, W ). The goal of the research
is to estimate the parameters b and W .

The utility can be rewritten with βn decomposed into its mean and de-
viations from its mean: Unj = b′xnj + β̃

′
nxnj + εnj , where β̃n = b − βn .

The last two terms in the utility are random; denote their sum as ηnj to
obtain Unj = b′xnj + ηnj . The covariance of the ηnj ’s depends on W as
well as the xnj ’s, so that the covariance differs over decision makers.

The covariance of the ηnj ’s can be described easily for a two-
alternative model with one explanatory variable. In this case, the utility
is

Un1 = βnxn1 + εn1,

Un2 = βnxn2 + εn2.

Assume that βn is normally distributed with mean b and variance σβ .
Assume that εn1 and εn2 are identically normally distributed with vari-
ance σε. The assumption of independence is for this example and is not
needed in general. The utility is then rewritten as

Un1 = bxn1 + ηn1,

Un2 = bxn2 + ηn2,

where ηn1 and ηn2 are jointly normally distributed. Each has zero mean:
E(ηnj ) = E(β̃nxnj + εnj ) = 0. The covariance is determined as follows.
The variance of each is V (ηnj ) = V (β̃nxnj + εnj ) = x2

njσβ + σε. Their
covariance is

Cov(ηn1, ηn2) = E[(β̃nxn1 + εn1)(β̃nxn2 + εn2)]

= E
(
β̃

2
nxn1xn2 + εn1εn2 + εn1β̃bxn2 + εn2β̃nxn1

)
= xn1xn2σβ.

The covariance matrix is

� =
(

x2
n1σβ + σε xn1xn2σβ

xn1xn2σβ x2
n2σβ + σε

)

= σβ

(
x2

n1 xn1xn2

xn1xn2 x2
n2

)
+ σε

(
1 0
0 1

)
.

One last step is required for estimation. Recall that behavior is not
affected by a multiplicative transformation of utility. We therefore need
to set the scale of utility. A convenient normalization for this case is
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σε = 1. Under this normalization,

� = σβ

(
x2

n1 xn1xn2

xn1xn2 x2
n2

)
+

(
1 0
0 1

)
.

The values of xn1 and xn2 are observed by the researcher, and the pa-
rameters b and σβ are estimated. Thus, the researcher learns both the
mean and the variance of the random coefficient in the population. Gen-
eralization to more than one explanatory variable and more than two
alternatives is straightforward.

5.4 Substitution Patterns and Failure of IIA

Probit can represent any substitution pattern. The probit probabilities do
not exhibit the IIA property that gives rise to the proportional substitution
of logit. Different covariance matrices � provide different substitution
patterns, and by estimating the covariance matrix, the researcher deter-
mines the substitution pattern that is most appropriate for the data.

A full covariance matrix can be estimated, or the researcher can im-
pose structure on the covariance matrix to represent particular sources
of nonindependence. This structure usually reduces the number of the
parameters and facilitates their interpretation. We consider first the situa-
tion where the researcher estimates a full covariance matrix, and then
turn to a situation where the researcher imposes structure on the covari-
ance matrix.

Full Covariance: Unrestricted Substitution Patterns

For notational simplicity, consider a probit model with four al-
ternatives. A full covariance matrix for the unobserved components of
utility takes the form of � in (5.5). When normalized for scale and level,
the covariance matrix becomes �̃∗

1 in (5.6). The elements of �̃∗
1 are

estimated. The estimated values can represent any substitution pattern;
importantly, the normalization for scale and level does not restrict the
substitution patterns. The normalization only eliminates aspects of �

that are irrelevant to behavior.
Note, however, that the estimated values of the θ∗’s provide essentially

no interpretable information in themselves (Horowitz, 1991). For exam-
ple, suppose θ∗

33 is estimated to be larger than θ∗
44. It might be tempting

to interpret this result as indicating that the variance in unobserved util-
ity of the third alternative is greater than that for the fourth alternative;
that is, that σ33 > σ44. However, this interpretation is incorrect. It is
quite possible that θ∗

33 > θ∗
44 and yet σ44 > σ33, if the covariance σ13 is
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sufficiently greater than σ14. Similarly, suppose that θ23 is estimated to
be negative. This does not mean that unobserved utility for the second
alternative is negatively correlated with unobserved utility for the third
alternative (that is, σ23 < 0). It is possible that σ23 is positive and yet
σ12 and σ13 are sufficiently large to make θ∗

23 negative. The point here
is that estimating a full covariance matrix allows the model to represent
any substitution pattern, but renders the estimated parameters essentially
uninterpretable.

Structured Covariance: Restricted
Substitution Patterns

By imposing structure on the covariance matrix, the estimated
parameters usually become more interpretable. The structure is a re-
striction on the covariance matrix and, as such, reduces the ability of the
model to represent various substitution patterns. However, if the struc-
ture is correct (that is, actually represents the behavior of the decision
makers), then the true substitution pattern will be able to be represented
by the restricted covariance matrix.

Structure is necessarily situation-dependent: an appropriate structure
for a covariance matrix depends on the specifics of the situation being
modeled. Several studies using different kinds of structure were de-
scribed in Section 5.2. As an example of how structure can be imposed
on the covariance matrix and hence substitution patterns, consider a
homebuyer’s choice among purchase-money mortgages. Suppose four
mortgages are available to the homebuyer from four different institu-
tions: one with a fixed rate, and three with variable rates. Suppose the
unobserved portion of utility consists of two parts: the homebuyer’s con-
cern about the risk of rising interest rates, labeled rn , which is common
to all the variable-rate loans; and all other unobserved factors, labeled
collectively ηnj . The unobserved component of utility is then

εnj = −rnd j + ηnj ,

where d j = 1 for the variable-rate loans and 0 for the fixed-rate loan,
and the negative sign indicates that utility decreases as concern about
risk rises. Assume that rn is normally distributed over homebuyers with
variance σ , and that ηnj ∀ j is iid normal with zero mean and variance
ω. Then the covariance matrix for εn = 〈εn1, . . . , εn4〉 is

� =




0 0 0 0
· σ σ σ

· · σ σ

· · · σ


 + ω




1 0 0 0
· 1 0 0
· · 1 0
· · · 1


 .
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The model needs to normalized for scale but, as we will see, is already
normalized for level. The covariance of error differences is

�̃1 =

σ σ σ

· σ σ

· · σ


 + ω


2 1 1

· 2 1
· · 2


 .

This matrix has no fewer parameters than �. That is to say, the model was
already normalized for level. To normalize for scale, set σ + 2ω = 1.
Then the covariance matrix becomes

�̃∗
1 =


1 θ θ

· 1 θ

· · 1


 ,

where θ = (σ + ω)/(σ + 2ω). The values of σ and ω cannot be cal-
culated from θ . However, the parameter θ provides information about
the variance in utility due to concern about risk relative to that due to
all other unobserved factors. For example, suppose θ is estimated to be
0.75. This estimate can be intrepreted as indicating that the variance in
utility attributable to concern about risk is twice as large as the variance
in utility attributable to all other factors:

θ = 0.75,
σ + ω

σ + 2ω
= 0.75,

σ + ω = 0.75σ + 1.5ω,

0.25σ = 0.5ω,

σ = 2ω.

Stated equivalently, θ̂ = 0.75 means that concern about risk accounts
for two-thirds of the variance in the unobserved component of utility.

Since the original model was already normalized for level, the model
could be estimated without reexpressing the covariance matrix in terms
of error differences. The normalization for scale could be accomplished
simply by setting ω = 1 in the original �. Under this procedure, the
parameter σ is estimated directly. Its value relative to 1 indicates the
variance due to concern about risk relative to the variance due to percep-
tions about ease of dealing with each institution. An estimate θ̂ = 0.75
corresponds to an estimate σ̂ = 2.

5.5 Panel Data

Probit with repeated choices is similar to probit on one choice per deci-
sion maker. The only difference is that the dimension of the covariance
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matrix of the errors is expanded. Consider a decision maker who faces
a choice among J alternatives in each of T time periods or choices
situations. The alternatives can change over time, and J and T can dif-
fer for different decision makers; however, we suppress the notation
for these possibilities. The utility that decision maker n obtains from
alternative j in period t is Unjt = Vnjt + εnjt . In general, one would
expect εnjt to be correlated over time as well as over alternatives, since
factors that are not observed by the researcher can persist over time.
Denote the vector of errors for all alternatives in all time periods as
εn = 〈εn11, . . . , εn J1, εn12, . . . , εn J2, . . . , εn1T , . . . , εn J T 〉. The covari-
ance matrix of this vector is denoted �, which has dimension JT × JT.

Consider a sequence of alternatives, one for each time period, i =
{i1, . . . , iT }. The probability that the decision maker makes this sequence
of choices is

Pni = Prob(Unit t > Unjt ∀ j 
= it , ∀t)

= Prob(Vnit t + εnit t > Vnjt + εnjt ∀ j 
= it , ∀t)

=
∫

εn∈Bn

φ(εn) dεn.

where Bn = {εn s.t. Vnit t + εnit t > Vnjt + εnjt ∀ j 
= it , ∀t} and φ(εn) is
the joint normal density with zero mean and covariance �. Compared
to the probit probability for one choice situation, the integral is simply
expanded to be over JT dimensions rather than J .

It is often more convenient to work in utility differences. The prob-
ability of sequence i is the probability that the utility differences are
negative for each alternative in each time period, when the differences
in each time period are taken against the alternative identified by i for
that time period:

Pni = Prob(Ũnjit t < 0 ∀ j 
= it , ∀t)

=
∫

ε̃n∈B̃n

φ(ε̃n) d ε̃n,

where Ũnjit t = Unjt − Unit t ; ε̃′
n = 〈(εn11 − εni11), . . . , (εn J1 − εni11), . . . ,

(εn1T − εniT T ), . . . , (εn J T − εniT T )〉 with each . . . being over all alter-
natives except it , and the matrix B̃n is the set of ε̃n’s for which
Ũnjit t < 0 ∀ j 
= it , ∀t . This is a (J − 1)T -dimensional integral. The
density φ(ε̃n) is joint normal with covariance matrix derived from �. The
simulation of the choice probability is the same as for situations with one
choice per decision maker, which we describe in Section 5.6, but with a
larger dimension for the covariance matrix and integral. Borsch-Supan
et al. (1991) provide an example of a multinomial probit on panel data
that allows covariance over time and over alternatives.
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For binary choices, such as whether a person buys a particular product
in each time period or works at a paid job each month, the probit model
simplifies considerably (Gourieroux and Monfort, 1993). The net utility
of taking the action (e.g., working) in period t is Unt = Vnt + εnt , and
the person takes the action if Unt > 0. This utility is called net utility
because it is the difference between the utility of taking the action and
that of not taking the action. As such, it is already expressed in difference
terms. The errors are correlated over time, and the covariance matrix for
εn1, . . . , εnT is �, which is T × T .

A sequence of binary choices is most easily represented by a set of
T dummy variables: dnt = 1 if person n took the action in period t ,
and dnt = −1 otherwise. The probability of the sequence of choices
dn = dn1, . . . , dnT is

Pndn = Prob(Unt dnt > 0 ∀t)

= Prob(Vnt dnt + εnt dnt > 0 ∀t)

=
∫

εn∈Bn

φ(εn) dεn,

where Bn is the set of εn’s for which Vnt dnt + εnt dnt > 0 ∀t , and φ(εn)
is the joint normal density with covariance �.

Structure can be placed on the covariance of the errors over time.
Suppose in the binary case, for example, that the error consists of a
portion that is specific to the decision maker, reflecting his proclivity
to take the action, and a part that varies over time for each decision
maker: εnt = ηn + µnt , where µnt is iid over time and people with a
standard normal density, and ηn is iid over people with a normal density
with zero mean and variance σ. The variance of the error in each period
is V (εnt ) = V (ηn + µnt ) = σ + 1. The covariance between the errors
in two different periods t and s is Cov(εnt , εns) = E(ηn + µnt )(ηn +
µns) = σ . The covariance matrix therefore takes the form

� =




σ + 1 σ · · · · · · σ

σ σ + 1 σ · · · σ

· · · · · · · · · · · · · · ·
σ · · · · · · σ σ + 1


 .

Only one parameter, σ , enters the covariance matrix. Its value indicates
the variance in unobserved utility across individuals (the variance of ηn)
relative to the variance across time for each individual (the variance of
µnt ). It is often called the cross-subject variance relative to the within-
subject variance.
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The choice probabilities under this structure on the errors can be eas-
ily simulated using the concepts of convenient error partitioning from
Section 1.2. Conditional on ηn , the probability of not taking the action
in period t is Prob(Vnt + ηn + µnt < 0) = Prob(µnt < − (Vnt + ηn)) =
�(−(Vnt + ηn)), where �(·) is the cumulative standard normal func-
tion. Most software packages include routines to calculate this func-
tion. The probability of taking the action, conditional on ηn , is then
1 − �(−(Vnt + ηn)) = �(Vnt + ηn). The probability of the sequence of
choices dn , conditional on ηn , is therefore

∏
t �((Vnt + ηn)dnt ), which

we can label Hndn (ηn).
So far we have conditioned on ηn , when in fact ηn is random. The

unconditional probability is the integral of the conditional probability
Hndn (ηn) over all possible values of ηn:

Pndn =
∫

Hndn (ηn)φ(ηn) dηn

where φ(ηn) is the normal density with zero mean and variance σ . This
probability can be simulated very simply as follows:

1. Take a draw from a standard normal density using a random
number generator. Multiply the draw by

√
σ , so that it becomes

a draw of ηn from a normal density with variance σ .
2. For this draw of ηn , calculate Hndn (ηn).
3. Repeat steps 1–2 many times, and average the results. This ave-

rage is a simulated approximation to Pndn .

This simulator is much easier to calculate than the general probit sim-
ulators described in the next section. The ability to use it arises from
the structure that we imposed on the model, namely, that the time
dependence of the unobserved factors is captured entirely by a ran-
dom component ηn that remains constant over time for each person.
Gourieroux and Monfort (1993) provide an example of the use of this
simulator with a probit model of this form.

The representative utility in one time period can include exogenous
variables for other time periods, the same as we discussed with respect
to logit models on panel data (Section 3.3.3). That is, Vnt can include
exogenous variables that relate to periods other than t . For example, a
lagged response to price changes can be represented by including prices
from previous periods in the current period’s V . Anticipatory behavior
(by which, for example, a person buys a product now because he correctly
anticipates that the price will rise in the future) can be represented by
including prices in future periods in the current period’s V .
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Entering a lagged dependent variable is possible, but introduces two
difficulties that the researcher must address. First, since the errors are
correlated over time, the choice in one period is correlated with the
errors in subsequent periods. As a result, inclusion of a lagged dependent
variable without adjusting the estimation procedure appropriately results
in inconsistent estimates. This issue is analogous to regression analysis,
where the ordinary least squares estimator is inconsistent when a lagged
dependent variable is included and the errors are serially correlated.
To estimate a probit consistently in this situation, the researcher must
determine the distribution of each εnt conditional on the value of the
lagged dependent variables. The choice probability is then based on this
conditional distribution instead of the unconditional distribution φ(·)
that we used earlier. Second, often the researcher does not observe the
decision makers’ choices from the very first choice that was available
to them. For example, a researcher studying employment patterns will
perhaps observe a person’s employment status over a period of time (e.g.,
1998–2001), but usually will not observe the person’s employment status
starting with the very first time the person could have taken a job (which
might precede 1998 by many years). In this case, the probability for
the first period that the researcher observes depends on the choices of
the person in the earlier periods that the researcher does not observe. The
researcher must determine a way to represent the first choice probability
that allows for consistent estimation in the face of missing data on earlier
choices. This is called the initial conditions problem of dynamic choice
models. Both of these issues, as well as potential approaches to dealing
with them, are addressed by Heckman (1981b, 1981a) and Heckman and
Singer (1986). Due to their complexity, I do not describe the procedures
here and refer interested and brave readers to these articles.

Papatla and Krishnamurthi (1992) avoid these issues in their probit
model with lagged dependent variables by assuming that the unobserved
factors are independent over time. As we discussed in relation to logit on
panel data (Section 3.3.3), lagged dependent variables are not correlated
with the current errors when the errors are independent over time, and
they can therefore be entered without inducing inconsistency. Of course,
this procedure is only appropriate if the assumption of errors being
independent over time is true in reality, rather than just by assumption.

5.6 Simulation of the Choice Probabilities

The probit probabilities do not have a closed-form expression and must
be approximated numerically. Several nonsimulation procedures have
been used and can be effective in certain circumstances.
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Quadrature methods approximate the integral by a weighted func-
tion of specially chosen evaluation points. A good explanation for these
procedures is provided by Geweke (1996). Examples of their use for pro-
bit include Butler and Moffitt (1982) and Guilkey and Murphy (1993).
Quadrature operates effectively when the dimension of the integral is
small, but not with higher dimensions. It can be used for probit if the
number of alternatives (or, with panel data, the number of alternatives
times the number of time periods) is no more than four or five. It can also
be used if the researcher has specified an error-component structure with
no more than four or five terms. However, it is not effective for general
probit models. And even with low-dimensional integration, simulation
is often easier.

Another nonsimulation procedure that has been suggested is the Clark
algorithm, introduced by Daganzo et al. (1977). This algorithm utilizes
the fact, shown by Clark (1961), that the maximum of several normally
distributed variables is itself approximately normally distributed. Unfor-
tunately, the approximation can be highly inaccurate in some situations
(as shown by Horowitz et al., 1982), and the degree of accuracy is dif-
ficult to assess in any given setting.

Simulation has proven to be very general and useful for approximat-
ing probit probabilities. Numerous simulators have been proposed for
probit models; a summary is given by Hajivassiliou et al. (1996). In
the preceding section, I described a simulator that is appropriate for a
probit model that has a particularly convenient structure, namely a bi-
nary probit on panel data where the time dependence is captured by one
random factor. In the current section, I describe three simulators that
are applicable for probits of any form: accept–reject, smoothed accept–
reject, and GHK. The GHK simulator is by far the most widely used
probit simulator, for reasons that we discuss. The other two methods are
valuable pedagogically. They also have relevance beyond probit and can
be applied in practically any situation. They can be very useful when
the researcher is developing her own models rather than using probit or
any other model in this book.

5.6.1. Accept–Reject Simulator

The accept–reject (AR) is the most straightforward simulator.
Consider simulating Pni . Draws of the random terms are taken from
their distributions. For each draw, the researcher determines whether
those values of the errors, when combined with the observed variables
as faced by person n, would result in alternative i being chosen. If so,
the draw is called an accept. If the draw would result in some other
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alternative being chosen, the draw is a reject. The simulated probability
is the proportion of draws that are accepts. This procedure can be applied
to any choice model with any distribution for the random terms. It was
originally proposed for probits (Manski and Lerman, 1981), and we give
the details of the approach in terms of the probit model. Its use for other
models is obvious.

We use expression (5.1) for the probit probabilities:

Pni =
∫

I (Vni + εni > Vnj + εnj ∀ j 
= i)φ(εn) dεn,

where I (·) is an indicator of whether the statement in parentheses holds,
and φ(εn) is the joint normal density with zero mean and covariance �.
The AR simulator of this integral is calculated as follows:

1. Draw a value of the J -dimensional vector of errors, εn , from
a normal density with zero mean and covariance �. Label the
draw εr

n with r = 1, and the elements of the draw as εr
n1, . . . , ε

r
n J .

2. Using these values of the errors, calculate the utility that each
alternative obtains with these errors. That is, calculate Ur

nj =
Vnj + εr

n j ∀ j .
3. Determine whether the utility of alternative i is greater than that

for all other alternatives. That is, calculate I r = 1 if Ur
ni > Ur

nj ,
indicating an accept, and I r = 0 otherwise, indicating a reject.

4. Repeat steps 1–3 many times. Label the number of repetitions
(including the first) as R, so that r takes values of 1 through R.

5. The simulated probability is the proportion of draws that are
accepts: P̌ni = 1

R

∑R
r=1 I r .

The integral
∫

I (·)φ(εn) dε is approximated by the average 1
R

∑
I r (·)

for draws from φ(·). Obviously, P̌ni is unbiased for Pni : E(P̌ni ) =
1
R

∑
E[I r (·)] = 1

R

∑
Pni = Pni , where the expectation is over differ-

ent sets of R draws. The variance of P̌ni over different sets of draws
diminishes as the number of draws rises. The simulator is often called
the “crude frequency simulator,” since it is the frequency of times that
draws of the errors result in the specified alternative being chosen. The
word “crude” distinguishes it from the smoothed frequency simulator
that we describe in the next section.

The first step of the AR simulator for a probit model is to take a
draw from a joint normal density. The question arises: how are such
draws obtained? The most straightforward procedure is that described
in Section 9.2.5, which uses the Choleski factor. The covariance matrix
for the errors is �. A Choleski factor of � is a lower-triangular matrix L
such that L L ′ = �. It is sometimes called the generalized square root of
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�. Most statistical software packages contain routines to calculate the
Choleski factor of any symmetric matrix. Now suppose that η is a vector
of J iid standard normal deviates such that η ∼ N (0, I ), where I is the
identity matrix. This vector can be obtained by taking J draws from a
random number generator for the standard normal and stacking them
into a vector. We can construct a vector ε that is distributed N (O, �) by
using the Choleski factor to tranform η. In particular, calculate ε = Lη.
Since the sum of normals is normal, ε is normally distributed. Since η

has zero mean, so does ε. The covariance of ε is Cov(ε) = E(εε′) =
E(Lη(Lη)′) = E(Lηη′L ′) = L E(ηη′)L ′ = L I L ′ = L L ′ = �.

Using the Choleski factor L of �, the first step of the AR simulator
becomes two substeps:

1A. Draw J values from a standard normal density, using a random
number generator. Stack these values into a vector, and label the
vector ηr .

1B. Calculate εr
n = Lηr .

Then, using εr
n , calculate the utility of each alternative and see whether

alternative i has the highest utility.
The procedure that we have described operates on utilities and ex-

pression (5.1), which is a J -dimensional integral. The procedure can be
applied analogously to utility differences, which reduces the dimension
of the integral to J − 1. As given in (5.3), the choice probabilities can
be expressed in terms of utility differences:

Pni =
∫

I (Ṽnji + ε̃nji < 0 ∀ j 
= i)φ(ε̃ni ) d ε̃ni ,

where φ(ε̃ni ) is the joint normal density with zero mean and covariance
�̃i = Mi�M ′

i . This integral can be simulated with AR methods through
the following steps:

1. Draw ε̃r
ni = Liη

r as follows:
(a) Draw J − 1 values from a standard normal density using a

random number generator. Stack these values into a vector,
and label the vector ηr .

(b) Calculate ε̃r
ni = Liη

r , where Li is the Choleski factor of �̃i .
2. Using these values of the errors, calculate the utility difference

for each alternative, differenced against the utility of alternative
i . That is, calculate Ũ

r
nji = Vnj − Vni + ε̃r

n ji ∀ j 
= i .
3. Determine whether each utility difference is negative. That is,

calculate I r = 1 if Ur
nji < 0 ∀ j 
= i , indicating an accept, and

I r = 0 otherwise, indicating a reject.
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4. Repeat steps 1–3 R times.
5. The simulated probability is the number of accepts divided by

the number of repetitions: P̌ni = 1
R

∑R
r=1 I r .

Using utility differences is slightly faster computationally than using
the utilities themselves, since one dimension is eliminated. However, it
is often easier conceptually to remain with utilities.

As just stated, the AR simulator is very general. It can be applied to
any model for which draws can be obtained for the random terms and
the behavior that the decision maker would exhibit with these draws
can be determined. It is also very intuitive, which is an advantage from
a programming perspective, since debugging becomes comparatively
easy. However, the AR simulator has several disadvantages, particularly
when used in the context of maximum likelihood estimation.

Recall that the log-likelihood function is LL = ∑
n

∑
j dnj log Pnj ,

where dnj = 1 if n chose j and 0 otherwise. When the probabilities
cannot be calculated exactly, as in the case of probit, the simulated
log-likelihood function is used instead, with the true probabilities re-
placed with the simulated probabilities: SLL = ∑

n

∑
j dnj log P̌nj . The

value of the parameters that maximizes SLL is called the maximum
simulated likelihood estimator (MSLE). It is by far the most widely
used simulation-based estimation procedure. Its properties are described
in Chapter 8. Unfortunately, using the AR simulator in SLL can be
problematic.

There are two issues. First, P̌ni can be zero for any finite number of
draws R. That is, it is possible that each of the R draws of the error terms
result in a reject, so that the simulated probability is zero. Zero values
for P̌ni are problematic because the log of P̌ni is taken when it enters
the log-likelihood function and the log of zero is undefined. SLL cannot
be calculated if the simulated probability is zero for any decision maker
in the sample.

The occurrence of a zero simulated probability is particularly likely
when the true probability is low. Often at least one decision maker in a
sample will have made a choice that has a low probability. With numerous
alternatives (such as thousands of makes and models for the choice of
car), each alternative has a low probability. With repeated choices, the
probability for any sequence of choices can be extremely small; for
example, if the probability of choosing an alternative is 0.25 in each of
10 time periods, the probability of the sequence is (0.25)10, which is less
than 0.000001.

Furthermore, SLL needs to be calculated at each step in the search
for its maximum. Some of the parameter values at which SLL is
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Figure 5.1. The AR simulator is a step function in parameters.

calculated can be far from the true values. Low probabilities can occur at
these parameter values even when they do not occur at the maximizing
values.

Nonzero simulated probabilities can always be obtained by taking
enough draws. However, if the researcher continues taking draws until
at least one accept is obtained for each decision maker, then the number
of draws becomes a function of the probabilities. The simulation process
is then not independent of the choice process that is being modeled, and
the properties of the estimator become more complex.

There is a second difficulty with the AR simulator for MSLE. The
simulated probabilities are not smooth in the parameters; that is, they
are not twice differentiable. As explained in Chapter 8, the numerical
procedures that are used to locate the maximum of the log-likelihood
function rely on the first derivatives, and sometimes the second deriva-
tives, of the choice probabilities. If these derivatives do not exist, or do
not point toward the maximum, then the numerical procedure will not
perform effectively.

The AR simulated probability is a step function, as depicted in Fig-
ure 5.1. P̌ni is the proportion of draws for which alternative i has the
highest utility. An infinitesimally small change in a parameter will usu-
ally not change any draw from a reject to an accept or vice versa. If
Ur

ni is below Ur
nj for some j at a given level of the parameters, then it

will also be so for an infinitesimally small change in any parameter. So,
usually, P̌nj is constant with respect to small changes in the parameters.
Its derivatives with respect to the parameters are zero in this range. If the
parameters change in such a way that a reject becomes an accept, then
P̌nj rises by a discrete amount, from M/R to (M + 1)/R, where M is the
number of accepts at the original parameter values. P̌nj is constant (zero
slope) until an accept becomes a reject or vice versa, at which point P̌nj

jumps by 1/R. Its slope at this point is undefined. The first derivative of
P̌nj with respect to the parameters is either zero or undefined.
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This fact hinders the numerical procedures that are used to locate
the maximum of SLL. As discussed in Chapter 8, the maximization
procedures use the gradient at trial parameter values to determine the
direction to move to find parameters with higher SLL. With the slope
P̌nj for each n either zero or undefined, the gradient of SLL is either zero
or undefined. This gradient provides no help in finding the maximum.

This problem is not actually as drastic as it seems. The gradient of SLL
can be approximated as the change in SLL for a non-infinitesimally small
change in the parameters. The parameters are changed by an amount that
is large enough to switch accepts to rejects and vice versa for at least
some of the observations. The approximate gradient, which can be called
an arc gradient, is calculated as the amount that SLL changes divided
by the change in the parameters. To be precise: for parameter vector
β of length K , the derivate of SLL with respect to the kth parameter
is calculated as (SLL1 − SLL0)/(β1

k − β0
k ), where SLL0 is calculated at

the original β with kth element β0
k and SLL1 is calculated at β1

k with all
the other parameters remaining at their original values. The arc gradient
calculated in this way is not zero or undefined, and provides information
on the direction of rise. Nevertheless, experience indicates that the AR
simulated probability is still difficult to use.

5.6.2. Smoothed AR Simulators

One way to mitigate the difficulties with the AR simulator is to
replace the 0–1 AR indicator with a smooth, strictly positive function.
The simulation starts the same as with AR, by taking draws of the random
terms and calculating the utility of each alternative for each draw: Ur

nj .
Then, instead of determining whether alternative i has the highest utility
(that is, instead of calculating the indicator function I r ), the simulated
utilities Ur

nj ∀ j are entered into a function. Any function can be used
for simulating Pni as long as it rises when Ur

ni rises, declines when Ur
nj

rises, is strictly positive, and has defined first and second derivatives
with respect to Ur

nj ∀ j . A function that is particularly convenient is the
logit function, as suggested by McFadden (1989). Use of this function
gives the logit-smoothed AR simulator.

The simulator is implemented in the following steps, which are the
same as with the AR simulator except for step 3.

1. Draw a value of the J -dimensional vector of errors, εn , from
a normal density with zero mean and covariance �. Label the
draw εr

n with r = 1, and the elements of the draw as εr
n1, . . . , ε

r
n J .
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2. Using these values of the errors, calculate the utility that each
alternative obtains with these errors. That is, calculate Ur

nj =
Vnj + εr

n j ∀ j .
3. Put these utilities into the logit formula. That is, calculate

Sr = eUr
ni /λ∑

j eUr
nj /λ

,

where λ > 0 is a scale factor specified by the researcher and
discussed in following text.

4. Repeat steps 1–3 many times. Label the number of repetitions
(including the first) as R, so that r takes values of 1 through R.

5. The simulated probability is the number of accepts divided by
the number of repetitions: P̌ni = 1

R

∑R
r=1 Sr .

Since Sr > 0 for all finite values of Ur
nj , the simulated probability is

strictly positive for any draws of the errors. It rises with Ur
ni and declines

when Ur
nj , j 
= i , rises. It is smooth (twice differentiable), since the logit

formula itself is smooth.
The logit-smoothed AR simulator can be applied to any choice model,

simply by simulating the utilities under any distributional assumptions
about the errors and then inserting the utilities into the logit formula.
When applied to probit, Ben-Akiva and Bolduc (1996) have called it
“logit-kernel probit.”

The scale factor λ determines the degree of smoothing. As λ → 0, Sr

approaches the indicator function I r . Figure 5.2 illustrates the situation
for a two-alternative case. For a given draw of εr

n , the utility of the
two alternatives is calculated. Consider the simulated probability for
alternative 1. With AR, the 0–1 indicator function is zero if Ur

n1 is below
Ur

n2, and one if Ur
n1 exceeds Ur

n2. With logit smoothing, the step function
is replaced by a smooth sigmoid curve. The factor λ determines the
proximity of the sigmoid to the 0–1 indicator. Lowering λ increases the
scale of the utilities when they enter the logit function (since the utilities
are divided by λ). Increasing the scale of utility increases the absolute
difference between the two utilities. The logit formula gives probabilities
that are closer to zero or one when the difference in utilities is larger.
The logit-smoothed Sr therefore becomes closer to the step function as
λ becomes closer to zero.

The researcher needs to set the value of λ. A lower value of λ makes
the logit smoother a better approximation to the indicator function. How-
ever, this fact is a double-edged sword: if the logit smoother approxi-
mates the indicator function too well, the numerical difficulties of using
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Figure 5.2. AR smoother.

the unsmoothed AR simulator will simply be reproduced in the logit-
smoothed simulator. The researcher wants to set λ low enough to obtain
a good approximation but not so low as to reintroduce numerical diffi-
culties. There is little guidance on the appropriate level of λ. Perhaps the
best approach is for the researcher to experiment with different λ’s. The
same draws of εn should be used with every λ, so as to assure that differ-
ences in results are due to the change in the λ rather than to differences
in the draws.

McFadden (1989) describes other smoothing functions. For all of
them, the researcher must specify the degree of smoothing. An advantage
of the logit smoother is its simplicity. Also, we will see in Chapter 6 that
the logit smoother applied to a probit or any other model constitutes
a type of mixed logit specification. That is, instead of seeing the logit
smoother as providing an approximation that has no behavioral relation
to the model (simply serving a numerical purpose), we can see it as
arising from a particular type of error structure in the behavioral model
itself. Under this interpretation, the logit formula applied to simulated
utilities is not an approximation but actually represents the true model.

5.6.3. GHK Simulator

The most widely used probit simulator is called GHK, after
Geweke (1989, 1991), Hajivassiliou (as reported in Hajivassiliou and
McFadden, 1998), and Keane (1990, 1994), who developed the pro-
cedure. In a comparison of numerous probit simulators, Hajivassiliou
et al. (1996) found GHK to be the most accurate in the settings that
they examined. Geweke et al. (1994) found the GHK simulator works
better than smoothed AR. Experience has confirmed its usefulness and
relative accuracy (e.g., Borsch-Supan and Hajivassiliou, 1993).
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The GHK simulator operates on utility differences. The simulation of
probability Pni starts by subtracting the utility of alternative i from each
other alternative’s utility. Importantly, the utility of a different alternative
is subtracted depending on which probability is being simulated: for Pni ,
Uni is subtracted from the other utilities, while for Pnj , Unj is subtracted.
This fact is critical to the implementation of the procedure.

I will explain the GHK procedure first in terms of a three-alternative
case, since that situation can be depicted graphically in two dimensions
for utility differences. I will then describe the procedure in general for
any number of alternatives. Bolduc (1993, 1999) provides an excellent
alternative description of the procedure, along with methods to simulate
the analytic derivatives of the probit probabilities. Keane (1994) provides
a description of the use of GHK for transition probabilities.

Three Alternatives

We start with a specification of the behavioral model in util-
ities: Unj = Vnj + εnj , j = 1, 2, 3. The vector ε′

n = 〈εn1, εn2, εn3〉 ∼
N (0, �). We assume that the reseacher has normalized the model for
scale and level, so that the parameters that enter � are identified. Also,
� can be a parametric function of data, as with random taste variation,
though we do not show this dependence in our notation.

Suppose we want to simulate the probability of the first alternative,
Pn1. We reexpress the model in utility differences by subtracting the
utility of alternative 1:

Unj − Un1 = (Vnj − Vn1) + (εnj − εn1),

Ũnj1 = Ṽnj1 + ε̃nj1,

for j = 2, 3. The vector ε̃′
n1 = 〈ε̃n21, ε̃n31〉 is distributed N (0, �̃1), where

�̃1 is derived from �.
We take one more transformation to make the model more convenient

for simulation. Namely, let L1 be the Choleski factor of �̃1. Since �̃1

is 2 × 2 in our current illustration, L1 is a lower-triangular matrix that
takes the form

L1 =
(

caa 0
cab cbb

)
.

Using this Choleski factor, the original error differences, which are cor-
related, can be rewritten as linear functions of uncorrelated standard
normal deviates:

ε̃n21 = caaη1,

ε̃n31 = cabη1 + cbbη2,
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where η1 and η2 are iid N (0, 1). The error differences ε̃n21 and ε̃n31

are correlated because both of them depend on η1. With this way of
expressing the error differences, the utility differences can be written

Ũn21 = Ṽn21 + caaη1,

Ũn31 = Ṽn31 + cabη1 + cbbη2.

The probability of alternative 1 is Pn1 = Prob(Ũn21 < 0 and Ũn31 <

0) = Prob(Ṽn21 + ε̃n21 < 0 and Ṽn31 + ε̃n31 < 0). This probability is hard
to evaluate numerically in terms of the ε̃’s, because they are correlated.
However, using the transformation based on the Choleski factor, the
probability can be written in a way that involves independent random
terms. The probability becomes a function of the one-dimensional stan-
dard cumulative normal distribution:

Pn1 = Prob(Ṽn21 + caaη1 < 0 and Ṽn31 + cabη1 + cbbη2 < 0)

= Prob(Ṽn21 + caaη1 < 0)

× Prob(Ṽn31 + cabη1 + cbbη2 < 0 | Ṽn21 + caaη1 < 0)

= Prob(η1 < −Ṽn21/caa)

× Prob(η2 < −(Ṽn31 + cabη1)/cbb | η1 < −Ṽn21/caa)

= �

(−Ṽn21

caa

)
×

∫ −Ṽn21/caa

η1=−∞
�

(−Ṽn31 + cabη1

cbb

)
φ(η1) dη1,

where �(·) is the standard normal cumulative distribution evaluated at
the point in the parentheses, and φ(·) is the standard normal density. The
first factor, �(−Ṽn21/caa), is easy to calculate: it is simply the cumulative
standard normal evaluated at −Ṽn21/caa . Computer packages contain
fast routines for calculating the cumulative standard normal. The second
factor is an integral. As we know, computers cannot integrate, and we
use simulation to approximate integrals. This is the heart of the GHK
procedure: using simulation to approximate the integral in Pn1.

Let us examine this integral more closely. It is the integral over a
truncated normal, namely, over η1 up to −Ṽn21/caa . The simulation pro-
ceeds as follows. Draw a value of η1 from a standard normal density trun-
cated above at −Ṽn21/caa . For this draw, calculate the factor �(−(Ṽn31 +
cabη1)/cbb). Repeat this process for many draws, and average the results.
This average is a simulated approximation to

∫ −Ṽn21/caa

η1=−∞ �(−(Ṽn31 +
cabη1)/cbb)φ(η1) dη1. The simulated probability is then obtained by mul-
tiplying this average by the value of �(−Ṽn21/caa), which is calculated
exactly. Simple enough!

The question arises: how do we take a draw from a truncated normal?
We describe how to take draws from truncated univariate distributions
in Section 9.2.4. The reader may want to jump ahead and quickly view
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Figure 5.3. Probability of alternative 1.

that section. For truncated normals, the process is to take a draw from a
standard uniform, labeled µ. Then calculate η = �−1(µ�(−Ṽn21/caa)).
The resulting η is a draw from a normal density truncated from above
at −Ṽn21/caa .

We can now put this all together to give the explicit steps that are used
for the GHK simulator in our three-alternative case. The probability of
alternative 1 is

Pn1 = �

(−Ṽn21

caa

)
×

∫ −Ṽn21/caa

η1=−∞
�

(−Ṽn31 + cabη1

cbb

)
φ(η1) dη1.

This probability is simulated as follows:

1. Calculate k = �(−Ṽn21/caa).
2. Draw a value of η1, labeled ηr

1, from a truncated standard normal
truncated at −Ṽn21/caa . This is accomplished as follows:
(a) Draw a standard uniform µr .
(b) Calculate ηr

1 = �−1(µr�(−Ṽn21/caa)).
3. Calculate gr = �(−(Ṽn31 + cabη

r
1)/cbb).

4. The simulated probability for this draw is P̌r
n1 = k × gr .

5. Repeat steps 1–4 R times, and average the results. This average
is the simulated probability: P̌n1 = (1/R)

∑
P̌r

n1.

A graphical depiction is perhaps useful. Figure 5.3 shows the prob-
ability for alternative 1 in the space of independent errors η1 and η2.
The x-axis is the value of η1, and the y-axis is the value of η2. The line
labeled A is where η1 is equal to −Ṽn21/caa . The condition that η1 is
below −Ṽn21/caa is met in the striped area to the left of line A. The line
labeled B is where η2 = −(Ṽn31 + cbaη1)/cbb. Note that the y-intercept
is where η1 = 0, so that η2 = −Ṽn31/cbb at this point. The slope of the
line is −cba/cbb. The condition that η2 < −(Ṽn31 + cbaη1)/cbb is satis-
fied below line B. The shaded area is where η1 is to the left of line A and
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Figure 5.4. Probability that η2 is in the correct range, given ηr
1.

η2 is below line B. The mass of density in the shaded area is therefore
the probability that alternative 1 is chosen.

The probability (i.e., the shaded mass) is the mass of the striped area
times the proportion of this striped mass that is below line B. The striped
area has mass �(−Ṽn21/caa). This is easy to calculate. For any given
value of η1, the portion of the striped mass that is below line B is also
easy to calculate. For example, in Figure 5.4, when η1 takes the value ηr

1,
then the probability that η2 is below line B is the share of line C’s mass
that is below line B. This share is simply �(−(Ṽn31 + cabη

r
1)/cbb). The

portion of the striped mass that is below line B is therefore the average
of �(−(Ṽn31 + cabη

r
1)/cbb) over all values of η1 that are to the left of

line A. This average is simulated by taking draws of η1 to the left of line
A, calculating �(−(Ṽn31 + cabη

r
1)/cbb) for each draw, and averaging the

results. The probability is then this average times the mass of the striped
area, �(−Ṽn21/caa).

General Model

We can now describe the GHK simulator in general terms
quickly, since the basic logic has already been discussed. This succinct
expression serves to reinforce the concept that the GHK simulator is
actually easier than it might at first appear.

Utility is expressed as

Unj = Vnj + εnj , j = 1, . . . , J,

ε′
n = 〈εn1, . . . , εn J 〉, εn : J × 1,

εn ∼ N (0, �).



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-05Drv CB495/Train KEY BOARDED August 20, 2002 12:28 Char Count= 0

Probit 131

Transform to utility differences against alternative i :

Ũnji = Ṽnji + ε̃nji , j 
= i,

ε̃′
ni = 〈ε̃n1, . . . , ε̃n J 〉, where . . . is over all except i,

ε̃ni : (J − 1) × 1,

ε̃ni ∼ N (0, �̃i ),

where �̃i is derived from �.
Reexpress the errors as a Choleski transformation of iid standard

normal deviates.

Li s.t. Li L ′
i = �i ,

Li =




c11 0 · · · · · · · · · 0
c21 c22 0 · · · · · · 0
c31 c32 c33 0 · · · 0
...

...
...

...
...

...


 .

Then, stacking utilities Ũ ′
ni = (Ũn1i , . . . , Ũn Ji ), we get the vector form

of the model,

Ũni = Ṽni + Liηn,

where η′
n = 〈η1n, . . . , ηJ−1,n〉 is a vector of iid standard normal deviates:

ηnj ∼ N (0, 1) ∀ j . Written explicitly, the model is

Ũn1i = Ṽn1i + c11η1,

Ũn2i = Ṽn2i + c21η1 + c22η2,

Ũn3i = Ṽn3i + c31η1 + c32η2 + c33η3,

and so on. The choice probabilities are

Pni = Prob(Ũnji < 0 ∀ j 
= i)

= Prob

(
η1 <

−Ṽn1i

c11

)

× Prob

(
η2 <

−(Ṽn2i + c21η1)

c22

∣∣∣∣η1 <
−Ṽn1i

c11

)

× Prob

(
η3 <

−(Ṽn3i + c31η1 + c32η2)

c33

∣∣∣∣
η1 <

−Ṽn1i

c11
and η2 <

−(Ṽn2i + c21η1)

c22

)
.

× · · · .
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The GHK simulator is calculated as follows:

1. Calculate

Prob

(
η1 <

−Ṽn1i

c11

)
= �

(−Ṽn1i

c11

)
.

2. Draw a value of η1, labeled ηr
1, from a truncated standard normal

truncated at −Ṽ1in/c11. This draw is obtained as follows:
(a) Draw a standard uniform µr

1.
(b) Calculate ηr

1 = �−1(µr
1�(−Ṽn1i/c11)).

3. Calculate

Prob

(
η2 <

−(Ṽn2i + c21η1)

c22

∣∣∣∣η1 = ηr
1

)

= �

(
−(

Ṽn2i + c21η
r
1

)
c22

)
.

4. Draw a value of η2, labeled ηr
2, from a truncated standard nor-

mal truncated at −(Ṽn2i + c21η
r
1)/c22. This draw is obtained as

follows:
(a) Draw a standard uniform µr

2.
(b) Calculate ηr

2 = �−1(µr
2�(−(Ṽn2i + c21η

r
1)/c22)).

5. Calculate

Prob

(
η3 <

−(Ṽn3i + c31η1 + c32η2)

c33

∣∣∣∣η1 = ηr
1 , η2 = ηr

2

)

= �

(
−(

Ṽn3i + c31η
r
1 + c32η

r
2

)
c33

)
.

6. And so on for all alternatives but i .
7. The simulated probability for this r th draw of η1, η2, . . . is

calculated as

P̌
r
ni = �

(−Ṽn1i

c11

)

× �

(
−(

Ṽn2i + c21η
r
1

)
c22

)

× �

(
−(

Ṽn3i + c31η
r
1 + c32η

r
2

)
c33

)

× · · · .
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8. Repeat steps 1–7 many times, for r = 1, . . . , R.
9. The simulated probability is

P̌in = 1

R

∑
r

P̌r
in.

GHK Simulator with Maximum
Likelihood Estimation

There are several issues that need to be addressed when us-
ing the GHK simulator in maximum likelihood estimation. First, in the
log-likelihood function, we use the probability of the decision maker’s
chosen alternative. Since different decision makers choose different al-
ternatives, Pni must be calculated for different i’s. The GHK simulator
takes utility differences against the alternative for which the probability
is being calculated, and so different utility differences must be taken for
decision makers who chose different alternatives. Second, for a person
who chose alternative i , the GHK simulator uses the covariance matrix
�̃i , while for a person who chose alternative j , the matrix �̃ j is used.
Both of these matrices are derived from the same covariance matrix �

of the original errors. We must assure that the parameters in �̃i are con-
sistent with those in �̃ j , in the sense that they both are derived from a
common �. Third, we need to assure that the parameters that are esti-
mated by maximum likelihood imply covariance matrices � j ∀ j that
are positive definite, as a covariance matrix must be. Fourth, as always,
we must make sure that the model is normalized for scale and level of
utility, so that the parameters are identified.

Researchers use various procedures to address these issues. I will
describe the procedure that I use.

To assure that the model is identified, I start with the covariance matrix
of scaled utility differences with the differences taken against the first
alternative. This is the matrix �̃1, which is (J − 1) × (J − 1). To assure
that the covariance matrix is positive definite, I parameterize the model
in terms of the Choleski factor of �̃1. That is, I start with a lower-
triangular matrix that is (J − 1) × (J − 1) and whose top-left element
is 1:

L1 =




1 0 · · · · · · · · · 0
c21 c22 0 · · · · · · 0
c31 c32 c33 0 · · · 0
...

...
...

...
...


 .
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The elements ck� of this Choleski factor are the parameters that are esti-
mated in the model. Any matrix that is the product of a lower-triangular
full-rank matrix multiplied by itself is positive definite. So by using the
elements of L1 as the parameters, I am assured that �̃1 is positive definite
for any estimated values of these parameters.

The matrix � for the J nondifferenced errors is created from L1. I
create a J × J Choleski factor for � by adding a row of zeros at the top
of L1 and a column of zeros at the left. The resulting matrix is

L =




0 0 · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · 0
0 c21 c22 0 · · · · · · 0
0 c31 c32 c33 0 · · · 0
...

...
...

...
...

...


 .

Then � is calculated as L L ′. With this �, I can derive �̃ j for any j .
Note that � constructed in this way is fully general (i.e., allows any
substitution pattern), since it utilizes all the parameters in the normal-
ized �̃1.

Utility is expressed in vector form stacked by alternatives: Un = Vn +
εn , εn ∼ N (0, �). Consider a person who has chosen alternative i . For
the log-likelihood function, we want to calculate Pni . Recall the matrix
Mi that we introduced in Section 5.1. Utility differences are taken using
this matrix: Ũni = MiUn, Ṽni = Mi Vn , and ε̃ni = Miεn . The covariance
of the error differences ε̃ni is calculated as �̃i = Mi�M ′

i . The Choleski
factor of �̃i is taken and labeled Li . (Note that L1 obtained here will
necessarily be the same as the L1 that we used at the beginning to
parameterize the model.) The person’s utility is expressed as: Ũni =
Ṽni + Liηn , where ηn is a (J − 1)-vector of iid standard normal deviates.
The GHK simulator is applied to this expression.

This procedure satisfies all of our requirements. The model is neces-
sarily normalized for scale and level, since we parameterize it in terms
of the Choleski factor L1 of the covariance of scaled error differences,
�̃1. Each �̃i is consistent with each other �̃ j for j 
= i , because they
are both derived from the same � (which is constructed from L1). Each
�̃i is positive definite for any values of the parameters, because the pa-
rameters are the elements of L1. As stated earlier, any matrix that is the
product of a lower-triangular matrix multiplied by itself is positive def-
inite, and so �̃1 = L L ′ is positive definite. And each of the other �̃ j ’s,
for j = 2, . . . , J , is also positive definite, since they are constructed to
be consistent with �1, which is positive definite.
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GHK as Importance Sampling

As I described in the three-alternative case, the GHK simulator
provides a simulated approximation of the integral∫ −Ṽn21/caa

η1=−∞
�

(−Ṽn31 + cabη1

cbb

)
φ(η1) dη1.

The GHK simulator can be interpreted in another way that is often useful.
Importance sampling is a way of transforming an integral to be more

convenient to simulate. The procedure is described in Section 9.2.7, and
readers may find it useful to jump ahead to view that section. Impor-
tance sampling can be summarized as follows. Consider any integral
t̄ = ∫

t(ε)g(ε) dε over a density g. Suppose that another density exists
from which it is easy to draw. Label this other density f (ε). The den-
sity g is called the target density, and f is the generating density. The
integral can be rewritten as t̄ = ∫

[t(ε)g(ε)/ f (ε)] f (ε) dε. This integral
is simulated by taking draws from f , calculating t(ε)g(ε)/ f (ε) for each
draw, and averaging the results. This procedure is called importance
sampling because each draw from f is weighted by g/ f when taking
the average of t ; the weight g/ f is the “importance” of the draw from
f . This procedure is advantageous if (1) it is easier to draw from f than
g, and/or (2) the simulator based on t(ε)g(ε)/ f (ε) has better properties
(e.g., smoothness) than the simulator based on t(ε).

The GHK simulator can be seen as making this type of transformation,
and hence as being a type of importance sampling. Let η be a vector
of J − 1 iid standard normal deviates. The choice probability can be
expressed as

(5.7) Pni =
∫

I (η ∈ B)g(η) dη,

where B = {η s.t. Ũnji < 0 ∀ j 
= i} is the set of η’s that result in i
being chosen; g(η) = φ(η1) · · · φ(ηJ−1) is the density, where φ denotes
the standard normal density; and the utilities are

Ũn1i = Ṽn1i + c11η1,

Ũn2i = Ṽn2i + c21η1 + c22η2,

Ũn3i = Ṽn3i + c31η1 + c32η2 + c33η3,

and so on.
The direct way to simulate this probability is to take draws of η,

calculate I (η ∈ B) for each draw, and average the results. This is the
AR simulator. This simulator has the unfortunate properties that it can
be zero and is not smooth.



P1: GEM/IKJ P2: GEM/IKJ QC: GEM/ABE T1: GEM

CB495-05Drv CB495/Train KEY BOARDED August 20, 2002 12:28 Char Count= 0

136 Behavioral Models

For GHK we draw η from a different density, not from g(η). Recall
that for GHK, we draw η1 from a standard normal density truncated at
−Ṽn1i/c11. The density of this truncated normal is φ(η1)/�(−Ṽn1i/c11),
that is, the standard normal density normalized by the total probability
below the truncation point. Draws of η2, η3, and so on are also taken
from truncated densities, but with different truncation points. Each of
these truncated densities takes the form φ(η j )/�(·) for some truncation
point in the denominator. The density from which we draw for the GHK
simulator is therefore

(5.8) f (η) =
{

φ(η1)
�(−Ṽn1i /c11)

× φ(η2)
�(−(Ṽn2i +c21η1)/c22)

× · · · for η ∈ B,

0 for η /∈ B.

Note that we only take draws that are consistent with the person choosing
alternative i (since we draw from the correctly truncated distributions).
So f (η) = 0 for η /∈ B.

Recall that for a draw of η within the GHK simulator, we calculate:

P̌in(η) = �

(−Ṽn1i

c11

)

× �

(−(Ṽn2i + c21η1)

c22

)
× · · · .(5.9)

Note that this expression is the denominator of f (η) for η ∈ B, given in
equation (5.8). Using this fact, we can rewrite the density f (η) as

f (η) =
{

g(η)/P̌ni (η) for η ∈ B,

0 for η /∈ B.

With this expression for f (η), we can prove that the GHK simulator,
P̌in(η), is unbiased for Pni (η):

E(P̌in(η)) =
∫

P̌in(η) f (η) dη

=
∫

η∈B
P̌in(η)

g(η)

P̌in(η)
dη by (5.6.3)

=
∫

η∈B
g(η) dη

=
∫

I (η ∈ B)g(η) dη

= Pin.
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The interpretation of GHK as an importance sampler is also obtained
from this expression:

Pin =
∫

I (η ∈ B)g(η) dη

=
∫

I (η ∈ B)g(η)
f (η)

f (η)
d η

=
∫

I (η ∈ B)
g(η)

g(η)/P̌in(η)
f (η) dη by (5.6.3)

=
∫

I (η ∈ B)P̌in(η) f (η) dη

=
∫

P̌in(η) f (η) dη,

where the last equality is because f (η) > 0 only when η ∈ B. The GHK
procedure takes draws from f (η), calculates P̌in(η) for each draw, and
averages the results. Essentially, GHK replaces the 0–1 I (η ∈ B) with
smooth P̌in(η) and makes the corresponding change in the density from
g(η) to f (η).


