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THE MEASUREMENT OF URBAN TRAVEL DEMAND

Daniel McFADDEN*
Department of Economics, University of California, Berkeley, U.S.A.

Transport projects involve sinking money
in expensive capital investments, which
have a long life and wide repercussions.
There is no escape from the attempt both
to estimate the demand for their services
over twenty or thirty years and to assess
their repercussions on the economy as a
whole.

Denys Munby, Transport, 1968

1. Introduction

It is a truism that the transportation system is a critical component of every
urban economy, and that transportation policy decisions can have a profound
effect on the development of the urban system. Public transportation projects are
often massive and mutually exclusive, with irreversible cumulative effects over
long periods. If major social losses are to be avoided, careful planning based on a
conceptually sound and empirically accurate benefit-cost calculus is essential.
Accurate forecasts of travel demand under alternative transport policies are
required for precise calculations of benefits. To be fully satisfactory, these fore-
casts must be sufficiently sensitive to reflect the impact of the changing urban
environment over the lifetime of proposed transport projects.

Travel demand forecasting has long been the province of transportation
engineers, who have built up over the years considerable empirical wisdom and a
repertory of largely ad hoc models which have proved successful in various
applications. The contribution of psychologists and economists to forecasting
methodology has been limited; despite a surge of recent interest, there still does
not exist a solid foundation in behavioral theory for demand forecasting
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practices.! Because travel behavior is complex and multifaceted, and involves
‘non-marginal’ choices, the task of bringing economic consumer theory to bear
is a challenging one. Particularly difficult is the integration of a satisfactory
behavioral theory with practical statistical procedures for calibration and fore-
casting. The object of this paper is to suggest approaches to advancing the
behavioral theory of travel demand, and to shed light on some currently un-
resolved empirical questions on the determinants of travel behavior. Section 2
discusses the dimensions of travel demand behavior and the requirements
imposed on any comprehensive theory of behavior. Section 3 presents selected

results from a pilot study of rapid transit demand forecasting in the San
Francisco Bay Area.

2. The dimensions of travel demand behavior

We start with the observation that urban travel demand is the result of
aggregation over the urban population, each member of which is making
individual travel decisions based on his personal needs and environment. These
individual decisions are complex, involving trip purpose, frequency, timing,
destination, and mode of travel. Further, these choices should be analyzed in the
context of simultaneous choices of automobile ownership, housing location, and
end-of-trip activities.

Travel is not normally an end objective of the consumer, but rather a con-
comitant of other activities such as work, shopping, and recreation. Thus, it is
natural to analyze travel demand within the framework of the consumption
activity — household production models of Court-Griliches—-Becker-Lancaster.

2.1. Individual choice behavior

Classical psychological theory views the individual as having a series of basic
wants or drives.? Failure to satisfy these drives leads to increased activity; the
larger the increase, the greater is the level of deprivation. Behavior which
decreases deprivation is reinforced, and consequently learned. If we now assume
this individual is a ‘rational’ economic consumer, we can postulate a ‘utility’
function summarizing the sense of well-being of the individual as a (decreasing)
function of the level of deprivation he experiences. Suppose the individual exists
over a sequence of short periods, say days, indexed v = 0, 1,.... Assume K
drives, and let D, = (D,,..., D) denote the vector of deprivation levels
experienced by the individual in period v. We take the utility of the individual to

*Many papers in the literature deserve mention for providing key elements in the foundation
of a behavioral theory of travel demand, and useful insights into travel behavior. A partial list
is: J. Dupuit (1844), S. Warner (1962), T. Lisco (1967), W. Oi (1 962), J. Meyer et al. (1966), R.
Quandt and W. Baumol (1966), G. Quarmby (1967), P. Stopher (1968), P. Stopher and T.
Lisco (1970), D. Brand (1972), and M. Ben Akiva (1972).

%See, for example, E. Thorndike, A theory of the action of the after-effects of a connection
upon it, Psychology Review 40 (1933) 434-439.



D. McFadden, Measurement of urban travel demand 305

be a discounted sum of ‘per day’ utilities, writing

U= i 5°u(D,), )

where § is a discount factor and the individual’s horizon is taken to be infinite to
simplify later calculation.?

Over his lifetime, the individual has available a set B of mutually exclusive
alternative choices. Each member x € B is a vector x = (xq, x;,...), with x,
a sub-vector of attributes associated with the decision made in period v. A simple
example would be an individual whose only decision in life is a binary commute
mode choice; i.e., his work type and location, residential location, auto owner-
ship, and non-work behavior are all completely determined. Let x°, x® denote
the vectors of attributes such as travel time, cost, and comfort, associated with
the two modes in period 0, and suppose these attributes do not change over time.
Then, letting 4 = {x°, s”}, the set B is the Cartesian product B = Ax A4 X....
More generally, the individual will face both long-run (residential location, auto
ownership) decisions and short-run (timing of trips, mode choice) decisions, with
the former decisions restricting the range of latter opportunities.

The set of period v decisions x, associated with x € B will not be a simple
‘budget set’ of the type ordinarily encountered in consumer theory because of the
qualitative transport choices involved and the ‘fixed charge’ nature of transport
in facilitating consumer activities. To simplify analysis, we shall assume that the
set of options at each v is finite; there is no particular technical difficulty in
extending our analysis to the non-finite case.

The relation between the consumer’s decision x € B and the evolution of
deprivation levels over time is determined by the definition of drives and the
nature of the household production technology; we assume this has the general
form*

Dyyy = f(D,, x,). @

The rational economic consumer will choose x € B to maximize utility (1) subject
to his initial deprivation level D, and the constraints (2).

To push the analysis beyond this very general statement of the mechanism for
determining behavior, we shall now make very specific and concrete assumptions
on the functional forms of utility and the determination of drives; namely,
utility linear in deprivation levels,

u(D,) = —B'D,, €
and deprivation levels evolving in a linear first-order difference equation,

3The linear additive form is justified only by convenience.

“The assumptions that the evolution of deprivation levels follows a first-order process and
that the alternative sets are independent over time are made for notational convenience. They
can be relaxed explicitly, or implicitly by broadening the definitions of deprivation levels and
choice attributes to include historical information.
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Du+1 = FDv+g(xv)' (4)

To avoid boundary problems, we assume all real levels of deprivation, positive
or negative, are defined. In these formulae, B is a vector of non-negative para-
meters and I' is a K x K matrix. In what follows, we shall assume the roots of I’
all lie in the interior of the unit circle; i.e., there are no self-sustaining rises in
deprivation levels over time.5 It should be noted that while the functional forms
(3) and (4) are concrete, they are not as specialized as might at first appear. First,
since any sufficiently smooth utility function can be approximated on a specific
set by a linear combination of appropriately chosen numerical functions, one
can shape (3) by taking a sufficiently broad definition of the list of ‘drives’.
Second, by including historical information in the deprivation-level vector and
choosing the form of the function g, a broad range of functional relations between
the attribute vectors x, and per-day utility levels can be attained.

We next use the forms (3) and (4) to simplify the statement of the utility
maximization problem. Pre-multiply (4) by 6°* ! and sum over v:

Mg

8°*'D, ., =9I Y 6°D,+ Y 8"t lg(x,). 5)
(1] v=0 v=0
Assuming that the last term in this sum exists, we have

¥ &', = (- (Do+ P 5"“g(x.,)) : ©)

5An earlier draft of this paper allowed for the possibility that some roots of I" could be
unstable. This could correspond, for example, to the presence of drives such as ‘boredom’
which may have intrinsically unstable deprivation levels requiring continual monitoring and
positive control, and could provide a theoretical explanation for cyclic variations in individual
choice in the presence of static alternative sets. To make this possibility compatible with the
earlier simplification assumption of an infinite horizon, I had previously assumed the matrix
or to be stable. Discussant Robert Cooter has pointed out that this leads to the implausible
conclusion that unstable deprivation levels will be divergent in the optimal solution, with the
individual accepting extreme values of these variables in the discounted future in exchange for
the short-run benefits of ‘steady-state’ behavior. While the unboundedness of deprivation
levels might be dismissed as a consequence of our linearization of the consumer’s problem, the
absence of cyclic behavior is contrary to the initial objectives of the construction. A much
better approach to incorporating the possibility of cyclic behavior is to assume a finite horizon
H in the utility function (1) and impose no conditions on the roots of 6I". Then, the analogue
ofeq.(7is

H—1
U= —pfAgDo—f §° Ag_v_10°*1g(x,),

s
with As= X 6% or [I-0IAs=I-(I)S+1,

v=0

It should be clear that the analysis we carry out for the case of stable I" could readily be adapted
to this more general model. On the other hand, the assumption of a stable I" seems more appro-
priate for application to steady-state work trip commute behavior.
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and hence
U= —pI-I)"'Dy—p'I-0I)"1 Y 6°*1g(x,). ™
v=0

The first term in this expression is constant; hence, the utility maximization
problem reduces to
[ro]
Max U= —Min (-~ ' Y &"*lg(x,). 8)
x=(xo0,x1,...)EB v=0
Further simplification of the problem occurs when B is a Cartesian product
B = Ax Ax ..., as in the mode choice example cited above :°

Max U = —Min % B'(I—3I)"1g(x,). ©)

xo€d

2.2. Population choice behavior

Before giving concrete examples showing how problems (8) or (9) can be used
to obtain implications for individual behavior, it is useful to explore the link
between behavioral models of the individual and the data obtained from
sampling an urban population. Our theory of individual behavior is not ‘singled-
valued’; we cannot exclude the possibility that within our framework of economic
rationality and postulated structure of utility maximization there will be un-
observed characteristics, such as tastes and unmeasured attributes of alternatives,
which vary over population and obscure the implications of the individual
behavior model. However, it is possible to deduce from the individual choice
model properties of population choice behavior which have empirical content.
The following rather extensive digression on this subject may clarify the con-
ceptual issues involved.

Consider the textbook model of economic consumer behavior. The individual
has a utility function u = U(x; p), representing tastes, which is maximized
subject to a budget constraint x € B at a system of demands

x = h(B; p), (10)

where p is a specification of the individual’s tastes [e.g., p may be the individual’s
binary preference relation (for which U is a representation), or a parameter
vector specifying the utility function within a class of functional forms; factors
influencing tastes and included in p are observed demographic variables such as
sex, age, and education, and unobserved variables such as intelligence, experience,
and childhood training; textbook models usually suppress the p argument]. The

$The reader will note that we have ended up with utility expressed as a function of attributes
of the chosen alternatives. The conceptual apparatus of drives and household production has
mattered only in the specification of the coefficient vector, and from a formal point of view
could be dispensed with altogether. However, in drawing out the empirical implications of
taste and production effects, the more elaborate structure is useful.
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econometrician typically has data on the behavior of a cross-section of consumers
drawn from a population with common observed demographic characteristics:
budgets B, and demands x, for individuals ¢ = 1,..., 7. He wishes to test
hypotheses about the behavioral model (10) which may range from specific
structural features of parametric demand functions (e.g., price and income
elasticities) to the general revealed preference hypothesis that the observed data
are generated by utility-maximizing consumers. The observed data will fail to
fit eq. (10) exactly because of measurement errors in x,, consumer optimization
errors, and unobserved variations in the population. The procedure of most
empirical demand studies is to ignore the possibility of taste variations in the
sample and make the plausible and convenient, but untested, assumption that
the cross-section of consumers has observed demands which are distributed
randomly about the exact values x for some common or representative tastes p;
ie.,

x, = h(B,; p)+¢&, (11)

where ¢, is an unobserved random term distributed independently of B,.

The relation of observed aggregated demand to individual demand under this
specification is straightforward. In a population of consumers who are homo-
geneous with respect to budgets faced, aggregate demand will equal individual
demand ‘writ large’, and all systematic variations in aggregate demand are inter-
preted as generated by a common variation at the intensive margin of the identical
individual demands. In the absence of unobserved variations in tastes or budgets,
there is no extensive margin affecting aggregate demand.

Conventional statistical techniques can be applied to eq. (11) under the
specification above to test hypotheses on the structure of 4. In the conventional
demand study, where quantities demanded vary continuously, it is reasonable to
expect marginal optimization errors and measurement errors to be important,
and perhaps dominate the effect of taste variations. Then the specification (11)
is fairly realistic.”

We now re-examine the conventional demand specification in the case that the
set of alternative choices is finite. A utility maximum exists under standard
conditions, and generates the demand equation (10). This equation predicts a
single chosen x when tastes and unobserved attributes of alternatives are

7Under some conditions, the conclusion above on estimation of continuously varying
demands will continue to hold even in the presence of some types of taste variation. Suppose
one can postulate that consumers are homogeneous in tastes up to a vector of parameters that
appear linearly in the demand function. (An example would be individuals with log-linear
functions who face conventional budget constraints, with variation in the parameters of the
utility function across individuals.) Then the demand functions can be estimated using random
coefficients econometric models; what is important is that except for refinements in estimation
of the error structure and the variances of estimators, this approach will lead to the same models
and estimates as were obtained under the ‘identical consumers’ assumption. We shall next show
that when consumer choice involves discrete alternatives rather than continuous choice, this
‘robustness’ property of the conventional model is lost.
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assumed uniform across the population. The conventional statistical specifica-
tion in (11) would then imply that all observed variation x, in demand over the
finite set of alternatives is the result of errors in measurement and optimization.
The argument that measurement error is an important factor is clearly im-
plausible. Consumer optimization errors may be important, but then we must
question the relevance of this behavioral model in which a substantial proportion
of the observed variation in choice is attributed to aspects of behavior described
only by the ad hoc error specification.

Aggregate demand can usually be treated as a continuous variable, as the
effect of the discreteness of individuals® alternatives is negligible. As a result,
aggregate demand may superficially resemble the demand for a population of
identical individuals for a divisible commodity. However, systematic variations
in the aggregate demand for the lumpy commodity are all due to shifts at the
extensive margin where individuals are switching from one alternative to
another, and not at the intensive margin as in the divisible commodity, identical
individual case. Thus, it is fallacious to apply the latter model to obtain speci-
fications of aggregate demand for discrete alternatives. What is required is a
formulation of the demand model in which the effects of individual differences in
tastes and optimization behavior on the error structure in eq. (11) are made
explicit. The implications of this specification for choice among discrete alterna-
tives differ substantially from the conventional specification, as several examples
will show. For notational simplicity, the utility function given in (7) is written in
these examples as a general function of the attributes of alternative decisions,
U(x).

Example A. Suppose each member of the population has the utility function
U(xy, x;) = x,+alog x,, and the budget constraint y = p,;x,+p,x,, with
y 2 py and x; = 0 or 1. The taste parameter « varies in the population with a
cumulative distribution function G(«) and mean &. Then, utility is maximized by
purchasing a unit of good 1 when U(1, (y—p)/p,) > U(0, y/p,), ora < —1/log
(1—p4/y). Hence, Prob (x, = 1) = G(—1/log (1 —p,/y,))- Suppose an observed
cross-section sample has 7T income-price levels, indexed (¥,, P P2.)s R,
individuals at income-price level #, and S, observed purchases of a unit of the
first commodity among the individuals at level ¢. Then, the observed relative
frequency f; = S,/R, is an estimate of the probability P, = G(—1/log (1—p,,/
¥.), and a statistical technique such as maximum likelihood or minimum chi-
square can be used to estimate the unknown parameters of G. Suppose, for
example, « has the reciprocal exponential distribution G(x) = e(~61/9+0:
(0 < a < 04/0,), where 0, and @, are positive parameters. Then log P, =
6, log(1—py./y)+0, and a consistent (as all R, - + o0) estimator of (8,, 6,)
can be obtained by applying ordinary least squares to the equation log f, =
B,log(1—p,Jy)+0,+n,. (A weighted regression yields an asymptotically
efficient estimator.)
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Example B. Each member of the population has a utility function U(x, x,)=
xy+alog x, and budget constraint y = p;x,+p,x,, where x,, x, vary con-
tinuously. The demand functions are x, = Max (0, y/p;—a) and x, =
Min (y/p,, apy/p,). If & varies in the population with a cumulative distribution
function G(a), then the probability of observing an individual with zero demand
for commodity 1 is Prob (x; = 0) = 1—G(y/p,). One then has a limited
dependent variable which assumes its limiting value with positive probability.
This problem can be handled statistically by maximum likelihood methods. For
a log normal this model is a version of Tobit analysis.

Example C. Each member of the population has a utility function U(x,, x,)=
xy+olog x, and budget constraint y = p,x,+p,x,, where x, is continuous,
X, is integer-valued, and we assume y/p, is greater than one and non-integral.
Let m denote the largest integer less than y/p,. Suppose « varies in the popula-
tion with a cumulative distribution function G(a), « > 0. Note that when x, is
treated as a continuous variable, utility has a unique maximum subject to the
budget constraint at a value of x, which is decreasing in «. Hence, a critical
value «, of « at which an individual will switch from » to n+1 units of good 1
is determined by equality of the utility levels for these two quantities, implying

o, = —1/log{1—1/(l —n)}, n=0,.,m—1. (12)
D1

Hence, Prob [x; < n] = Prob [a > a,] = 1-G(«,) for n =0, ..., m—1. From
these formulae, the expected or average purchase of good 1 in the population is

Ex, = "Z_o G(,). (13)

A numerical example for the exponential distribution G() = 1 —e~% gives some
idea of the bias introduced by using this continuous approximation to expected
demand. If x, is treated as a continuous variable, as in example B, the expected
valueis Ex, = (3" G(o)de.

True Percentage
expected bias in
/] ylpy demand approximation
0.01 2.5 0.028 8.94
55 0.145 2.18
10.5 0.529 0.69
1.0 2.5 1.456 8.63
55 4.380 2.84
10.5 9.376 1.33

The positive bias implies that fitting the continuous approximation to
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aggregate data generated by the model will lead to underestimates of the para-
meter 6, which in turn will give spuriously high forecasts of the response of
aggregate demand for good 1 to changes in price and income.

Example D. A general model: An individual in the population has J alterna-
tives, indexed j = 1,...,J, and described by a vector of observed attributes X;
for each alternative. The individual has a utility function which can be written
in the form U = V(x)+¢(x), where V is non-stochastic and reflects the ‘repre-
sentative’ tastes of the population, &(x) is stochastic and reflects the effect of
individual idiosyncrasies in tastes or unobserved variations in attributes for each
observed attribute vector x. The probability that an individual drawn randomly
from the population and given the alternatives 1, ..., J will choose i equals

P; = Prob [V(x)+e(x;) > V(x;)+e(x;) forall j # i]
= Prob [e(x;)—e(x;) < V(x)—V(x;) forallj #i]. (14

Let Y(sy,..., s;) denote the cumulative joint distribution function of (e(x,), ...,
&(x;)). Let y; denote the derivative of  with respect to its ith argument, and let

Any particular joint distribution, such as joint normal, will yield a family of
probabilities depending on the unknown parameters of the distribution and of
the functions V.

To illustrate the scope of this approach, suppose we assume that utility has the
‘linear-in-attributes® form U(x) = ao(x)+a’x, where o is a random K-vector of
taste parameters and «,(x) is a taste effect specific to x. Suppose a is distributed
multivariate normal with mean & and covariance matrix 4, and that «y(x) is
distributed normally, independently of a, with mean x’' and variance 02, and
independently for different alternatives. Then the vector (U(x,)— Ux),...,
U(x;)— U(x,)) = U is multivariate normal with mean (&+ B)’Z’ and covariance
matrix o3l+05e,e;+ZAZ’, with e; a J-vector of ones and Z' = (x,—x,,...,
xy—xy). The probability that alternative one is chosen equals the probability
that the vector U is negative. For binary choice, this probability is

— @+ ) (xy—x3)
P, = ds(\/{20’(“;+(ch—xl)’A(xz_xl)}) ’ (16)

where @ is the standard cumulative normal. When A is zero, this reduces to the
conventional binary probit model; when 63 is zero, we obtain a model similar to
the one proposed by Quandt (1966) for travel demand modeling. For multi-
nomial choice, calculation of the choice probabilities requires numerical inte-
gration or approximation, a cumbersome requirement in non-linear statistical
procedures.
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A second example with considerable computational advantages is obtained by
assuming the &(x;) are independently identically distributed with the Weibull
distribution

Prob [e(x,) < el =e™°"". a7
Then the choice probability for alternative 1 is®
et
Pl e 7 ’ (18)

e’
and relative odds of choices satisfy

This is the well-known multivariate or conditional logit model which forms the
starting point for much of the recent empirical work on disaggregated travel
demand models.

The multivariate probit or logit models outlined above, or alternative models
derived from (15), can be estimated by maximum likelihood methods, and under
some data formats by modified minimum chi-square (Berkson-Theil) methods.
The merits and drawbacks of these methods have been analyzed elsewhere by the
author [McFadden (1973a)]; this reference also includes a survey of the statistical
literature on the analysis of binary data and a discussion of the logical founda-
tions and practical shortcomings of the logit model.

2.3. A behavioral model of mode choice

We next give an example illustrating how the consumer’s optimization
problem (8) and the analysis of population behavior given in example D can be
combined to obtain specific models of transport demand. This example provides
the framework for the empirical results reported in this paper, and is also the
basis of the empirical work reported in Domencich and McFadden (1974) and
McFadden (1973a).

Example E. Consider an individual whose only decision is a choice of work
commute mode, all other factors such as location, auto ownership, etc., being
specified. We assume the attributes of his alternatives do not change from day to
day, so that his optimization problem reduces to that given in (9). We assume
initially that he faces a binary choice between auto and bus transit modes; we
shall later introduce the alternative of a rapid transit mode. Suppose the
relevant drives are for nourishment (broadly defined), rest, and comfort.
Commute alternative i has attributes defined by a vector x* = (C;, Tv;, Ta;, K))

8See McFadden (1973a).



D. McFadden, Measurement of urban travel demand 313

giving the cost, on-vehicle time, access time, and comfort level of this mode. Only
the first three attributes are observed. Let p,, denote the per-period wage and p;
a price index for consumption goods. Since we have assumed the individual has
no choice as to amount worked, we can normalize working hours to one and take
Pw to also represent per-period income. Assuming all income is spent, the
individual choosing mode 7 will purchase a quantity (py — C;)/pg of consumption
goods and will forego Tv;+ Ta; units of leisure beyond work time.
The deprivation level of nourishment is assumed to satisfy

Dl,u+1 = )’1D1,u—[(PW_Ci)/PF_“1]s O <y, <. (20)

Fatigue will evolve similarly, with commute access time (involving walking and
exposure to the elements) possibly being more tiring than on-vehicle time, and
times being weighted by the real wage rate of the commuter,

D;piy = V2Djo—[00;—T,;—a3-Talpy/pr, O <y, <.
(21)

Discomfort is assumed to be non-cumulative, with
D3,9+1 = —K;. (22)

Combining these expressions yields the optimization problem corresponding to

),
C.
Min [A+91-——‘ +92Tvi'£"z +93Tai'&’ —94Ki:|’ (23)
i Pr D D

F F
where 4 is a constant, 0, = (6/(1—8))B,/(1-3y,), 8, = (5/(1—58))B,/(1—by,),
03 = a30,, and 0, = (§/(1—8))B5. For a binary mode choice, the individual
will select mode 1 if

04(K,—K;) < —0,(C,— C))pr—0,(Tv, —Tv,)

x 2% _0.(Ta,~Ta) 2% . 4)
Pr P

F

Note that the right-hand side of this expression is the difference of the ‘impedence’
of the two modes, using a common definition of this term in the transportation
literature. Suppose we now assume that the unobserved comfort variables 0.K,;
have the Weibull distribution described in example D. Then, the probability
that a randomly selected individual from the population will choose mode 1 is
given by the binomial logit response curve

P, = 1/{1 + exp (01(C1 —C,)lpr+0,(To, —Tvz)%v
F

+0;3(Ta; —Ta,) &’)} > (25)
DrF
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obtained from eq. (18) in the case J = 2 and

_v,=0,S +0,T0, 2% 1.0,7a,2% . (26)
Pr Py Pr

This response curve appears frequently in the transportation literature. What is
interesting here is not the fact that we are able to derive conventional response
curves by a (non-unique) choice of functional forms in a behavioral model, but
rather that arguments of the type we have outlined could be used to generate
functional forms for practical response curves from detailed analysis of individual
behavior,

There is an aspect of travel demand which has been left out of the above
analysis, but which will play an important role in a comprehensive behavioral
demand theory, the structure of decision making. Travel demand involves
decisions along various dimensions such as mode, destination, frequency, along
with long-run decisions on auto ownership and location. If all these decisions

4 rail

0
Fig. 1

are made jointly, the number of distinct alternatives can be immense, presenting
a problem not only to the investigator but also to the individual faced with the
decision. Studies of decision behavior suggest that the individual in this circum-
stance is likely to follow a ‘tree’ decision structure, for example, first choosing
whether to go on a trip, then to what destination, and finally by what mode. Such
a decision structure will normally involve recourse if a particular branch is
infeasible, but will require only local optimization, with considerably less com-
putation than would be involved in evaluating all alternatives. A successful
behavioral theory should not only parallel the individual’s decision tree, but
should exploit the separability of decisions implicit in this tree to make empirical
analysis practical. To illustrate the problem, suppose in example E that the set
of alternatives is expanded to a mode choice between auto, bus and rail. The
individual has the decision tree illustrated in fig. 1.

This tree may correspond to a true joint decision between these three alternatives,
represented as a binary bus-rail decision conditioned on transit choice, followed
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by an auto-transit decision based on the ‘weighted’ attributes of transit. Alterna-
tively, it may represent a true recursive structure in which the auto-transit
decision is made based on some ‘average’ perception of transit attributes, followed
in the case that the transit leg is chosen by a decision among transit modes. In
the first case, decisions can be viewed as being made moving down the tree; in
the second case, moving up. Assuming the unobserved term in the rail alterna-
tive has a Weibull distribution as in example E, eq. (18) provides the multiple
choice probabilities in the case of a joint choice among the final alternatives.
Letting V', V5, ¥V, denote the ‘representative’ utility of these three alternatives,
we have

eVl er

Py = ire et e te?’ @7

where ¥V, is defined to satisfy e"? = e¥*+e"* and represents the ‘weighted’ utility
of the transit alternative. The probability of bus conditioned on transit is
Vs

° (28)

P 34 = V3 Va©
3 eV3+eV4

On the other hand, an individual moving up the decision tree will use (28) to
choose between 3 and 4 once decision point 2 is reached, but may use a different
‘weighting’ for V', in the formula

Vi

€
I vl @)

For example, the ‘averaging’ rule might be

V, = Max (V5, V,), 30)
or

Vy=V3iPy34+V4Passa. (31
Both these rules will weigh the transit alternative less positively than the pure
conditional logit weighting. The multiple choice models based on (30) and (31)
are termed the ‘maximum’ and ‘cascade’ models, respectively. Although these
models are plausible empirical alternatives to the conditional logit model, it
should be noted that they are not derived from the utility maximization frame-
work of example D.°

3. Empirical results'®
We report here on the initial results obtained from a three-phase investigation

9The consistency of decision tree models under separability assumptions on utility is discussed
in detail in Domencich and McFadden (1974).

19The empirical equations of this paper are revised upon the suggestion of discussants
F.X. de Donnea and E. Sheshinski to incorporate the effects of income and after-tax wage
(opportunity cost of travel time). A more extensive empirical analysis, including material
contained in the previous version of this paper, is given in McFadden (1974).
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of patronage forecasting models for rail rapid transit, using data collected in the
San Francisco Bay Area before and after the introduction of Bay Area Rapid
Transit (BART). The BART system is one of the first totally new fixed rail
transit systems built in the United States since the beginning of the century, and
is unique in that it combines the advantages of subway-like operation in down-
town areas with extensive service corridors in suburban areas. It is fully auto-
mated to achieve low running times and headways, and is designed to be com-
petitive with the automobile in comfort. It is the prototype of a series of rapid
transit projects under consideration in major American cities. Thus, there is
potentially a great social return to refining patronage forecasting methods for
such systems, and thereby enhancing the accuracy of the cost-benefit analyses
on which design and construction decisions are made.

The results below are based on a sample of 213 households living and working
in BART ‘accession areas’; a detailed description of the sample is given in
McFadden (1973b, ch. IT), which is also the source of the following summary:

The Work Travel Study was undertaken to examine factors in the choice of
travel mode to work among Bay Area residents prior to the opening of the new
Bay Area Rapid Transit System. Since resources did not permit the inter-
viewing of more than about 200 respondents, the study did not attempt a full
geographic coverage of the Bay Area or a coverage of all types of commuting
patterns. Rather, it focused on three considerations.

First, interviewing was confined to household residents of a Y-shaped area
of Alameda and Contra Costa Counties, centering on the major industrial
cities of Oakland and Berkeley and on the small city of Emeryville lying between
them. It also encompassed surrounding suburban areas lying sufficiently
close to the radiating BART lines to make commuting by BART into the
central area a realistic possibility.

Second, interviewing was restricted to employed persons whose usual places
of work were within the cities of Oakland, Berkeley, or Emeryville or across
the bay in San Francisco or Daly City. This restriction was imposed in the
belief that subsequent work travel on BART initiating within the study area
would consist primarily of movements (a) within and between the core cities
of Oakland, Berkeley and Emeryville; (b) into these core areas from surround-
ing suburban areas; and (c) from these areas to San Francisco or to the
endpoint of the San Francisco BART line in Daly City.

Third, since persons living closest to BART stations seemed most likely to
use the new system, the sample was disproportionately drawn from persons
residing in census tracts containing BART stations or immediately adjacent
to them (hereafter, these shall be called BART contiguous tracts). The
remainder of the area was more lightly sampled. As a rough goal, the sample
was to consist of approximately equal numbers of commuters residing in
(a) BART contiguous tracts of the core cities, (b) other tracts of the core cities,
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(c) BART contiguous tracts of surrounding suburban areas, and (d) other
tracts of the surrounding suburban areas.

While controlling approximate numbers in these four cells, the sample also
was to be drawn in such a way as to permit the preparation of unbiased
estimates of the characteristics of all household residents of the study area
commuting to the designated cities. Thus, respondents could not be chosen
simply to meet a predesignated quota; rather, they had to be part of a care-
fully controlled probability sample.

This was accomplished by dividing the study area into a number of carefully
defined geographic strata and then by sampling each stratum by multistage
area probability sampling methods. After the strata were designated, one or
more census tracts were chosen from each stratum, with probability pro-
portionate to the stratum’s number of housing units. One city block was then
chosen from each sampled tract by the same method, a list was prepared of all
housing units on each sampled block, and approximately equal numbers of
housing units were then chosen from each block by systematic random
sampling from the list. Thus, in each stratum all housing units had the same
probability of selection. Although sampling ratios varied from stratum to
stratum — that is, a larger proportion of households were chosen in some
strata than in others to provide the desired numbers of commuters of each
type called for by the design — estimates for the full study area could be
prepared by appropriately weighting the stratum results.

The task of designing a sample to meet these goals was greatly complicated
by the need to screen comparatively large numbers of households to locate
persons commuting to work in the designated cities. Many suburban residents,
of course, are employed in their own communities rather than in the central
cities. In addition, many households - especially in the central cities — contain
no employed persons but only those who are retired, unemployed, or supported
by Welfare. Data from a previous survey and from the 1970 Census were
employed to estimate the total sample necessary to yield the desired number
of cases of each type, but these provided only approximate guides, and during
the course of the fieldwork it proved necessary to augment the original sample
in order to obtain the desired numbers. A total of 710 occupied households
was ultimately contacted to achieve a final sample of 213 interviews.

A reinterview of this sample, combined with a retrospective interview of a
larger sample, will be carried out in 1975 to extend and validate the models
considered in the current analysis.

The survey data was augmented with careful calculations of travel time, costs,
congestion, and related variables for existing auto and bus modes, and for
projected BART service. The auto data was collected by F. Reid; the pro-
cedures are described in McFadden (1973b, ch. III). The bus data was collected
by M. Johnson; as described in McFadden (1973b, ch. IV).

B
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In order to limit the size of the investigation and to concentrate on the
simplest and best understood travel behavior where the advantages and dis-
advantages of alternative models could be most easily detected, attention was
confined to work trip behavior, specifically mode choice and timing of the
commute trip. We report here only on the mode choice decision.

Demography of the sample. Of the 213 survey respondents, 160 used auto or
bus commute modes (as opposed to walk, bicycle, etc.), had access to both modes,
and had complete data on the major time and cost variables. This subsample
formed the basis for the analysis. The following paragraphs point out some of
the main demographic characteristics of the sample; there is no indication that
the subsample utilized differs significantly except in the exclusion of Oakland-
Berkeley respondents who walk or bicycle to work. Table 1 summarizes some
demographic proportions in the sample. The median income in the sample is

Table 1
Demographic characterists of the sample (sample
size: 213).
Percent of
Variable sample
White 77
Work in San Francisco 26
One-family dwelling 72
Male respondent 65
Married 69
Auto usual work mode 78
Nuclear family 72
Primary individual alone 13
Has driver’s license 90
Car available to family 91
Respondent :
Never uses bus 26
Health good or excellent 95
Physical handicap 2
Drives vehicle as part of work 25
Standard work week 75
Respondent :
Has second job 6
Flexible working days 19
Flexible working hours 31
Standard work period 65
(within 6 a.m. - 6 p.m.)
Car pool used whenever car 33
mode used
Expect could use BART 69

Plan to use BART regularly 16
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$12,500, the average number of adults over sixteen is 2.23, the average age of
the respondent is forty-one, the average number of household members employed
is 1.6, and the average number of cars per worker is 1.29. These figures are
generally comparable to census statistics for families with employed members.

Binary logit response curves. Various forms of the binary logit model
described in example E were estimated by maximum likelihood methods,
described in McFadden (1973a). Table 2 gives estimates obtained for ‘standard’
specifications of the relative ‘impedence’ of the modes. In these models, the pure
auto mode preference effect corresponds to a variable that is one for the auto
alternative and zero for the bus alternatives; a positive coefficient indicates that

Table 2

Binary logit response curves; dependent variable: Auto-bus mode choice (zero if bus is usual
or frequent mode, one otherwise); estimation method: Maximum likelihood on individual
observations; sample size: 160; T-statistics in parentheses.

Independent variable Model 1 Model 2 Model 3 Model 4
Family income with ceiling of 0.000065 0.000064 0.000095 0.000074
$10,000, in $ per year (0.518) (0.517) 0.774) (0.601)
Car-bus cost, in cents per round —0.00920 —0.00915 ~0.01022 —0.01165
trip (3.085) (3.184) (3.726) (4.506)
Car-bus on-vehicle time times —0.00858 —0.00852 —0.01479 —
post-tax wage, in min. per (1.263) (1.273) (2.460)
1-way x § per hr.
Bus walk time times wage, in —0.000092 —0.000080 —_ —
min. per 1-way x § per hr. (0.021) (0.018)
Bus first wait time times wage, —0.01713 — —_ —
same units (0.771)
Bus transfer wait time times wage,  —0.01902 —_ — —
same units (1.365)
Bus total wait time times wage, —_ —0.01838 — —_
same units (1.947)
Bus total access time times wage, — — —0.00314 —
same units (0.818)
Bus total travel time times wage, — — — —0.00728
same units (2.480)
Pure auto mode preference effect 0.1499 0.1483 0.3832 0.5516
(constant) (0.165) (0.163) (0.428) (0.561)
Likelihood ratio index 0.30626 0.30623 0.2794 0.2633
R?index 0.92 0.93 0.66 0.61
Percent correctly predicted
Car 85 85 84 83
Bus 79 79 68 68
Value of time (percent of after tax
wage)
On-vehicle 32 28 43 45

Wait 56-62 60 9
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when the remaining variables are zero, more than half the population will choose
auto. Bus transfer wait time is calculated directly from transit schedules. Initial
wait time is taken to be one-half the average headway on the initial carrier for
the home to work and the work to home trips, with a ceiling of a fifteen-minute
wait; this measure will be biased upward when commuters can follow transit
schedules. Bus walk time is computed from the number of blocks walked at the
origin and destination, assuming a walking time of two minutes per block.
Models 1-4 ignore the possibility of auto access to transit even though twenty-
two percent of the bus riders use auto access to bus. Thus, walk time may be a
substantial overestimate of actual bus access time, particularly for suburban
commuters where the ‘park-ride’ option is most common. This shortcoming of
the empirical analysis may explain the unexpected insignificance of the coefficient
of bus walk time in these models.*

The likelihood ratio index and R? index reported in table 2 are measures of
goodness of fit discussed in McFadden (1973a). The R? index is similar to the
multiple correlation coefficient in ordinary least squares; the likelihood ratio
index is a more stable and statistically satisfactory measure for the estimation
method used. The models of table 2 all give coefficients of expected sign. With
the exception of bus walk time, the implied valuations of time agree with
previous estimates [Quarmby (1967), Thomas (1971)]; at the sample mean after-
tax wage of $3.87 per hour, the value of on-vehicle time is $1.23 per hour and
the value of wait time is $2.32 per hour. However, because of the low precision
of the estimates of the travel time coefficients, we cannot reject at the ten percent
level the hypothesis that all components of travel time are weighed equally.

Weighting of time and cost components. The specification of the models in
table 2 can be tested against alternative hypotheses that different travel time and
cost variables and other factors have distinguishable effects on behavior. Of
particular interest are the questions of whether mode attributes can be measured
generically using conventional time and cost variables, and whether components
of time and cost are weighted equally. We summarize the conclusions; the
estimates on which they are based are given in McFadden (1974).

(a) We accept at the ten percent level the hypothesis that auto and bus on-vehicle
times are weighed the same. The power of the test is low, and the point
estimates imply an average premium of $0.88 per hour in the weight attached
to bus travel. This premium could reflect the reduced comfort and privacy
of bus transit which are not measured directly.

(b) We accept at the ten percent level the hypotheses that no weight is given to
schedule delay (defined as the average of the waiting times at the workplace
before the job begins and after the job ends which are required to fit bus

11A conditional logit analysis treating bus with walk and ride access as distinct alternatives is
reported in McFadden (1974).
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schedules), number of transfers, or auto time spent in driving on freeways
at less than twenty miles per hour. The power of the tests is again low. The
estimates provide speculative, but plausible, values of $3.33 per hour for
schedule delay, 15.5 cents per transfer, and a premium of $2.13 per hour on
auto time spent driving under congested conditions.

() We accept at the ten percent level the hypothesis that the value of travel time
is linear homogeneous in the after-tax wage rate. The estimates suggest,
however, that value of time may be an increasing function of the wage rate.
This conclusion, if substantiated, would be consistent with hours-worked
decisions more closely approximating the neoclassical labor-leisure margin
at higher wage levels, or with imperfect correlation of measured and effective
wages in labor markets segmented by wage rate.'?

(d) We accept at the ten percent level the hypotheses of equal weighting of total
auto costs and total bus costs, and of auto mileage, tolls, parking, and
maintenance costs. The estimates suggest that mileage and maintenance costs
may not be weighed as heavily as tolls and parking costs; however, the
precision of these estimates is quite low.

Because of the small sample size, none of the tests above are conclusive, and
should be taken only as suggestions for further research.

Inventory of possible explanatory variables. In order to make an inventory of
the large number of additional variables which might influence mode choice, we
posed the question of whether the ‘unexplained residual’ from the binary logit
model was correlated with these variables. This was done by calculating trans-
formed residuals from the logit estimating equation, and correlating these
residuals with the list of candidate explanatory variables. This method was
devised for the binary logit case by Cox (1970); an essentially equivalent multi-
nomial transformation described in McFadden (1973a) was used in the present
analysis. The residuals are derived from Model 1. They are distributed with zero
mean and unit variance if Model 1 is correct, and in this analysis are positive
when bus is chosen, negative otherwise. (Hence, a positive correlation indicates
high values of the explanatory variable are associated with increased bus use.)
Table 3 is a selected list of variables correlated with the residuals; those signi-
ficant at the five percent level are candidates for inclusion in further estimation.
It should be noted that some of the significant correlations are with variables
which we would expect to be jointly determined with mode choice rather than
predetermined at the point the mode choice decision is made. The behavioral
model should be expanded to include a theory of this simultaneous choice.

A number of correlations in table 3 deserve comment. First, there are variables,

12This conclusion is based on unpublished research by Luke Chan, University of California,
Berkeley.



322

D. McFadden, Measurement of urban travel demand

Table 3

Correlations of unexplained residuals in binary logit analysis with

candidate explanatory variables.

Variable Correlation
‘Important to live close to public transport’ 0.48°
Does not have regular use of a car 0.44°
Number of cars in household —-0.342
Respondent does not drive 0.332
Index of population density on street 0.30°
Distance to parking at home 0.272
No car required in work 0.232
‘Enjoy riding distances with family’ 0.23?
Length of residence in community - —0.23?
Plans to use BART —0.20°
Adjusts travel time to traffic conditions —0.22°
Owns home —0.22°
Number of rooms in house —-0.22°
Muttiple-family dwelling unit 0.21°
Number of drivers in household —0.20°
Number of minutes can arrive late at work —0.20°
Expect to stay in present location for 2 years —0.19®
Minutes leeway allowed for emergencies —0.18°
‘I become angry in traffic jams’ 0.18°
Mixed residential/commercial street 0.18°
‘Bus drivers are polite’ 0.18°
‘Enjoy freeway driving in traffic’ -0.16
‘Buses smell of fumes’ —0.15
Respondent’s age —0.13
‘I can read or study on the bus’ 0.14
Amount varies time leaving work -0.11
Female respondent 0.11
‘I am lucky with parking’ —-0.12
‘People buy cars that are too big’ 0.13
‘Fast freeway driving makes me nervous’ 0.12
Distance respondent is willing to walk 0.13
Number of weekend days worked 0.10
Workplace in CBD -0.01
Work trip in peak —0.09
Workplace in San Francisco —0.01
Non-white respondent 0.08
‘Cars are no better than bus in current traffic’ 0.10
‘A car is the ultimate convenience’ —0.09
Years of education 0.01
‘Poor bus service is a problem’ —0.06
‘Protection from crime is a problem’ -0.07
Distance to work 0.02
Non-standard working hours —0.02
Number of household members employed ~0.05
Marital status of respondent 0.00

*Significant at 1% level.
bSignificant at 5%, level.
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such as (the respondent does not drive), which indicate whether the respondent
has access to the auto mode. The model should clearly either screen out in-
dividuals with these atypical choice sets or include explanatory variables identi-
fying these cases. There is the danger that some variables of this type are simul-
taneously determined by mode choice; to avoid the statistical problems associated
with simultaneity, instrumental variables methods may be required.

Second, variables such as (number of cars in household) tend to be correlated
due to the joint determination of auto ownership and mode choice. We report
elsewhere on estimation of the simultaneous auto ownership and mode choice
decisions using instrumental variables methods within the binary logit frame-
work [McFadden (1974)].

Third, variables such as (distance to parking at home) and (no car required in
work) represent legitimate explanatory factors that appear to reflect attributes
of modes not captured in the summary time and cost measures.

Fourth, variables such as (length of residence in community) and (owns home)
reflect socioeconomic factors which appear to influence the distribution of tastes.

Fifth, variables such as (index of population density on street), (‘important to
live close to public transit’), and to some extent (number of rooms in house),
(owns home), etc. are all related to the location decision, which in turn may be
made jointly with the mode choice. These correlations suggest that there is a
significant relationship between these decisions. If individuals with pro-bus
tastes or relatively low valuations of time locate where bus impedence is relatively
low, and vice versa, and Model 1 is estimated without taking this effect into
account, then the steepness of the estimated response curve is exaggerated, and
one may forecast too high an incremental response to a policy change.

Sixth, a few attitude variables are significant: (‘enjoy riding distances with
family’), (‘I become angry in traffic jams’), and (‘bus drivers are polite’). These
may reflect a causal effect of attitudes on tastes and behavior, or alternatively
may themselves be jointly determined with mode choice by more basic explana-
tory factors. The interest in attitude variables from the standpoint of transport
policy analysis lies in the question of whether planners can influence behavior
by campaigns to modify attitudes. A demand model with explanatory attitude
variables is not useful in answering this question unless the mechanism for the
action of public relations programs on these attitudes can be discovered. In the
latter case, one may well be able to bypass the measurement of attitudes entirely,
and concentrate directly on the relation between publicity campaigns and mode
choice behavior. Alternatively, one may wish to develop models of the simul-
taneous processes of attitude formation and modification of travel behavior.
Neither of these alternatives suggests that it is particularly useful to estimate
travel demand models treating attitudes as pure explanatory variables. The
current inventory of attitude items indicates that with the exception of (‘bus
drivers are polite’), there is little relation between behavior and the attitudes that
might be influenced by a campaign publicizing the attributes of transit.



324 D. McFadden, Measurement of urban travel demand

Travel demand forecasts. The binary logit response curves estimated in table
1 provide a basis for predicting or forecasting individual mode choice, both for
the existing auto-bus alternatives and for the auto—bus-rail alternatives available
after BART is fully operational. Further, by inference from the sample to the
population from which it is drawn, one can forecast aggregate modal split.

Suppose we have a sample that is representative of the population and a logit
model such as Model 1 estimated either from the sample or from external
sources. Then, the predicted probability for any individual in the sample is a best
estimate of the distribution of responses in the population by those individuals
facing the same environments. Since the sample represents a (weighted) random
selection of the environments faced by the population as a whole, the (inversely
weighted) average of the predicted probabilities over the sample is a best estimate
of aggregate demand.'? The influence of transport policy on aggregate demand
can then be assessed by computing its effect on the sample average. It should be
noted that this procedure provides a more accurate measure of demand elasticities
than can be obtained by the conventional method of computing the elasticity of
the response curve at the mean of the independent variables: Aggregate demand
is the average of the response curve weighted by the distribution of the indepen-
dent variable. If a substantial proportion of the population faces relative
impedences which are sufficiently extreme to elicit almost certain mode choices
in one direction or the other, then a small change in the impedence of one of the
modes will still leave the relative impedence for this proportion of the population
sufficiently extreme to almost certainly determine mode choice. As a result, the
response of aggregate demand to this impedence change will be low, and will
bear no systematic relation to the elasticity of the response curve at the data
mean.

Table 4 presents computations of the aggregate modal split (observed weighted
sample frequency) for the auto-bus choice, and the elasticity of these aggregate
demands with respect to changes in the explanatory variables. The elasticity
values are relatively low, as is normally expected for short-run travel demand.
They suggest that the most effective way to increase bus patronage is to increase
auto costs, say, by introducing parking or gasoline taxes. A ten percent reduction
in bus fares or in running times would each yield a patronage increase of approxi-
mately five percent.

We next turn to the question of forecasting demand for a new mode, BART.
Using engineering forecasts of BART service levels made in July 1972, and taking

13An alternative method of computing aggregate demands is to specify a distribution of the
independent variables in the population and compute analytically or numerically the expecta-
tion of the response curve with respect to this distribution. This can be done particularly con-
veniently in the case of binary probit analysis: If the independent variables x are normally
distributed with mean % and covariance matrix 4, and the probit response curve is P = &(8’x),
then aggregate demand is given by D = &{0’u//(1+6’A0)}. This demand again has the
property that the more disperse the distribution of the independent variables, the lower the
demand elasticities.



D, McFadden, Measurement of urban travel demand 325

the calibration of Model 1 to provide the appropriate weights for a generic
characterization of the BART alternative, we have used the conditional logit
model given in eq. (27) and (28) to compute aggregate demand forecasts for our
sample. These results are preliminary due to the preliminary nature of the BART
service level measurements. The conditional logit model has the ‘independence
of irrelevant alternatives’ property discussed in McFadden (1973a) which may
bias upward the sum of the predicted probabilities of two alternatives whose
unobserved attributes are not perceived by decision-makers as independent.
Since this may be the case for the two public transit modes, we also considered

Table 4

Estimated auto-bus patronage and demand elasticities from Model
1; population: East Bay residents who commute to work in Oakland,
Berkeley, Emeryville, San Francisco, or Daly City.*

Car Bus
demand demand
Patronage (morning commute)® 69,488 23,045
Modal split® 75.1% 24.9%
Demand elasticity with respect to:®
Income (with a ceiling of $10,000) 0.09 —-0.28
Car cost —-0.32 0.97
Car on-vehicle time -0.13 0.39
Bus cost 0.15 —0.45
Bus on-vehicle time 0.15 —0.46
Bus walk time 0.00 0.00
Bus first wait time 0.06 -0.17
Bus transfer wait time 0.09 —0.26

*The calibration sample weighted (by strata) to present this
population,

*Bus demand by regular or frequent users.

°The unweighted sample modal split is 75.6 percent car, 24.4
percent bus.

4The demand elasticities are computed from predicted patronage,
calculated from the weighted sample.

the ‘cascade’ and ‘maximum’ models, which view the individual as first making a
choice between auto and transit, and then choosing between bus and BART if
transit is selected. The results are given in table 5. The modal splits given by
these models can be compared to the sixteen percent of the sample who indicated
that they planned to use BART. Since the BART system is not in full operation
and actual patronage counts are not recorded by trip purpose, it is difficult to
compare these forecasts with current patronage figures. In October 1973, without
trans-bay service, BART averaged 9,762 daily ‘commute’ round trips in the area
for which our population is defined. Since twenty-six percent of our population
works in San Francisco and does not yet have the BART alternative, a crude
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calculation taking seventy-four percent of the conditional logit patronage fore-
cast yields a daily forecast of 9,658. The figures of 9,762 and 9,658 are only
crudely comparable since the BART actual patronage figure excludes non-peak
work commutes and includes peak non-work trips, and no adjustment has been
made in our forecasts for changes in the independent variables between July
1972 and October 1973, changes in population size and number of workers, or
inaccuracies in weighting the sample to obtain population figures. BART transit
district forecasts for full system operation are substantially higher than those
predicted by the conditional logit model, and the weight of the biases in the

Table 5

Modal split forecasts for car-bus-BART mode choice from Model 1; assumptions: (1) BART
running times and fares are set at the engineering specifications of July 1972, (2) car and bus
running times and fares are unchanged from July 1972, (3) home to BART access is by car
(park-ride), (4) trip ‘generation’ and ‘distribution’ are unchanged;* population: East Bay
residents who commute to work in Oakland, Berkeley, Emeryville, San Francisco, or Daly

City.
BART
Total given
Car Bus BART transit transit
Conditional logit model
Patronage 61,110 18,371 13,051 31,422
Modal split 66.0% 19.9% 14.1% 34.0% 4159
Cascade model
Patronage 67,495 14,911 10,126 25,037
Modal split 72.9% 16.1% 10.9% 27.0% 40.4%
Maximum model
Patronage 66,067 15,740 10,724 26,464
Modal split 71.4% 17.0% 11.6% 28.6% 4049,

*The simultaneous estimation of modal split, distribution, and generation in a consistent
behavioral model is discussed in Domencich and McFadden (1974); no attempt has been made
to analyze generation and distribution in this study.

preceeding calculation also suggests that the conditional logit forecasts may be
too low.

In the same manner as for the binary auto—bus mode split, we can compute
the elasticity of the forecast aggregate demands with respect to the explanatory
variables. This is done in table 6 for the conditional logit model. The elasticity
of BART demand with respect to auto cost is relatively high, suggesting that
policy measures such as increasing tolls or parking taxes will have a substantial
effect on BART patronage. The elasticity of BART patronage with respect to
BART on-vehicle time is also relatively high, indicating that maintenance of the
engineering forecasts of running times is an important factor in retaining
patronage. The elasticity of BART demand with respect to BART fares is almost
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one in this short-run model, indicating that a ten percent increase in fares would
increase revenue by only 1.4 percent.

Table 6

Demand elasticities for car-bus-BART mode choice; assumptions:
Model 1, conditional logit model, and conditions of table 5.

Car Bus BART
Elasticity with respect to: demand demand demand
Income (with a ceiling of $10,000) 0.15 —-0.25 -0.29
Car cost —047 0.81 0.82
Car on-vehicle time —~0.22 0.36 0.41
Bus cost 0.12 -0.58 0.28
Bus on-vehicle time 0.14 -0.60 0.23
Bus walk time 0.00 0.00 0.00
Bus first wait time 0.05 —0.19 0.06
Bus transfer wait time 0.07 —-0.29 0.09
BART cost 0.13 0.25 —0.86
BART on-vehicle time 0.10 0.13 —0.60
BART walk time 0.00 0.00 0.00
BART first wait time 0.02 0.03 -0.12
BART transfer wait time 0.11 0.16 —0.66

4, Conclusions

The reader is cautioned that, as in any pilot study, the results reported above
are tentative and may not hold up under further investigation. Further, because
of the specialized nature of the sample, particular care should be exercised in
drawing inferences on aggregate behavior of the Bay Area population. Taken in
sum, the results appear to be generally internally consistent, and consistent with
the existing literature and folklore on travel demand. The behavioral methods
outlined in this paper for the measurement of travel demand appear to open the
possibility of analyzing hitherto unexplored aspects of the subject, with the
hoped for consequence of refining the calculation of benefits of transport
projects, and thus improving the quality of urban transportation planning.
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