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at Berkeley, wrote ““The Theory and Practice of Disaggregate Demand
Forecasting for Various Modes of Urban Transportation,” as an
introduction to disaggregate behavioral forecasting. The paper
outlines the concepts underlying this approach and contrasts
behavioral with conventional forecasting methods. It also describes
practical applications of disaggregate forecasting and illustrates some
early findings.

The second paper by Paul O. Roberts, Professor of Transportation at
the Massachusetts Institute of Technology, is entitled, “Disaggregate
Demand Modelling: Theoretical Tantalizer or Practical
Problemsolver?”’ The paper describes disaggregate modelling as a
pioneering behavioral approach by delineating its points of departure
from, and advantages over, the more traditional aggregate approach to
transportation demand forecasting. Based on the consumer choices of
a person or family, this new, but not untried, method is described as
more policy responsive, more flexible, and suitable to more applications
than previous models. The paper encompasses the disaggregate nature
of travel, the philosophical underpinnings of the disaggregate model,
and the prediction framework for using the model.

The scope of the second section is to explore methods for developing and
presenting evaluative information to the tramsportation decision-
maker.

Joseph L. Schofer, Professor of Civil Engineering at Northwestern
University, covers transportation evaluation methods in his paper,
‘‘Evaluating Transportation Alternatives.”’ Noting a lack of standard
approaches, Professor Schofer focuses on achievable improvements in
evaluation methodology. He presents the strategic issues that must be
considered in developing a strong foundation for specific, successful
evaluation tasks. He also prescribes some key steps that should lead the
planner to better evaluation. Evaluation is defined as the technical pro-
cess that links decisionmaking with analysis, planning, and design.
Professor Schofer poses several questions that can define and measure
the success of this process.

In the second paper on transportation evaluation methods, Thomas
B. Deen, Chairman of the Board of Alan M. Voorhees & Associates,
discusses ‘‘Practical Considerations in Transportation Decisionmak-
ing.” He contends that transportation planners face ‘‘devilish”
problems; the main characteristic is the lack of consensus existing on
either the nature of the problem or how to determine whether the
problem has been solved. Asserting that transportation planners
probably cannot satisfy all the demands of their constituency, he offers
several suggestions about how transportation planners can conduct
themselves, including: shedding illusions of finding any ‘best”
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solution; continuing to improve methodologies while investing at least
as heavily in improving communication with officials and citizens; and
refraining from the assumption that planners are more “pure” than
politicians or officials.

To complement the coverage of transportation evaluation methods,
the summaries of the six workshops are presented. The topics are:
treating distributional effects of uncertainty, the evaluation of project
plans, evaluation of regional plans and programs, preparation and
interpretation of evaluation results, strategic approaches to evalua-
tion, and evaluation and decisionmaking.

The scope of the third section is to explore the integrated forecasting of
transportation and land use.

Stephen H. Putman, Associate Professor of City and Regional Plan-
ning at the University of Pennsylvania, prepared the paper, “The
Integrated Forecasting of Transportation and Land Use.” He
discusses two closely related advances in operational planning tech-
niques that, when put together, make integrated transportation
forecasting and policy analysis a reasonable operational analysis
technique. The first of these advances was the demonstration of both
the feasibility and superiority of an integrated transportation/land use
model package; the second was the development of a more general
form of urban land use model along with the procedures necessary for
its calibration.

The second paper on transportation/land use interactions was
written by Douglass Lee, Jr., Associate Professor at the University of
Iowa, and is entitled, “Improving Communications Among
Researchers and Planners in the Transportation and Land Use Field.”
This paper concerns primarily communication between and among pro-
fessionals and researchers, as well as communication between the
technical and political sides of transportation and land use. The report
briefly documents discussions at two workshops that were based on
case studies illustrative of how political decisionmaking takes place.
The actual participants of the two case studies—including politi-
cians—were involved in the workshop discussions. The case studies
themselves, which are not presented here, concern the I-66/Metro
Corridor and the Mt. Hood Freeway decision.

The third and final paper summarizes six workshop sessions: land use
modelling, decisionmaking, and politics; land use/transportation
modelling structures; application of land use models in comprehensive
planning; short-range forecasting and land use impacts; land
use/transportation forecasting at the community scale; and details of
the integrated transportation/land use package.

The Seminar on Emerging Transportation Planning Methods, as
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judged by the participants, was very successful. This success, plus the
long term value of the papers, led to the decision to publish this book.
The Office of University Research, in order to effectively disseminate
research results, plans to hold more seminars of this type in the future.

William F. Brown
Deputy Director
Office of University Research
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TRANSPORTATION DEMAND FORECASTING
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Danvel L. McFadden, Professor of Economics
University of California at Berkeley

The Theory and Practice of Disaggregate Demand
Forecasting for Various Modes of Urban
Transportation

Daniel L. McFadden

Professor of Economics
Massachusetts Institute of Technology

A major responsibility of transportation planners is to forecast those
changes in travel demand induced by alternative transportation
policies. In recent years, the range of analyzed policy alternatives and
the range of considered policy questions have greatly expanded.
Emphasis has shifted from long-run planning of highway networks to
short-run planning and to management of integrated multimodal
transportation systems. These shifts have placed considerable strain on
conventional forecasting tools, which were originally designed to
address problems of highway network design.

Flexible demand forecasting methods have consequently been
sought, particularly those capable of incorporating the behavioral
forces linking individual transportation decisions. The resulting
behavioral disaggregate methods expand the policy sensitivity of
forecasts. Tests and practical experience with these methods indicate
that they are comparable or superior to conventional forecasting
techniques in terms of data gathering and computational requirements
and forecast accuracy. They provide, in short, a useful way of tackling
the expanded list of contemporary planning questions.

Most conventional forecasting models were originally developed to
address problems of highway design, and were conceived using
analogies with physical systems—with traffic flows described in terms
of hydraulic or gravity flow models. Different model components in
conventional modeling are not developed from a unified framework.
For example, a trip generation model may be developed quite
independently of a model of modal split. Another deficiency of conven-
tional models is that they often involve costly and time consuming data
gathering and computational requirements, and they are not easily
adapted to short-run planning and transportation system manage-
ment. In particular, they are poorly adapted to pencil-and-paper or



quick-response policy analyses planners need.

In contrast to conventional methods, disaggregate behavioral
forecasting methods are based on a unified conceptual framework.
They start from the idea that all travel demand is generated by
individual choice behavior, and more specifically (in the current genera-
tion of disaggregate behavior models) generated by maximization of
preferences or utility. An advantage of disaggregate forecasting is that
it is not based on one model; it is an approach or system for building
models, and as such it can provide the planner with a method of dealing
with a variety of problems as they occur. It is possible to build complex
disaggregate behavioral model systems on a scale approaching or
exceeding that of conventional models. On the other hand, it is possible
to use these techniques to do “‘quick-and dirty” planning, using “back-
of-the-envelope” calculations, without extensive data collection
requirements. In general, the use of behavioral models greatly
conserves data collection costs relative to conventional models in both
the calibration phase and the forecasting phase. A major advantage of
disaggregate models is that they allow the planner to address ques-
tions, such as the demand for a new mode, which are difficult to answer
in a conventional framework. The current generation of disaggregate
models have accuracies comparable to or better than that of conven-
tional models. Disaggregate models have proved practical and
successful in a number of applications. I emphasize that the state-of-
the-art of disaggregate modelling is evolving rapidly; current models
are not the final answer, and have some undesirable features. There
are many unexpected characteristics of disaggregate models, and
many uncharted pitfalls for the user. Disaggregate models are valuable
now for solving some planning problems. In the future, as better disag-
gregate models evolve, the list of effective applications will grow.

The rich, poor, healthy, and handicapped are rarely homogenous and
the aggregate forecasting methods which treat them as such make a
specification error. More importantly, these methods preclude the
possibility of answering questions such as who benefits and who pays
for policy changes. These shortcomings are frequently corrected in
part by segmenting the zone population by income class in conventional
models. Further segmentation by those socioeconomic characteristics
other than income that influence travel patterns would be useful.
Conventional calibration of an aggregate model for numerous market
segments requires an often unobtainable quantity of data. Pursued to a
logical conclusion, each segmented market in an aggregate model
should contain a sub-population with identical socioeconomic
characteristics and identical transportation environments. This
segmentation would amount in practice to distinguishing each
individual as a “‘market segment.” Aggregate forecasts would then be

regarded as the sum of the travel demand of individuals, which i§ a
disaggregate forecasting procedure. Disaggregate demand modelhng
is, then, essentially market segmentation carried to an extreme and is
one end of a continuum, with aggregate demand forecasting at t.he
opposite extreme. Consider for example, the mode split for work trips
from an origin zone to a destination zone. The aggregate share of a
mode is by definition the sum over market segments of the share of the
mode in each market segment, weighted by the proportion of the total
origin-zone population contained in this market segment. If the
segmentation is complette, then one has the formula shown below, with
each homogenous market segment having a share for the part}cular
mode. The aggregate share is the weighted average of the shares in the
homogenous market segments.

Aggregate [ Share of Mode | [ Proportion of First
Share of | = | in First Market | x Market Segment in
A Mode Segment ] | Population
[ Share of Modew [ Proportion of Second
+ in Second 3 Market Segment in (n
LMarket Segment L Population
Share of Mode Proportion of Last
+...+ in Last Market X Market Segment in
Segment Population

This formula is one that will recur several times.

An axiom of behavioral disaggregate, choice theory is that the
individual is the basic decisionmaking unit, choosing from available
alternatives the most desirable. The desirability—or utility—of a choice
depends upon its attributes and upon the characteristics of .the
individual. Suitably modified to take account of the psychological
phenomena of learning and perception errors, this thepry has bee‘n
used widely and successfully in analyzing and forecasting economic
consumer behavior, of which transportation behavior can be viewed a
part.

Let us first clarify what transportation behavior is. A complete
definition of a transportation alternative for an individual includes the
total pattern of travel: location of residence and jgb; purchases_ of
vehicles; frequency of work, shopping, personal business, recreation
and other trips; destination of trips; scheduling of trips; mode choice;
and route choice. In practice, travel demand models concentrate on



certain dimensions of travel behavior such as mode choice, taking as
given other aspects such as scheduling of trips or location of residence.
(A great deal of the behavioral theory of disaggregate modelling which
will not be presented explicitly here deals with how these decisions can
be broken apart.)

An alternative’s attributes include the transportation level of service
variables associated with its pattern of travel. The individual’s utility of
an alternative is a function of level-of-service variables for the alter-
native. Utility also depends on the individual's tastes and
background—or socioeconomic characteristics. Examples of level-of-
service variables are travel time and travel cost. Examples of
socioeconomic characteristics are income and family size. An individual
chooses among the available alternatives the one which maximizes
utility.

Some socioeconomic characteristics and level-of-service variables are
observed by the transportation planner. Others are unobserved. For
example, income and in-vehicle travel time are usually observed or

calculated, while attitudes towards privacy or vehicle noise level are
usually not observed.

Consider a group of individuals with similar observed backgrounds
and decision environments, characteristics, and observed level-of-
service variables for the alternatives. This could be called a
homogeneous market segment. The frequency of choice for an alter-
native within a homogeneous market segment is determined by the
number of members of this group whose unobserved level-of-service
and socioeconomic variables, operating in tandem with the observed
variables, give this alternative the highest utility. For example, if an
individual’s observed travel times on alternative modes, in combination
with unobserved attitudes towards privacy, lead him to a higher utility
for bus than for auto, then he will choose the bus. Other people with the
same observed travel time, and therefore in the same homogeneous
market segment, may have different attitudes towards privacy, and as
a result may take the auto.

A disaggregate choice model is defined by specifying a probability
distribution of the unobserved variables affecting utility, given the
values of observed variables in a homogeneous market segment. This
probability distribution then determines the choice probabilities—the
proportions of the group with maximum utility for each alternative.

In summary, a disaggregate behavioral model is specified by forming
a concrete individual utility function, a probability distribution of the
unobserved variables, and a share of each market segment in the
population. Examples of specific utility functions and probability
distributions are given below. Using the formula in equation (1), once a

concrete utility function is formed and the distribution of unobserved
variables specified, each of the shares in a homogeneous rqarket
segment is specified. Knowing the proportions of the population in the
various market segments, one can then compute the average share.

I will define the mean utility of a homogeneous market segment to be
the average of the utilities of all the individuals in this segment. Mea.n
utility depends on the observed level-of-service and socioeconomic
variables, and on other determinants of the distribution of unobserved
variables.

Assuming a concrete probability distribution for the unobserv_ed
components of utility leads to a concrete formula for the choice
probability. Unfortunately, most distributions of unobser'v.ed
components yield computationally forbidding choicg pr_obablhty
formulae, making them difficult to use in practical cahbratmps and
forecasting. One exception is the multinomial logit model, which has
choice probabilities of the form shown below. (“Exp” denotes exponen-
tiation.)

mean utility of
Share of i-th alternative

i- = — {2)
the | t.h mean utility of mean utility of
Alternative
exp +...+texp

the the
first alternative last alternative

The multinomial logit.model has the following characteristics: first,_ it
can be interpreted as a disaggregate behavioral model with specna]
assumptions on the probability distribution of the unobserved vangbles
which will not be detailed here. Second, a multitude of possible dxsa_g-
gregate travel demand models can be formulat‘;ed in thfz multinon}lal
logit framework, with the form of the mean utility functlon depending
on the application. Third, the multinomial logit model has the
mathematical form of share models used in conventional travel demand
forecasting systems, such as the gravity or intervening opportun}ty
models. For example, consider a singly constrained aggregate gravity
model for distribution,

Nej = OGA/T" . (3)

where N, =number of trips from zone k to zone j;
A= attraction of zone );
T,,=impedance between k and j; .
0, =scale factor to equate trips distributed from zone k to trips
originating in zone k.
Then, the share of trips from zone k to zone i satisfies

o
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This is a multinomial logit functional form in equation (2) with mean
utility =log A, ~h log T,,. Hence, the multinomial logit form is not new
to planners, but has i’)een widely used in one form or the other,
although perhaps not widely recognized. As the example makes clear,
the multinomial logit form can be used in ways which are quite
different in motivation than the principles of disaggregate behavioral
theory. In the special case of two alternative modes, the multinomial
lqgit model is termed the (binomial) logit mode split model. This case
gives a response curve to a type familiar to every planner in which the
share of a particular mode is plotted against the relative desirability of
the modes, as in Figure 1. If desirability is measured in terms of
relative impedance or more generally relative disutility, standard mode
split models can be interpreted as behavioral models.

SHARE OF MODE 1
P(1ILOS,SE)

LOGISTIC CURVE
P(1{LOS,SE) - 1/(1+e™Y)

RELATIVE MEAN UTILITY OF MODE 1
v = V(LOS',SE) - V(LOSZSE)

Figure 1.—Binary logit response curve.

What then are the primary differences between traditional
aggregate share models and the multinomial logit disaggregate

models? First, the structure of the mean utility function in the
multinomial logit model is based on economic and psychological
regularities in individual behavior. As a consequence it will have a
similar form in models of different aspects of transportation choice
such as generation, scheduling, distribution, and mode split. For
example, if one can determine the variables that matter in mode split, it
should be the case that similar variables matter in trip distribution.
Second, the calibration and utilization of the model are carried out at
the disaggregate level for homogeneous market segments rather than
applied to aggregate data.

A successful forecasting model, behavior disaggregate or otherwise,
must assess correctly the impact of level-of-service changes on
demand. This requires in calibration that the effects on demand of
variations in level-of-service be sorted out from the effects of non-
transportation variables. For example, suppose large families with
small children locate disproportionately in the suburbs where walk time
to transit is high, and workers in large families are disposed to transit
because of competing needs of household automobiles. Then a mode
split model which fails to control family size and attributes the pattern
of transit usage to variations in walk time will understate the
onerousness of walk time and yield faulty predictions of the impact on
transit patronage of policies influencing transit walk time. The
problem is corrected by including family size as an explanatory variable
in the model.

Disaggregate calibration methods allow inclusion of a more extensive
list of level-of-service and socioeconomic variables than do most
aggregate methods, improving the possibility of untangling the effects
of level-of-service and other variables. It should be noted, however,
that it is possible to develop simple disaggregate models using only
conventional variables familiar to planners, such as travel time and
travel cost. Empirical tests suggest that the introduction of variables
other than conventional components of impedance in a disaggregate
mode choice model may improve only marginally the ability of the
model to “explain’ observed choices in a calibration data base, but may
significantly improve forecasting accuracy.

It should be emphasized that the disaggregate behavioral approach is
a systems approach to modelling, not a specific model. Disaggregate
models can be developed to meet the specific needs of the individual
planner. In particular, one can build disaggregate models which are
completely analogous to conventional models in terms of data used and
types of variables employed, such as travel time and cost. Alternately,
one can expand on these models by expanding the description of level-
of-service attributes, thereby increasing the ability of the models to be



responsive to expanded policy questions. Or, one can expand the
socioeconomic description of these models to take into account correla-
tions between level-of-service variables and socioeconomic variables
which may have been leading planners to spuriously impute impacts to
level-of-service variables. Finally, even though when one thinks of
forecasting models, one usually thinks in terms of concrete and well-
defined variables such as travel time and travel cost which can
themselves be forecast from networks under alternative policy
scenarios, it is also possible to develop models which depend on survey
data on perceptions or attitudes. Although a distinction is sometimes
made between attitudinal models and behavioral models, the disag-
gregate systems approach to building models incorporates both.

Disaggregate models are relatively parsimonious in terms of data
requirements. A typical mode choice model, for example, can be
calibrated on a sample size of 300 to 3,000 individuals with quite
tolerable levels of accuracy. Socioeconomic variables are normally
available at an individual level from household surveys. Transportation
level-of-service variables are much harder to provide at the level of the
individual traveler. Typically these data are obtained from transporta-
tion networks, which can provide data only at a traffic analysis zone
level. Studies have shown that it is usually reasonable to approximate
level-of-service variables for the individual by zonal averages. One
exception is walk time to transit, where significant improvements in
forecast accuracy can be obtained by segmenting zones geographically
and recording individual walking distances. A final point is that the
accuracy of any model, conventional or disaggregate, which uses
network data is limited in forecasting accuracy by the accuracy of the
network. There are many subjective elements and assumptions that go
into coding of networks, and one has to be careful in applying
forecasting models to understand how these assumptions interact with
model calibration.

In principle, the mean utility function in a disaggregate behavioral
multinomial logit model can be a very complex function of personal
characteristics and level-of-service variables. In existing practical
models, however, these variables have appeared in a simple form,
usually linearly, with an “importance weight” attached to each
variable. For example, mean utility might equal the negative of the sum
of travel time and travel cost deflated by wage, each weighted by an
importance weight. It may be useful to describe how such a specifica-
tion can be related to an underlying theory of individual behavior. I will
outline a very simple model which provides this special structure. Let
us assume that the utility or desirability of an alternative depends on
the amount of goods an individual consumes; the amount of leisure he

has available; the hours spent traveling (a ‘‘bad” rather than a “‘good”
for most people); amenities of various travel destinations; and
unobserved factors. The alternatives available to the individual in this
model are destination and mode choice, so this is a joint destination and
mode choice model. The option of no trip is included as an alternative,
so that the model includes trip generation as well.

Each individual is assumed to be constrained by a budget which
requires his total expenditures, equal to expenditure on goods plus
expenditure on travel, be equal to his total income, which in turn equals
wage income plus other income. Time is allocated between leisure,
labor, and travel in a way to maximize utility. First, for any travel
alternative a mix of labor and leisure is chosen to maximize utility. If
the individual considers the alternative of taking the bus to a particular
shopping destination, then the optimal amount of time worked,
adjusted to take into account the choice of this alternative, will be
determined. At this optimal mix, the marginal utility of goods (defined
to be the amount of additional utility obtained from one additional unit
of goods) multiplied by the wage rate equals the margin utility of
leisure. Second, the travel alternative actually chosen is the one
maximizing utility, taking into account the labor-leisure adjustment
above for each alternative. The features of this model are summarized
in Table 1. :

The preceding argument provides a justification—from the economic
theory of utility maximizing behavior—for the entry of travel time and
travel cost divided by wage as linear variables in the mean utility
function. Generalization of this model is possible in several directions.

Time, cost, and other attributes of alternatives may have sub-
components. Time, for example, can be partitioned into on-vehicle time
under congested or non-congested conditions, walk time, and wait
time. Costs can be divided into overhead, indirectly charged per-trip
costs such as fuel and maintenance, and daily out-of-pocket costs such
as tolls. These components can be given separate coefficients in
equation (*) of the preceding table; the relative weights of components
can then be determined as part of the calibration of the model, which is
preferable to assigning traditional weights.

The coefficients b, b,, and b, may depend on observgd
socioeconomic variables. For example, the weight b, associated with
the walk time component of travel time may be a function of an
individual’s age and health status, or of those neighborhood
characteristics correlated with safety. If this association is expressed in
a linear-in-parameters form, then the mean utility function (*) is linear



TABLE 1. A Simple Behavioral Utility Model
® Utility depends on goods, leisure, hours spent traveling, amenities
at various travel destinations, unobserved factors
® Alternatives describe destination and mode choice, including the no
trip option
® Each individual is constrained by a budget:
Expenditure Travel Wage Other

On Goods * Cost = Income Income (5)
©® Time is allocated between leisure, labor, and travel

® For any travel alternative, the mix of labor and leisure is chosen to
maximize utility. At this mix, the marginal utility of goods,
multiplied by the wage rate, equals the marginal utility of leisure
® The chosen alternative maximizes utility

UTILI.':'hY TRAVEL [TRAVEL COST) MARGINAL
OF i = - TIME + TAGE—]——— x UTILITY
ALTERNATIVE

OF LEISURE

TRAVEL | , IMARGINAL UTILITY
TIME OF TRAVEL TIME

+ [AMENITIES] x |MARGINAL UTILITY
OF AMENITIES

+ UNOBSERVED x MARGINAL UTILITY OF
ATTRIBUTES UNOBSERVED ATTRIBUTES

OF THE ith ’
ALTERNATIVE TIME [WAGE]

[MEAN UTle] o [TRAVEL] (TRAVEL COST]
= -by x be x =L EOSTL
+ba x [AMENITIES]

bt . bc . AND by ARE PARAMETERS
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in these parameters, and the calibrated model will describe both the
importance weight attached to walk time and the variation of this
weight with socioeconomic factors.

There are a number of methods available to calibrate disaggregated
behavioral multinomial logit models. The technique which is most
commonly used is maximum likelihood estimation. From the user’s
point of view, this method is comparable to regression analysis—the
inputs and outputs of computer programs which carry out this calibra-
tion resemble closely the inputs and outputs of regression programs,
and require the same skills from the user as do regression analyses.
Therefore, any planning organization which currently has the capacity
to do regression analyses also has the potential ability to calibrate
multinomial logit models.

There are good statistical computer programs available for
multinomial logit analyses using the maximum likelihood method. One
available to many planners is the ULOGIT programs in the UTPS
package. There are several other stand alone logit programs available
with options not included in ULOGIT. QUAIL, a flexible data manage-
ment and multinomial program developed by McFadden and his
colleagues, is available in versions suitable for use on CDC or IBM
machines. Multinomial logit programs for IBM machines are also
available from Cambridge Systematics, Inc. and from Charles Manski
at Hebrew University. All these programs are available at the cost of
reproducing tapes and manuals,

In addition to maximum likelihood estimation, there are several
other techniques for fitting multinomial logit models. One technique,
currently available only on QUAIL, is non-linear least squares. This
method has an advantage relative to maximum likelihood estimation in
that it is less sensitive to data measurement errors, an important
consideration given the nature of transportation data. Finally, there is
an estimation technique called the Berkson-Theil method which
requires grouped data rather than individual observations. If data is
collected by individual, it must be grouped to use this method. On the
other hand, the method requires only a standard regression program,
and hence is readily available to most planners. When data can be
grouped easily, the Berkson-Theil procedure is recommended. It has
good statistical properties, and is considerably less expensive than
maximum likelihood estimation.

Let us next consider a simple calibrated disaggregate multinomial
logit model with work trip mode choice. The model in Table 2 was
calibrated by the maximum likelihood technique on a sample of 771
commuters in the San Francisco Bay Area in 1973, before the
inauguration of BART Trans-Bay service. The explanatory variables in
this model are the level-of-service attributes commonly used to define

11



impedance in conventional models, on-vehicle travel time, excess or
out-of-vehicle time, and cost divided by wage. The model contains four
alternatives: auto drive alone, auto shared with someone else (either
family or non-family carpool), and bus, subdivided by access mode.
Auto access to bus includes “kiss-ride”” and “park-ride.” Alternative-
specific dummy variables are introduced to capture the average
influence of unobserved attributes of each mode. The number of
dummy variables is one less than the number of alternatives, as the
coefficient of the bus-with-walk-access dummy is normalized to zero.
One such arbitrary normalization is necessary.

A negative coefficient for a variable indicates that an increase in this
variable for a mode will lower the mode’s choice probability. For
example, the coefficient of excess time is negative. If excess time rises
for a particular mode—say, bus-with-walk-access—then the mean
utility of this mode will fall, and as a consequence the choice probability
for this mode in a homogeneous market segment will fall. The
T-statistics on the right-hand-side are indicators of the precision of the
parameters. Values less than two indicate that the parameters cannot
be reliably distinguished between zero. This particular model indicates
that individuals react strongly to transportation level-of-service
variables. The average effects of unobserved variables, reflected in the
coefficients of the alternative-specific dummy variables, are important.

TABLE 2. A Simple Work Trip Mode Choice Model,
Estimated Pre-BART

(Mode 1—Auto Alone; Mode 2—Bus, Walk
Access; Mode 3—Bus, Auto Access; Mode
4—Carpool)

Model: Multinomial Logit, Fitted by the Max-
imum Likelihood Method

(The Variable takes the described value in
the alternatives listed in parentheses and
zero in non-listed alternatives)

Estimated

Independent Variable Coefficient T-Statistic
Generic
Cost divided by post-tax wage, in cents
divided by cents per minute (1-4) ........ — .0412 7.63
On-vehicle time, in minutes (1-4) ........ — .0201 2.78
Excess time, in minutes (a-4)........... — .0531 7.54
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TABLE 2. A Simple Work Trip Mode Choice Model,
Estimated Pre-BART—(Continued)

Specific
Auto alonedummy (1) ................. — .892 igg
Bus with auto access dummy (3) ......... —1.78 8‘56
Carpool alternative dummy (4) .......... —-2.15 .
Likelihood ratio index .1499
Log likelihood at zero —1069.0
Log likelihood at convergence - M7
Percent correctly predicted )
(by maximum probability) 58.50 (compared with 39.42 by
chance)
Value of time saved as a percent of wage (t-statistics in parentheses):
On vehicle time 49 (2.68)
Excess time 129 (5.16)

i i -trip. Excess time is
All cost and time variables are calculated rqunfi trip. me
defined as the sum of walk time, transfer wait tlm_e, and half of initial
headways. Dependent variable is alternative choice (one for chosen
alternative, zero otherwise).

Number of people in sample who chose

Auto alone 429
Bus with walk access 134
Bus with auto access 30
Carpool 178
Total sample size 77

1 will expand further on the nature f)f the vgriables entering tlhls
model, and specifically on the alternative-specific dumgr}y variables.
Socioeconomic variables which influence thf: mean utility gf evelt')y
alternative in exactly the same way have no influence on _choxce proh-
abilities. They change both the numerator and the denominator Otfh the
multinomial logit formulae by a factor whlc}} cancels out. Hence, grﬁ
is interest only in those socioeconomic vanablgs_ which _mberact witl
level-of-service variables to affect the mean utility of different alter-
natives differently. For example, income can matter only if, v;hen
income changes, it increases the attractiveness of one of the a t,e:'-
natives relative to a second. Travel cost dl‘vxded bx wage is one examp! e;
of interaction. A second example is a vanab}e_whlch takgs the value o
one for an alternative which requires driving a vehicle when the
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individual has a driver’s license, and is zero otherwise. The variable in
this example is the product of a socioeconomic variable which is one if
the individual can drive and zero otherwise, and a level-of-service
variable which is one if the alternative requires driving and zero other-
wise. In the model in Table 2, an alternative-specific dummy variable
for an alternative is one for this alternative and zero for all other alter-
natives. Mean utility may be included in alternative-specific dummy
variables appearing alone, or in interaction with other variables. The
coefficient of an alternative-specific dummy variable can be interpreted
as reflecting the impacts of an alternative’s unmeasured level-of-
service attributes that are not captured in the remaining variables. For
example, the auto-alone dummy variable is one for the auto-alone mode
and zero otherwise. (The number following the name of the variable
indicates for which alternatives it is non-zero.) The coefficient —.892
can be interpreted as representing the average impact of unmeasured
characteristics of the auto alternative relative to the bus-with-walk-
access alternative.

A variable which is the result of interaction between an alternative-
specific dummy variable and another variable is termed an alternative-
specific variable. An example of an alternative-specific variable would
be one which gives the value of out-of-vehicle travel time for the bus
with auto access alternative and zero for all other alternatives. The
coefficient of this variable compared with the coefficients of other
alternative-specific travel times would reflect the impact of specific
attributes of auto-accessed transit on the onerousness of transit travel
time. A generic, or homogeneous-effect, variable is one which does not
incorporate interaction with alternative-specific dummy variables. An
example is a variable which gives out-of-vehicle travel time for each
alternative, uninfluenced by the name of the alternative; i.e., an out-of-
vehicle time of fifteen minutes is treated the same whether it is auto
access time or transit wait time. In this model the level-of-service
variable—cost, on-vehicle travel time, and access time—were all
generic or homogeneous-effect. Each of these variables has values for
each of the four alternatives. For example, travel time in auto has the
same importance weight as travel time in transit.

Individual utility, expressed as a function of observed and unob-
served variables, should depend on only generic variables. The reason
for this is behavioral—individual utility depends on the constellation of
physical experience associated with an alternative, and cannot depend
on labels such as ‘“‘auto,” “transit,”” or “CBD”—attached to alter-
natives by the planner. Mean utility on the other hand may depend on
alternative-specific variables which mimic or act as proxies for the
influence of unobserved generic variables. For example, suppose
individual utility depends on generic on-vehicle travel time weighted by
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a generic index of comfort. Suppose the comfort index is unobserved,
but varies between alternatives. Then the mean utility for an alter-
native will have a coefficient of on-vehicle time which reflects the
average comfort index on this alternative. It will then appear to the
planner that mean utility depends on alternative-specific travel times.
Alternative-specific variables in a multinomial logit model are evidence
of failure to observe generic variables which are influencing behavior.
A long-run objective of behavioral demand analyses is to improve
model specification and data collection to the point where alternative-
specific variables are not needed. Models based solely on generic
variables are also desirable from the point of view of forecasting.
Coefficients of alternative-specific variables do not isolate behavioral
sources of variation across alternatives, or establish that alternative-
specific effects will be stable or extendable to new situations when
forecasting. In the current state-of-the-art of disaggregate demand
analyses, alternative-specific effects do capture the impacts of
variables not observed in standard transportation data sets; their
omission would bias the importance weights associated with other
variables.

In the lower half of Table 2 are several summary statistics which give
some notion of the goodness-of-fit of this model to the calibration data
base. The likelihood ratio index is an analog of the multiple correlation
coefficient in regression analysis. Empirically, its values run lower
than typical values for a multiple correlation coefficient. A value of .2
to .3 indicates a good fit. A second measure of goodness-of-fit is the
ability of the model to forecast accurately. In this particular sample,
39% of the choices of individuals would be predicted correctly by
change, whereas the model predicts 58% correctly. A third method
commonly used to assess the merit of models is to compute the implicit
values of time implied by the model. This is a potentially misleading
measure of goodness-of-fit, both because these statistics tend to be
very unreliable and because there is some tendency to accept or reject
models on the basis of consistency with earlier result in the literature,
which could perpetuate errors in the assessment of time evaluations.
On the other hand, the critical role of value of time tradeoffs in policy
applications makes it necessary to compute these values. Value of time
calculations in the multinomial logit model are determined from the
ratio of time and cost coefficients. These calculations assume that
within a homogeneous market segment, the value of time is uniform.
Note that this is not necessarily a good assumption. For the model in
Table 2, on-vehicle time is valued at half the wage rate and access time
at 130% of the wage rate. Table 3 describes a more complex
multinomial logit modal split model.



TABLE 3. Work Trip Mode Choice Model, Estimated Pre-BART

(Mode 1—Auto Alone; Mode 2—Bus, Walk
Access; Mode 3—Bus, Auto Access; Mode 4—

Carpool)

Model: Multinomial Logit, Fitted by the Maximum

Likelihood Method

(The Variable takes the described value in
the alternatives listed in parentheses and
zero in non-listed alternatives)

Independent Variable

Estimated
Coefficient

T-Statistic

Cost divided by post-tax wage, in cents

divided by cents per minute (1-4) . .........

Auto-on-vehicle time, in minutes (1,3,4)

Family income with ceiling of $7,500, in

$peryear(1) ............oiiiiia..,

Family income minus $7,500 with floor of

$0 and ceiling of $3,000, in $ per year (1) .. ... .

Family income minus $10,500 with floor of

$0 and ceiling of $5,000, in $ per year(1).....

Number of persons in household who can

drive (1) ...t

Number of persons in household who can

drive B) .....ooviiiii

Number of persons in household who can

drive (4) ...
Dummy if person is head of household (1).. ... .
Employment density at work location (1). .. ...

Home location in or near CBD
(2=in CBD, 1=near CBD, 0
otherwise) (1)

Auto alone alternative dummy (1)
Bus with auto access dummy (3)

Transit on-vehicle time, in minutes (2,3) ... ...
Walk time, in minutes (2,3) .................
Transfer wait time, in minutes (2,3) ..........
Number of transfers(2,3) ...................
Headway of first bus, in minutes (2,3) . ........

Autos per driver with a ceiling of one (1). ... ....
Autos per driver with a ceiling of one (3). ... ..
Autos per driver with a ceiling of one (4). ... ...

Carpool alternative dummy (4) ..............

— .0284
— .0644
— .0259
— 05638

- .105
— .0318

— 0000572

— 0000543

—1.02

- 872

- .502

2.33
2.38
—5.26
—5.49

4.31
5.65
2.94
5.28
2.30
0.776
3.18

0.0511
0.430
0.907
4.81
3.29

4.25
3.37
2.27

4.18
9.65
2.714
5.28
5.93
5.33
6.36
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TABLE 3. Work Trip Mode Choice Model, Estimated Pre-BART—

(Continued)
Likelihood ratio index 294
Log likelihood at zero —1069.0
Log likelihood at convergence — 595.8

Percent correctly predicted
(by maximum probability) 67.83 (compared with 39.42 by

chance)
Values of time saved as a percent of wage (t-statistics in parentheses):

Auto on-vehicle time 227 (3.20)
Transit on-vehicle time 91 (2.43)
Walk time 243 (3.10)
Transfer wait time 190 (2.01)

Value of initial headways as a percent of wage: 112 (2.49)

All cost and time variables are calculated round-trip. Dependent
variable is alternative choice (one for chosen alternative, zero other-
wise).

Number of people in sample who chose

Auto alone 429
Bus with walk access 134
Bus with auto access 30
Carpool 178
Total sample size 77

One way of judging the effectiveness or the accuracy of a disag-
gregate demand model is to compute what is called a prediction success
table. Table 4 is a prediction success table for the model in Table 3.
Each column corresponds to a predicted alternative and each row
corresponds to an actual choice. The number 296.6, for example, is the
number of persons who were predicted to take auto alone who did in
fact choose this alternative, and 29.0—the next number below it—is the
number predicted to take auto alone who in fact took bus with walk
access. Predictions in this table are based on the choice probabilities of
individuals. For example, the entry 29.0 is the sum of the predicted
choice probabilities of auto alone, taken over the set of all individuals
who actually chose bus-with-walk-access. This prediction success table
summarizes goodness-of-fit of the model to its calibration data base.
This table has the property that the average observed shares (56%
auto, 17% bus/walk, 4% bus/auto, and 23% carpool in this sample)
coincide with the predicted values. This is a consequence of calibration,
and says nothing about the accuracy of the model. A notion of how well
the model fits is obtained by looking at the percent correctly predicted
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TABLE 4. Prediction Success Table for Pre-BART Model and
Calibration Data Base

Predicted Alternatives
1) ®) (s) Observed
Actual Auto Bus/ Bus/ 4) Row Share
Alternatives Alone Walk Auto Carpool  Total (%)

(1) Auto alone 296.6 294 10.0 93.1 429.0 56
(2) Bus/Walk 29.0 75.1 6.6 23.3 1340 17
(3) Bus/Auto 9.8 5.9 6.7 7.6 30.0 4
(4) Carpool 93.6 23.7 6.7 54.0 178.0 23

Column Total 429.0 1340 30.0 1780 7 100

Predicted Share
(%) 56 17 4 23 100

Percent Correct 69.1 56.1 22.3 30.4 56.0

Success Index 1.23 3.30 5.58 1.32

The equality of predicted and observed shares is a consegence of the calibration process.

in aggregate for each alternative. For auto alone, 69% of our predic-
tions are correct, while for the bus with auto alternative, only 22% are
predicted correctly. These figures illustrate that it is much easier to be
successful when you are predicting demand for a highly used mode
than when you are predicting demand for a little used mode. This
observation applies throughout travel demand modeling, including
conventional models. An index of prediction accuracy for an alter-
native can be obtained by dividing the percent correctly predicted by
the percent correct you could achieve by chance. The higher this predic-
tion success index, the better the model. In terms of the prediction suc-
cess index, the model in Table 3 has the most difficulty distinguishing

between auto alone and carpool, and does reasonably well in predicting
transit usage.

A more interesting test of the accuracy or validity of a disaggregate
model is to examine its ability to predict on a data set different than the
calibration data set. Recall that the model in Table 3 was fitted to 1973
data, prior to the inauguration of Trans-Bay BART service. To test the
validity of the model, we used it to forecast mode split in 1975,
including full BART service. This was done by comparing the actual
mode choices of a 1975 sample with the choices predicted by the model
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in Table 3 when the 1975 set of alternatives and level of explanatory
variables were substituted for each individual. The prediction success
table for these forecasts is given in Table 5. The columns correspond to
predictions using the 1973 calibrated model. Recall that the 1973 model

TABLE 5. Prediction Success Table for Pre-BART Model and
Post-BART Data

Predicted Alternatives
(1) 2) (L] (4) (5)

Actual Auto Bus/ Bus/ BART! BART/ (6)
Alternatives Alone Walk Auto Bus Auto  Carpool
(1) Auto alone 255.1 2221 6.362 1.513 13.72 79.07
(2) Bus/Walk 11.56 36.43 2.988 1.679 1.421 13.92
(3) Bus/Auto 1.249 2.811 687 0066 1.625 2.622
(4) BART/Bus 868 1.934 120 1.391 258 1.440
(5) BART/Auto 8.898 3.149 1.756 695 8.828 9.674
(6) Carpool 74.68 12,43 3.305 1.357 T7.497 317.73
Column Total 352.4 78.97 15.22 6.642 35.35 144.4
Predicted Share (%) 55.8 125 2.4 1.0 5.3 229

(standard error) (11.4) 3.4) (1.4) (.5) 24)  (10.7)
Percent Correct 724 46.1 4.5 21.0 26.5 26.1
Success Index 1.30 3.69 1.88 21.0 5.0 1.14
Predicted Share -—4.1 1.7 1.0 0.05 0.1 1.2

less observed share
Actual Share (%) 59.9 10.8 14 .95 5.2 21.7
Totals
Sample Size 631
Percent Correct 53.9  (42.0 by chance)
Success Index 1.28

has no BART alternatives, only auto-alone or shared-or bus-with-walk
or auto access. From these alternatives we wish to predict the
patronage on two new models, BART with auto access and BART with
walk access. The model in Table 3 contains some alternative-specific
variables, and it was necessary to make judgments about what form
those alternative-specific variables would have in the post-BART situa-
tion. We assumed that BART with auto access has the same unob-
served characteristics as bus with auto access, so that their alternative-
specific variables would enter with the same coefficients. Analogously,
we assumed that BART with bus access has the same characteristics as



bus-with-walk-access, with alternative-specific variables entering with
the same coefficient. An overall judgment from Table 5 is the disag-
gregate model in Table 3 is relatively successful in predicting demand
for a major new transportation mode. The model forecast a BART
mode share of 6.3 percent, compared with an observed share of 6.2
percent. A caveat is necessary, however. The statistical imprecision of
the calibrated coefficient of the pre-BART model would lead one to
expect forecasts for modes with low aggregate shares, such as BART,
to have relatively large percentage errors. The actual prediction
accuracy here is better than one could expect by change, given the size
of these standard errors of the forecasts. Further, disaggregate models
in the form in Table 3 tend to be quite sensitive to the selection of
variables entering the mean utility function, and to the definition and
measurement of explanatory variables. For example, one of the
problems which appears in this table is an overforecast of bus usage.
An explanation can be found in the network calculation of bus access
time. To construct these times, we used a 1980 Bay Area network
which was constructed assuming 1980 bus service levels. The network
was scaled back to 1975 by dropping bus links which did not exist in
1975, but the 1980 walk times which were shortened because the
assumed 1980 transit service remained at the 1980 levels. As a result,
walk time from our network calculations under-estimate true bus
access time. This data measurement problem seems to be the major
source of prediction error in Table 5. However, disaggregate models
such as the one in Table 3 exhibit some anomalies when calibration
samples are partitioned by location, family composition, or choice-
alternative definition, suggesting that there are factors influencing
travel demand which the current models do not capture adequately.

A statistical test of whether the post-BART data was in fact
explained by the pre-BART model failed. That is to say, from a
statistical point of view there are post-BART factors which are not
explained adequately by the 1973 model despite the fact that it does a
reasonably good job of forecasting aggregate BART patronage. In
short, disaggregate demand forecasting has the flexibility and the
potential accuracy to meet current planning needs, but the field of
disaggregate demand forecasting is relatively uncharted, offering
many potential pitfalls to the planner.

One property of the multinomial logit model which has gained some
notoriety is called the independence from irrelevant alternatives (11A)
condition. This is a feature of the model which occurs when the mean
utility of an alternative depends only on the attributes of that alter-
native and on the characteristics of the decisionmaker, and not on the
attributes of other alternatives. In this case, the I1A property requires
that the relative share of any two alternatives is independent of the
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attributes of the remaining alternatives. The terminology is due to the
psychologist Duncan Luce, who first proposed the I1A property as an
axiom for behavior in psychological choice.

The IIA property is a blessing and a curse for the multinomial logit
model. It has some significant advantages. First, it allows calibration
without having to consider all possible alternatives. For example, if one
wants to carry out a study of destination choice, it is possible to
calibrate the model with data on a selected number of destinations
rather than having to consider the full set of destinations. This can
substantially reduce data collection requirements. Second, ITA permits
quick determination of the effects of introducing a new alternative,
because the forecast of mode share for a new alternative mode can be
obtained by including one additional term in the denominator of the
multinomial logit formula.

The I1A property also has some major disadvantages. It fails to allow
for different degrees of competition or similarity between alternatives.
Consider the following example. Suppose that individuals initially have
a shopping choice between the central business district (CBD) and a
shopping mall—call it East Mall; and suppose that they initially split
50-50 between these two destinations. For simplicity, assume all
individuals have exactly the same observed explanatory variables; i.e.,
they represent a homogeneous market segment. Suppose now that a
new situation is introduced in which a North Mall is constructed.
Suppose the North Mall and East Mall are equally far away for these
individuals, with equal amenities. Then one would expect individuals
who previously chose to shop in the CBD to continue to do so, and
individuals who previously went to the East Mall to now split evenly
between the East and North Malls. Hence, one would expect in this
situation to observe a split of 50% CBD, and 25% for each of the two
Malls. On the other hand, a multinomial logit model will predict a one-
third split for each of the alternatives. The reason it does so is that it
assumes that the relative odds of choosing between CBD and East Mall
will be unchanged when an additional alternative is introduced—the
North Mall. In other words, the multinomial logit model is unable to
take account of the fact that the new North Mall will be more
competitive with the East Mall than it will be with CBD shopping.

Let us pursue this example one step further. Suppose that we could
break down the ‘homogeneous” market segment further, into, say,
males and females, and that there were very strong differentials in
shopping characteristics for these two socioeconomic groups. Suppose
before the construction of North Mall the female segment divides 95-5
in favor of shopping at East Mall, while the male segment divides 95-5
in favor of CBD destinations. The aggregate share for the two
segments is 50-50. Suppose now one applies the multinomial logit
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model to forecast destinations after North Mall is built, with separate
forecasts for males and females. Then, the predicted splits for the
female segment will be 48.7% for each Mall and 2.6% for CBD destina-
tions; for the male segment, 4.8% for each Mall and 90.5% for CBD
destinations; and finally an aggregate mode split of 46.5% for CBD
destinations and 27% for each of the two Malls. Compare this to the
observed split which is 50% for CBD destinations and 25% for each
Mall. Then, the error introduced by the failure of IIA is small when
market segmentation is effective in dividing the market.

In summary, the IIA property is extremely useful for practical plan-
ning. Its limitations are a more serious problem in aggregate modelling
than in disaggregate modelling, where refining market segments can
minimize errors. Although much of the discussion of the IIA property
in the literature is concentrated on its logical possibility, a much more
important consideration for the practicing planner is its empirical
validity. If the disaggregate multinomial logit model having the ITA
property can be shown to fit calibration data sets well and to forecast
accurately in a particular application, then it is a useful tool for the
planner.

Specific statistical tests for the IIA property applicable to transpor-
tation data sets have been developed by McFadden, Tye, and Train.
These tests can be used to investigate various specific sources of failure
of ITA. Tests of I1A have been applied to a seven-alternative work trip
data set for the San Francisco Bay Area. Because of the multiple tran-
sit alternatives (we have three BART, two bus, auto alone, and carpool
alternatives) with common main-mode characteristics for alternative
access modes, one would expect this data set to provide a rather
stringent test of the IIA property. The multinomial logit model tested
was of the same general form as the model in Table 3. The hypothesis
that the model satisfied the IIA property was accepted for all the tests
performed, with two exceptions which tended to point to data specifica-
tion problems rather than IIA problems. Hence, this empirical study
suggests that although IIA is an unpalatable logical restriction from
the standpoint of the general theorist, it may be inconsequential from
the standpoint of practical planning. At the very least, satisfaction of
IIA is an empirical question, not a question of doctrine.

What should a planner do about the IIA property, given that its
validity is a matter of concern in the profession? First, carry out
diagnostic tests of the validity of the property for the specific data set
you are using. If you reject the IIA property, try to refine the specifica-
tion of your model by a more detailed market segmentation, improving
data definition, or by adding variables to the models. If necessary,
replace the multinomial logit model with one allowing patterns of
substitution between alternatives.

0o

The multinomial logit model is a special case of a disaggregate model,
and not in any sense the end of the line in terms of realism and
accuracy. However, it is the only disaggregate model which I believe is
of current widespread practical useability.

I have described the process of defining and calibrating disaggregate
behavioral models. Now I will discuss how these models are applied in
forecasting. First, one must translate policy questions into specific
technological features of the proposed transportation service. For
example, suppose the policy question posed is ‘‘How much more transit
service can we provide with a $1,000,000 block grant?”’ The question
must be first translated into specific operating proposals for headways,
route density, and so forth. Then, network or manual calculations, or
an idealized supply model, must be used to provide the level-of-service
variables resulting from a proposal. These variables must be provided
for each homogeneous market segment for the level of segmentation at
which the analysis is being carried out. Next, the size of each
homogeneous market segment must be determined. In the short-run,
one can normally assume population demographics continue to hold.
For long-run forecasting, one must make projections of land use and
demographic trends, and factor these forecasts into the segmentation.
Finally, one must use the basic aggregation formula in equation (1) to
predict changes in aggregate shares. Information on homogeneous
market segments can be used to calculate the distributional conse-
quence of proposals if this information is needed. Patronage and
revenue calculations for the homogeneous market segments can be
carried out, and aggregated to give totals. These figures, along with
the capital and operating costs of alternative proposals, determine
their feasibility. Among those proposals forecast to be feasible, a selec-
tion can be made using the evaluation criterion employed by the plan-
ning agency.

Consider the following example of the use of this procedure. Assume
in Figure 2 that the square box at the top represents a traffic zone.
Assume that the traffic zone is bisected by an express busway, and that
one busway station denoted by the black dot serves the zone. The
population densities within the zone are such that 76% of the people
live north of the busway, and the remaining 25% live south of it.
Suppose there is no parking provided at the busway station; hence, the
people either walk, take feeder bus, or are driven to the station.
Suppose current feeder-bus headways are twenty minutes on both the
north and the south side and that the modal shares to the busway
station are as follows: on the north side 52% walked; 18% take the bus;
30% are driven. On the south side 10% walk; 10% take the bus; 80% are
driven and in total in this zone 41% walk; 16% take the feeder bus; 43%
are driven.
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p (LOS,, SE))=.75

Busway
F
p (LOS;, SE;)=.25
Current Modal Shares
Proportion in
Walk Bus Driven Population
North .52 .18 .30 .75
South .10 10 .80 25
Total 41 .16 43 1.0

Figure 2.—An example: The impact of improved feeder bus service.

The Planning Commission is contemplating improving the feeder bus
service on the north side by reducing the headway from twenty
minutes to five minutes, but leaving it unchanged in the low density
area south of the busway. The consequences of this policy are
calculated using a multinomial logit model with mean utility function at
the bottom of Table 6. The mean utility is 3.11 times a variable which is
1 if the person walks and 0 otherwise, plus .495 times a variable which
is 1 if the individual takes the bus, zero otherwise, minus .11 times
travel time, minus .08 times headway, minus .2 time cost, plus .672
times the number of drivers (if the person is driven) and 0 otherwise.
Here are the changes in mode shares calculated from the multinomial
logit model when north-side feeder bus headways are reduced: North of
the segment, the walk share goes down by .15, the bus share rises by
.24, the number driven goes down by .09. Summed over the zone, the
impact then is a .18 increase in the feeder bus share, a .11 decrease in
the walk share, and a .07 decrease in the share of persons driven.

So far I have discussed the calculation of the effects of policy change
on a homogeneous market segment. It is necessary to in general
combine results for homogeneous market segments into an aggregate
prediction for the population as a whole. If the segmentation is
extremely detailed, then it may not be practical to carry through the
aggregation by summing over all homogeneous market segments.
There are a number of short-cuts or approximations to the aggregation
process which can be used. I will mention four. First, one can approx-
imate the empirical distribution of homogeneous market segments in

TABLE 6. Change in Mode Shares when North Side Feeder
Headway is Cut from 20 Minutes to 5 Minutes

Proportion in
Segment Walk Bus Driven Population
North -.15 +.24 -.09 75
South 0 0 0 .25

Total -.11 +.18 -.07

Mean Utility = 3.110 (if walk)+ 4.950 (if bus)- .110 (traveling time)- .080 (headway)-.200
(cost)+.672 (no. of drivers, if driven)

the population with a mathematical distribution for which the expecta-
tion, or average, can be calculated analytically, possibly after a
transformation of variables. Second, one can approximate the
empirical distribution of socioeconomic variables and level-of-service
variables in the population by a histogram, with each cell in the
histogram corresponding to a fairly homogeneous market segment.
Then the aggregate forecast is approximately equal to a sum over these
market segments. This segmentation can be as coarse or as fine as
desired; the finer the structure, the more accurate the segmentation. If
a very coarse segmentation is used, then the method is close to an
aggregate procedure. Third, one can approximate the empirical
distribution of attributes of homogeneous market segments by using
series expansions in terms of statistical moments, so that aggregate
shares are written as functions of choice probabilities at average
arguments and moments of the distribution of explanatory variables.
Fourth, one can sample randomly from the empirical distribution of
characteristics of homogeneous market segments, and form the sample
expectation as an approximation to the population expectation. The
first and third methods require information on moments of the distribu-
tion of explanatory variables. The second requires data on the size of
market segments, and the fourth requires a representative sample
from the population. The first method is not feasible except in special
cases. Segmentation method two is feasible, and simple to apply for
quick, rough answers when the number of explanatory variables is not
too large. The third method does not converge rapidly, or perhaps not
even at all, unless the distribution of explanatory variables is relatively
concentrated. The fourth method is the most flexible. The required
data for this method can be supplied from a calibration data base pro-
vided that the base is representative of the population, or from other
data sources such as U.S. Census data, provided these sources contain
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the variables used in the forecasting model. In contrast to calibration,
forecasting requires no data on actual transportation choices. Those
are predicted by the model. Hence one can utilize socioeconomic data
sets which are not specifically transportation-oriented to provide
explanatory variables. A method of synthesizing socioeconomic data
from Census data has been developed by Cosslett, Duguay, Jung, and
McFadden (1977).

In summary, the sampling method of approximating statistical
expectations is the most flexible tool for aggregate forecasting from
disaggregate models. The method can be combined with survey or
synthesized data to provide aggregate forecasts at reasonable cost.

The basic principles of behavioral disaggregate modelling, in
summary, are that aggregate travel demand can be expressed as the
sum of the demands of homogeneous market segments, and that the
demand within a homogeneous market segment has a structure deter-
mined by behavioral regularities that are stable over time and space.
How different are disaggregate and aggregate models in concept?
They differ primarily in degree. Disaggregation carries market
segmentation to the extreme. It emphasizes the regularity of individual
choice behavior, in contrast to conventional modelling which
emphasizes the physical regularity of aggregate flows. Aggregate and
disaggregate models differ significantly in the number and form of
explanatory variables, consistency across different aspects of travel
behavior, calibration methods, and forecasting techniques. These
differences are, however, primarily technical; the result of historical
development and the practical limitations of data compilation and
computation. Behind every good aggregate model stands a disag-
gregate model, and vice versa. The discovery of empirically valid
regularities which simplify and extend forecasting methodology, and
the relaxation of empirically invalid restrictions, should be a goal of
every transportation analyst. From this point of view, disaggregate
behavioral forecasting is a natural evolution of traditional aggregate
demand analysis.

Calibration of behavioral disaggregate models requires less data than
aggregate model calibrations. In forecasting, disaggregate models
need to consider both the explanatory variables for each homogeneous
market segment, and the computation of each segment’s mode split.
Fortunately, a variety of analytic or statistical methods, or a coarse
market segmentation, can provide forecasts of aggregate mode shares.
The range of answerable policy questions is limited by the extent of
level-of-service variables affecting the choice probability. The planner’s
ability to translate policy changes into level-of-service changes is
another potential limitation.
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Aggregation predictions in disaggregate models can be adapted to
comprehensive analysis of large-scale transportation system changes,
or to “quick and dirty” analysis of limited aspects of travel behavior
and incremental policy changes. In short, the behavioral disaggregate
forecasting methodology can provide a multi-channel forecasting
system. The theory of individual behavior provides a blueprint for the
construction of disaggregate models. The methodology has the flexi-
bility to meet the varied policy analysis needs of the planner.

It must be stressed that disaggregate behavioral analysis is neither a
model nor model system; it is an approach to the development of model
systems. There will never be “‘best” or “final” disaggregate models.
Model systems will continue to evolve as experience accumulates. Not
all model systems developed from behavioral principles will be ‘“good.”
The method is open to abuse and misuse, as are aggregate model
systems. Given that the analytic and statistical methods employed in
disaggregate behavioral modelling will be new to many planners, and
given that many planners are not well-grounded in the “folk theory” of
behavioral modeling from economies and psychology, one can predict
the unsuccessful disaggregate models will outnumber the successful
ones. On the other hand, there is now a track record of success with
these models. They have proved that they can provide accurate and
flexible forecasts, and that used with judgment, they can provide a
useful tool for organizing and systematizing policy analysis.
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