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Chapter 13

QUANTITATIVE NETHODS FOR ANALYSING TRAVEL BEHAVIOUR OF
INDIVIDUALS: SOME RECENT DEVELOPMENTS

Daniel McFadden

SUMMARY

This chapter is concerned with quantitative methods for the
analysis of travel behaviour of individuals., It reviews some
of the recent developments in model specification, estimation,
model evaluation and testing, and aggregation and forecasting.
Topics in model specification include the multinomial-probit
model and its computation, and generalised-extreme value
models and their relation to sequential models, Topics in
estimation methods include the use of choice-based samples,
sample designs and incomplete choice sets. Model evaluation
topics include prediction-success tables and diagnostic tests
of specification. Aggregation and tforecasting topics include
aggregation by the Clark method, synthesis of the distribu-
tion of explanatory variables, and the calculus of demand
elasticities.

INTRODUCTION

This chapter is concerned with quantitative methods for the
analysis of travel behaviour of individuals, It reviews some
recent developments in model specification, estimationm, model
evaluation and testing, and aggregation and forecasting. The
reader is assumed to be familiar with the general foundations
of disaggregate choice theory (30,31), the historical
development and properties of the multinomial logit model
(26), and the use of behavioural models in travel-demand
analysis (15,38,39),

MODEL SPECIFICATION
The choice models which have received serious consideration
in travel-demand applications are multinomial logit (MNL),

multinomial probit (MNP), and a sequential - or tree -
version of multinomial logit.

The Nultinomial-logit Nodel (NNL)

A typical MNL model for joint choice of mode, destination and
auto availability is
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where m = mode;
d = destination;
& = auto availlability;

and Voda © Xpaa * Byda +tyz, = utility, witha, B8, Y .
parameter vectors and Xpda' Yda' 2a variable vectors describ-
ing the decision-maker and the alternative. Letting Pmlda
denote a conditional choice probability and Pm denote a

marginal choice probability, we can derive from Equation (1)
the formulae:
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Discussion of the historical development of the MNL model can
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be found in McFadden (30); the properties of the model,
including its derivation from the theory of individual
utility maximisation, are given in McFadden (26)

Segquential MNL Nodels

Next consider the sequential or nested MNL model, A typical
sequential model differs from the joint MNL model solely in
that the coefficients of inclusive values are not constrained
to equal one. Hence, the joint MNL model is a linear
restriction on any of the sequential models., Specifically,

a sequential model is defined by

Praa = mldapdlapa ! (11
Nrda Xrda
Pojaa ™ © /Ee b (12)
ax
Iaa'logrile""‘ ; (s")
6T, +8y 81 _+8y
Paja ™ © da™da , 5 g ca Tca (13)
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oI +By
g =logle @ ® (14)
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AJ_+yz AJ, +y
B=e ° “/g-ebz” . (15)

When 6 =) =1, this model is identical to the joint MNL
model. More generally, when 6 ¥ 1, Equations (13) and (14)
differ in the two models, and when A # 1, Equation (15)
differs in the two models. '

The sequential model was introduced by Domencich and McFadden
(15) and studied by Ben-Akiva (3), and is discussed in
greater detail below.

The Nultinomial-probit Model

A typical model for the mode-destination-auto (mda) choice
problem is obtained by assuming that each alternative mda has

a utility wpg, = Vg, * X, ¥ Mg, * VY, , where Ay, , Ny, and
Vaa summarise the influence of unobserved attributes and

taste variations, and are assumed to be jointly normally
distributed over the population. If each individual maxi-
mises utility, the proportion of the population choosing
mda is
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where the number of integrals equals the number of alterna-
tives, n(e;0,Q) 1is the multivariate normal density with mean
vector 0 and covariance matrix Q, and €mda = Nﬁa + Naa + Va'

with the joint normal distribution of A, n, and v determining
Q.

The MNP model generalises a classical model of Thurstone
(41) for binary choice. Bock and Jones (6) applied the model
to the three-alternative case. The model was suggested for
transport analysis by Domencich and McFadden (15), and first
applied to transport data by Hausman and Wise (20). Further
discussion is given below.

Other Cholce Models

Several other models deserve passing note. McFadden (27) has
proposed a universal, or 'mother', MNL model which can
approximate an arbitrary choice model with a function of the
form (1), except that dea functions will depend on the

attributes of all alternatives, and not solely on the attri-
butes of mda. This model is useful for testing particular
specifications, but is in general inconsistent with utility
maximisation,

McLynn (37) has proposed the fully competitive model which
is a one-parameter mapping of MNL choice probabilities into a
second vector of probabilities. This model is in general
inconsistent with individual utility maximisation, yet it
shares with the MNL model restrictive structural properties
which render it implausible in some applications. The McLynn
model satisfies 'simple scalability' = ‘'order independence’,
which is closely related to the 'independence from irrelevant
alternatives' property of the MNL model (see McFadden (28)).

The Generalised Extreme-value Model

McFadden (35) has recently proposed a family of generalised
extreme-value (GEV) choice models which allow a general
pattern of dependence among alternatives and yield a closed
form for the choice probabilities. The following result
characterises the family:

THEOREM 1. Suppose G(Yl'”"yb) is a non-negative,

homogeneous-of-degree-one function of (yl“..,xﬁ 20.
Suppose lim G(yl,...,yJ) = 4o for i=1,...,0 . Suppose for
yfﬂa

any distinct (il""’ik) from (%,...,3} , akc/ayi reensdy;
1 k

is non-negative if k is odd and non-positive if k is even.
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Then,

A% V. \Y V. v
P, =e iGi(e l,...,e J) / Gle 1,...,e J) a7

defines a choice model which is consistent with utility
maximisation.

J
The special case G(yl,.n,yJ) = Z yj yields the MNL model.
j=1

An example of a more general G function satisfying the hypo-
theses of the theorem is

143
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where Bm_c_(l....,J} , nEl Bm'{l"""n R am>°’ and

0< %n< 1. The parameter m is an index of the similarity
of the unobserved attributes of alternatives in Bm‘ The
choice probabilities for this function satisfy

M
= | PGIB)P®E) (19)
=l

where P(i|%& is the conditional probability that alternative
i is chosen, given the event By, with
v. .
Vi 3 *
g I .
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m .
36%“
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and P(Bm) is the probability of the event Bm' with

l-q“ Vk l-cn
=0 M I-on
PB)=a {] e /1 ayl e . (21)
™ M 4e 1 " [keB
m n

Functions of the form in Equation (18) can also be nested to
yield a wider class satisfying the theorem hypotheses. For
example, the function
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where B = {1,...,J} , satisfies the hypotheses provided
1> qn 26, 2 0 for meD.. The choice probabilities for

Equation (22) and analogous functions can be written as sums
of products of conditional and marginal probabilities, in a
manner generalising Equation (19), with each probability
element having a multinomial-logit form, and the denominator
in each element equalling a representative term in the
succeeding element.

Choice probabilities of the form (19) were apparently
first derived, for the case of three alternatives and By =
{1}, B, = {2,3} by Scott Cardell (7). For the case of dis-
joint Bm, the form (19) has been discovered, independently,

by Daly and Zachary (12}, Williams (42), and Ben-Akiva and
Lerman (4). The demonstration by Daly and Zachary that this
choice model is consistent with random utility maximisation
is particularly noteworthy in that it permits generalisation
of the GEV model and provides a powerful tool for testing the
consistency of choice models: suppose alternative i has a
utility « U, =w; + yiz) + e where Vi Zw + y(z;) 1is the

systematic component of utility and (el“..,eJ) is a jointly

distributed random vector, with a distribution function not
depending on (wl,...,wJ), but in general depending on

(zl,...,zJ). Suppose the choice probabilities satisfy

P, = Pi(vl""'vb’zl""’zJ) =Prob [V, +¢; 2 vj + €5 for j # 1)

(23)
z Prob [V; - vj 2V Vg for j # 1] ,
where v, = € - 51 . Define the exvected value of the maximum
of the utilities UJ,
T . = . . 24
TV enesVgizyreesiZy) £ Maxy U (24)
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Then, the choice probabilities satisfy*

By (V) yee VgiZyseeei2y) = g OV eee VgiZpaeeeiZg) (25)
1

i

and the joint distribution of the differences of the random
components of utility, (vz,“.,vJ) , satisfies

FlugrevesVy) = By (0,=Vy0eee V) (26)

Conversely, any choice probability functions Pi“&""'v H
zlu..,zJ) which satis?y the necessary and sufficient

conditions for (Pl"..,PJ) to be the gradient of a poten-
tial** (U) and for le'ZYZ“"’-Yﬂ to be a distribution

function,*** satisfy (23), and are consistent with stochastic
utility maximisation. The key assumption, and only signifi-
cant restriction, underlying this result is that the random
utilities Ui have linear components L with the property that

the joint distribution of the stochastic components does not
depend on (wl,...,wJ).**** .

This condition has been used by Domencich and McFadden
(15) and Harris and Tanner (19) to establish a classical
identity between social welfare, defined by the expected
value (or average over the population) of the maximum
utility for each individual, and consumer surplus,
defined by the area under the market demand curves, or
choice probabilities. The identity can be verified
directly by writing out the definition of expected
maximum utility and differentiating. The basic assump-
tion required for the social welfare identity is a linear
'transferable' numéraire commodity. A consequence of the
additively separable structure of errors specified in
(23) is that the choice probabilities are invariant with
respect to location; i.e.,

P1(vi + a,...,vJ + a;zl,...,zJ) B Pi(Vl,...,Vb;zl,...,zJ) . ).
**x  Suppose -Pi(vl“"'vJ) is continuous and continuously

differentiable. Then, a necessary and sufficient con-
dition for (Pl“..,PJ) to be the gradient of a potential
(U) is that aPi/NG = 3Pj/3Vi . It P, is invariant with
respect to location, then T is homogeneous with respect
to locatinn; i.e. U(V1 +a,...,Vp ¢+ a) = U(Vl,...,VJ) + a,

*x%x See Cramer ’'11) Sect. 8.4. The key condition for
F(vz,”.,vﬁ to be a distribution is that the (J - 1)st

difference, AJ‘lF, be non-negative. If F is continuous
and almost everywhere J-1 times differentiable, this
condition reduces to the requirement that the density

a"‘lr/avz...ava be non-negative.

**x*«Strictly, the conditicn is that the joint distribution of
differences of the random components of utility,
F(vzﬁ..,vJ), not depend on (wl,...,wJ).
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\ v
The GEV model satisfies (25) with U = log G(e 1,...,e J).

Relation of Sequential MNL and GEV Models

The choice probabilities corresponding to (22) can be
specialised to the sequential MNL model described in
Equations (11 - 15), as we shall now show, This result
establishes that sequential MNL models are consistent with
individual utility maximisation for appropriate parameter
values, and that the coefficients of inclusive values can be
used to obtain estimates of the similarity parameters o and
§. It is hence possible to estimate some GEV models using
sequential MNL models and inclusive values. Further, the GEV
class provides a generalisation containing alternative
sequential MNL models, and could be estimated directly to
test the presence of a sequential or tree structure.

To obtain the sequential model (11 - 15) from Equation
(22), index alternatives by mda for mode m, destination d,
and auto availability a, and specialise (22) to the form

1-0 1-§

G-HZYT’—" , 0gogd<l . (27
a{d

Assume V.. = (1-o0)a'x + - Gie'yda +y'z, . Then

Se =
Vnda Ynca
Vda [el® I{Le®?
el cln 28)
Frga = v o TS (
e Vogal v
. 2 e
n 3 -0
Iile 5|31 e
blcln
1-a ' -
Sa a0
= a’x B 1-o R
nda By gL Y2, +(1-8)3,
X e ze ca ca Z e zb b
n c b
where
a'X3a
I3, = log g e
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1-g
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§

This is precisely the sequential model (11 - 15), with

8= (1-0)/(1-6) and A=1-68 . Hence, we have established
that & sufficient condition for a nested logit model to be
consistent with individual utility maximisation is that the
coefficient of each inclusive value lie between zero and one,

0<®,xg1l. (The preceding demonstration for three-level
trees is readily generalised to trees of any depth. The
simplest proof is by induction.) Application of the Daly-
Zachary test shows that this condition is also necessary for
consistency with random utility maximisation if the domain
o? (V2 - Vl,...,VJ - Vl) is unrestricted. When the necessary

and sufficient conditiowr 0 <8, A <1 is satisfied, 1 -8 is
an index of the similarity of alternative modes, while 1 - )
is an index of the similarity of alternative destinations,

Camputation of the MNP Model

The multinomial-probit model is an appealing conceptual
model, It allows consideration of stochastic components for
tastes and unobserved attributes within an alternative, and
provides a way of specifying the structure of dependence
between alternatives. However, MNP choice probabilities can
be expressed exactly only as multivariate or iterated inte-
grals of dimension J - 1, where J is the number of alterna-
tives. Exact calculation by numerical integration is very
fast for J = 2 or 3, moderately costly for J = 4, and
impractical on a large scale for J>5. One of the more
effective direct numerical integration methods, adapted for
transport applications, is due to Hausman and Wise (20).

Two recent contributions have provided techniques for
approximating MNP choice probabilities at moderate cost.
This has made MNP a practical alternative for many transport
applications., The first method, due to Manski (25), applies
a Monte Carlo procedure directly to the utilities of alterna-
tives, Suppose J + 1 alternatives, with utilities Ui =V, +

i
€, . where (el"“'€J+1l is multivariate normal with zero
means and covariance matrix I -(oi-). For given values of

Vi, vectors (51“"'8J+1) from the multivariate distribution

can be drawn, and the frequency with which utility is
maximised at alternative i recorded. These frequencies
approximate the exact MNP probabilities when the number of
Monte Carlo repetitions is large. Because this method
involves repetitive simple calculations, it can be program-
med in computer assembly language to operate quite
efficiently. The approach is appealing in its generality -
any Jjoint distribution of the unobserved effects can be
assumed. In practice, the method is most effective when a

relatively good initial approximation to the frequencies is
available.

The second approximation method, due to Daganzo,
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Bouthelier and Sheffi (13), uses a procedure suggested by
Clark (8) to approximate the maximum of bivariate normal
variables by a normal variable. When the correlation of the
variables is non-negative, this approximation is accurate
within a few per cent. Suppose J + 1 alternatives, with
utilities U; = Vitog and (el,.“,eJ+1) distributed multi-

variate normal, zero means and covariance matrix I, The
probability that the first alternative is chosen is then

P1 = Prob [Vl +g > vj + ej for §=2,...,3+1] (29)

-Prob[vl—VJ+1*el—eJ+1>Vj—V -

4 * €5 7 an

.

for j=2,.,..,J and V1 - v5+1 + € "y > 0}

Define VJ = V‘1 - VJ+1 and Yy =€ - €341 - Then, (yl,...,yJ)
is multivariate normal with mean zero and covariance matrix
Q= (ugy) » where wiy =045+ Oq gy 7 %500 T 3,00
Hence
Pl = Prob lv1 +¥ >0 and ity vj + yj for j =2,...,J) .

© (30)

- “1(y1)N(1)((V1 -yt yl)[yl)dyl

n="

where ny(x)(ylx) denotes the normal density for the vector

of variables indexed by Y, conditioned on the vector of
variables indexed by X ; Nyuq(y‘x) denotes the corresponding
y .
- ’ ’
cumulative distribution function, NY(X) yl® J Ny (x) {y’ |x)dy
-0

and nY\y) is the marginal density of the variables

indexed by Y. As a shorthand, the set of all indices, or the

set of all indices exluding those on which a distribution is

conditioned, are omitted. Thus, N(1) means N2 Jey” The
sy

form (30), involving J integrals, is the basis for exact
calculations of Pl. Alternately, write

Pl = Prob [v1 +y; 0 and ity > ?2;'...’J(vj + yj)] . (31)

The Clark method considers trivariate normal random variables
(xl,xz,xs), and approximates the bivariate distribution of
(Xl,max (xz,x3)> by a bivariate normal distribution with the

game first and second moments. The approximation rests on
the fact that these moments for (xl,max (X2,X3)) can be

calculated exactly in a straightforward manner. Applied
recursively to the expression (32)

Yo = max(v2 + yz,max(v3 + ya,...,max(vJ_1 + Vg_10Vg + yJ)...)
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the method allows the distribution of (yl,yo) to be approxi-
mated by a bivariate normal distribution nl(yl)no(l) (yolyl),

so that Equation (30) is approximated by th% univariate
integral

P = [ n) ly)Ng gy (v + ¥y lyayy o (33)
="
Yo
where Ny, (yolyl) -rJ o) (y6|y1)dy6 . Thus, an MNP

choice probability for J + 1 alternatives is approximated by
a univariate integral involving a univariate normal density
and univariate normal cumulative distribution function (which
can be accurately approximated computationally by a series
expansion). The approximation requires J - 2 applications of
the Clark formula.

Manski (25) has reported good results in maximum-likeli-
hood search methods using the approximation above, with
search directions determined by numerical evaluation of
derivatives. This suggests that the bias caused by the
approximation is relatively stationary for evaluation of
probabilities at neighbouring points. This fortuitous con-
clusion suggests that it is probably unnecessary to obtain
analytic derivatives of Pl with respect to parameters in

statistical routines. On the other hand, it is possible that
the use of analytic derivatives could decrease computation
time. The following argument shows that the Clark procedure

can be applied to yield quick approximations to analytic
derivatives.

From (30)

%) v,
55 = Py VN (V) [v) =

J a(vl—v.)
+ jzz ——-55—1- nlj(yl’vl-vj+y1)N(lj)
n=v

((vl-kayﬂlyl,vl-vjwl)dyl (34)

The term N(l)u-vyl-vl) can be approximated by applying the

Clark procedure to the conditional distribution. The inte-
grals in the last right-hand term of (34) each have the
essential structure of (30), since nlj(yl,v1 - vJ + yl) is

proportional to a normal density for y, whose mean and
variance are computed by a straightforward completion of the
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square. Then, each integral in this term can be approximated
by the corresponding analogue of (33). We conclude that the
analytic derivative apl/ae can be computed by the evaluation

of J univariate integrals, each with the generic form of (33),
and each involving J - 3 applications of the Clark procedure.
For most problems, where the number of parameters exceeds J,
this computation should be considerably faster than numerical
computation of the derivatives.

The probability P1 also depends parametrically on the
covariance matrix §. The requirement that Q be positive
definite can be imposed by writing al=Tr , where T= (Tif
is a lower triangular matrix with positive diagonal elements.
Then, |9‘—1/2 =Ty «o Tzp . Alternatively, 2l may ve

represented as an unknown non-negative linear combination,
with full rank, of known positive semi-definite matrices.

Analogues for the parameters of Q'l of the analytic deriva-
tives above are computationally complex, and their use
appears unlikely to improve significantly on numerical
differentiation.

The key to the accuracy of the Daganzo-Bouthelier-Sheffi
approximation is the accuracy of the Clark procedure.
Because the true distribution of the maximum of two normal
variates is skewed to the right, one would expect the
procedure to tend to under-estimate small probabilities. The
approximation will be best when the variates are positively
correlated, with widely differing means, and worse when they
are negatively correlated with similar means. It may be
possible to adjust the Clark formulae empirically to improve
their accuracy for computation of small probabilities.
Alternately, it would be interesting to explore the possibil-
ity of adapting the Clark methodology to other trivariate
distribution. In particular, if the generalised extreme-
value distribution were utilised, then the only point of
approximation would be the initial fit to the multivariate
normal density, since maxima of GEV distributed variates are
again GEV distributed. This would limit approximation error
as J increases, in contrast to the Clark procedure which
becomes less accurate with large numbers of alternatives.

STATISTICAL ESTIMATION METHODS AND SAMPLING STRATEGIES
Maximum Likelihood Estimation

The statistical estimation of individual-choice models by the
maximum likelihood method is now well established. For
random samples of individuals, this procedure can be shown in
general to produce estimates with good statistical properties,
at least in large samples. The problems remaining in appli-
cation of maximum likelihood estimation in this context are
primarily computational - the issues of rapid computation of
choice probabilities, the concavity or unimodality of the log
likelihood function, and the relative convergence speed of
alternative algorithms.
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Estimation of sequential models, with inclusive values
obtained using estimates from earlier stages of the model,
has been carried out by many investigators such as Domencich
and McFadden (15), and Ben-Akiva (3) treating each stage as
an independent estimation problem. Th1§ procedure neglects
the fact that the use of inclusive value measures which are
themselves statistics change the asymptotic distribution of
the estimators, and leads to biased estimates of the standard
errors of the estimators. This problem has been pointed out
by Amemiya (1), who provides the corrected asymptotic
estimators for the standard errors of the estimates.

Estimation in Choice-Based Samples

Several recent papers have considered the problem of
statistical estimation of choice models using data collected
by sampling procedures other than random sampling. Of parti-
cular interest are choice-based samples, utilising data
collected from 'on-board' or 'destination' surveys. Such
data sources are often available to transport analysts from
marketing and operations departments of operating agencies,
or can be commissioned at low cost relative to random house-
hold surveys. Manski and Lerman (23) have shown that
treating choice-based samples as if they were random and
calculating estimators appropriate to random samples will
generally yield inconsistent estimates. (In an MNL model with
alternative-specific dummy variables, the inconsistency is
confined to the dummy variable coefficients.) They introduce
a weighted likelihood function whose maximisation is shown to
yield consistent estimates.

Manski and McFadden* have considered more generally the ¢
problem of estimation of discrete choice models under
alternative sample designs. The discrete choice problem can
be defined by a finite set C of mutually exclusive alterna-
tive responses, a space of attributes Z, assumed to be a
subset of a finite-dimensional vector space, a generalised
probability density, p{(z) [z ¢ 2) , giving the distribution of
attributes in the population, and a response probability, or
choice probability, P(i|z,8%) , specifying the conditional
probability of selection of alternative 1 ¢ C, given attri-
butes z ¢ 2. Prior knowledge of causal structure is assumed
to allow the analyst to specify the response model P(i|z,-)
up to a parameter vector 8* contained in a subset © of a
finite-dimensional vector space. The analyst's problem is to
estimate 6* from a suitable sample of subjects and their
assoclated responses.

The probability of (i,z) pairs in the population is given
by

£(i,2) = P(i]|z,8%)p(z) . {{(i,2) ¢ C x 2] (35)
The analyst can draw observations of (i,z) pairs from C x 2
*Manski, C.F. and McFadden, D., 'Alternative estimates and

sample designs for discrete choice analysis', Department of
Economics, University of California at Berkeley (mimeo)(1978).
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according to one of various sampling rules. The problem of
interest is first, given any sampling rule, to determine how
o* may be estimated, and second, to assess the relative
advantages of alternative sampling rules and estimation
methods.

The data layout can be visualised using a contingency

table, as illustrated in Figure 13.1. An observation (1,2)
oceurs in the population with frequency £(i,z). The row sums
give the marginal distributions of attributes p(z), while the
column sums give the population shares of responses Q(i).
The joint frequency £(i,z) can be written either in terms of
the conditional probability of i given z, or choice probabil-
ity, or in terms of the conditional probability of z given i,
as the formulae in the figure illustrate.

Choice Set C
L vevecnvsosasss L ceseescsesascM
z’ p(z’)
Attribute . .
Set 2 . .
z veses £(1,2) censs p(2)
oy p'")
Q(1) Qi) QM)

plz) = | £4,2)
ieC

Qi) = [f(i,2)&
£(i,2) = P(i]z,8%)plz) = q(z|i,8%)Q(d)

Figure 13.1 Contingency Table Layout of Observations

The feature of the quantal response problem which
distinguishes it from the general analysis of disprete data
is the postulate that the response probability P{ilz,8%)
belong to a known parametric family, and reflects an under-
lying link from z to i which will continue to hold even if
the distribution p(z) of the explanatory variables changes.
This postulate is fundamental to the concept of ‘scientific
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explanation'., If the response probability function is
invariant over populations with different distributions of
attributes, then it defines a 'law' which transcends the
character of specific sets of data. Otherwise, the model
provides only a device for summarising ddta, and fails to
provide a key ingredient of texplanation’ - predictive power.
Alternately, given a population C x Z with probability
distribution specified by £(i,2z), one might, in the absence
of any knowledge of the process relating 1's to z's, obtain a
random sample from C x Z and directly examine the Jjoint
distribution £(i,z). This exploratory data analysis approach
is exemplified by the literature on associations in contin-
gency tables, where it is assumed only that Z is finite.

See, for example, Goodman and Kruskal (16), Haberman (17,18},
and Bishop, Fienberg, and Holland (5).

If one believes that the elements of C index conceptually
distinct populations of z values, then the natural analytical
approach is to decompose f(i,z) into the product £(i,z) =
qlz|i)Q(i) , where q(z|i) gives the distribution of z within
the population indexed by i and Q(i) is the proportion of the
population with this index. This is the approach taken in
discriminant analysis. There, prior knowledge allows the
analyst to specify gqfz|i) - up to a parametric family, and a
sample suitable for estimating the unknown parameters is
obtained from the subpopulation i (2,21).

When a well-defined process generates a value from C given
any z ¢ 2 , then the decomposition f(i,z) = P(i]z,8*)p(z) 1is
appropriate. This decomposition, and the attending focus on
the structural relation embodied in P(i|z,6*) , is clearly the
natural one for the analysis of cholce data. A separate and~
interesting question is whether specific parametric models
permit estimation of the parameter vector 6* of P(i|z,8%)
from convenient parameterisations of f(i,z) or qlz|i) .

Manski and McFadden attempt to provide a general theory of
estimation for quantal response models. The scope of the
investigation is as follows: consider the problem of estimat-
ing e* from stratified samples of (i,z) observations. A
stratified sampling process is one in which the analyst
establishes an index set B, partitions C x Z into mutually
exclusive and exhaustive measurable subsets (C x Z)b ,beB,

and specifies a suitable probability distribution over B. To
obtain an (1,z) observation, he draws a subset of Cx 2
according to the specified distribution and then samples at
random from within the drawn subset.

Within the class of all stratification rules, two symmetric
types of stratification are of particular statistical and
empirical interest. In 'exogenous' sampling, the analyst
partitions Z into subsets Zb’ beB, and lets (C x Z)b =

C x Zb' In 'endogenous' or 'choice-based' sampling, bhe
partitions C into subsets Cb' b e B, and lets (C x Z)b =
Cb x 2 . Less formally, in exogenous sampling the analyst

selects decision-makers and observes their choices while in
choice~-based sampling the analyst selects alternatives and
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observes decision-makers choosing them., 1In Figure 13.1,
exogenous sampling corresponds to stratifying on rows, and
then sampling randomly from each row, while choice-based
sampling corresponds to stratifying on columns, and then
sampling randomly from each column.

Manski and McFadden make a detailed statistical examina-
tion of maximum likelihood estimation of 6* in both exogenous
and choice-based samples. They find that application of
maximum likelihood is wholly classical in exogenous samples,
‘In choice-based samples, however, the form of the maximum
likelihood estimate (MLE) depends crucially on whether the
analyst has available certain prior information, namely, the
marginal distributions p(z) , ze 2, or Q(i), i e C, where
Qi) = [P(i]z,8%)p(z)dz

Z

The maximum likelihood estimator of 8 in a choice-based
sample when p is known and Q is unknown satisfies

N N
Max ] log P(1 [z ,8) ~ § IP(i {z,8)p(z)dz . (36)
00 n=1 non n=1 z n

When Q and p are both known, Equation (36) is maximised
subject to the constraints

o) = [ P(i_|z,0)p(2)az . . (37)
z .

When p is unknown, the classical conditions for maximum
likelihood estimation are not met. However, several alterna-
tive non-classical maximum likelihood and pseudo-maximum
likelihood methods are available which yield consistent
estimators.

When Q is known and p is unknown, Cosslett (9) has shown
that the non-classical full-information maximum likelihood
estimator satisfies

N
Max Min ] 1log {P(i |z ,e)[ ) x.o(j)] / [ AP(|z ,eu] . (38)
8e® 220 n=l R Y jEC L :
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where N(j) is the set of observations where alternative j is
chosen and NJ is the number of elements in N(j); and

{

N H() ;
: n ; H(3)
Max ] log \Plilz,0) oy / jgc Pilz,0 gyt - (41)

If both p and Q are unknown in a choice-based sample, then
provided an identification condition is satisfied, Manski and
McFadden show that the non-classical full-information maximum
likelihood estimator satisfies

N
Max Max § log {P(inlzn,e))‘i /1 p(j|zn,e)x.} . (42)
8e0 220 n=1 n jeC J

An important case in which the identification condition fails
1s the MNL model, where in the absence of a knowledge of Q
there is a confounding of the effects of Q and alternative-
specific dummies.

A second consistent estimator for this case is obtained by

maximising Equation (40), with Q determined as a solution to
the equations

1
Q) = § o) & I Pli|z_,8) . (43)
jec N5 meN(3) “m

Note that one can, with some loss of efficiency, obtain
consistent estimates for an information case by using a
consistent estimator which ignores some available information.
For example, the estimators (38) or (39) could be used in the
case both p and Q known, and the estimator (42) could be used
in any of the information cases.

Selection of a Sample Design and Estimation Method

Sample designs and estimation methods differ in terms of
sampling and computation costs, and precision in parameter
estimates and forecasts. Cost comparisons are situation-
specific, and only a few general observations can be made,

A second estimator, introduced by Manski and Lerman (23) and
termed WESML, satisfies

N
2:3 n£1 w(i ) log P(Lnlzn,e) , (39)

where w(i) = Q(1)/H(i) and H(i) is the sampling frequency for
alternative i, Two other consistent estimators, introduced
by Manski and McFadden, satisfy

N N .
. Q) ;
Max log P(i |z ,8) - ] log } I P lz,8)} , (40)
) n£1 nin 1 e N5 omewi PN

Comparison of the precision of alternative estimators can be
made for large samples using the asymptotic covariance
matrices of the estimators. 1In a few cases, the difference
of two covariance matrices is positive semi-definite for all
possible parameter vectors, and a uniform ranking can be
made. More generally, rankings will depend on the true
parameter vector and on the true distribution of explanatory
variables. Then, rankings of designs and estimators will
usually require a Bayesian approach utilising a priori
beliefs on the distributions of parameters, perhaps based on
pilot samples and previous studies. Consider sampling costs,
In general, substantial economies can be achieved by
stratifications designed to make it easier to locate and
observe subjects. For example, exogenous cluster sampling,
in which respondents are clustered geographically, reduces
interviewer access time. Stratification on other exogenous °
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variables, such as employer, may also reduce location cost.
In many applications, choice-based sampling greatly simpli-
fies locating subjects. For example, subjects choosing
alternative travel modes can be sampled economically at the
site of choice. Choice-~based sampling has the greatest
potential economy in applications where some responses are
rare (e.g. choice of a seldom-used travel mode) or are
difficult to observe accurately in an exogenously drawn
sample.

Computation costs are comparable in most of the estimation
methods considered by Manski and McFadden. The primary
component of computation costs is usually the evaluation of
response probabilities at each sample point. For some models
(e.g. linear), this cost is minimal, for others (e.g. multi-
nomial logit), moderate, and for some (e.g. multinomial
probit), substantial,

Sample Designs

Consider the precision of estimates obtained by alternative
methods from alternative sample designs. We note first that
the level of precision, and possibly the ranking of alterna-
tives, will depend on the prior information available on the
marginal distributions p and Q. We shall assume the state of
this information is fixed. However, it should be noted that
in practice the question of drawing observations on p or Q at
some cost in order to utilise more efficient estimators of
the response probability function may be an important part of
the overall design decision.

Cosslett (3) has investigated the efficiency of alterna-
tive choice-based sample designs and estimators for binary
probit, logit and arctan models with a single explanatory
variable. All three models have form P(Hz,m = y(6z) , where

Yy 2
L I X /2 ax for probit,
7w
vy ={ /@ +e) for logit, (44)
% + % tan !y for arctan,

and z is assumed to be normally distributed with mean 2 and
variance 1/2. Choice-based sample designs vary in the pro-
portion of the sample H(1) drawn from the subpopulation
choosing alternative 1. The optimal sample design for any
estimator is determined by the value of H(1) which minimises
the asymptotic variance of the estimator.

We concentrate on the case with p unknown and Q known.
The maximum likelihood estimator (38) with an optimal sample
design provides a standard against which other estimators and
sample designs can be measured. Define the asymptotic
efficiency of an alternative estimator and sample design to

297 Chapter 13

be the asymptotic variance of the maximum likelihood
estimator with optimal design, divided by the asymptotic
variance of the alternative estimator. Consider as alterna-
tive estimators the WESML estimator (39),ithe Manski-McFadden
estimator (41), and the 'conditional' maximum likelihood
estimator (42), which does not use information on Q. Table
13.1 gives the asymptotic efficiencies of these estimators
for each model for selected values of 6. Three sample
designs are considered: 'pseudo-random' sampling in propor-
tion to population shares, H(1) = Q(1); sampling equally from
each alternative, H(1) = 1/2; and sampling optimally for the
estimator. The optimising values of H(1) for these
estimators are also given in the table,

TABLE 13.1 Asymptotic_efficiency of choice-based sample
designs and estimators®

Pseudo-
random Equal Optimal
design shares Optimal value
H(1)=Q(1) H(1)=1/2 design of H(1)
Probit model % % % %
Q(1) = 0.75°
MLE (38) 87.1 95.0 100.0 0.13
MM (41) 3.1 4.5 4.5 0.46
WESML (39) 3.1 4.4 4.4 0.47
Cond ML (42) 0.4 0.6 0.6 0.49
Q(1l) = 0.9
MLE (38) 62,1 95.2 100.0 0.30
MM (41) 6.3 20.5 21.0 0.42
WESML (39) 6.3 19.1 19.2 0.47
Cond ML (42) 1.3 3.6 3.7 0.45
Q(1) = 0.95
MLE (38) 40.7 95.5 100.0 0.34
MM (41) 6.1 37.9 39.2 0.39
WESML (39) 6.1 32.0 32.0 0.50
Cond ML (42) 1.6 7.5 7.6 0.43
Q(1) = 0.99 ‘ ‘
'MLE (38) 9.5 96.9 100.0 0.38
MM (41) 3.4 78.2 81.2 0.38
WESML (39) 3.4 36.8 40.6 0.66
Cond ML (42) 1.4 17.8 17.8 0.46
Q(1) = 0,995
MLE (38) 4.5 98.4 100.0 0.42
MM (41) 2.6 91.2 92,9 0.41
WESML (39) 2.6 23.4 30.1 0.77
Cond ML (42) 1.4 23.0 23.0 0.49
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Pseudo-
random Equal Optimal
design shares Optimal value
H(1)=Q(1) H(1)=1/2 design of H(1)
Logit model % % % %
Q1) = 0.75°
MLE (38) 86.7 94.5 100.0 0.09
MM (41) 2.9 4.0 4.0 0.47
WESML (39) 2.9 4.0 4.0 0.48
Cond ML (42) 0.3 0.4 0.4 0.50
Q(1) = 0.9
MLE (38) 62.2 94.3 100.0 0.26
MM (41) 5.2 16.1 16.2 0.44
WESML (39) 5.2 15.1 15.1 0.48
Cond ML (42) 0.8 1.8 1.8 0.50
Q(1) = 0.95
MLE (38) 41.5 94.7 100.0 0.30
MM (41) 4.9 28.9 29.5 0.42
WESML (39) 4.9 24.8 24.8 0.51
Cond ML (42) 0.9 3.4 3.4 0.50
Q(1) = 0.99
MLE (38) 9.0 95.0 100.0 0.35
MM (41) 2.7 66.5 69.3 0.38
WESML (39) 2,7 31.7 34.4 0.65
Cond ML (42) 0.9 8.9 8.9 0.50
Q(1) = 0.995
MLE (38) 3.9 95.7 100.0 0.37
MM (41) 2.1 83.4 86.9 0.37
WESML (39) 2,1 20.3 25.6 0.76
Cond ML (42) 1.0 12.9 12.9 0.51
Arctan model
Q(1) = 0.75°
MLE (38) 83.5 91.3 100.0 0.00
MM (41) 1.8 2.4 2.4 0.49
WESML (39) 1.8 2.4 2.4 0.49
Cond ML (42) 0.08 0.09 0.09 0.55
Q(1) = 0.9
MLE (38) 52.9 84.0 100.0 0.00
MM (41) 1.7 4.7 4.7 0.49
WESML (39) 1.7 4.6 4.6 0.51
Cond ML (42) 0.04 0.04 0.05 0.73
Q(1) = 0.95
MLE (38) 27.0 78.1 100.0 0.00
MM (41) 1.1 5.9 5.9 0.49
WESML (39) 1.1 5.4 5.4 0.53
Cond ML (42) 0.04 0.03 0.04 0.83
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Pseudo-
random Equal Optimal
design shares Optimal value
H(1)=Q(1) H(1)=1/2 { design of H(1)
% % ’ % %
Q(1) = 0.99
MLE (38) 2.2 64.4 100.0 0.00
MM (41) 0.5 11.8 11.9 0.46
WESML (39) 0.5 5.4 5.9 0.65
Cond ML (42) 0.04 0.03 0.05 0.94
Q(1) = 0.995
MLE (38) 0.8 60.0 100.0 0.00
MM (41) 0.4 21,2 21.2 0.42
WESML (39) 0.4 4.1 5.1 0.74
Cond ML (42) 0.05 0.03 0.07 0.96

a, Adapted from Cosslett (9). Asymptotic efficiency is
defined by the ratio of asymptotic variances, with the
optimal choice-based sample design maximum likelihood
estimator as the standard. Note that when Q(l) is not
observed, the estimators (38), (39) and (41) are not
available, and (42) is asymptotically efficient.

b. For the one-parameter model, knowledge of p(z) and Q(1)
determines 8; for comparability of models, Q(1) rather
than 6 has been given.

The results in Table 13.1 suggest the following conclusions:

1 Knowledge of-the aggregate share Q(1) is of great value
when the maximum likelihood estimator (38) is used, as indi-
cated by the low efficiency of the conditional maximum
likelihood estimator {42) which does not utilise this
knowledge. Note however, that the information contained in
Q(1) will be greatest for a one-variable model without an
alternative-specific dummy, and in general the efficiency
differential will be smaller.

2 The Manski-McFadden estimator (41) is uniformly more
efficient than the WESML estimator (39), but the differential
is small when the true parameter value is small. Both (39)
and (41) have low efficiency relative to maximum likelihood
for small parameter values, but (41) is relatively efficient
for large parameter values.

3 The equal shares sample design is generally quite
efficient for maximum likelihood estimation, and for all the
estimators yields efficiencies comparable to those for the
optimal sample designs. The behaviour of optimal H(1) is
sensitive to the model and to the parameter value. Hence, in
the absence of strong prior knowledge on parameter values,
the equal shares sample design is recommended.

Table 13.2 compares the relative efficiencies of a choice-
based sample design with equal shares and an exogenous random
sample design. For Q(1) known, the choice-based design is
always more efficient. For Q(1) unknown, the choilce-based
design is less efficient for the arctan model, and for small
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parameter values in the remaining models. Given prior
beliefs on the correct model and on the value of Q(1), and
given a relative cost r of collecting an observation from an
equal shares choice-based sample compared with an exogenous
random sample, maximum efficiency subject to a fixed sampling
budget will be achieved with the choice-based design if and
only if the relative efficiency given in Table 13.2 exceeds r.

TABLE 13.2 Relative efficiency of choice-based sample design
(with equal shares) and exogepous random sample design, with
maximum likelihood estimators

Q1) Q(1) known .Q(1) unknown
Probit 0.75 1.09 0.19
0.9 1.53 0.57
0.95 2.35 1.23
0.99 10.23 5,30
0.995 21.73 8.83
Logit 0.75 1.09 0.16
0.9 1.52 0.35
0.95 2,28 0.69
0.99 10.54 3.28
0.995 24.68 6.26
Arctan 0.75 1.09 0.05
0.9 1.59 0,02
0.95 2,90 0.03
0.99 29,04 0.06
0.995 75.45 0.10

a. Relative efficiency equals the asymptotic variance of the
exogenous random sample maximum likelihood estimator
divided by that of the choice-based equal share design
maximum likelihood estimator. A ratio exceeding one
indicates that the choice-based design is more efficient.

Estimation When Alternatives are Sampled Randomly from the
Full Choice Set

A particularly advantageous use of choice-based sampling,
either in primary data collection, or in synthesising and
reducing existing data sets, is in estimation of the MNL
model from data on a strict subset of the full choice set,
This method can greatly reduce the magnitude of data to be
collected and analysed, with attendant savings in time and
cost. The property that a choice model can be estimated
consistently using data on a strict subset of the choice set
1ls unique to the MNL model, and is a characterisation of the
independence from irrelevant alternatives (IIA) property of
this model.

The following summary is drawn from McFadden (35). Let C
denote the full choice set. We shall assume it does not vary
over the sample; however, this is inessential and can easily
be generalised. Let P(ikhz,e*) denote the true selection
probabilities. We assume the choice probabilities satisfy

'
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the independence from irrelevant alternatives (IIA) assump-
tion,

i eDccC=>P(i|C,2,8) = Pli|D,2,8) | P(3|C,z,8) (45)
jeD 1

which characterises the MNL model.

Now suppose for each case, a subset D is drawn from the
set C according to a probability distribution n(D|i,z) which
may, but need not, be conditioned on the observed choice i,
The observed choice may be either in or out of the set D.
Examples of m distributions are: (1) choose a fixed subset D
of C, independent of the observed choice; (2) choose a random
subset D of C, independent of the observed choice; and (3)
choose a subset D of C, consisting of the observed choice i
and one or more other alternatives, selected randomly.

We give several examples of distributions of type (3):

(3.1) Suppose D is comprised of i plus a sample of
alternatives from the set C \ {i} , obtained by considering
each element of this set independently, and including it with
probability p. Then, the probability of D will depend solely
on the number of elements K = #(D) it contains, and is given
by the binomial formula
K-1

10li,2) = p" 1 -p9 ™ if 1D amd k=40 , (46)

=0 if iéD ,
where J is the number of alternatives in C. For example, the

probability that D will be any two-alternative set containing
i as one alternative is (J - 1)p(1 - p)J -2

(3.2) Suppose D is qlways selected to be a two-element set
containing i and one other alternative selected at random.
If J is the number of alternatives in C, then

mDli,2) =iy if D= (4,5} and jAL , . (47)
=0 otherwise.

(3.3) Suppose C has four elements, and
T({1,4}|4) = w({1,4}|1) = n({2,3}|2) = m({2,3}}3) =1, (48)
and nm(D|i) = 0 otherwise .

(3.4) Suppose C is partitioned into sets {cl....,cM} , with
Jm elements in Cm' and suppose D is formed by choosing i
(from the partition set Cn) and one randomly selected
alternative from each remaining partition set. Then,
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i i i = 49
n(D|i,2) = I, / “1 I if ieD,M=#0D) , and DnC #9 (49)

oo™ form=1,...,M,

=0 otherwise.

3.1) to (3.4)

The w distributions of the type (1), (2) and (
all satisfy the following basic property, which guarantees
that if an alternative j appears in an assigned set D, Fhen
it has the logical possibility of being an observed choice
from the set D, in the sense that the assipgnment mechanism
could assign the set D if a choice J 1is observed:

Positive conditioning property: 1f jeDcC and
n{D|i,z) > 0 , then n(D|4,2z) >0 .
The n distributions (1), (2) and (3.1) to (3.3), but not
(3.4), satisty a stronger condition:
Uniform conditioning property: If i,jeDecC, then
n({p|i,z) = n(D|j,2) .
ty can be
A distribution with the uniform conditioning proper
written 7(D}i,2) = ¢(D,2)Xp{d) s where Xp(1) equals one for
i € D, and zero otherwise.
tive chosen
Consider a sample n = 1,...,N, with the alterna
on case n denoted by in, and Dn denoting the choice set
assigned to this case from the distribution ﬂ(DIHﬂzn).

he assigned set
Observations with an observed choice not in t
of alternatives are assumed to be excluded from the sample.
Write the multinomial logit model in the form

v, (2,0) V.(2,8) -
pi|c,z,0) =e ;) el , (50)
jeC

where viu,e) is the strict utility of alternative i.
THEOREM 2. If n{D|i,z) satisfies the positive conditioning

property and the cholce model is multinomial %pgit, then
maximisation of the modified likelihood function

Y (zn,0)+log n(DnIin,zn)

N 4
: /1
== log e .
WON n£1 jeof
v (z,,0)+109 n(o, 13,2, (51)
e

i sistent
ields, under normal regularity conqitions, con .
Zs:ima;es of 6*. When ﬂ(Dli,z) satisfies the uniform con
ditioning property, then (51) reduces to the standard
likelihood function,
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Vin(zn'e) v.(z ,8)
log e /] e j'n .
1 chn

Iy = §

(52)

Rz

H
The theorem above assumes the assigned choice set for an
observation may depend on the observed choice set and
environment for the observation, but is independent of other
observations. More generally, a set of observed choices may
be used to define the assigned choice set for each observa-
tion. For example, a common procedure is to assign to all
observations in a traffic analysis zone the set consisting of
all the chosen alternatives observed for this zone, Assume
there are N zones, with Kn observations in zone n., If
Kn"” for each n, then every alternative in C will even-
tually be chosen by some subject in a zone, and estimators
maximising (52), with assigned sets equal to the set of
observed choices for the zone, will have the same asymptotic
properties as a maximum likelihood estimator for choice from
the full set C. Thus, standard maximum likelihood estimation
with assigned choice sets given by the set of chosen
alternatives in a zone yields consistent estimates under
normal regularity conditions and the usual sampling method
where the number of observations in each zone becomes large
when the overall sample size becomes large.

In the less common case where the number of zones N
becomes large, but the number K of observations in each zone
is fixed, the procedure above fails in general to yield
consistent estimators. (I have benefited from discussions
with. Joel Horowitz on this problem.,) Let Ag&vin,e) denote

the kernel of the 'likelihood' function for zone n, where

*n = (iln""‘iKn) and F = (zln""'zxn) are observed in the
zone. Define D, = D(}) = {313 = iy for some k = 1,...,K}and
J(D) = (2\0 = Uk(jk}) . In the standard case,

K
AL .z .00 = T P _|D ,z_,6)
#n '%n =1 ’n'"n zknv

Lv. (2,0 LV, (z_,0
= e k lkn zkn / z e k I an
12

Asymptotically, the likelihood function is the expectation in
z of terms of the form

kai’k (zk' a%)

I ao = log A(i:z,8) (53)
DC ;eI (D) zkvjk(zk,e-)
e

icJ (D)
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where

X Zijk(zm,e*)
a(D) = I P(DIC,zk,e*) I e
k=1 Qeatn)

Consistency requires that Equation (53) be maximised at

8 =06*, When J(D) # DK, the standard case fails to give this
result, However, consistency can be attained by using a
modified likelihood function with the kernel

LV, (0 LY, (2,0
ke , o ¥

AL /2 ,8) =e
i'n fn Q,EJ(Dn)
To illustrate the impact of these results, consider a
destination choice problem in which individuals face a CBD
destination and a large number of suburban destinations, One
is interested primarily in whether the CBD destination will
be chosen. If an individual chooses the CBD destination,
then he is assigned the choice set consisting of the CBD
destination and one suburban destination chosen at random,
(From the previous analysis, we may choose the suburban
destination at random from the subset of suburban destina-
tions chosen by some individual in the home zone of the case
in question,) If an individual chooses a suburban destina-
tion, he is assigned a choice set consisting of this
destination and the CBD destination., Assume J suburban
destinations, with probability of selection 1/J for each in
the case of a CBD choice. The n distribution is then

n({j,CBD}|CBD) = 1/3
w{{j,CcBD}[j) =1 for y =1,...,J , (54)

for j =1,...,9 ,

n{D} =0 otherwise.

This distribution satisfies the positive conditioning
property (but not the uniform conditioning property), and
hence consistent estimates can be obtained by maximising
(51), which reduces to

1 N

Max = §
N =1

v, (z_,9)

Voen(z, ,8)+log J n’

v (z,.8) - log e 0D +e In ] (55)
n

where Jn is the suburban alternative chosen or assigned on

observation n, and a term involving log J but independent of
8 has been dropped. Alternately, if the model contains a
CBD-specific dummy, then unweighted maximum likelihood gives
consistent estimates of all parameters except the CBD-
specific dummy, and gives a consistent estimate of the true
CBD-specific dummy plus log J.
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Weighting and Estimation in Composite Samples

Transport samples may be the result of a complex mixture of
exogenous and choice-based sampling, or of the amalgamation
of surveys conducted using various sampling procedures, The
techniques of Manski and Lerman (23), and Manski and McFadden
can be adapted to construct consistent estimators from these
samples,

Consider first the problem of working with a composite
survey, made up of subsamples collected by various procedures.
Provided the subsamples are identified and the sampling
procedure used for each is known, maximum likelihood estima-
tion of parameters using the combined sample is straight-
forward: the sample likelihood is the sum of the likelihoods
of each of the subsamples, taking into account the sampling
process used in each subsample. For example, the likelihood
function for an exogenous stratified sample which is
'enriched' by a choice-based sample for minority modes is the
sum of an exogenous likelihood function for the first
subsample and a choice-based likelihood function for the
second subsample. (Cosslett (9) has pointed out that the
kernel of the composite sample likelihood will include the
marginal distribution p(z).) Maximisation of this composite
likelihood function would require modification of most
standard computer routines. An alternative consistent
estimator which can be calculated using a maximum likelihood
programme which allows weighting of the choice variable is
the Manski-Lerman estimator (39), with W(i) = 1 for the
exogenous subsample and W(i) = Q(i)/H(i) for the choice-based
subsample. Interestingly, the result that applying
unwelighted exogenocus maximum likelihood estimation to an MNL
model and pure choice-based sample produces inconsistency
only in the alternative dummy coefficients does not carry
over to the case of a composite sample when the exogenous
subsample is stratified.

Next consider the problem of complex stratifications, such
as would result from choice-based subsampling from a large
exogenous stratified transport survey. The general theory of
estimation from stratified samples of Manski and McFadden can
be applied, In the example above, a consistent estimator
would be (38), with Q(i) defined to equal the marginal share
of alternative i in the exogenous stratified sample rather
than in the population,

Non-maximum Likelihood Estimation Methods

¥hile maximum likelihood estimators have good asymptotic
statistical properties under the conditions normally imposed
in transport applications, their finite sample properties are
largely unknown. There is some evidence from very limited
Monte Carlo studies that maximum likelihood estimators will
be unduly sensitive to observations with low calculated
probabilities, and hence relatively non-robust with respect
to errors in model specification or data measurement which
could yield low calculated probabilities for some observed
choices., These limited studies suggest that when data group-
ing is possible, Berkson-Theil estimators may be preferable
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to maximum likelihood estimators (15, p. 112), However,
plausible grouping is rarely possible with transport data,

An alternative approach is to develop more 'robust' estima-
tors for individual observations. Manski and McFadden have
investigated a class of such estimators, including non-linear
least squares (NLLS), which satisfies (for exogenous samples)

N

. 2

Min § [s, -P{_|z,8)]1° , (56)
00 n=1 in nl"n’

where Si is one if i is chosen and zero otherwise., This

estimator is consistent, although not as efficient as maximum
likelihood estimation, and appears in Monte Carlo studies to
be less sensitive than maximum likelihood estimation to
outliers caused by data measurement errors, Applications to
transport data sets have not, however, resulted in signifi-
cant differences between maximum likelihood and NLLS
estimators.

MODEL EVALUATION AND VALIDATION
Model Evaluation

The transport analyst usually has a number of alternative
model specifications he considers to be a priori plausible,
and wishes to determine empirically which alternative best
fits the data. This calls for statistics which measure
goodness of fit, and procedures which allow tests of hypo-
thesised specifications.

General goodness-of-fit measures for discrete choice
models which are now widely used are the log-likelihood
function, the likelihood-ratio index, a multiple-correlation
coefficient and a prediction-success index. The likelihood-

ratio index p2 is defined by the formula

=1-n1y (57)
where
17 |
L= S, log P(i|z_,8) (58)
nel =1 0 n

is the log-likelihood function, with the Sin equal to one if
i is chosen, zero otherwise,

N J
L°an£1 121 Sin 2090 5

and Qi equals the sample aggregate share of alternative 1.

This likelihood-ratio index is defined 'about aggregate
shares', and measures the explanatory power of the model
beyond that of a simple constant shares model. This index is
preferable to a likelihood index 'about zero' reported by
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some computer programs, which measures the power of the model
beyond that of an equal shares model, A similar comment
applies to the multiple-correlation coefficient,

When the individual-choice model parameters are estimated
by non-linear least squares, an appropriafe goodness-of-fit
measure is the sum of squared residuals.

N J
SS = - 8112
n£1 i£1 (S, RP.GN/R -, (60)

where Rn is the sum of sin' A transformation of this

statistic yields a multiple correlation coefficient of the
form familiar regression analysis,

R2 Ss

-1- &; (61)
where

N J 2
Sy = n£1 1=Z=1 (8;n = RQI/R (62)

with Qi the sample aggregate share of mode i as before.*

A third method of assessing the fit of an estimated model
is to examine the proportion of successful predictions, by
alternative and overall. A success table can be defined as
illustrated in Table 13.3, with the entry Nij in row i1 and

column j giving the number of individuals who are observed to
choose 1 and predicted to choose j.** Column sums give

* While the Rz index is a more familiar concept to planners
who are experienced in ordinary regression analysis, it is

not as well behaved a statistic as the p2 measure, for
maximum-likelihood estimation. Those unfamiliar with the

p2 index should be forewarned that its values tend to be

considerably lower than those of the R2 index and should
not be judged by the standards for a 'good fit' in ordinary
rggression analysis., For example, values of 0.2 to 0.4 for
P~ represent an excellent fit.

**The formula for NiJ is

N
N, . = S, P. .
i3 nzl in"jn
An alternative prediction method is to forecast that the
alternative with the highest probability will be chosen,

A dot subscript indicates summation over the correspond-
ing index, e.g.

N, = § Niy -
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predicted shares for the sample; row sums give observed
shares. The proportion of alternatives successfully pre-
dicted, “ii/N i indicates that fraction of individuals

expected to choose an alternative who do in fact chooge that
alternative. An overall proportion successfully predicted,
(N11 + ..t NJJ)/N , can also be calculated.

Predicted Choice Observed Cbserved
1 2 ‘e J Count Share
1oy, Ny, N N, NN
Cbserved N N
Proice LY Np2 Nag 2. 2./
J NJl NJ2 NJJ NJ. NJ./N..
N 1
Predicted Count Na N.2 Vg 3
! 2 w3 .
Predicted share N, N,, N,.
Proportion M N2 Nyg  Muta
Successfully ﬁ:; N, N N.
Predicted
N
Nn_t.‘;. N_Z?...I_q_Z_ 17_‘3.-?_‘7. § [t.q_“;_(_'_)z]
Success Index NN, .2 N Ny N, 5 N N,
onal Error Moy M. N, O
in Predicted Share N N N

TABIE 13.3 A Prediction Success Table

Because the proportion successfully predicted for an alterna-
tive varies with the aggregate share of that alternative, a
petter measure of goodness of fit is the prediction-success

index,
L TR - (63)
il il

where N rni. is the proportion which would be successfully

predicted if the choice probabilities for each sampled
individual were assumed to equal the observed aggregate

shares.* This index will usually be non-negative, with a
maximum value of 1 - Nd/N.’ . If an index normally lying

between zero and one is desired, Equation (63) can be
normalised by 1 - N-i/N-- .

An overall prediction success index is

J N . J (N, N, .
. *i 2
o= X'ri—l'c’i’.z{u_l'l"(N_];)] . (64)
=1 e j=1 e .

Again, this index will usually be non-negative, with a
maximum value of

g N2
-
j=1 N, !

and can be normalised to have a maximum value of one if
desired.

In tests of model specification, one is often concerned
with questions such as whether certain variables enter the
determination of choice, and whether certain coefficients are
equal. For example, the question of whether in-vehicle
travel time is generic, or homogeneous-effect, can be formu-
lated as the hypothesis that the coefficients of alternative-
specific travel times are all equal. Such problems, where
the null hypothesis is a subset of a specified universe of
alternatives, can be tested conveniently using likelihood
ratios, as described in Theil ((40) p. 396), and McFadden
(26). Specification tests which are less easily performed
using classical statistical methods are those in which the
mqdel corresponding to the universe of alternatives cannot be
specified or estimated. Examples are the question of which
of two alternative measures of travel time better explain
mode choice, and tests of a particular model specification
such as MNL against mutually exclusive alternatives such as
MNP. Methods of statistical decision theory can be applied

‘to some of these problems; an exposition is beyond the scope

of this chapter.

*In a model with alternative-specific dummies and the
estimation data set, estimation of parameters imposes the
condition Ni- = N.i. I1f one predicted the choice prob-

abilities for each individual to equal aggregate shares,
then N,i/N_, would be the proportion successfully predicted
to choose i. This represents a 'chance' prediction rate for

a model in which no variables other than alternative-
specific dummies enter. Thus, 0; measures the net

contribution to prediction success of variables other than
the alternative-specific dummies.
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Diagnostic Tests for the MNL Model

The MNL model has significant advantages over most alterna-
tive choice models in terms of simplicity and computational
efficiency, and its independence from irrelevant alternatives
(ITIA) property greatly facilitates estimation and forecasting,
On the other hand, the IIA restriction may be invalid in some
applications, resulting in erroneous forecasts. Hence, the
validity of the IIA property should be tested in each
application. McFadden, Tye and Train* have developed a
series of diagnostic tests for this property; the major
findings are summarised in Chapter 1 of the present volume.
One is a test of the MNL model against a 'universal' alterna-
tive, approximated by an MNL-like form in which attributes of
all alternatives can enter the 'utility' of each alternative
- this is the 'universal' logit model. A second test is
based on the implications of the IIA property that the model
can be estimated consistently from a random sample of the set
of all available alternatives, as discussed earlier. A third
class of tests examines residuals from the fitted MNL model,
i.,e, the differences of indicators of observed choices and
the estimated probabilities of these choices., Under the
hypothesis that the MNL specification is correct, these
residuals will have specific mean, variance and correlation
properties which can be utilised in statistical tests.

AGGREGATION AND FORECASTING
Aggregate Forecasts

An important use of individual-choice models is in policy
analysis of the impacts of alternative transport plans on
operating strategies, Evaluation of these impacts usually
requires forecasts of the behaviour of the aggregate popula-
tion, or of specific market segments. Given an estimated
choice model P(i|[z,8) , the aggregate share of alternative i
satisfies

Qi) = [ P(ilz,0)p(2)dz (65)
2z

where p(z) is the probability distribution of the explanatory
variables in the population. For a market segment, this
formula applies, with p(z) interpreted as the distribution of
explanatory variables in the segment,

A variety of methods have been proposed for the evaluation
of (65) in applications; the most practical and flexible
appears to be a 'Monte Carlo' procedure in which Q(i) is
approximated by

*McFadden, D., Tye, W. and Train, K., 'Diagnostic tests for
the independence from irrelevant alternatives property of
the multinomial logit model', Urban Travel Demand Fore-
casting Project Working Paper No. 7616, Institute of
Transportation Studies, University of California, Berkeley
(19786). :
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S ¥
Qi) = N igl P(l|2n,9) , (686)

where (zn} is a sample drawn randomly from p(z). The points
z, may be from a representative sample of the population, or

may themselves be synthesised from incomplete data sources,
as described below. The formula (66) can be modified to
accommodate non-uniform sampling weights, For computational
purposes, it is often useful to group sample points into
strata with homogeneous choice probabilities. Discussions of
this and alternative aggregation procedures and their
properties can be found in Koppelman (22) and McFadden (34).

Aggregation by the Clark Method

In general, direct evaluation of (65) requires numerical
integration over the set Z, which may be of relatively high
dimension. This may be impractical even if the choice
probabilities are relatively easy to compute, and the problem
is compounded if evaluation of the choice probabilities is

‘expensive.

An approach which eliminates the intermediate calculation
of choice probabilities has been suggested in a specific
context by McFadden and Reid (36), and generalised by Manski
and Daganzo. Suppose individuals maximise utility, with
utility functions u; = Wzi + €, for alternative 1. Given a

probability distribution p(z) for z = (zl,...,zJ) and a

distribution of (el“..,sJ). one can construct the probabili-
ty distribution of (ul,...,uJ) resulting from joint variation
of z and the ei. The distribution of (“1""'“J) is obtained

as a multivariate convolution of the probability densities of
z and of (el,n.,ea) . For some probability distributions,

such as the multivariate normal case considered below, the
distribution of the convolution is known. More generally, if
¢(t1,...,tJK) is the characteristic function of the distribu-
tion of z = (211"'"le""'zlb""'zKJ)' and w(tl,...,tJ)
is the characteristic function of the distribution of
(el,.”,eJ] , with z and wl,.u,eJ) assumed independent, then

(ul,...,uJ) with uy = B'zi-+si has the characteristic

function Y(t1'~~-'§J) = w(tl,...,tJ)¢(t181,...,tlﬂxltzel,....taﬂl,
<eestyBy) , Or more compactly, y(t) = w(t)e(t ® 8’) . The
density of (ul,...,uJ) can then be obtained from the
inversion formula h(up,..ouy) = (2w)'J[e'it“y(t)dt . Using

this expression in (67), one could carry out the computation
of Q(i) with a numerical integration of dimension at most 2J,
for an extremely broad class of distributions of z and € .
Application of approximation methods to the combined integral
may then allow rapid computation of aggregate probabilities,
even for complex choice models. Let H(ul,...,uJ) denote the
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cumulative distribution of (“1""'“J) and Hi its derivative
with respect to u,,
Q) = Prob {u; 2 uy for j=1,...,J} (67)
P
= I Hi(u,u,...,u)du .
‘P—Q

Evaluation of this integral requires only a single numerical
integration when Bi can be obtained analytically, and at most

a J-dimensional numerical integration is required to compute
Q(1) when the density of H is analytic,

The procedure outlined above can be applied with particu-
lar convenience to the case where 2 and € are assumed
multivariate normal. This assumption, which yields the MNP
model of individual choice, implies (ul,...,uJ) is multi-

variate normal, with mean of uy equal to B'!i where z is the
4 =

mean of z, and covariances wij = BEijB-foij , where cij

cov (Ei'ef and :i' = cov (zi,z ). Then, Q(1) can be

obtained from a formula analogous to (30) for this multi-
variate normal distribution. The Clark approximation method
discussed above then permits rapid computation of approximate
aggregate shares. Further, application of the Clark formulae
to the computation of analytic derivatives of Q(i) with
respect to z, in a manner analogous to that described in (34),
would allow rapid approximation of aggregate elasticities.

The Distribution of Explanatory variables

The computation of aggregate shares or elasticities requires
knowledge of the distribution of the explanatory variables in
the population, or in a market segment of the population. A
random sample from the population of sufficient size, say
from a major population survey, can meet this data require-
ment.: However, it is often difficult to obtain current data
of this type. Forecasts at future dates present a further
problem, since the distribution of explanatory variables used
in the forecasts should take into account shifts in explana-
tory variables over time.

sslett, Duguay, Jung and McFadden (10) have proposed a
method of synthesising the distribution of explanatory
variables at any forecast date, integrating available data
sources plus information on trends. The method is particu-
larly useful when current random survey data is unavailable,
and can be applied in most urban areas using only US census
data. The method utilises a classical statistical procedure
for completing contingency tables, called iterative propor-
tional fitting, due to Deming and Stephan (14). This
procedure allows the integration of marginal information from
US census tract statistics, Public Use Samples, and the Urban
Transportation Planning Package. Parametric models of some
variable interactions, simple trend models for shifts in the
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distribution over time, and exogenous forecasts for some
explanatory variables allow projection of the synthesised
distribution to future dates. Sampling from the constructed
distribution yields a synthesised random sample for the urban
area at the forecast date.

calculus for Demand Elasticities

Demand elasticities encapsulate considerable information on
transport demand respcnse, and are valuable tools for policy
analysis. For the multinomial logit (MNL) model, the
elasticities can be expressed in relatively simple formulae.
However, great care must be taken to avoid mechanical use of
these formulae, and to see that the computation performed
corresponds to the policy question asked. The first rules
set out below hold for any choice model. We use the notation

Pi for the choice probability for alternative i, and zi for
zhe kth component of the vector of attributes of alternative

Rule 1 - aggregation over market segments. Aggregate
elasticity equals the sum of segment elasticities, weighted
i is the choice
probability for segment %, Fi is the aggregate choice

probability, and dy is the proportion of the population in
segment £, then

by segment shares of the market. It P

J N b} L

2 P, ap!
{_— ;]’zqz ikf; : (68)
Py 3z b 7Py 9%

(Note: This is a relevant elasticity only if a policy will
result in equal percentage changes for each market segment.)

Rule 2 - aggregation over alternatives. Elasticity for a
compound alternative equals the sum of component alternative
elasticities, weighted by the component shares of the
compound alternative. Let P = | P, be the choice probability

for a compound alternative (e.g. 'all transit'). Then,

r_i.il.zp_iﬁj& : (69)
Foag)) ilF)P ooz )

(Note: This is & relevant elasticity only if a policy will
result in equal percentage changes for each component
alternative.)

Rule 3 - component effect. The elasticity with respect to a
component of a variable equals the elasticity with respect to
the variable times the component's share in the variable.

J 2

= wd J
Suppose Zi Wi + Vi Then
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.’fjls i [Y’J!} [ﬁl api] (70)
om0 )

(Note: It is particularly important in policy analysis to
look only at components influenced by a policy, such as the
transit fare component of total trip cost or the bus
on-vehicle time component of a multi-mode trip total
on-vehicle time.)

Rule 4 - multiple effect. The elasticity with respect to a
policy that causes an equal percentage change in several
variables equals the sum of the elasticities with respect to

each variadble. Suppose a policy changes zi to zi(l + t) for
several j. Then,

P, 3 9p,
1 i %k i
+_ = — e, (71)
B §{Pi az,{‘

Since t is a proportional change, the left-hand side of this
equation is in elasticity form. Alternately, suppose

z.J = wJ + y, for several j, and a policy changes vy, . Then,
k k k k
]
b S G a_Pi,] . (72)
P,y j :,{ Pi a2)

This formula is obtainable from a combination of Rules 3 and

Often, combinations of these rules will be required to
obtain the most relevant elasticity for a policy calculation.
For example, suppose transit alternatives are disaggregated
by access mode, and the impact of a fare increase is to be
assessed. The answer is given by combining Rules 2, 3 and 4
to obtain the formula

Elasticity Patronage on Fare on Elasticity of

of transit mde i asa mode j as a| |mode i patronage((73)
patronage = ] ] |proportion of|-|proportion |+|with respect to

with respect i j jtotal transit! |of total total cost on

to fare patronage cost on J | |mode 3

where 1 and j are summed over the transit access modes.

Consider elasticities for the sequential model defined
earlier. Taking 6= A =1, these elasticities will also hold
for the joint MNL model.

*ncbk aPmlda

(74)
Pnlda nchk

= 02 42k Ym = Pnjaa’ ®caban
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where X/ dak is component k of X4
otherwise, etc,

aandém=lifm-n,0

X P )
ncbk d]a

= @ P [
pdla ™y “¥ncak n|ca(cd P<:|aL)'sab ’ (75)
Yok Fdla

= 6§ ,~P [ 6
Paja @ Youk B¥cak e = Pelal b (76)

where ycak is component k of Yea

Xubk _ Fa

P, g o%mabkim|antalbCan T B (77)
Yax Pa

B, Way afapa B (78)
e P
2 R =z (6, - B - 79
P, %7, "bkab b (79)

Other elasticities are readily derived from these formulae
using Rules 1 - 4 and the definitions of conditional and

marginal probabilities. For example, pda - Falapa implies

*nca apda - *mca apd|a + *nca apa
Paa  ma Pdla éxirca Py ey '
and the preceding formulae can be substituted in the right-

hand side of this expression. Another example is the joint
probability pmda = nﬂ&fﬁlapa , which satisfies

(80)

X P
P Ty Kncbk {6m60d6ab * 8gban® ~ VP o

+ 88,0 = D2 Py - “Pncb} i (81)

As a check, one sees that for 6 =i =1, this reduces to the
conventional MNL elasticity formula.

CONCLUSION

This chapter has surveyed selected recent developments in
quantitative methods for travel-demand analysis. This sub-
Ject has developed rapidly in the past few years on a wide
spectrum of topics. As & result, the transport analyst now
has available a greatly expanded 'bag of tools' with which to
address policy problems. Experience makes it clear that
quantitative methods are not a panacea for solving the
problems of transport policy analysis. On the other hand,
the use of techniques of modern mathematics and statistics
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relax one of the constraints which has limited the analyst in
attacking a full range of transport issues. A review of the
state of the art of quantitative methods in transport demand
forecasting suggests that the task of establishing a firm
analytic and statistical foundation for the subject has just
begun.
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