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A fundamental concern of economics is understanding human choice
behavior. Models or hypotheses are formed on the nature of decision processes,
and are evaluated in the light of observed behavior. This task is complicated
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because the econometrician cannot observe or control all the factors influencing
behavior, and because the process of observation itself influences acts of the
decision-maker through the vehicle of experience. It becomes necessary to
make statistical inferences on a model of individual choice behavior from data
obtained by sampling from a population of individuals (or sampling from a
population of “‘experience levels™ for a single individual). When the model of
choice behavior under examination depends on unobserved characteristics in
the population, the testable implications of the individual choice model are
obscured. However, it is possible to deduce from the individual choice model
properties of population choice behavior which can be subjected to empirical
test. : ‘
The link between models of individual behavior and data on population
choices is most critical when the decision-maker’s aiternatives are qualitative,
r “lumpy.” In conventional consumer analysis with a continuum of alterna-
tives, one can often plausibly assume that all individuals in a populatlon have
a common behavior rule, except for purely random “optimization™ errors, and
that systematic variations in aggregate choice reflect common variations in
individual choice at the intensive margin. By contrast, systematic variations in
aggregate choice among lumpy alternatives must reflect shifts in individual -
choice at the extensive margin, resulting from a distribution of decision rules in
the population.

This paper outlines a general procedure for formulating econometric models
of population choice behavior from distributions of individual decision rules.
A concrete case with useful empirical properties, conditional logit analysis, is
developed in detail. The relevance of these methods to economic analysis can
be indicated by a list of the consumer choice problems to which conditional
logit analysis has been applied: choice of college attended, choice of occupa-
tion, labor force participation, choice of geographical location and migration,
choice of number of children. housing choice, choice of number and brand of
automobiles owned, choice of shopping travel mode and destination,

Section | of this paper derives the relation between individual behavioral
models and the distribution of population choices, and discusses the behavioral
axiom which leads to the conditional logit model. Section Il discusses estima-
tion of the conditional logit model, and Section HI discusses its statistical
properties. Section 1V summarizes an application of the method to the problem
of shopping travel mode and destination choice.

1. Preferences and Selection Probabilities

A study of choice behavior is described by (1) the objects of choice and sets
of alternatives available to decision-makers, (2) the observed attributes of
decision-makers, and (3) the model of individual choice and behavior and
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distribution of behavior patterns in the population. Observed data are assumed
to be generated by the trial of drawing an individual randomly from the popula-
tion and recording his attributes, the set of alternatives available to him, and
his actual choice. A sample is obtained by a sequence of independent trials,
with or without replications in which a sequence of choices are observed for
individuals with the same measured attributes and alternative sets.

We let X denote the universe of objects of choice, S the universe of vectors
of measured attributes of decision-makers. An individual drawn at random
from the population will have some attribute vector s € S and will face some
set of available alternatives, which we now assume to be finite and denote by
B < X. Let P(x|s, B) denote the conditional probability that an individual
drawn at random from the population will choose alternative x, given that he
has measured attributes s and faces the alternative set B. The observed choice
in a trial with attributes s and alternatives B can then be viewed as a drawing
from a multinomial distribution with selection probabilities P(x [s, B) for
x€ B.

An individual behavior rule is a function # which maps each vector of
measured attributes s and possible alternative set B into a chosen member of
B. A model of individual behavior is a set of behavior rules 4. For example, /
may be a demand function resulting from maximization of a specific utility
function, and H may be the set of demand functions which result from maxi-
mization of some utility function. With unmeasured attributes varying across
the population, a model H can contain many behavior rules.

If « model H truly describes a population, then there exists a probability n
defined. on the (measurable) subsets of H specifying the distribution of beha-
vior rules in the population.? The selection probability that an individual
drawn at random from the population will choose x, given measured attributes
s and alternative set B, equals the probability of occurrence of a decision rule
yielding this choice, or

(1) P(x|s, B) = n[{he H|h(s, B) = x}].

An econometric model of qualitative choice behavior can be constructed for a
specified model of individual behavior by assuming 7 to be a member of a

~ ? To be precise, each trial represents a drawing of a triple (s, B, ) from an underlying
universe, where s is a vector of measured attributes, B is an alternative set, and o deter-
mines a unique decision rule h,,, with h,(s’, B’) € B’ for all possible arguments (s’, B’). A
probability defined on the underlying universe induces a probability 7 on the set of 4,,,
conditioned on values of (s, 8). When the pair (s, B) and « are statistically independent
[e.g., the underlying probability is a product of a probability defined on the universe of
(s, B) and a probability defined on the universe of )], the probability x is independent of
the conditioning values (s, B). We confine our attention to this case, noting that satisfaction
of this condition is one of the criteria for a carefully designed laboratory experiment or
sample survey. '
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parametric fumily of probability distributions and using the fact that the
observed choices are multinomially distributed with the probabilities (1) to
obtain estimators of the underlying parameters. The following paragraphs
carry through this program for the classical model of the utility-maximizing
economic consumer.,

Suppose an individual in the population has a vector of measured attributes
s, and faces J alternatives, indexed j=1.....J and described by vectors of
attributes x;. The individual has a utility function thuat can be written in the
form

U = V(s,x)+ e(s,x),

where } is nonstochastic and reflects the “‘representative™ tastes of the popula-
tion. and ¢ is stochastic and reflects the idiosyncracies of this individual in
tastes for the alternative with attributes x. The individual chooses the alterna-
tive which maximizes utility; let /i, denote his behavior rule, and B =
{X,.....x,}. The probability that an individual drawn randomly from the
population, with attributes s and alternative set B, will choose x; equals

P,

= P(x;|s. B) = n[{h, e H|h(s.B) = x;}
(2) = Plets.x))—elsox) < Fsox)=V(s.x;) forall j+# i].

The probability 7 induces a joint cumulative distribution function F(g,. ....&))
over the values &; = £(s, X;) forj=1.....J:tLe.,

Fleg, ... t)) = n[{h,e Hles.x) < for j=1....,J}]

Let £, denote the partial derivative of F with respect to its ith argument, and let
V. = V(s.x;). Then Equation (2) can be written

4
(3) P; :J F,-(x:-{wV,-—H.....¢;+|/,-V—l',)(/::.
We may proceed by specifying a joint distribution, such as joint normal, which
will yield a family of probabilities depending on the unknown parameters of
the distribution. 1t will generally be necessary to impose rather stringent main-
tuined hypotheses on the unknown parameters to make them identifiable in a
choice experiment, particularly in the absence of repetitions.

In practice, it is difficult to define joint distributions F which allow the
computation of econometrically uscful formulas for the P, in Equation (3).
An alternative approach is to specify formulas for the selection probabilities
and then examine the question of whether these formulas could be obtained
via Equation (3) from some distribution of utility-maximizing consumers. This
problem is the population analog of the conventional theory of revealed
preference for individual consumers. The author and Professor Marcel K.
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Richter have elsewhere (1971) characterized the necessary and sufficient con-
dition on selection probabilities for satisfaction of Equation (3). We shall
follow this method, using a particulir specification of the selection probabilities
that allows direct verification of condition (3).

We consider a powerful axiom on selection probabilities introduced by Luce
(1959) which states that the relative odds of one alternative being chosen over
a second should be independent of the presence or absence of unchosen third
alternatives. Formally, we make the following assumption.

Axiom 1. (Independence of Irrelevant Alternatives). For all possible
alternative sets B, measured attributes s, and members x and y of B,

- (4) P(x|s, {x, ) P(y|s, B) = P(y|s, {x.y}) P(x]s, B).

We show below that this axiom is consistent with condition (3) and leads to
a simple econometric specification of the selection probabilities. Luce has
presented evidence-that the axiom is consistent with behavior in some choice
experiments; we shall point out later some of its limitations.

When P(x s, B) is positive, Equation (4) implies P(x | s, {x, y}) positive. and

Pys Ax.p}) _ Ply]s, B)

(5) = )
P(x|s, {x.¥}) P(x|s, B)

This condition states that the odds of y being chosen over x in a multiple
choice situation B, where both are available, equals the odds of a binary choice
of y over x.

Since empirically a zero probability is indistinguishable from one that is
extremely small, there is little loss of generality in assuming that the selection
probabilities are all positive for the possible alternative sets in an experiment.

Axtom 2 (Positivity). P(x|s, B) > 0 for all possible alternative sets B,
vectors of measured attributes s, and x € B.

Consider a choice set B containing alternatives x,y.z. and let p, =
P(x|s. {x,r}). Define p,, = }. From Equation (4),

Pys

xy

(6) P(y|s. B) = P(x|s, B)

and

(7) 1= Y P(y|s. B) = (Z’—”—} P(x|s, B).

yeB yEB xy

Hence, the multiple choice selection probabilities can be written in terms of
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binary odds,
1
Zye B(pyx/pxy) .

(8) P(x|s, B) =

Permuting the indices x,y,z in Equation (6) and multiplying yields the
condition

9) Pyx = !.’.L‘!B_Z
Pxy  Px:/P:x

Taking = to be a “*benchmark’™ member of the alternative set 8 and defining
Vs, x,z) = log(p../p-.). Equation (8) can be written

elv’(s,x,:)

Vis,y.2) °
Zye B¢

Inthefunction ¥ (s, x, =), one may think of the argument s as giving a ‘*‘measured
taste effect,” the argument x as giving a “‘choice alternative effect,” and the
argument - as giving an “‘alternative set effect.”” In an experiment with sufficient
variation in measured attributes s and the alternative set B, and replications
- for each (s, B) pair, one can normally identify each of these effects. In the
absence of replications, it is impossible to identify the “‘alternative set effect,”
and an identifying restriction is necessary to isolate the ‘‘choice alternative
effect”; we shall assume the following.?

(10) P(x|s, B) =

AxioM 3 (lIrrelevance of Alternative Set Effect). The function V (s, x, =
determining the selection probabilities in Equation (10) has the additively
separable form

(1) Vs, x,z) = s, x) —v(s, ).

Then, Equation (10) becomes

(12) P(x|s, B) = e / T e,

yeB
and the function v can be interpreted as a “utility indicator™ of “‘representative™
tastes. The following resulit justifies this terminology in terms of the behavior
of a population of consumers.

> Axiom 3 follows from Axioms 1| and 2 if there exists some “‘universal benchmark’’
alternative - such that if B is a possibie alternative set, then B {z} is also. This follows by
noting that Equation (9) holds for - ¢ B, provided Axioms 1 and 2 holds for B v {z}. Then,
taking = to be the universal benchmark in Equation (10) and defining vis, x) = F(s, x, o)
for all alternative sets yields the result.
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LemMma 1. Suppose each member of a population of utility-maximizing
consumers has a utility function U(s, x) = v(s, x)+¢&(s, x), where v is a non-
stochastic function reflecting *‘representative™ tastes and &(s, x) is a function
that varies randomly in the population with the property that in each possible
alternative set B = {x,,..., X, }, the values e(s, x,) are independently identically
distributed with the Weibull (Gnedenko, extreme value) distribution®

L

(13) P(e(s, x;) < g)=e "
Then the selection probabilities givén by Equation (3) satisfy Equation (12).
Proof: From Equation (13), letting V; = v(s, x;),

E(£+‘/I_Vl”£+l/l—‘VJ)

J
= exp(—¢) [] exp(—exp(—e—V;+V}))

Jj=1

J
= exp(—¢&) exp < — [exp( ——s)][zl exp(V,;— V,~)]> .

Substituting this expression in Equation (3) yields the result.

A nonconstructive proof of this result was first given by Marschak (1959);
the argument above appears in Luce and Suppes (1965), and is attributed to
E. Holman and A. Marley. The next lemma establishes that under mild con-
ditions the distribution (13) characterizes the population choice models whose
selection probabilities satisfy Equation (12). A random variable ¢ is said to be
translation complete if for a function A of bounded absolute variation with
h(+ o0) = 0, the condition Eh(e+a) = 0 for all real a implies A = 0 (except
possibly on a set of measure zero). Most common distributions have this
property; in particular, the Weibull distribution above is translation
complete.’

* Monotone increasing transformations of the utility function U(s,x) do not affect
utility maximization or the selection probabilities, but transform the distribution of the
random component. In particular, et * = " *'y(s, x) has » distributed with the reci-
procal exponential distribution P(p<y)=¢""" (y20); —e V8D =~V Dp(s5 x) has
n distributed with the negative exponential distribution P(n<y)=¢" (y<0); and
et~ 0l p(g x)erPl =V 5 hys p distributed with the power distribution P(n < y) =
v!7#(0 < y < 1). These examples demonstrate that the moments of the distribution of utility
in the population (or their existence) do not provide a useful guide to the degree of disper-
ston of tastes. We note for later reference that the Weibull distribution (13) has the charac-
teristic function I"'(1 +it), which is nonzero for real ¢, and has all positive moments finite.

S A distribution whose characteristic function is nonzero for real arguments is translation
‘ complete [apply Feller (1966), p. 479]; the Weibull distribution satisfies this condition.
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LemMaA 2. Suppose selection probabilities are given by Equation (12) for all
finite alternative sets B in a universe X, and suppose that for each vector of
measured attributes s, the values of v (s, x) range over the real line ; i.e., (s, X) =
(=00, + ). Suppose the selection probabilities satisfy Equation (3) with
independently identically distributed (s, x;) having a translation complete
cumulative distribution function G. Then, G(¢) = e *** =9 where « is an
arbitrary positive parameter. Fixing the parameter a by specifying G(0) = ™!
yields the distribution (13).

Proof :  Consider the choice between an alternative yielding “‘utility™ v, =
v(s, x) and K alternatives, each yielding v,. Equations (3) and (12) imply that
the probability P, of choosing x is

x + a,
(14) P, = (.E:,-_KET; = f G(e+v,—v) dG(¢).

On the other hand, consider a binary choice between x and an alternative -
yielding ¢, = v(s,2) = v,+ log K, implying

Ux +
(15) P, = ¢ =f G(e+uv,—v,) dG ().
e'*+ eVt e

= o

The construction of v, makes Equations (14) and (15) equal, implying

t+ o
f [Ge+v,—v,~logK)— G(e+v,—0v,) ] dG(e) = 0.

But this can be true for all values of v, € (—c0, +00) only if the term in
brackets is zero, since G is translation complete, implying

Gv,—logK) = G(v,)X.

Taking v, = Oimplies G(—log K} = e **, where a = —log G(0) > 0, and taking
v, =logK—log L implies G(—logL)= G(logK/L)*. Hence, G(logK/L) =
e *M'* for all positive integers K, L. Since G is monotone, it follows in the
timit that G(logk) = e~ ** for all positive real k. Then G(g) = e~ %Pt~ 0,

We summarize the advantages, and then the limitations, of the axioms
leading to the formula (12) for the selection probabilities. First, this formula
allows a ready interpretation of the selection probabilities in terms of the
relative representative utilities of alternatives, and is relatively amenable to
computation. Second, the formula makes it simple to ascertain the effect of
introducing a new alternative to an alternative set; the proportional decrease
in the selection probability of each old alternative equals the selection proba-
bility of the new alternative. This also points out a weakness of the model in
that one cannot postulate a pattern of differential substitutability and com-
plementarity between alternatives. Third, the axioms provide the identifying
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restrictions necessary to estimate choice alternative effects without replica-
tions, and to predict choice behavior resulting from extrapolation of observed
alternative sets. Any set of identifying restrictions meeting these conditions
will require powerful axioms on behavior, and care must be exercised in avoid-
ing application of these models in situations where the axioms are implausible.
The model above is subject to this general caveat.

The primary limitation of the model is that the independence of irrelevant
alternatives axiom is implausible for alternative sets containing choices that
are close substitutes. An example illustrates this point. Suppose a population
faces the alternatives of travel by auto and by bus, and two-thirds choose to
use auto. Suppose now a second “*brand’ of bus travel is introduced that is in
all essential respects the same as the first. Intuitively, two-thirds of the popula-
tion will still choose auto, and the remainder will split between the bus
alternatives. However, if the selection probabilities satisfy Axiom 1, only half
the populatioﬁ will use auto when the second bus is introduced. The reason
this is counter-intuitive is that we expect individuals to lump the two bus
alternatives together in making the auto-bus choice. This example suggests
that application of the model should be limited to situations where the alterna-
tives can plausibly be assumed to be distinct and weighed independently in the
eyes of each decision-maker.

11. Conditional Logit Estimation

Formula (12) for the selection probabilities, obtained from Axioms 1-3, can
be adapted for empirical analysis by specifying the functional form of
“‘representative’’ utility (s, x). A particularly convenient assumption is that v
is linear in unknown parameters.

AXIOM 4. The funciion v(s, x) has the vform
vis,x) = 0,0 (5, x) + -+ + 0, 0% (s, x),

where the v*(s, x) are specified numerical functions and the 0, are unknown
parameters.

A choice experiment yields observations on N distinct trials (s,, B,), where
s, 1s a vector of measured attributes of an individual and B, is an alternative
set. Let B, contain J, alternatives, indexed j=1,...,J,, with vectors of
attributes x;,. Define z§, = v*(s,, x;,) and z;, = (z},, ..., z}). From Equation
(12), the selection probabilities then satisfy

ez,»,.o

(]6) Pin= P(xinlsnaBn)=_—T'v
Sh, e
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where 8’ = (8,, ..., 6¢).% The experiment provides R, repetitions of trial n, and
the ith alternative is observed to be chosen S, times. Of particular interest is
the case without repetition,

Jn
R, = };lsj,, =1

We term this the conditional logit model. Note that it is an immediate generaliza-
tion to the case of unequal, possibly unranked, alternatives of the multinomial
logit model appearing in the literature.” The derivation of this model from a
theory of population choice behavior appears to be new.

® The generality and limits of this form deserve emphasis. A variable z * = v*(s, x) may be
a component of x, a function specifying a nonlinear transformation or interaction between
components of x, or a function specifying an interaction between x and s variables. It
cannot be a component of s (or x) that is invariant over each alternative set, as this shifts
the origin of the “representative” utility function leaving all the selection probabilities
unchanged, and the associated 6; is nonidentified. In general, the alternatives x, have no
natural ranking, and the indexing j is arbitrary. We would then say the attributes of the
alternatives are generic, or “‘hedonic.”” However, in some application the alternatives are
ranked, and the rank j is a component of the vector of attributes of alternative x, sum-
marizing the “‘unique” characteristics of this position. Then z* may be a variable such that
25 =1and 2z} =0 for / #, yielding a *“specific jth alternative™ effect 0,. Further, the inter-
action of such a variable with other components of x can give variable alternative-specific
interaction effects. An extreme case is that in which the specific alternative effect is the only
attribute varying across the alternative set, and all variables are as an example of the form
zf=s"'and z{ =0 for [+#j, implying v(s,x,)) = 3 J.,5'6,, where only the parameters
6, vary in j. Since translation of all 8, leaves the selection probabilities unchanged, identifi-
cation requires a normalization, say 8, = 0. .

? Binomial logit analysis was popularized by Berkson (1951, 1955) and has been analyzed
extensively in the statistical literature: Antle (1970), Cox (1958, 1966, 1970), Gart (1967),
Gilbert (1968), Grizzle (1962, 1971), Gupta (1967), Harter and Moore (1967), and Walker
and Duncan (1967). Multinomial logit was developed for a special case by Gurland (1960),
and more generally by Bloch (1967), Bock (1969), Rassam (1971), McFadden (19638),
Stopher (1969), and Theil (1969, 1970). An analogous development has occurred for probit
analysis, in which the cumulative normal rather than logistic distribution is used to deter-
mine the selection probabilities (Aitchison and Silvey, 1957; Aitchison and Bennett, 1970;
Amemiva, 1972).

The notion of a distribution of tastes in a population of consumers as a source of
stochastic components of demand has been implicit in much of the literature on consumer
demand theory, particularly in random coefficients models of demand. The use of this
concept in analyzing qualitative choice has been made explicit in the work of Quandt
(1968, 1970; Quandt and Young, 1969; Quandt and Baumol, 1966), where selection proba-
bilities are assumed to result from maximization of a log-linear utility function with
random parameters. The relationship of logit models to distributions of utility functions
was worked out in the context of models of stochastic choice behavior by Marschak (1960)
and Block (1960), and explored further by Luce and Suppes (1965); the econometric
implications of this work were apparently first noted by the author (1968). The foundations
of the theory of testing hypotheses on individual behavior from population data were
developed in a later paper by the author and Richter (1971).
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The vector (S,,,...,S, ,) can be viewed as the result of R, independent
drawings from a multinomial distribution with probabilities given by Equation
(16) for i = 1,...,J,. Hence, the likelihood of the given sample is a function
L= L(0)= L((S},.2,,);0) satisfying

I

Jn

17 P-_S’m.
(17) U ST H 5
Substitution of Equation (16) yields the log-likelihood function
(]8) L =C-— Z Z S,, log z elZin = 2in)0

n=1i=1 j

JN
= C+ Z [( Z Sl""l") R IOg Z ZJnB]

n=1 Jj=1 j=1

where

N Jn
C= 5 [log R!-Y logSj,,!].
n=1 J=1
An estimator for 0 with good large sample properties under very general
conditions is obtained by a vector 0, depending on the observations, which
maximizes the likelihood (18) of the given sample. We discuss the computation
and statistical properties of the maximum likelihood estimator. Several
alternative estimation methods are discussed at the end of this section.
Differentiation of Equation (18) with respect to 0 yields the formulas

“9) QI_‘_: i[i(sjn—Rtun):'n]~
ot n=1] j=1 !
%L oAl
(20) 00 00' = —,.21 R JZI ("jn z ) P_[Il(z_lll n)v
where

Since Equation (20) is the negative of a weighted moment matrix of the inde-
pendent variables, it is negative semidefinite and the log-likelihood function
1s concave in 0. Then L is maximized at any critical point 6 where dL/00 = 0.

Binomial logit and probit analyses have been used in a number of economic applications:
Allouche (1972), Amemiya and Boskin (1972), Fisher (1962), Korbel (1966), Lave (1968),
LLee (1963), Lisco (1967), McGillivray (1970), Moses et al. (1967), Reichman and Stopher
(1971), Stopher (1969), Stopher and Lisco (1970), Talvitie (1972), Thomas and Thompson
(1971), Uhler (1968), Walker (1968), Warner (1967), and Zeliner and Lee (1965).
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If, further, the matrix 9L/ 06’ is nonsingular, L has a unique maximum in 0
(provided ‘one exists). A necessary and sufficient condition for 92L/00 ¢0' to
be negative definite is the following.

AxioMm 5 (Full Rank). The Y)_, J, x K matrix whose rows are (z;,— Z,)
fori=1,..,J,andn=1,..., Nis of rank K.

Since N linear dependency conditions are present in this matrix due to the
subtraction of weighted means, a necessary order condition is Y¥_,J, >
K+ N. This will hold in particular if N > K since J, > 2, but may also hold
for N < K if the J, are large. Analogously to the hypothesis of full rank in the
linear statistical model, we can expect Axiom 5 to hold when the order con-
dition is satisfied provided the data vary across alternative sets and are not
collinear.

We next introduce an inequalities condition that guarantees the existence of
a vector ¢ maximizing L.

AxioM 6. There exists no nonzero K-vector y satisfying S, (z;,—z:,)7
£O0forij=1,...J,andn=1,..,N.

Note that there is a positive probability that Axiom 6 may fail in a finite
sample since the §;, are random. We show later that this probability is
negligible in samples of reasonable size and approaches zero asymptotically.
The following result establishes the existence of a ¢ maximizing L.

LemMMA 3. Suppose Axioms 1-5 hold. Then Axiom 6 is necessary and suffi-
cient for the existence of a vector 0 maximizing L.

Proof: We first show Axiom 6 to be necessary. Suppose L has a maximum
at . but Axiom 6 fails for some y # 0. Recall that

Jn
lOg P,,,(O) — —lOg( Z e(:jn_:in)o).
j=1

J..-'_

If S;, > 0. then (z;,— )B4y < (z»,-,,—:,-,,)é and log P, (0+7) > log P,,(8,).
Then L(0+7) = L(0). Since L is strictly concave, L(0+7v/2) > L(0). contra-
dicting the definition of 6. Hence, Axiom 6 is necessary.

Next suppose that Axiom 6 holds. Define 4 = {y|y’y =1}. For each
7 € A4, there exists j, i, n such that S;,(z;,—z,)y > 0. Define
(2l) b(Y) = Max Max Sin(zjn_:in) Y-

n=1,. .., Ni,j=1,....Jn -

Then b is a positive continuous function on the compact set 4, and has a
positive lower bound b* on this set. Let |0] = (0'0)'/? and define

D = {0]]0|< [~ L(0)+ C]/b*}.
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Consider any 0 # 0, and let y = 0/|0|. Then y€ A, and there exist indices
i, jon such that b(y) = S;,(z;,— z;,) y- From Equation (18),

Jn
L(()) - C S S,-,, lOg Pin = —"Sin log z e(zkn“linnlﬂl

k=1
< —Sin(zjn—zin)y}0| = -—b(‘)’)lf)'
< —b*0].

For0¢ D, L(0)—C < ~b*|0| < L(0)—C. Hence, L can be maximized on the
compact set D, and an optimal 0 exists.

The following lemma establishes that Axiom 6 can be tested by solving a
quadratic programming problem. This can be done by using a finite com-
putational algorithm such as Lemke’s method. In practice it is unnecessary to
carry out this computation for sample sizes N exceeding the number of
parameters K, as the probability of nonexistence rapidly becomes negligible.

Liimma 4. Suppose Axioms 1-5 hold. Then Axiom 6 holds if and only if
the minimum in the following quadratic programming problem is zero:

Min'vlvl)
y.a
subject to
N dy
(22) Yo=Y w0 SilE i T and oy, = 1.
n=1i,j=1"

Proof: Suppose the program has a zero minimum, achieved at some v’ = 0,
but that Axiom 6 fails. Then there exists 7 # 0 such that SinZin—zin)y <0,
with at least one inequality strict by Axiom 5. Then

N Jn
0=ypy=3 Y wpSnn—2z.)y <0,
n=]i.j=1

a contradiction. Thus, if the program has a zero minimum, Axiom 6 holds.

Let K denote the convex cone generated by the vectors S, (z;,—z;,) for
n=1,...Nandij=1,...,J,. If the origin is in the interior of K, then there
exist positive scalars ay, such that y’ = YN, Ugin Sin(Zjn—2ip) = 0, and the
quadratic program achieves a minimum of zero. If the origin is not in the
interior of K, then there exists a separating hyperplane with normal y # 0
such that S, (z;,—z,)y <0 for all n=1,....N and i.j=1,...,J,. Hence,
Axiom 6 fails. This proves the lemma.

Computation of the maximum likelihood estimator can be carried out using
a variety of standard programs for unconstrained nonlinear optimization.
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Since the likelihood function is strictly concave, any algorithm which con-
verges will attain the maximum. Experience has shown that a standard
Newton-Raphson algorithm may converge slowly for this problem; we have
found that one efficient procedure is to use Davidon’s variable metric method
to determine direction of search and a one-dimensional procedure employing
a cubic approximation to determine the optimal step size.®

The maximum likelihood procedure has proved practical for problems of up
to 20 variables and 2000 observations, but is relatively costly for large samples.
A quick procedure which can be used for screening models is to make a linear
expansion of the gradient of the likelthood function (19) in 0 about some
initial vector 8, and then solve for the value of 0 equating this approximate
gradient to zero, or

N Jn -
(23) 0 = 9+[}: Ry (zjn—fn)’an(zj"—E“)]
n=1 Jj=1
ra~ . 3
X [Zl .Zl (zj"—f")’(Sj"-Rn Pjn)]v
n=1 j=

where P, = P,,(0) and Z,=3Yjz,z;, P;,. Note that  is the result of one
iteration of a Newton-Raphson procedure for maximizing the likelihood
function, and can also be interpreted as the ordinary least squares estimator in
the linear model (with R, observations for each n)

(24) . (‘an);”z [(Sjn/Rn)—an] = (an)llz(:jn—zn)(()—g) + sjn'

Equation (24) is termed the linear probability model, and is sometimes taken as
a specification of selection probabilities P;, = £(S;,/R,). The estimator § is
not a consistent estimate of the true parameter vector 6 when the specification
of Axioms 1-6 is valid; however, as a practical matter it usually agrees in
magnitude and sign with the maximum likelihood estimator provided the
terms |(z;, — Z,)(0—0)| are less than unity. Equation (24) is inappropriate for
use in forecasting selection probabilities because the requirement that the
forecasts lie in the unit interval is not met.

When the number of repetitions for each trial is large, a method of estimation
developed by Berkson (1951) and generalized to the multinomial case by Theil
(1969) can be employed. When S,,,S,, are large,® log(S,/S,,) is a close
approximation to the left-hand side of

(25) _ log(Pin/Pln) = (:in—zln) 0,
and an estimate of & can be obtained by applying ordinary or weighted least
® The author is indebted to H. Wills and H. Varian for work on the numerical methods

and programming of this problem.
? A rule-of-thumb is §;, > §.
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squares to the model
(26) log(S,.,/S1) = (Zin—=21) 0 + €,

taking into account linear restrictions across equations.'® This procedure is
asymptotically equivalent to maximum likelihood estimation as the S,
approach infinity (for appropriate weights in the regression), and is to be
preferred to the maximum likelihood procedure on computational grounds.
It should be noted, however, that grouping observations that are not exact
replications in order to achieve the cell frequencies required for application of
the Berkson-Theil method introduces an “‘errors in variables” component that
makes the estimator inconsistent and may make it seriously biased. In such
cases the maximum likelihood procedure should be more reliable.

III. Statistical Properties

Maximum likelihood estimation of the conditional logit model can be shown
under very general conditions to provide estimators that are asymptotically
efficient and normally distributed. Examples suggest that the approximation
is reasonably good even in quite small samples. These results can be used to
construct approximate large-sample confidence bounds and tests of hypotheses
for the parameters.

We have noted that for finite sample sizes, there will be a positive proba-
bility that a maximum of the likelihood function cannot be attained. This
corresponds to the case where the system of inequalities in Axiom 6 has a
nontrivial solution and the sample is “‘explained” by maximization of this
linear combination of the independent variables. We first show that when the
sample is in fact generated by probabilities satisfying Axioms 1-5, then the
probability that the likelihood function has a4 maximum approaches one as the
sample size increases. We impose the following condition on the data.

Axiom 7. The numbers of alternatives J, are uniformly bounded by an
integer J,. The independent variables z,, are uniformly bounded by a scalar

10 Some improvement in the statistical properties of the unweighted Berkson-Theil
estimator can be obtained by replacing Equation (26) with the regression equation

Sint}

Iog(Sm+i) = (Zin—21) 0+ €in. (26a)
This modification, suggested by Haldane (1955) for the binomial logit model, makes
E log[(Sin+ D/(Sin+ 1)] equal to log(P.,/P.n) up 10 a term of order 1/R,?, rather than of
order l/R,, as R, approaches infinity. This improves the speed of convergence of the
estimators to their large-sample valies. Minor modifications of the Haldane argument
establish its validity in the multinomial case.
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M.'" The limit of the weighted moment matrix, as 3'V_, R, — + 0,

: N -1 N In
(27) lim(Z R,,) Y R, Y (=) Pulzin—Z) = Q.
n=1 i=1
exists and 1s positive-definite.

The last part of this axiom strengthens the full-rank condition assumed
carlier, implying that an infinite number of blocks of K trials can be found
satisfying Axiom 5.'? One can expect Axiom 7 to hold provided the data are
not multicollinear and do not tend to become explosive or degenerate as the
sample size increases. The following results are proved in the Appendix.

LimMA 5. Suppose Axioms [-4 and 7 hold. Then the probability that Axiom
6 holds and the maximum likelihood estimator exists approaches unity as
SN R, upproaches infinity.

LEMMA 6. Suppose Axioms 1-4 and 7 hold, 0° is the true parameter vector,
and 0™ is the maximum likelihood estimator for a sample of size M =
SN_ R,. Then 0 is consistent and asymptotically normal, with

N 1/2 .
(28) (Z R,,) Q2 (OM -0°),

n=1
tending to a multivariate normal distribution with mean zero and a covariance
matrix equal to the identity matrix.

This lemma implies that 9" tends to be distributed normally with mean 0°
and covariance matrix (., R,)"'Q ™', and that the quadratic form

n=1

. A

Q) = (Z R,,)(O'"—()")’Q(()‘"——()")
n=1

tends to be chi-square distributed with K degrees of freedom. These statistics

can be used to carry out large sample tests of hypotheses on 0°. In particular,

diagonal elements of the inverse of the information matrix (X5, R,)”'Q™"

provide estimates of the variances of the estimators.'® To test a hypothesis

1 Le., |zia) < M, where the norm |4} of any array /4 is the sum of the absolute valucs

of its clements.
12 Otherwise, all but a finite number of veclors z;,— 3, can be written as linear com-

binations of less than X lincarly independent vectors. Then, Q must also have this property,
contradicting the hypothesis that it is nonsingular.

'3 Some improvement in the speed of convergence can be attained by multiplying these
estimates by a correction factor for degrees of freedom,

Z'T” | Rn(-’n'— 1)
a- R 1) =K




ANALYSIS OF QUALITATIVE CHOICE BEHAVIOR 121

that the true parameter vector 0° lies in a (K- K,) dimensional manifold,
calculate the maximum likelihood estimator 0% under the null hypothesis and
the unconstrained maximum likelihood estimator (. Then the statistic

(29 =2[L{0")~ L] = (0" -0y Z‘ R, Z. (Zin= 22 Pin (21— Z,) (0% ~ D),
n= i=

with P, evaluated at 0. is distributed approximately chi-square with A,
degrees of freedom. If the null hypothesis is that 0° is zero, or that it is zero
except for pure alternative effects, then this statistic provides a test of the
significance of an estimation equation. indicating respectively the “mean
square error’ explained or the “‘variance™ explained. Noting that the extreme
case is L(0) x 0, we can define a coeflicient of determination that is analogous
to the multiple-correlation coethicient in the linear statistical model.

(30) pt=1 - —L(,\-(il)- .
L(0™)
If 0" is zero, or if 0" is zero except for pure alternative effects and the model
contains such effects, then p? lies in the unit interval. If, in the latter case, the
model has no pure alternative effects, it is possible for p? to be negative.

A second measure of goodness of {it is based on deviations of observed from
fitted relative frequencies. Define the weighted residuals

(31) D, = 2o Fa L
R in (R P‘")UZ .
for i=1.....J, and n=1,....N, where P, is evaluated at the maximum

likelihood estimate. These residuals satisfy the first-order conditions for
maximization of the likelihood function,

N J ’
(32) Z (rn)“2 Z [)m(})m)l l(:in*—fn) = 0.
n=1 i=1
where
R
(33 '" = —-L-—— N
) ' ?’n——l Rm

and the conditions

J.,
(34) Y (P, =0,

i |
forn =1..... N.atotal of N+ K restrictions. Now suppose SV | R, approaches
tfinity, with each r, approaching a limit. We show in the Appendix that the
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D,, are distributed asymptotically with mean zero and covariances
A = EDinDjm = 6nm[5y'_(Pi(r)uPﬁ|)”2]

in. jm

(35) - (f‘m rnPi?l. PJ(’)m)l/Z(zin— Zn)Q_ : (zjm_ Em)

Consider the case in which N remains finite and the R, approach infinity.
Then A is an idempotent matrix of rank N*=YN  J ~N—K, and the
asymptotic distribution of the D;, is multivariate normal. Hence,

(36) G=13 ) D}

has an asymptotic chi-square distribution with N * degrees of freedom.'* The
statistics D;, and G can be used to carry out large-sample tests of the model
specification. For example, regression of the D,, on potential independent
variables provides evidence on the validity of their exclusion from the model.
A test of the significance of G provides evidence on wc vahdny o1 tne 1ug,.
specification of the selection probabilities and the absence of *‘alternative
set” effects. Further, one can define an analog of the multiple-correlation
coefhcient,

(37) R’ =1 - G/G",

where G is given by Equation (36) and G" is given by the same equation when
the numerators of the residuals are evaluated under the hypothesis that the
parameter vector is zero, or is zero except for pure alternative choice effects.

In evaluating the results of regressions of the D,, on potential independent
variables, one should adjust for the nonindependence and heteroskedasticity of
the D,,. This can be achieved in part by using the linearly transformed
residuals

D, (P) 2 [1=(P, )
(38) Y,',, — D,’,, —_ ln( m) [ ( ln) ] .
) - Plll
defined for i=2,....J, and n=1,...,N. The Y, are asymptotically multi-
variate normal with mean zero and covariances

(39) ra'n,jm = EYm ij = (jnm ()y - q:n 9 -

'* Treating G as a function of ¢ and minimizing it at a value  provides a minimum
chi-syuare estimator of the parameter vector. The first-order conditions for this minimiza-
tion coincide with Equation (32) except for a term, reflecting the effect of changing 0 on
the weights in the denominator of Equation (31), which has probability limit zero when the
R, — + ou. Thus, the maximum likelthood and minimum chi-square estimators are asymp-
totically equivalent under these limiting conditions. On the other hand, the minimum
chi-square procedure is not consistent under the limiting conditions that N — + 00 and R,
remain finite.
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where

Ph—(PL)"

(z ,,——2,,))()“ /2
i-pe,

(40) q:,n = (I‘" Pi?l)llz ((zin-zn) +
The matrix I is idempotent of rank N*. When the r, are small, the matrix " is
nearly diagonal, and the regression of any subset of N* of the Y, on potential
independent variables can, as a good approximation, be treated as inde-
pendent and homoskedastic with unit variance.

We next consider the case in which N approaches infinity and the limiting
values of the r, are zero. Then, the residuals D,, have an asymptotic multi-
nomial distribution with mean zero and covariances given by Equation (335),
with the second term in this expression vanishing. The D;, and the transformed
residuals Y, defined in Equation (38) are independent across n, and the Y,
have zero mean, unit variance, and zero covariances. Suppose integers N,
satisfy YM_ N, = N and N, — + co. Then the statistics

(41) ym = Zﬁé";vt,f,+|Zfiz Y,

(Z::{;'!'\l:li— 1 Ju_ lvm)l/2 ’

where N,’ =N, + ---+ N,,_,, are asymptotically independent standard
normal, and can be used to test the specification of the absence of alternative
set effects. When the R, remain small, the distributions of the D;, and Y,
depart substantially from asymptotic normality. The statistics G and R?
defined in Equations (36) and (37) remain useful summary measures, although
the robustness of the asymptotic distributions obtained in the previous case
has not been investigated. Since the Y,, satisfy the Gauss-Markov assumptions
when the model is specified correctly, the usual asymptotic theory for the linear
statistical model can be applied to test the validity of excluding potential
independent variables. .

The small sample properties of the maximum likelihood estimator of the
conditional logit model are unknown except for a few special cases. Monte
Carlo studies of related models suggest that maximum likelihood, minimum
chi-square, and Berkson-Theil estimators are all reasonably well behaved in
small samples, even when the number of repetitions is small.'> We next
consider several simple examples in which the maximum likelihood estimator
can be calculated analytically. These examples suggest that the maximum
likelihood estimator is well behaved in samples of sizes likely to be encoun-
tered in applications, 50 and greater, but may be inferior to the linear proba-
bility model estimator in very small samples provided the range of the data is
not too large.

'5 Berkson (1955), Gart and Zweifel (1967), Gilbert (1968), and Talvitie (1972).
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Example I. Suppose N observations are taken of a binary choice with a
selection probability P, = 1/(1 + e~ ?') for the first alternative, and suppose this
alternative is chosen § times. The maximum likelihood estimator exists if
0 < S < N, and equals 0, = log[S/(N— S)]. Table | gives the actual expecta-
tion and variance of 0,, conditioned on existence, and the large sample
variance calculated from the information matrix. The last columns give the
linear probability model approximation (23) to the logit model from starting
value zero. For sample sizes exceeding 20, the maximum likelihood estimator
and its calculated variance have expectations that are within 109 of true values
except for extreme selection probabilities (e.g., 0, = 2.0 yields P, = 0.88). The
linear probability model approximation is quite accurate for small parameter
values, even for small sample sizes. The bias is severe however for extreme
selection probabilities, and is independent of sample size. The probability of
existence of the maximum likelihood estimator rises rapidly with sample size,
even for extreme selection probabilities.

Example 2. Suppose N = 2R observations are taken of a binary choice with
selection probabilities P,, = 1/(1 +e7% ~%%) where x,=0 for n=1,...,R
and x, =1 for n= R+1,...,N. Suppose the first alternative is chosen S,
times in the first R observations and S, times in the second R observations.
The maximum likelihood estimator exists if0 < §, < Rand 0 < S, < R, and
equals 8, = log[S,/(R—S5,)] and 0, = log[S,/(R—S,)]—log[S,/(R~S))].
Table 2 gives the conditional expectations of these estimators and the expecta-
tions of the variances calculated from the information matrix for selected
parameter values. The pattern of the biases generally conforms to that of the
previous example. For a sample size of 10, the estimator and its calculated
variance are substantially biased, the former downward and the latter upward.
As sample size increases, the bias in the estimator swings positive, but never
more than 109, and then approaches zero. The calculated variances show
similar behavior with reversed sign, their bias going from positive to negative
as sample size increases and then approaching zero. As the parameter values
and selection probabilities become more extreme, there is an increase in the
sample size at which the maximum positive bias in the estimator occurs. The
linear probability model approximation provides an accurate estimator for
small sample sizes and parameter values, and indicates correctly signs and
orders of magnitude of parameters even for extreme values, but with substantial
biases. In samples of size 100 or 200 the biases and probabilities of non-
existence of the maximum likelthood estimator are acceptably small even
for extreme selection probabilities.

One must be cautious in generalizing too far the conclusions drawn from
these examples. In particular, we have not explored the behavior of the esti-
mators in samples in which the observations are generated by mixtures of
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extreme and nonextreme selection probabilities. On the other hand, we
anticipate that the qualitative structure of biases will be unchanged by the
addition of independent variables or of multiple-choice alternatives, as the
estimator is analogous to a lineur statistical estimator except for the nonlinear
dependence of the selection probabilities on the parameters.

IV. An Empirical Application

The theory of qualitative choice behavior outlined above has been applied
to several areas of consumer choice. The author (1968) has investigated the
criteria employed by a state highway department in selecting urban freeway
routes. The determinants of college choice have been studied by Professor
Miller and Professor Radner (1970), and the results have been used to forecast
the effects of changing educational policy on college enrollment. Professor
Boskin (1972) has applied the model to the problem of occupational choice.
Studies in progress are investigating urban trip generation, distribution, and
modal choice; labor force participation and job search decisions; housing
location and type; recidivism; child-bearing decisions and the implications of
population control policy: choice of consumer durables; and rural-urban
migration decisions. To illustrate the method, we reproduce here selected
results on shopping trip mode and destination decisions obtained in a study of
travel demand models by T. Domencich and D. McFadden (1972).'°

The objective of this study is to develop disaggregated, policy-oriented,
behavioral models of urban trip generation, distribution, and mode. The
behavioral unit studied is the individual trip-maker, faced with decisions on
whether to take a trip, mode, and destination. The empirical analysis is based
on a household survey in Pittsburgh conducted by the Southwestern Penn-
sylvania Regional Planning Commission in 1967, supplemented with time and
cost data collected by the study authors. A detailed description of the sample
frame and variables collected 1s given in the study.

The analysis of shopping travel behavior is separated into three decisions:
(1) choice of mode for trips actually made at the observed time and to the
observed destination; (2) choice of destination for trips made at an observed
time by preferred mode; and (3) choice of whether or not to make a trip, given
a preferred time, mode, and destination.'” The results of each analysis are
summarized 1n turn. '

'e The results below are reproduced with the permission of Charles River Associates, Inc.
'7 The separation of these decisions is justified in the study by postulating a “tree”
utility structure; we shall not repeat the argument here.
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Shopping choice of mode

Choice between public transit and auto mode is examined for a sample of
140 individual shopping trips. For each observation, walk access to transit is
available. The sample is drawn from a southern suburban corridor of Pitts-
burgh and a central city corridor running from downtown to the east. A number
of alternative models were fitted; those giving the most satisfactory results in
terms of fitting the base data are described in Table 3. All coefficients in these
models are of the expected sign. The coefficients of transit walk time, auto
in-vehicle less transit station-to-station time, and auto operating costs less
transit fares imply a value of walk time of $5.46 per hour and a value of in-
vehicle time of $0.95 per hour in Model I. These values are in close accord

TABLE 3

CONDITIONAL LOGIT MODEL OF SHOPPING MODE CHOICE;
DEPENDENT VARIABLE EQUALS THE LOG ODDSs oF CHOICE OF AuTO MODE;
BinaRY LoGIT MAXiMUM LIKELIHOOD ESTIMATES; STANDARD ERRORS IN PARENTHESES

Independent variable Model I Model2 Model3 Model4d
Pure auto mode preference effect . —6.77 —6.20 —6.65 —-6.37
(constant)? (1.66) (2.10) {1.54) (1.82)
Transit walk time (minutes) 0.374 0.398 0.30 0.274
(0.328) (0.410) (0.351) (0.612)
Transit wait plus transfer time (minutes) 0.0647 -
‘ (0.0403)
Transit station-to-station time (minutes) — — — 0.0532
' (0.0455)
Auto in-vehicle time (minutes) .- — — —0.0486
‘ S (0.0956)
Auto in-vehicle time less transit station- —0.0654 —0.0636 — —
to-station time (minutés) (0.0320) (0.0398)
Auto in-vehicle time less transit line-haul - — ~0.0287
time (minutes) b (0.0715)
Auto operating cost less transit fares —4.11 ~4.66 -4.10 —4.06
(dollars) (1.67) (2.06) 2.13) (1.74)
Ratio of number of autos to number of 2.24 2.26 2.0t 1.89 .
workers in the household (.1 (1.14) (1.04) (0.76)
Race of respondent (0 if white, | if non- — —~2.18 - —
white) (1.26)
Occupation of head of household (0 if — —1.53 - —
~ blue-collar, 1 if white collar) (1.10)

“ Because of the sample selection procedure and the presence of the last three variables
giving sociocconomic-auto mode interaction effects, this constant cannot be interpreted as
a ‘transit” bias that would be replicated in.a random sample of the population.
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with shoppmg trip value of time studies. Thus, the estimates seem quite stable
despite the relatively large standard errors. The models provide excellent fits
of the base-line data; in Model 1, the probability of selecting the actual mode
is greater than one-half for 133 of the 140 observations, and greater than 0.9
for 116 of the 140 observations.

Shopping choice of destination

The choice of shopping destination is analyzed for 63 auto-mode trips
starting from the southern suburban corridor. The possible alternative destina-
tions for each observation are selected by dividing the city into zones and
choosing all destination zones to which there is a trip in the sample from the
origin zone, The number of alternatives varies from three to five in this sample.

This model is estimated using only three explanatory variables, an inclusive
index of the **price” of a trip in terms of time and cost, an index of the
“attractiveness” of each shopping destination, and an interaction of the
inclusive price index and a socioeconomic variable, the number of preschool
children. The inclusive price is defined from the shopping mode choice Model 1
to be

[Inclusive price] = 0.0654 [Autoin-vehicle time] + 4.1 1 [Auto operating cost].

The measure of destination attractiveness is taken to be the retail employment
in the zone as a percentage of total retail employment in the region. Because
the alternative destinations are unranked and vary from one observation to the
next, the explanatory variables enter generically. In particular, it is assumed
that there are no ““specific destination™ effects. The results of the estimation
are given in Table 4. The two independent variables above are both found to be

TABLE 4

CONDITIONAL LOGIT MODEL OF SHOPPING DESTINATION CHOICE:
DEPENDENT VARIABLE EQUALS THE LOG ODDS THAT ONE DESTINATION
ZONE 15 CHOSEN OVER A SECOND;

MuLtinoMiAaL LoGit MAXIMUM LIKELIHOOD ESTIMATES:
STaNDARD ERRORS IN PARENTHESES

Independent variable Model 5 Model 6
Inclusive price of trip (weighted time —~1.06 —0.602
and cost using Model | weights) (0.28) (0.159)
Index of attractiveness of destination 0.844 0.832
(0.227) (0.224)
Interaction effect equals the inclusive - —0.521
price of trip times the number of (0.343)

preschool children
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highly significant. Model 6 yields calculated selection probabilities which are
maximum for the actual destination in 29 cases, as opposed to a match for 16
cases which would be expected by chance.

Shopping trip frequency

The decision of whether to take a shopping trip on a given day is analyzed
for a sample of 80 households in the southern suburban corridor, of whom 59
recorded a shopping trip on the survey day. An inclusive price of a trip for
nontrip takers is calculated by assuming that the distribution of destination
preferences is that determined in Model 6, and that utility has a separable form
implying this distribution is independent of the distribution of tastes for taking
auto trips. The independent variables in the model are the preference-distri-
bution-weighted inclusive price, the measure of attractiveness of shopping
zone used above, similarly weighted, and a household-income shopping trip

TABLE 5

CONDITIONAL LOGIT MODEL OF SHOPPING TRIP FREQUENCY :
DEPENDENT VARIABLE EQUALS THE LOG ODDS OF MAKING A
SHOPPING TRIP ON SAMPLED DAY
BiNnoMiaL LOGIT MAXIMUM LIKELIHOOD ESTIMATES;
STANDARD ERRORS IN PARENTHESES

Independent variable Model 7 Model 8
Inclusive price of trip (weighted time ~  —1.72 - 1225
and cost using Model 6 weights) . (0.54) (0.68)
Index of attractiveness of destination 3.90 2.85
(1.08) (1.19)
Family income — —-0.199
(0.195)

interaction variable. The estimates are given in Table 5. Model 7 predicts the
actual decision with probability 0.5 or better for 60 of the 80 observations.
The models above of shopping mode, destination, and frequency decisions
can be combined with distributions of the independent variables in an urban
area to produce trip generation and distribution tables by mode.'® These

* Such tables could also be generated by aggregating over individuals for a random
sample of the populauon a procedure that requires a smaller sample than that necessary
to obtain accurate cell frequencies for a detailed classification of multiplc-independent

variables. In particular, the sample used to calibrate the models may be utilized to produce
trip tables. On the other hand, when samples of sufficient size arc available to obtain cell
frequencies, it may be possible to calibrate the model using the Berkson- Theil estimation
procedure.
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tables are functions of policy variables such as transit fares and wait times, and
can be recalculated to forecast the effects of policy changes on the trans-
portation system. Because the parameters are estimated from data at the level
of the individual decision, they do not suffer from the *‘fallacy of composition™
that could occur in attempting to infer response elasticities from data on
behavior of heterogeneous groups. Thus, this modeling approach has the
potential of providing accurate forecasts of the response of shopping travel
demand to policy variables, -in a framework that exploits the common thread
of utility maximization and taste distribution in a variety of choice situations.

The empirical study summarized above represents a typical application of
the theory of qualitative choice behavior of populations of consumers, with
the conditional logit specification of the distribution of tastes. For applications
in which the independence of irrelevant alternatives is plausible, this statistical
procedure provides an analog for qualitative dependent variables of the
conventional linear statistical model.

Appendix: Proofs of Statistical Properties

This section outlines proofs of Lemmas 5 and 6, and the properties of
statistics based on weighted residuals.

LeEmMMA 5. Suppose Axioms 1-4 and 7 hold. Then the probability that the
maximum likelihood estimator exists approaches unity as 3 ¥_, R, approaches

infinity.

Proof: As noted in the text, Axiom 7 implies that Axiom 5 holds when

~~1 R, is large. We next show that Axiom 7 implies a second linear inde-
pendence condition. Let » be a serial index of trials and repetition; e.g., m
identifies the r,th repetition of trial n,,. We shall show that there exists an
infinite subset M of the indices m. and integers i,.j, satisfying |1 <i,,
Jm < J,,, such that each sequence of K successive vectors =, , —=z; . for
m e M are linearly independent. We proceed by induction. Axiom 7 implies
there is some m, i,jsuch that z;, —z, #0;set M| ={m}, i, =i andj, =]
Suppose that we have constructed a set M,_, containing /— | indices that
satisfy the required property. Suppose there does not exist an index m, such
that M, = M,_, v {m,} has the desired property.Then, for all m > m,_, and
l<i j<J,,,thevectorz;,, —z;, can be written as a linear combination of
vectors z; , for the last K—1 or fewer elements p of M,_,. But then
Zinm ™ Znp = 2571 Piny(Zin,, = Zjn,,) @ls0 has this property, implying that the
limiting matrix Q in Axiom 7 is singular, for a contradiction. Hence, by induc-
tion, the set M = {2, M, has the desired property.

Partition the set M into successive subsets M ', M2, ..., cach containing K

P Jphp
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elements. Let W denote the matrix withrows z; , —z,  for me M. Then,
W4 is nonsingular and the linear transformation (W*~")(W9)~ " is continuous.
Hence, for even ¢ one can define a strictly positive vector a*~ ' and a vector o
with no zero elements such that a'W9 =¢a? "W !,

For g even, consider the event in which alternative i, is chosen form e M?™";
alternative 7, is chosen for me M* if a,% is negative; and alternative Jn 18
chosen for m e M if 4, is positive. Suppose this event occurs. but Axiom 6
fails, and let y # O be such that S,,,(-J,, Zi)y < Oforallijon. Then, W9 lyis
a nonnegative vector. Since W9 ' is nonsingular, it has at least one com-
ponent positive. Hence, a*Wéy =o' "W 'y > 0. But = and W9y have
opposite signs in each component, contradicting the last inequality. Therefore,
when this event occurs, Axiom 6 holds and the maximum likelihood estimator
exists.

The selection probabilities are bounded below by

(42) P s ™M = s,

where J, and M are the bounds given by Axiom 7. Hence the probability that
the event above occurs for an even ¢ is at least P2*, and the probability that
this event occurs for some even 4 < < 2¢° 1s at least = (=P This qut
probability approaches unity as ¢" — + o0, proving the lemma.

LimMMA 6. Suppose Axioms 1-4 and 7 hold, 0° is the true parameter vector
and 0™ is the maximum likelihood estimator for a sample of size m = 3V
Then ()"' is consistent and asymptotically normal as m — + 0, with

n = n'

JmQU2(fm -0,

tending to a multivariate normal distribution with mean zero and identity
covariance matrix. :

Proof: We shall first éstablish that O™ is a consistent estimator of 0°. From
Axiom 7, |z, | < M for a positive scalar M. Differentiation of Equation (16)
-ields the bounds

ologP,,
a0

0% log P,,
o0 oo

o log P,

a0 o0’ J0,

(43)

uniform in 0.
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Let m be a serial index of trials and repetitions, and let S, equal unity if
alternative i is chosen at this observation and zero otherwise, for 1 < i < g -
Define a sequence of independent random variables

Jiim
(44) ) Am(a) = Z Sim 10g Pm(g)
i=1
Then
]
(45) LYO) = C,+ ) A™(0),
Tom=1

with C, a constant independent of 6, is the log likelihood function. From
Equation (43), the derivatives of 1™, denoted 8A™/d0 = i,", etc., satisfy the
uniform bounds |4,"|<2M, |ig,|<4M?, and |A5,.|< 8M3. Further,

L2P
46 £2,"(0°%) = LY )
(46) /g (07) [‘:Zl 0 Lo
Define
Q, = — EA7..(0°
. Jnm
(47) = Z (zin"._an)’Pinm(zinm—En".)‘
i=1
Then by Axiom 7.
l 4
(48) lim- > Q= Q.

Camx g

Let f denote the smallest characteristic value of Q. Then there exists go such
that for ¢ > ¢,. the smallest characteristic value of (1/g) 28 _,Q, is at least

B/2.

Given a small positive scalar &, choose d = min{e, f/4(1 +4KM?)}. The
strong law of large numbers (Feller, 1966, Vol. I, p. 233) implies that there
exists g, > qo such that for g > q,, L,2(0°) = 39 _, 4,™(0°) satisfies

< &2,

(49)

1
- Loq (00)
q

wiih probability at least 1 —¢.
A second-order Taylor’s expansion of L§ about 0° yields

] | l 11
(50) p L3 (0) — ;Lgk,(o")(()—oo) = p Lg (0% + 3 ;(0—00)'Lgk,,,,(9) (0—0°),
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where § lies between @ and 0°. Consider ¢ > ¢, and 0 satisfying
(0-0°)(0—0° = &%,
and suppose Equation (49) holds. Then

(51) ngk(B) - ész,(o")(o—oO) < 62 (1+4K2M3) < 3p/4.
Hence,

l
(52) (—I|(0—0°)'Lo"(0) — (0 —0°) Lo (9°)(0—0%)| < 5°p/4.

But (1/¢)(0—0°) Lgy (0°)(0—0°) < —82B/2, implying
(53) 2(0—0°)'L,"<0> < —5%4.

Hence, at each point on the sphere (0 —0°)'(0—0°) = 82, the gradient L,%(0) is
directed inward. Since LY is concave in 0, this implies that a maximum ¢4 of
L9 is achieved inside this sphere. Since this event occurs with probability at
least 1 —¢, we have proved the estimator to be consistent.

We next show that /g Q'/2(6?—0°) is asymptotically standard multivariate
normal. Evaluating the Taylor’s expansion (50) at the maximum likelihood
estimator yields

1 I -
(54 0= (—ngk(6°) + = L o (0°)(0—0°) + 4M > [0? — 0°) a, (0 - 0°),
q

where g, is a 1 x K vector depcnding on 04, which satisfies |a,| <1. Letting 4
denote the matrix with rows g, and defining

I < .
(55) D, = Q'”"'(— ZQ,,,—4M3l0"—()°|A)Q‘”Z,
qm=|
Equation (54) can be written
| o~ . |
(56) : —-—_—Q"ZD“[\/qQ”Z((}“—UO)J = ~ Ly (0°).
N q
Then,
(57) plimD, = 1~ 4M>*Q 24072 plim |0° - 0°| = 1.
d p

4~ g -

—Hene&,vﬁaﬂﬁ@%hwﬁwmeﬁympwﬁcdﬁstribution—ras' -

] 1<
(58) Q2L A% = - Q12 m0°).
g ’ q,,,zz, ’
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But the independent random variables Q™ !/21,"(0°) satisfy the Lindeberg-
Levy theorem (Feller, 1966, Vol. Il, pp. 256-258), implying that Equation (58)
is asymptotic standard normal. This proves the lemma.

Since /¢ Q!/?(87—0°) is asymptotically standard multivariate normal, it
follows that (87— 6°)Q(#7—6°) is asymptotically chi-square with K degrees
of freedom. Further, a second-order Taylor’s expansion of the log-likelihood
function about # can be used to establish that ¢(87—8°)'Q(8*—6°) and
2[L (6% — L(8)] converge in probability, and hence have the same asymptotic
distribution. This argument justifies use of the statistic (29). Details of the
proof can be found in Theil (1971, p. 396), Rao (1968, pp. 347-351), and
Kendall and Stuart (1967, Vol. i, pp. 230-236). Rao gives several asymp-
totically equivalent forms for the test.

Consider the weighted residuals D,, in Equation (31). Define

_ Sw—R, P

(59) Dia = (R pOyi2 °
N Im
(60) DL=Y Y (rarmPoPi) ' (2in—2,) Q7 (Zjm=Z) Djms
m=1 j=1 . :

where P2 = P,,(8°). Then DS, has a multivariate distribution with EDj, =0

and ED?, D%, = 6,,[0,—(P3 P})'/*], implying EDj, = 0,

(61) EDY, D), = (ryra P2 PO (20— 2,) Q7 (Zjm— Zm),

and asymptotically '

(62) ED}, D}, = (ryrw Po P (21— Z,) Q7 N2 jm— Zm)-

Making Taylor’s expansions, one can show that the random variables
(Rn)l(’;f?.})){,’,lz— Py) and  (r, PO (z,-,,-—Z")('il Rn)l/z (6°—0)

differ from — D). by terms with probability limits zero. It then follows, since
(XN_, R,)'/2(6°—8) is asymptotic normal with mean zero and covariance
matrix Q, that these three random variables have a common asymptotic
normal distribution. Hence, D% — D}, has an asymptotic distribution with
mean zero and covariance

Ain.jm = 6nm[5§i_(Pi?l Pﬁ")lll]
(63) __(rnrm Pi?tPme)”z(zin—'fn)Q—I(zjm_zm)'
Write

Sin—Rn PI?I (RN)I/Z(PI?I—P:I)I
B (Rn Pin)llz T (Pin)llz

(64) Din



ANALYSIS OF QUALITATIVE CHOICE BEHAVIOR 139

The first term differs from Dj,, and the second from — D), by factors with

in>

probability limits zero. Hence, D,, has the same asymptotic distribution as
D},—D;,. When the R, approach infinity, D2 is asymptotically normal,
implying D;, asymptotically normal. The covariance matrix can be written

N
(65) A=1T- Z Gn G »
m=0

where

(G0)in = (r, P2 (2, —2,)Q7 "2,

(Gmdin = Oma(P)'2.  m =1,...,N.
The vectors ¢, are orthonormal, implying A idempdtent of rank N* =
>r-1J,—N—K. Then G=3"_, 39 D? has an asymptotic chi-square dis-

J=1 ,
tribution with N* degrees of freedom (Rao, 1968, p. 149).
Next consider the linear transformations

(66) Vi = Dy~ DialP) 2y, i=2,..4,,

where a, = [1 —(P,,)!/*](1 = P,,). Then, Y., has the same asymptotic dis-
tribution as the random variable ¥ formed by replacing P, with P2 in
Equation (66), and the latter random variable has asymptotic moments
EY) =0and

rin.jm = Eyi?- Y_ﬁn = ED,, Djm - (pjpm)l/Zam ED,, D,,
~(P3)\ 4, ED,, D, + (P2 P2)?a,a, ED,,D,,
= Oun O = Yindjm-
with '
Pra= (P!
P,
Then, 33 32, 4ing,, = I and T is idempotent of rank N*. Hence,

N J, N Jn
Z Zyiiz Z ZDJZH

n=1i=2 n=1i=1

Gin = (1, P.-‘,’.)",z((zi,,—:‘,.) + (:,,,—2,,))(2‘ 12,

‘has an asymptotic chi-square distribution with N* degrees of freedom.
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