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Abstract

An extensive literature in econometrics and in numerical analysis has considered the
problem of evaluating the multiple integral P(B; u, Q) = (fn(v — p, Q)de = Ev1(V €B),
where V' is a m-dimensional normal vector with mean g, covariance matrix Q, and density
n{r — . Q). and 1(V € B) is an indicator for the event B = [V |a < V < b). A leading case
of such an integral is the negative orthant probability, where B = |V |V <0). The
problem is computationally difficult except in very special cases. The multinomial probit
(MNP) model used in econometrics and biometrics has cell probabilities that are negative
orthant probabilities. with z and Q depending on unknown parameters (and, in general,
on covariates). Estimation of this model requires, for each trial parameter vector and
each observation in a sample, evaluation of P(B: g, Q) and of its derivatives with respect
to ;¢ and Q. This paper surveys Monte Carlo techniques that have been developed for
approximations of P(B; i, Q) and its linear and logarithmic derivatives, that limit compu-
tation while possessing properties that facilitate their use in iterative calculations for
statistical inference: the Crude Frequency Simulator (CFS), Normal Importance Sam-
pling (NIS). a Kernel-Smoothed Frequency Simulator (KFS), Stern’s Decomposition
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Simulator (SDS), the Geweke-Hajivassiliou-Keane Simulator (GHK), a Parabolic
Cylinder Function Simulator (PCF), Deak’s Chi-squared Simulator (DCS), an Accept-
ance/Rejection Simulator (ARS), the Gibbs Sampler Simulator (GSS), a Sequentially
Unbiased Simulator (SUS), and an Approximately Unbiased Simulator (AUS). We also
discuss Gauss and FORTRAN implementations of these algorithms and present our
computational experience with them. We find that GHK is overall the most reliable
method.

Key words: Simulation estimation; Monte Carlo integration; Discrete choice models;
Multinomial probit models; Importance sampling; Acceptance/rejection; Gibbs resam-
pling

JEL classification: 210

1. Introduction

An extensive literature in econometrics and in numerical analysis! has con-
sidered the problem of evaluating the multiple integral

b
P=PB:unQ)=[nlc — p.Q)de = EvI(V €B), (N

a

where V is a m-dimensional normal random vector with mean p, covariance
matrix Q, and density n(v — u. Q). and 1(V €B) is an indicator for the event
B = {V]u <V < b}. A leading case of such an integral is the negative orthant
probability, where B = [ V[V < 0!.> The problem is computationally difficult
unless the dimension of the integral is less than four or the covariance matrix
Q has a special structure, such as a factorial structure with a small number of
factors.

The multinomial probit (MNP) model used in econometrics and biometrics has
cell probabilities that are negative orthant probabilities, with y and Q depending
on unknown parameters and, in general, on covariates.®> Estimation of this

!'See Clark (1961), Daganzo (1980). Davis and Rabinowitz (1984), Dutt (1973, 1976). Fishman (1973),
Hammersley and Handscomb (1964}, Horowitz. Sparmonn, and Daganzo (1981). Moran (1984),
Owen (1956), Rubinstein (1981), Stroud (1971}, and Thisted {1988).

> Where convenient, we write P(B; . Q) as P(a.b; 1, Q). or when a = — -« as P(b:j, Q). Note that
Pib; . ©) = P(0:pt — b.Q) is the cumulative multivariate normal distribution, also denoted
(b, Q). This setup covers all cases of interest, since components V; for which both limits are
infinite can be margined out analytically. and components V; with «; finite and h; = + » can be
converted to the previous case by a reversal of sign.

*For example, see McFadden (1984).
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model requires, for each trial parameter vector and each observation in
a sample, evaluation of (1) and of its linear and logarithmic derivatives with
respect to x4 and 2. This paper surveys Monte Carlo techniques that have been
developed for approximation of (1) and its derivatives that limit computation
while possessing properties that facilitate their use in iterative calculations for
statistical inference. Section 2 presents the simulation methods we consider. An
Appendix discusses GAUSS and FORTRAN algorithms implementing these
methods. Section 3 describes the test problems we used to investigate the
operational properties of the methods and summarizes our computational
experience with them. Section 4 concludes the paper.

2. Simulation methods

We begin by deriving the linear and logarithmic derivatives of choice prob-
abilities, and then we discuss the simulation approaches we consider in this
paper. After introducing some notation in Section 2.3, we explain the general
principles of sequential sampling and acceptance/rejection techniques in Section
2.4, of unbiased and asymptotically unbiased simulation in Section 2.5, and of
importance sampling in Section 2.6. We then discuss two variance-reduction
methods (antithetic variates in Section 2.7 and control variates in Section 2.8).
Sections 2.9 through 2.19 describe the eleven simulation techniques that we
analyze in this paper. Table 1 summarizes the methods and the mnemonics we
will adopt. We begin with the most direct method, the crude frequency simulator

Table 1
Simulators for P, V, P, V,,P, V,log P. and V,log P

Unbiased for

Section Name of simulator Mnemonic P VP Viog P
29 Crude Frequency Simulator CFS y n n
2.10 Normal Importance Sampling Simulator NIS y n n
211 Kernel-Smoothed Frequency Simulator KFS y n n
Stern Decomposition Simulator SDS y n n
2,13 Geweke -Hajivassiliou—Keane Simulator GHK y n n
2.14 Parabolic Cylinder Function Simulator PCF y n n
215 Deiak Chi-square Simulator DCS y n n
2.16 Acceptance/Rejection Simulator ARS - - y
217 Gibbs Sampler Simulator GSS yP
218 Sequentially Unbiased Simulator SUS n n n
2.19 Approximately Unbiased Simulator AUS n n n

*Window parameter must approach 0.
" Number of Gibbs resamplings must approach 7.
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(CFS), which computes the sample frequency of simulated draws from a
binomial distribution with probability P. Next we describe a generalization of
the CFS which employs the technique of importance sampling, thereby convert-
ing the sample frequency to a weighted sample frequency that can have a smaller
sampling variance. We call this the normal importance sampling (NIS) simula-
tor. The kernel-smoothed frequency simulator (KFS) generalizes the CFS by
replacing the discrete zero—one outcome of the binomial experiment by a con-
tinuous outcome on the [0, 1] interval. This simulator overcomes the discon-
tinuities in the CFS with respect to the parameters of the underlying normal
distribution, but is biased. The fourth through seventh simulators, the Stern
decomposition simulator (SDS), the Geweke-Kajivassiliou—Keane simulator
(GHK), the parabolic cylinder function (PCF) simulator, and the Deak chi-
square simulator (DCS), are also applications of importance sampling like the
NIS and are both smooth and unbiased. These simulators differ according to the
importance sampling distribution that they use. All of the simulators, from CFS
through DCS, are simulators of P and its derivatives.

A second group of simulators apply specifically to the logarithmic derivatives
of P, because these simulators address the additional difficulties posed by the
problem of sampling from a truncated normal distribution. The accept-
ance/rejection simulator (ARS) is another importance sampling technique which
additionally filters out draws that fall outside an acceptance region determined
by the truncation. The Gibbs sampler simulator (GSS) is an alternative method
for sampling from the truncated multivariate normal distribution. The GSS is
smooth in the distribution parameters, but the ARS is not. A third approach is
taken in the sequentially unbiased simulators (SUS) which construct unbiased
simulators of 1/P. The last method, approximately unbiased simulators (AUS),
comprises a family of simulators that are approximately unbiased for 1/P. The
members of this family can be constructed from most of the simulators of P in
the first group.

2.1. Derivatives of rectangle probabilities

The derivatives of (1) with respect to g and @ can be written:*
+ o
V,PB;p, Q) ="' | 1(reB)(v— pwn(v — u,Q)de

-

= Q 'Ev1(V eB)(V — p). (2)

*Eq. (3) is derived without imposing symmetry on the elements of €, and is then simplified by using
the symmetry of € at the evaluation point. These formulas are due to Ruud (1986), and they can be
demonstrated using the matrix derivatives ¢log|A4l/64A =A ' and 04" CA=—-A4A"'®4 . If
1" 1s a lower triangular Choleski factor of . so that Q = I'I”", then V,P = 2(V,,PII".
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VoPB:p. Q) =327 [ 1weB)[(v — v —p) — Q]

xn(v—pQ)dv-
=3QT'EVI(VEB)[(V —w(V —p) —Q]- Q% 3)
These formulas imply
V,log P(B; 11, Q) = V, P(B; 1, Q)/P(B; 1, Q) = Q 'Ey y(V — p),
Volog P(B; i, Q) = V, P(B; 11, 2)/ P(B; 1, 2) (4)
3Q° EHB[ -V - =1 (5
where E, g denotes expectation with respect to the conditional density
ne — w1, 2,B) = 1w eByn(v — u. Q)/P(B; u, Q). Note that (2) and (3) are partial
moments of the density, and (4) and (5) are conditional moments. It is useful for
statistical applications to develop techniques for approximating (4)—(5) as well
as (1)—(3).
Egs. (1)—(3) can be written
+ x

H=HB;;11,Q)= ‘ 1eeB)h(v)n(v — 1, Q)de = E,1(V eB)A(V),  (6)

and Egs. (4) and (5) can be written
H(‘ S EV‘Bh(V) = H/P(B; 'U,Q)., (7)

where h(v) is the polynomial array

o 1 (t—uQ ! ,
h“’_[gz'(rm O ' - — Q' —Q 1]}‘ ®)

Then the northwest element of H gives (1), the remainder of the first row gives
(2). and the southeast subarray gives (3); the analogous elements of H¢ give 1,
(4), and (5).

2.2, Simulation procedures

For statistical inference, it is often unnecessary to achieve high numerical
accuracy in evaluation of (1)—(5). For example, simulating P by the frequency of
the event 1(¢ € B) in a number of Monte Carlo draws comparable to sample size
will tend to produce statistics in which the variance introduced by simulation is
at worst of the same magnitude as the variance due to the observed data.
Further, when probabilities appear linearly across observations in an estimation
criterion, independent unbiased simulation errors are averaged out. Then,
a small, fixed number of draws per probability to be evaluated will be sufficient
with increasing sample size to reduce simulation noise at the same rate as noise
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from the observed data.’ This makes it computationally feasible to treat statist-
ical problems that require repeated evaluation of high-dimensional normal
rectangle probabilities. McFadden (1989), Pakes and Pollard (1989), and
McFadden and Ruud (1990) analyze the statistical properties of such estimators,
and Hajivassiliou (1993a) surveys simulation estimation methods for limited
dependent variable models.

The first seven methods we will discuss in this paper, CFS through DCS,
simulate H. Methods ARS and GSS simulate H¢ by drawing from the condi-
tional distribution of V given V €B. Method SUS approximates Ho = H/P
using independent unbiased simulators of H and 1/P. Method AUS is similar,
but uses a biased simulator of 1/P to speed computation. Some versions of AUS
require a positive simulator of P. This is guaranteed by NIS, SDS, GHK, PCF,
DCS, and by KFS if a positive kernel is used. The number of draws required in
ARS is random. The remaining methods will in general use a fixed number of
repetitions, which may in statistical applications increase with sample size.

To understand what is perhaps the most intuitive simulation method, write
the random vector V as

V =u+ Iy, 9)

where # is an independent standard normal vector of dimension m and I is
a lower triangular Choleski factor of Q, so € = I''". A simple approach to
approximating (6) is to make repeated Monte Carlo draws for #. use (9) to
calculate V for each parameter vector, and then form an empirical analogue of
the expectation in (6). Below we call this the crude frequency simulator (CFS) of
P(B; 1, ) and its derivatives. Similarly, a crude frequency simulator for H¢ can

In outline. suppose 0 is an M-estimator that solves
0 = N'Y2Eys(f,n),

where s is an approximation (involving Monte Carlo elements )} to a function o(0) of P and its
derivatives that has expectation zero at the true parameter 0°, and Ey denotes empirical expectation
over an independent sample of size N. Then, one can write

0=N"2Eys(0,n)
= N'"2Eya(0%) + NV 2Ex[s(0°.7) — 6(0°] + N'2Ex[a(0) — a(0°)]
+ NY2EG[s(, ) — o (D) — s(0°. ) + a(0°)].

Under standard regularity conditions, the first term is asymptotically normal, reflecting the noise in
the observations, and the third term is proportional to /N (0 — 0°). The last term will be of order
o,(1}for simulators that satisfy a stochastic equicontinuity condition. When s is a smooth function of
crude frequency simulators of P, V, P, etc., obtained using R Monte Carlo draws. the second term
will behave like \ﬁ times an expression that is asymptotically normal. so that it will be
comparable in magnitude to the first term when R and N are proportional. If. in addition, there is
any averaging out of simulation noise across observations, the second term may be of order o,(1)
when R and N are proportional, or comparable in magnitude to the first term for fixed R.
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be formed by rejecting draws of V' that do not satisfy the conditioning event
V B, and then forming an empirical analogue of the conditional expectation in
(7) using the accepted draws. The advantages and disadvantages of the fre-
quency simulators are discussed in Section 2.9 below.

2.3. General notation

Before discussing the simulation techniques, it is useful to introduce the
following notation. For a vector of indices (1, ... , n), we use the notation * <j’ to
denote the subvector (I,...,j — 1), and ‘ —j" to denote the subvector that
excludes component j. Thus, for a matrix I',I'; <; denotes a vector containing
the first j — 1 elements of row j, and I' _; _; denotes the subarray excluding row
jand column j. For a vector #, 1 < ; is the subvector of the first j — 1 components,
and #_; is the subvector excluding component j.

2.4. Sequential sampling and acceptance/rejection methods

Some simulation techniques, such as the crude frequency simulators for
H_ that reject draws not in B, require sequential sampling. Others, such as the
crude frequency simulator for P, may employ sequential sampling for some
purposes such as approximating 1/P. Sequential sampling may involve excessive
computation if the yield of accepted points is low, so there is a payoff to
techniques that increase yields. Sequential schemes also introduce the possibility
of occasional lengthy computations. For computer implementation it is desir-
able to bound computation by building censoring rules into the sampling
algorithms and taking account of the effects of this censoring on the statistical
properties of the simulators.

Acceptance/rejection methods provide a mechanism for drawing from a con-
ditional density when practical exact transformations from uniform or standard
normal variates are not available. The following result is standard:®

Lemma 1. Suppose f(x)is a m-dimensional density, and one wishes to sample from
the conditional density [(-| A) given the event x € A. Suppose g(x) is a density from
which it is practical to sample. with the property that

sup f(x)/g(x) < 2 < + x.
A

Assume that either the support of g is A, or that it is practical to test if x € A; that it
is practical to calculate f(x) and g(X); and that it is practical to calculate a bound 3.

®See Devroye (1986) or Rubinstein (1981).
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Fig. 1. Acceptance rejection.

Draw x from g and { from a uniform density on [0, 1], repeat this process until
a pair satisfying x € A and f(x) = {xg(x) is observed, and accept the associated x.
Then, the accepted points have density f(x|A) = [(x)/f(A).

Proof. Fig. 1 shows schematically that this method yields accepted points with
the density f{x ): One draws points uniformly from the area under 2g, and
rejects them if they are above f, leavmg a uniform distribution of points from
the area f: Prob{x&accept) = g(x)-[ f(x)/g(x)2], implying Prob(x|accepr) =
f(x)/f(A), as desired. [

Suppose now that acceptance/rejection is used with a censoring rule that if the
first r trials do not yield an acceptance, then the last draw from g(x) is accepted
unconditionally. This method will be biased, but the bias is bounded at a geo-
metric rate in i

Lemma 2. Suppose the assumptions of Lemma 1 hold, with A the support of g.
Suppose an acceptance/rejection sampling rule, with censoring after r trials. Let
fx1A) denote the density of x obtained by the censored A/R rule. Then, for any
measurable function h(x) such that the expectation j h(x)g(x)dx exists,

Hh(x) fix]A)ydx — [ h(x) f (x| A)dx]
< Fh) [glx) = f () f (AT dx]-[1 = f(A)/«]" (10)

Proof. The probability of acceptance on a trial, given x is drawn, is f(x)/xg(x).
so that the unconditional probability of acceptance is

T L1 0/ 2g(0)]dx = f(A



V. Hajivassiliou et al. | Journal of Econometrics 72 (1996) 85—134 93

Then, the probability of a rejection on the first r trials is [1 — f(A)/a]", and the
probability of x and acceptance on trial i is

[1 - fAY2T L (/g (06 ()
Then, the probability of x is
FOIA) = Y T = f(AYad x4 (1 — (A gL
10 fAYa
T (1 /(A)a]
= /(xIA) + [g(9) — £ A1) (1 — f(AYAY

Since ag(x)/f(A) dominates f(x)/f(A), jh(x )f(x|A)dx exists. Then forming
the expectation using the formula above gives the result. []

XV + gL — f(A)/a]

2.5. Unbiased and asymptotically unbiased simulators

The crude frequency simulators of H and H are all unbiased with finite
variance, desirable properties that guarantee that when these expressions appear
linearly in a condition defining a statistical estimator and the draws are independent
across observations, a central limit theorem will operate to attenuate the effect of
simulation noise on the estimator. For H, there are unbiased simulators that are
smooth in parameters; we have not found smooth unbiased simulators for H¢. [t
may be advantageous for computation to work with smooth biased simulators,
and increase the number of draws in statistical applications as iterative search
proceeds or as sample size increases, to eliminate bias in the limit.

Animportant case where bias is an issue is simulation of 1/P in the expression
(V,P)/P and (V,P)/P for the logarithmic derivatives. Obviously, an unbiased
simulator of P such as the crude frequency simulator for (1) does not yield an
unbiased simulator of 1/P. One technique for achieving an unbiased simulator is
based on the observation that 1/P is the expectation of the geometric distribu-
tion of the number of independent draws R from (9) required to yield V eB; this
can be simulated by drawing sequentially from (9) until V B is observed. For
P small, this method can require a large number of simulations. The following
result, due to Ruud. refines the method first by using an upper bound on P, and
second by reducing the variance in the simulation of the run length.

Lemma 3. Assume there is an event A such that:
(1) Ev1(V eA) can be computed exactly.
(iiy B< A.

(iii) It is convenient to draw from n(v — u, Q) conditioned on the cvent A.
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Draw sequentially from the conditional distribution of V given A until V eB is
observed, and let R denote the number of draws required. Then, R/Ev1(V € A) is an
unbiased simulator of 1/P. The variance in the simulator is reduced by defining

R=14+0Q(1 +Q5(1 +Qs(1 +---)), (11)

where each Q; is an independent unbiased simulator of Ey s 1(V ¢B), initially the Q;
are smooth simularors, and eventually Q; = 1(Vi¢B), where the V; are draws of V
given A.

Proof. ER = Pr(A)/Pr(B) = 1/E,1(V €B), then ER/E,1(VeA)=1/P.
The alternative form for R has ER =1+ (EQ)(1 + (EQ-))(1 + --)) =
Y ool = P) = Pr(A)/Pr(B), as required. []

If A can be chosen so that Pr(A)/Pr(B) is not too large, then the expected
number of draws required in (11) is not impractically large, even for small P. For
example, the event A that a; < V; < b;, with i a specific component of V, has the
properties:

() EvI(VeA)=d(h — 1)/ Q%) — @la; — 1)/ Q4 ).
(i) A <B.
(i) It is easy to draw V conditioned on A by first drawing
Vi= @ @b — )/ Qi) + (1 — Dblla; — 1)/ 237, (12)
where { is uniform on [0, 1], and then drawing
Voi=poi+Q Q7 (Vi— ) + L, (13)

where L is a Choleski factor of @ ; ; — Q ,,9;'Q, ;. Choosing the i that
minimizes Ey1(V € A) then provides a practical bound.

A continuous-in-parameters simulator of 1/P can be constructed, at the cost
of some bias, using a variant of Lemma 3 suggested by Ruud:

Lemma 4. Make the assumptions of Lemma 3. except take
o1l
R=1+ 3% ]9 (14)
i=1j=1
with the Q; smooth independent unbiased simulators of Ey s\1{V¢B). Then

1/P — (ER/EL(V €A) = (1 — Ey,,1(V e B)/P. (15)

Proof. From the proof of Lemma 3.

ER — I/Ey 1(VeB) = Y [] EQ; = [Ey (1 (V¢B)/E, 1(V eB). []

i=rj=1
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Suppose one simulates 1/P by a ratio N/rEy1{V € A), where N is the random
number of sequential draws necessary to obtain r occurrences of the event V € B
given V € A, where the notation is as in Lemma 2. The following result due to
McFadden, applied with U; = 1/Ev1(V €A) and W; = 1(V € B), with V drawn
from the density f(v|A), bounds the bias in this simulator:

Lemma 5. Suppose (U;, W;) are independently identically distributed with
U201 >2W, EW,=8>0, and EU; =2 > 0. Let r > 1 denote a positive
constant. Suppose N is an integer-valued random variable defined as the first n such
that 3"_ /W, >r. Then

E Z U,, Z W, — /B <r 'ayp. (16)

i=1 /

Proof. A lemma of Stein’s (Siegmund, 1985, Prop. (2.19)) establishes P(N > n)
< Cp", for constants C > 0 and 0 < p < 1, implying EN < + oc. Then, Wald’s
identity (Siegmund, 1985, Prop (2.20)) establishes EY ¥ U, =2EN and
EY " W,= BEN. Then, r < PEN <r + 1, implying

E Z U,/’ Z W, < aENr < (2/f)(1 + 1/r)
i=1 =
and

n /on

EZU/ZW,>1E1\”m+1)>(1/J’ 1=+ 1) >/ — 1/ O

i=1 [i=1

This result can also be applied when correlated draws are used in the
numerator and denominator of expressions like (V,P)/P

2.6. Importance sampling

Importance sampling is a general method for reducing the sampling variance
of integrals computed by Monte Carlo integration. The CFS involves sampling
V from the n(v — y, Q) p.df and evaluating the indicator 1(V €B). A simple
generalization of this procedure rewrites the rectangle probability P(B; 1, Q) in
terms of another sampling distribution:

P(B;1,2) = [1(veB)n(yv — u, Q)dv

(v — g,
_I[ W]/( L 2)dv

By sampling V' from the importance p.d.f. f and evaluating the weighted
indicator function 1(V' e B)n(V' — i, Q)/f(V'; 11, 2), one obtains an alternative
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unbiased simulation of P. The first advantage that importance sampling offers is
the ability to substitute sampling from ffor sampling from ». It may be possible
to sample f more quickly, or, in a more general setting, sampling from n may be
infeasible. In addition, if f also has an analytical integral over a truncated
sampling region C such that B = C, then this analytical integral can be exploited
as an approximation to P:

=, Q)| S Q
P(B;/(,Q"):Pr{V’eC}j{](WEB]H(‘ o ):| f(“u ) d'/
b

f0im@) | Priviec)

By drawing from the truncated p.d.f. f/Pr{C}, fewer simulations are ‘wasted’ on
outcomes of zero and, in effect,

— 1, Q)
1, Q)

n(y’ .
Pr{V’' eC)| % approximates P(B; u, ).

B \v
When fis a good approximation to n. so that the ratio of densities n/f is
relatively constant, the sampling variance of the importance-sampling simulator
is small. The sampling variance of the CFS is P(1 — P) and the sampling
variance of the importance sampler is

var(Pe- 11V eBlw(V') = P Py [V(w(V')| V' €B)
+ (1= Py)-E(w(V)| V" €B)*].

where Pc = Pr{V'eC} and Py = Pr{V’' eB}. In the extreme case /= n and
C = B, the latter is zero; clearly good approximations to »n afford improvements
over the CFS.

2.7. Antithetic variates

The accuracy of simulators may be improved, for a given number of Monte
Carlo draws, by use of antithetic variates. The principle of antithetic variates,
which is to introduce negative correlation between successive Monte Carlo
draws to reduce the variance of simulation sample averages, generalizes in the
multivariate case to selection of a regular gnid of points whose location is
random. This technique can be employed in simulators of H and H when the
method has sufficient symmetry.

In Monte Carlo simulation requiring draws of m-dimensional standard nor-
mal vectors, for example the crude frequency simulator, an approach due to
Deak (1980a.b) has good antithetic properties: Draw m independent standard
normal vectors, and save their lengths p,,....p,. Apply a Gram Schmidt
orthonormalization to these vectors to create a random basis for m-space. Let
U1..... 1, denote the unit vectors in this basis. Each pair of unit vectors v; and
v; with i # j define a great circle on the unit hypersphere. Generate 2m equally
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spaced points on each great circle.
Ui = t;cos{mk/m) + v;sin(nk/m), k=0,....,2m— 1.

This gives a random antithetic grid on the unit hypersphere that is parti-
cularly useful for simulations based on spherical transformations. Scale each
unit vector vy by the lengths p,, ..., p, to give an array of normal vectors in
m-space. A further antithetic refinement uses the fact that the squared lengths
of standard normal vectors in m-space have a chi-squared distribution with
m degrees of freedom. Taking p; = invchi({ + j)g.m), j =0, ...,q — 1, where
¢ 1s a uniform [0, 1] random number and inechi( -, m) is the inverse of the chi-
squared distribution, gives ¢ antithetic lengths that are images of a random grid
from the uniform distribution.

2.8. Control variates

Control variates are random variables with analytic expectations that are
positively correlated with the random variable whose expectation is to be
simulated. Then, simulation variance can be reduced by simulating only the
difference between the expectations of the variate of interest and the control
variate. A possible control variate for 1(V e B)h(V ) is 1(V € A)h(V'), where A is
the event a; < V; < h;, with [ a specific component of V. Then, for any z,

H =sE,1(V eA(V) + E [1(V €B) — 21(V € A)Jh(V ). (17)

The first expectation on the right-hand side of (17) has a closed form, given
below. The second expectation requires simulation. This control variate is not
guaranteed to reduce simulation noise, but generally simulations based on (17)
will be more accurate than simulations based on (6) if « is a moderately good
preliminary estimate of [EvI{(V e A)h(V )] 'Ev1(V e BYh(V).

To obtain the analytic expression for Ey1(V € A)h(V), first define the univari-
ate standard normal partial moment

Pt kw) = | (v — x)fple)de. (18)

Integration by parts yields the recursion formulas
D(t.0.K) = D(1),
D(t,1,5) = — k(1) — p(0). (19)
Dt k.k)=(k — DP(t,k — 2.x) — kP(t.k — 1Lw) —(t — &) 1Plr).

for k > 1.
Now consider a multivariate normal density n(v — u, Q) of dimension
m, written as the product of a univariate marginal density n(y — p,,Q,,)
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and a dimension m — 1 conditional density n(z — p. — Q..'Q., (v, — )

Q.. —Q.,Q.'Q,.). Consider the array of partial moments
Yt k, 1, Q)
+ x
= | Ly <oyt
1 Z— Y= iy

X (Z - .“z), (Z - ;“:),(Z - /l:] - Q:: (Z - .“z)!(y - .“)-) - Q:‘\‘
y = :“,\' (,\" - ,N_\') (Z - /‘z) - Q_\'z (.“ - .u)')z - Q“.

Xz — e — (y — 1) Q51 Q0. Q. — 2,9, Q )n(y — 1y, 2,,)dzdy

L ST SO o
=|¥Y. Y. VY,
v, Y. Y,

Then, letting @; = QL2 ®((t — /4).)_/'\/a,_j, - /ty/‘v”a).

Y, =4,

W= @, — 1P

Veo=@poy — 20D + (17 — Q) Py,

Y. =¥.0.'Q,..

V.= P,.0,.'Q,.,

Y. =0.,0,'V.Q2.,'Q,.. 21
Then, ¥(h.0, 11, Q) — ¥(a,0, 11, Q), with y corresponding to component i of V.
gives EL1(V e A)h(V).

2.9. Crude frequency simulator (CFS)

Recall Eq. (9), which states that the random vector V can be written as
V =+ I'y, where 1 is an independent standard normal vector of dimension
m and I is a lower triangular Choleski factor of @, so @ =1TIT". The Crude
Frequency Simulator (CFS) of P(B; i, Q) and its derivatives is to make repeated
Monte Carlo draws for #, use (9) to calculate V for each parameter vector, and
then form an empirical analogue of the expectation in (6).” A crude frequency

7 Frequency simulation of probabilities is a traditional method in numerical analysis: Lerman and
Manski (1981) introduced this approach to estimation of multinomial probit models.
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simulator for H¢ can be formed by rejecting draws of V' that do not satisfy the
conditioning event V €B, and then forming an empirical analogue of the
conditional expectation in (7) using the accepted draws. The CFS are quick to
compute and ideal for parallel processing. However, they are not continuous in
parameters, exhibiting jumps at parameter values yielding draws of V on the
boundary of B.® These discontinuities, however, can slow iterative parameter
search.” The accuracy of the CFS can be improved by use of antithetic and
control variates introduced earlier.

2.10. Normal importance sampling (NIS)

Suppose the integrand h(v)n(v — 1, Q) in H can, with multiplication and
division by a factor if necessary, be written as the product of a density -(v),
whose support coincides with or contains B, from which it is easy to sample, and
the remainder. Then, H can be written

H = { [1(v e B)h(vIn(v — . Q)/7(v) () de
= E.1L(v e B)h(v)n(v — i1, Q)/7(v). (22)

An empirical expectation using draws from 7(r) gives an unbiased simulator
that is smooth in parameters, provided h(v)n(v — p, €)/7(v) is dominated by
a function whose expectation with respect to the density 7 exists. We term this
Normal Importance Sampling (NIS). Importance sampling works well when
h(ryn(e — . )/ () is fairly flat, and (r) concentrates probability in the same
region as n(r — i, Q).

For fast computation, choose 7 so that the components are independent, or
are obtained as simple transformations of independent variates. A possible
choice of ; when the rectangle [«, b] is finite is the uniform distribution on this
rectangle. Independent exponential densities,

M

T() = n expl(v; — by)/¢i)/e;, (23)

i=1

where ¢; are parameters that can be set as part of the simulation, are feasible;
draws from this density are easily computed using v; = b; + ¢;-log;, where ; is

®*These discontinuities do not prevent use of these simulators for statistical inference. If 5 is not
redrawn when parameters change so that “chatter’ is avoided, then these simulators are piecewisc
constant in parameters, and the manifolds on which discontinuities occur are lincar. These proper-
ties imply a stochastic equicontinuity property that is sufticient to make the simulators well-behaved
in statistical inference: scc McFadden (1989).

?See Quandt (1984) for a discussion of iterative parameter search algorithms.
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a uniform [0, 1] variate. This particular choice of 7(v) defines the NISE simula-
tor.'® An alternative that is more likely to concentrate probability for y in the
same region as the multivariate normal is the product of truncated normals,

A0 = [] il — m/e T@(lbr — m)ics) — Bl(as — a)/e)), veB,  (24)

1

with o; = y; and ¢; = \/57“ One can sample from this distribution using
v = 2 4 GO HGPb: — )/ e) + (1 = {)Pla; — )/ ¢), (25)

with ; a uniform [0, 1] variate. Using »(v) given in (24) defines the NIST
simulator.!! Reduction in simulation variance is in principle achievable using
antithetic variates, with the {; in dimension i drawn in repeated trials from
a random grid on the unit interval. A variation on (24) for finite rectangles
[a.b] is

=g+ Q. QI b+ a )2 (26)
Ciz:Qn‘Qi.—iQ:il. -8 (27)

This takes some account of the shift in location of probability mass in the
multivariate normal density induced by correlation and restriction to B.

2.11. Kernel-smoothed frequency simulator (KFS)

The Kernel-smoothed Frequency Simulator, suggested by McFadden (1989),
replaced the indicator function 1{v € B) in the crude frequency simulator with
the function

K. oty = A (v — b)/w) — A (v — a)/w), (28)

where #'(v) is a smooth kernel function from R™ onto [0, 1] with .#'(— o) = |
and 4 (+ o) =0, and w is a window width parameter. The function % ,(t)
approaches 1(¢ € By as w» —» 0. Then, the simulator is an average of £ ,(0)h(v),
with ¢ = y + ', over r Monte Carlo draws of an independent standard normal
vector #1. This simulator is smooth in parameters, a useful feature when the
simulator is used within an iterative optimization. The simulator is a biased
estimate of H for positve w, but in statistical applications one can shrink « as
sample size increases:

'""E" for exponential.

YT for truncated normals.



V. Hajivassiliou et al. | Journal of Econometrics 72 (1996) 85—134 101

Lemma 6. Define C, = lw eR™||w;| = 4 for all i}. Suppose there exist Ay, K, and
g > 0 such that for 7. = /.,

sup [ 1w < 0) — # (w)] < Ki 4 (29)

weC;
Then there exists a constant K' > 0 such that for small o),

LA 8 o) — LeeB)h()nv — p,Q)do| < K'w? 9. (30)

Proof. The conditional expectation of A(V ) with respect to the distribution of
V_;given V; = v;1is bounded by a function K, + Ka(v; — i )2 for some constants
K|, K,. Then the integral of [ # (v — b)/w) — 1(v < b)Jh(v)n(v — p, Q) over the
region (¢ — b)/weC; is bounded by K:i79tr(Q), and over the region
(v — b)/w¢C; is bounded by

m

Y [ n— s Qo) [Ky + Kol )1 dy;

i=1 |r,=bi<io

m

< ¥ 2408, (K, + Ka((bi — 1) + (o)),

i=1

Take 2 = w ™ """ *9 and combine the regions to conclude that the integral is

bounded by »*! * K’/2 for some constant K'. Repeat the argument, replacing
b by a, to obtain the bound (30). [

Ruud has suggested starting iterative parameter search with a large w, and
shrinking it as the search approaches convergence. This avoids many of the
problems of handling discontinuities in search.

A variety of kernel functions .# can be employed such as a logistic function
A (v) =1/(1 + €™ + -+ + ¢'»),anormal kernel .# (v) = | [~ , ®(—v;), or a poly-
nomial kernel .#'(¢) = | [IL, G(v;), where

" 1 for y< —1,

(1 —y2+ )2 for —1l<y<O,

(1 —yv@—y)y2 for O0<y<l,
for y= 1.

G(y) = (31)

The polynomial kernel is particularly quick to compute, and will generally be
the method of choice. As in the case of the crude frequency simulator, antithetic
draws can be used for # in (9). It is also possible in the case of the polynomial
kernel to use a smoothed version [G((v; — b)/w) — G{(v; — a)/w)]h(v) of the
control variable 1{¢; < v; < b)h(v). Let y denote v;, and z denote v_;. Then,
Y (b ji,Q2) — Y (w,a, 1, ) is the expectation of the smoothed control variate,
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where

YL@ = | Gy —tho

1 z— U A
X[ (2 — ) (z—p)(z—p) — 8., (2 — 1) (y — p,) — 8.y
)' - .“,\' (,“ )( ) Q}'z (}' - ﬂ_\‘)z - Q_\'y

nz— . —(v— ) Q,'Q,., 0., — Q..Q'Q )
n(y — u,. Q,,)dzdy.
Breaking up the domain of integration, one has, from (20),
Yt 1, Q) =[(t — )Pt — 0,0, 1, Q) — 2t2¥(1,0, 11, Q)

+ (t + W)+ .0, 4,2)]}/20°

—[(t — )Pt — o, 1,1, Q) — 2t (1,1, 1. Q)

+(t+ )P+ o, 1,10 Q2)]/w?

+ [Pt — 0.2, 0,Q) = 2¥W(1.2, 11, Q)

+ ¥t + w2, 1, Q)]/20?°

2.12. Stern decomposition simulator (SDS)

The Stern Decomposition, suggested by Stern (1992), writes V ~ . ¥ (-; 11, Q)
asasum V =Y + W, withY ~ ¢ (-1 22y with W ~ _47(-;0,Q — 2I). That
is, I equals the sum of a ‘small’ independently distributed normal vector and
a second normal vector that carries the information on the covariance matrix of
V. Then, by the law of iterated expectations,

b m
H= J{ | h(y}|: [T oWy —wi— Ill,')’,’//l)///‘.:| d_\}n(W,Q — 22ydw.  (33)

y=a i=1

The term in braces can be integrated analytically; then the SDS averages this
interior integral over r Monte Carlo draws w = [Q — 72[]'?y, where 5 is
a standard normal vector and [Q — 4%1]"'/* is a Choleski factor of Q@ — /2. The
array H can also be written, by multiplying and dividing by the density
n(v, Q — +21), as

H=C-{{leBexp{— /2" (Q—21)'Q /2 + wQ 'v}in(r,Q — 221)dv,

¢

(34)
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where C = exp(— 1/'Q ' 1/2) [det(Q — A1)/ det(2)]"/2. There are two possible
interpretations of this simulator. First, (33) can be viewed as a kernel-smoothed
variant of the integrand in (34). Second, (34) can be interpreted as a form of
importance sampling, with n(-,Q — 2*I) the convenient density from which
Monte Carlo draws are made.

To obtain the analytic form for the term in braces in (33), define

o —w o e 2w,
g = 2 [QD <u k. —#) — <"—“—“ k, —#)], (35)
A A /. /.

where @(t, k, k) is the partial moment function (19). Define

m

Q= H 4io, (36)
i=1

S = (ql 1//(11()» et Clmx/‘f]mo)/» (37)

D = diag{q2/qio) - (38)

Then, (33) becomes

1 §Q71 .

H= \j\,Q. [le 10" [D+s s -Q1Q 1:|n(w.,Q — #1)dw. (39)

The SDS provides an unbiased smooth simulator. Again, accuracy can be
enhanced using antithetics when drawing # to construct the simulated values
w = (Q — A%I)"?y. This simulator is fast to compute, but it can be computation-
ally burdensome to determine . such that Q — /] is positive definite, and
accuracy falls when m is large and the eigenvalues of Q are uneven. The
extension of the Stern simulator to derivatives is due to McFadden.

2.13. Geweke—Hajivassiliou—Keane simulator (GHK)

This simulator is based on sampling from recursive truncated normals after
a Choleski transformation. The approach was suggested by Geweke (1989). and
has been developed by Hajivassiliou, who proposed the weighting used here.
Keane (1994) independently developed a weighting scheme of essentially the
same form for a problem of estimating transition probabilities.

Consider the triangularizing transformation V = p+ I'y, where I is the
Choleski factor of Q. The indicator 1(reB) is then transformed to
1(y« + I'n € B), which can be written recursively as the product of indicators of
the events

Bi(n<j) = {nillay — ;= Tjocin<)/Tj; < ny < (b — ;= Ty <jm< )/,
(40)
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for j=1,...,m. Define ¢(n;|B;(n<;) = d¢(n)l(n; €B;(n<,)/P(B;(n ;). the con-
ditional distribution of #; given the event B;(#. ;). Define a welght

w() = [T ¢(B;(n<)). (41)
i=1

Then

H = [h(u+ o) [T ¢01B;01< ) dn. (42)

i=1

The following result gives the GHK simulator:

Lemma 7. An unbiased simulator of H is an average of h(p + I'n)w(n), where w(n)
is the weighting function (41), over draws constructed recursively from the one-
dimensional conditional densities ¢(n;|B;(n <)) by taking

nj =@ NPUa; — i — Tjo<jn<)/T5))
+ (1 = C)PUb; — i — T < in< )/ T (43)

where the {; are draws from the uniform [0, 1] density. W hen B is a finite rectangle,
there is a constant ¢ > O such that for each &,0 < ¢ < 1,

foor \
Y h(p+ Inyw(n) ‘
Prob| =% — He> e | <exp(—ree?). (44)

r

> o) /

i=1 /

Proof. Tt is immediate from (42) that the GHK simulator of H is unbiased. Now
consider the simulator of H in (44). Write A = {n|u + 'y €B} and let /j denote
a random vector in A drawn recursively using (43). Then,

EV\VEBh(V) = Erﬂquh(H + rn)

fhuH’ﬂ}H(bm ) di,

n G (i) diy
k=1
§ h(e+ Imom) [T (o) @Bin <)) dne
— neA k=1
§ o) T Lo/ P(By(n )] dn,
neA k=1

= [Ezh(u + I'in)]/E;w().
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To obtain the bound (44) when B is finite, note that in this case there is
a bound ¢, on every component of the array h(u + I'n)w(n). Then, by Hoefl-
ding’s inequality,
1 5,
Prob <— Y h(u+ I'npw(n) — H > 511> <exp[ —rei/2et]. 4%)
ii=1
Choose ¢; = ¢P?/(2 + ¢;). Suppose the event in (45) does not occur. Then,
’ 1
Y Do) e Doty — 1
L " —H¢ < + |Hel-

1 r
Y w(n) p =Z

i=1
< 6 /(P — &)+ c6/P(P —¢y) < g,

'J(’If) -

I|M\
I~ 1
-I— ||l\/]-(

r

Z o)

so that the event in (44) does not occur. Therefore, letting ¢ = P*2¢32 + ¢
the probability of the event in (44) is at most exp(— rce?). [

The GHK simulator can be interpreted as importance sampling using the
recursive truncated standard normal densities. [t has proven fast, with low noise,
even when probabilities are small. Borsch-Supan and Hajivassiliou (1993) use
this simulator'? to define the method of smoothly simulated maximum likeli-
hood and show that this method exhibits excellent properties for imited depen-
dent variable models that are otherwise difficult to estimate. In principle, it is
possible to use antithetic variates in (43), starting from a random grid of size
g drawn from the uniform distribution in each step of the recursion. In practice,
this produces 4™ points, which is impractically large in many problems.'?

2.14. Parabolic cviinder function simulator (PCF)

Consider a spherical transformation V = b + p-v about the upper limit b of
B, where v is in the unit sphere and p is a nonnegative scalar. The Jacobean
of the transformation from V to (vy,...,0n_1,p) is p™ ‘/v,.. where
tw=[1—1v{—- —vi 1'% Then, the multivariate normal density
n(V — 1, Q) expressed in terms of the transformed variables is

flplo)gelp — b,Q) = 2n) ™2|Q|" exp[—(pv — (1 — b)Y
X Q7 Npv — (1 — b)/2]p" o

'? Which they term the “Smooth, Recursive Conditioning” simulator.

"*Some of the desirable features of antithetic variates can be obtained by sampling without
replacement from a large random grid.
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In this expression, the conditional density of p given v is

m-—1

Splv)y=p
with
K(v) = ; " texp[—(p — (u—bYQ ™ 'o/r'Q " o) (V'R Tv)/2] dp,
0
and the marginal distribution of v is
g(vlp — b.Q) = K (v)(2m) " ™2Q| exp[—(u — bYQ™ N — b)/2
+ (0'Q = b))/ 20Q ] v

exp[ —(p — (= by Q2 'vo/r'Q o) (2 0)/2]/K(v),

(46)

When g — b =0 and Q = I, so that the distribution of v on the unit sphere
is uniform, ¢(v|0,1) = (2m) ™[ p" 'exp[— p*/21dp/v, = "2 (m)2)] 20y,

Define an importance sampling weight
s(v) (vlp — b, 2)/q(r|0, 1)K (v)
=exp[—(u—hyQ '(u—h)2
+ R N —bY20'Q 0]/ (mj2)2m Q|
Define

p(r) = min n(a; — b)/r;,
i
and note that it is positive for © < 0. Then,

pir)
H= | ( ) ’7(h+pv1p|t)dp) (0)s(v)q(0]0, 1) dt

r<QO\p=0

Define

Cli,on f,7) = | plexp[ — a(p — B/2)*/2]dp.
o

This function satisfies

C0.2.7) = /) 2 [Bllay — B/ 2) — D= B/ /2],

C(lxfy) = (exp[— f7/22] — expl— oy — B/a)*/2])/
+ C(0, 0, B,7) 8/,

Cli,o, f.7) = Cli — Lo, B.) B/ + C(i — 2,2, B, (i — 1)/

—

T lexp[—aly — B/)*/2)/,

(49)

(50)
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with (53) obtained by integration by parts for i > 1. Then, C can be computed by
recursion in i. We term C a parabolic cylinder function, as it is closely related to
a standard class of mathematical functions with this name.'* When g = 0, this
function is proportional to a chi-square cumulative distribution function,

Cli,o,0,7) =202 P (i + 1)/2) o EF 252 (o).

The function K (v) in (46) satisfies K(v) = C(m — 1,v'Q 'v,(u — by Q™ 'v, x).
Define

piv)
Civ)y=K(v) | p'f(ploydp
o

P

=Cli+m—1,0Q 'v.(u — bYQ 'v,p(v)). (54)
Then
n=[ o]
satisfies
H,, = E, Cy(v)s(v), (55)

Hp_] = H’IZ* = Q - 1E,;[C1(U)L‘ + (h - Al‘)C()(U)]S(U)a
Hy,, =3 Q "E,[Cy(v)or’ — Cy(v) {o(u — by + (u — b)v'}
+ Colv) (gt — b)Y (. — b)Y — Q)] s(r)Q .

where the expectation is with respect to the uniform density on the unit sphere.
The PCF simulator is obtained by averaging the array (55) over a sample of
draws of v from the uniform distribution on the unit sphere intersecting the
negative orthant, and can be interpreted as importance sampling with this
comparison distribution. The draws can be made by first drawing a standard
normal vector #, reversing the signs of positive components so that it is negative,
and then defining v = ;1/V/ﬂ. This has the effect of drawing from ¢(v|0,1)
conditioned on v < 0. To remove this conditioning, the simulation average must
be divided by 2", the number of orthants. This simulator was suggested by
McFadden (1989).

'+See Abramowitz and Stegun (1964, p. 685) and Spanier and Oldham (1987).
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2.15. Deak chi-square simulator (DCS)

A spherical transformation about the mean of the multivariate distribution
is V = u + p- v, where again p is a scalar and v is a point in the unit sphere. We
use the notation of the previous section, with p replacing b, so that
s(v) = 17227 1M(m/2)12|** and, analogously to Ci(v),

Di(v) = K(0)f 1{(u + pr e B)p'f (plv)dp. (56)
This expression can be evaluated analytically using (46)—(53), yielding
Div)=Cli+m—1,0Q '0,0,p'(t)) = Cli + m — 1,v'Q " '¢,0,p"(v)),

where p'(v) and p”(v) are the largest and smallest values of p satisfying the
inequalities ¢« — u < pv < b — p. Then, 0 < p"(v) < p'(v),

p'(r) = min {min(bj — wj)/v;, min(a; — w;)/ z,j,}, (57)
r;<0

;>0

p"(v) = max <0, max(a; — w;)/v;, max(b; — w;)/t;z,
t;20 Toe<o

where by convention 0/0 = 0, and 0 = p”(v) = p’(v) whenever (57) fails to yield
a nondegenerate interval in the positive half-line. Taking the expectation of
D;(r)s(r) with respect to the uniform distribution on the unit sphere,

EyDi(v)s(r) = K'(t'Q o) tmmi2

X [ 17 m'Q op'(0)?) — yiv '@ Top" ()], (58)
with K’ = 272 ((m + 0)/2)/T (m/2)|Q|'"?. Then
H= E,. Do(v)s(v) E,.Dl(L,')L"s(u)Q’1 (59)
T QTIE.D (v)es(t) 1Q7TVE, [Di(v)rr’ — Do(0)Q]s(x)Q71 [

with (58) used to evaluate the terms. The DCS simulator is obtained by drawing
an antithetic random grid of points r on the unit sphere, as described in
Section 2.7, and forming the empirical expectation corresponding to the array in
(39). It is unbiased for H and smooth in parameters. This simulator for P is due
to Deak (19804, b); the extension to obtain the derivatives of P was suggested by
Chunrong Ai.

2.16. Acceptancejrejection simulator (ARS)

An Acceptance/Rejection Simulator calculates an empirical analogue of the
expectation H¢e = Ey v gh(V') by constructing draws from the conditional dis-
tribution of ¥ given B. The crudest form of ARS is to sample from the
unconditional distribution of V using (9), reject points not in B until r accepted
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points are found, and form an average of h(}') over the accepted points. More
generally, the procedure in Lemma 1 permits improvement in the yield of the
method by sampling from a comparison distribution that puts little or no weight
outside B and has the property that the ratio of the comparison density to the
target density is uniformly bounded above by a small number. Nevertheless,
yields tend to be low, making computation heavy, for small P.

A point V = pu+ I'n may, for given 5, move from the rejection to the
acceptance region with small changes in the parameters, introducing discon-
tinuities in the ARS. Using an approach suggested by Ruud, Hajivassiliou,
and McFadden (1990) show that the ARS nevertheless has a stochastic equi-
continuity property that enables its use in statistical applications.

Possible comparison distributions for 4/R sampling are independent ex-
ponential or truncated normal distributions in V-space, but greater yields can be
obtained using the recursive truncated normal distribution (43) employed in the
GHK simulator. The following lemmas give protocols for use of independent
exponential or recursive truncated normal comparison distributions.
Lemma 8 is due to McFadden (1989), Lemma 9 to Hajivassiliou and McFadden
(1990).

Lemma 8. Draw v; = b; + (log{))/;, i = 1,...,m, where the A; are positive con-
stants chosen for the simulation and the {; are uniform [0, 1], and accept v if
loglo < —(v — W Q o — /2 —V(w—p)— AQA/2.

Then, the accepted V are distributed n(v — u, Q) conditioned on V € B, and the
average of (8} over the accepted points is an unbiased simulator of He.

Proof. Apply Lemma 1 to the density [ |7, Z;iexp[4;(v; — b)lon v <b. O
A suitable choice for 2 might be 4; = \/(7“

Lemma 9. Draw y sequentially using
ny =@ (GO — py — T <jn< )/ Ti)
+ (1 =) PUb; — ;= I < n< )/ 1)),

and accept v =+ I'n if {o < |7, [@(Bi(n<i}/a;], where the {; are uniform
[0,1] random variates, %; = ®((b; — a;)/2I) — O(— (b; — @)/ 2@;) < 1, and

Bin<i) = {mlai— i — I cine)/ T <my <(by — py — Ty cn<)/Ti.

Then, the accepted V are distributed n(v — u, Q) conditioned on V € B, and the
average of (8) over the accepted points is an unbiased simulator of He.
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Proof. The protocol samples sequentially from the recursive truncated normal
density g(y) = [ |7, ¢ (m:)/ P(B;(n <)), with ; € Bi(n<;). For this density,

i=1

f/gtm = ] ®Biln<y),
i=1

implying
1 Za2 SUE H P(Bi(n.:) = f H ?(Bi(n<)) gndn = P. (60)
neB = i=1
In particular,
OB,) = P((by — 1)/ [11) — P(ay — w)/T11) =0y (61)

and

sup @(Bi(n<;)) < Sl}P [D((b; — p; — 2)/T;; — P(a; — ; — 2)/[3)], (62)

neBi(n.;)

D((h; — a;)/2T;) — P(— (b — a))/20%) = =,

m

and one can take o = l_[,.: s L The result then follows from Lemma 1. [
We term the acceptance/rejection variant that is defined by Lemma § the

ARSE simulator, while we use ARSR to refer to the method of recursively

sampling from truncated normal densities, as described in Lemma 9.!3

2.17. Gibbs sampler simulator (GSS)

The Gibbs Sampler Simulator of H¢ is based on a Markov chain that utilizes
computable univariate truncated normal densities to construct transitions, and
has the desired truncated multivariate normal as its limiting distribution. The
simulator was developed by Hajivassiliou, starting from stochastic relaxation
methods studied by Geman and Geman (1984). The following result establishes
the theoretical properties of the simulator:

Lemma 10. Suppose B is finite. Start from any v'* € B. Define a recursive proce-

dure with steps i = 1, ...,m in rounds j = 1, ... ,r. Suppose at step i in round j,
i’ o . .

vV and v'2} have been determined. Define

o = Ky + 0@ (LG — K)o + (1 — L) P(a; — Kip)/os), (63)

' It may be possible to increase the acceptance level in Lemma 9 in special cases by considering the
structure of B in more detail. For example, when the below-diagonal terms of I” are all nonnegative,
the supremum in (62) can be defined recursively, using the previous bounds on 7.
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where the {;; are independent uniform [0, 1] variates,

o [ .
Kig =M +82; 825 UER TRV TE & (64)

and
o; = [Qy— Qi.—iQ:i]. —.'Q—i.i]l"2~ (65)

Note that v € B. Let E,, denote expectation with respect to the distribution of the
vector V obtained after r rounds of (63). Then, there exists p € (0,1) and K >0
such that

|[Eph(V)— Hel < Kp". (66)
Proof. See Hajivassiliou and McFadden (1990).
2.18. Sequentially unbiased simulator (SUS)

A family of unbiased simulators of H. = H/P can be formed from indepen-
dent unbiased simulators of H and of 1/P. Lemma 3 describes an unbiased
simulator for 1/P: Let A denote the event a; < V; < b;, where i is a specified
component of V. For r > 0 initial steps, independent unbiased simulators Q; of
1 — Pr(B)/Pr(A) are constructed, using the analytic expression for Pr(A) and
any of the smooth unbiased simulators of Pr(B) provided by NIS, SDS, GHK,
PCF, or DCS. After the initial r steps, V; are drawn, conditional on A, as detailed
in (12) and (13). This sampling proceeds sequentially, setting Q; = 1, until the
event V; € B is observed. Then (11) provides an unbiased simulator of 1/P. The
purpose of the smooth simulators in the first r steps is to reduce the variance in
the simulation of 1/P. For numerical purposes, this method coincides with the
following simulator when an extremely large censoring point r, the predeter-
mined limit for the number of steps, is used.

2.19. Approximately unbiased simulator {AUS)

Assume B compact. The Gibbs Sampler Simulator for H is only approxi-
mately unbiased, although convergence is at a geometric rate. The GHK
simulator (42) for H¢ was also shown to have geometric convergence. Using the
method, Lemma 4 for simulating 1/P, it is also possible to use the NIS, SDS,
PCF, or DCS simulators to get smooth, approximately unbiased simulators of
H with the property that the bias converges to zero at a geometric rate in the
number of repetitions r. The KFS with a positive kernel, such as the normal or
logistic, satisfies Lemma 6 for all ¢ > 0. Taking w proportional to e~ * for some
o > 0 then implies that Lemma 4 can be used for this simulator, with the bias
introduced by kernel-smoothing contributing an additional bias term of order
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e 41~ 9 o the geometric bias coming from the truncation at r in Lemma 4.
Again, a geometric rate is achieved overall.

In principle, the method in Lemma 5 could also be used to construct approxim-
ately unbiased simulators of H. This method might be better than the method in
Lemma 4 for small r and some simulators, but for large r the geometric rate
achieved in Lemma 4 will dominate the 1/r rate achieved in Lemma 5.

3. Test problems and computational results

The Appendix describes a series of GAUSS and FORTRAN procedures for
simulation of multivariate normal rectangle probabilities and the derivatives of
these probabilities with respect to the mean and covariances of the normal
distribution.’® In this section, we describe the test problems we used to evaluate
the operational characteristics of these algorithms and then discuss the findings
from our computational experiments.

3.1. Description of the test problems

A case that yields multivariate normal rectangle probabilities that are easily
calculated analytically or by quadrature is the one-factor model,

V =+ Sy+ Ae, (67)

where S is an m x m diagonal matrix with diagonal elements s;, A is an m x |
array of factor loadings, u is an m x 1 vector of means, n is an m x | vector of
independent standard normal variates, and ¢ is an independent m x | standard
normal vector. Given ¢, the constraints require

S Ma—p—Aey<n<8S Yb—u— Ag). (68)
Define

Qi = (b — i — L)/ 1) — P(a; — i — Ae)/ 1) (69)
and

gi = (b — u; — L&)/ s) — dlla; — i — 48)/80). (70)
Then,

i=1

P - f‘( ﬁQ,)qs(a)ds, 1)

+

s fm—1
OP /Bt = (— 1/s,) | ( I1 Q.~>qm</>(8) de, (72)

w \Ni=1

'®Both versions of the programs are available from the authors upon request.
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and
+

¢ /m- 1
CP /Bl =(— 1/5,) | ( 11 Q,-)qmsqﬁ(s) de. (73)

—w \i=1

These expressions can be evaluated by one-dimensional Gaussian quadrature,
and in a few cases evaluated analytically, which will provide benchmarks to
gauge the accuracy of the 13 simulation algorithms in the experiments below.
One analytic case occurs when the factor is loaded only on the last alternative,
so that it is equivalent to a change in the scale of V,,: transform s, to (s, + A2)'/?
and %, to zero, so that the terms Q; and g, are independent of ¢, and Q,, and
4. are evaluated at the transformed values,!” obtaining

P= ( ﬁ Qi)s (74)

i=1

m -1
0P /Op = — ( Il Qf)q,,,»(sf,, +i2),
i=1

m—1
E\;‘P//a/‘—m = - ( 1—[ Qi>qm {(bm - ,“m) - (am - .u'm)} ;.m‘(S,Z,, + )'51)73/2 .
i=1
A second analytic case occurs whena = — oo, b =0, u =0, S is the identity
matrix, and A is a vector of ones. Then,

+ 2%

P= | &(—¢)"¢(—e)de = 1/(m + 1), (75)

-

t o

P/ = | P(—e)" "Pp(— &) de,

+ o
OP/0ly= | ®(— &)™ 'P(— ) ede.

x

Finally, we analyzed the case of a random effect combined with an autoregres-
sive structure of order one, for which no analytic solution exists. This model is
given by

Vni =&y + Huis Mni = Pn.i—1 + Vais i= lv e, (76)

" The convolution Pr(V,, < t,) = _(l LDy — fn — AmE)/ S (e)de = (L, — ;4",)/(\/55, + A2) is
used to obtain the analytic form.
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where ¢ and v are mutually independent, the random effect ¢, is 1.1.d. over 1, and
the AR(1) innovation v,; is i.i.d. over both n and i. Since the evaluation of the
probability, linear derivative, and logarithmic derivative expressions in this case
requires numerical integration of the order of the dimension m, it was not
tractable computationally to use numerical quadrature as a benchmark. Instead
we chose in this case to obtain benchmark results by averaging a very large
number of simulations (20,000) of the GHK method, which as it will become
clear below, seems overall to be the most reliable procedure throughout the
cases studied.

3.2. Comparative performance

For each computational experiment we used 500 Monte Carlo repetitions of
all 13 simulation algorithms. The number of simulations in calculating empirical
expectations of the H matrix function was chosen endogenously by our
programs, so as to require approximately the same time for each simulation
method. The specific results reported in this section were obtained through
the GAUSS implementation of the routines on 386/16MHz personal
computers.

Figs. 2-6 describe the first series of experiments, in which truncated normal
vectors V of dimension m =2 were generated, having the factor structure
(67). Fig. 2 gives the six types of correlation/covariance structure'® we studied,
with w; =1, w, = {1 or 8}, and p,, = [0,0.6. or 0.9}, where varV;,= o
and cov(V,,V,)=p,, 0w w,. Fig. 3 describes the 14 different rectangles/
restrictions'? we investigated. These rectangles were chosen so as to analyze the
effect of symmetry around either or both axes, as well as the location of them
either close to the center of the distribution or far out in the tails. Hence, the
results summarized in Figs. 4-6 refer to the 84 cases, [A1,A2, ... ,N5,N6}, that
are obtained by combining these six correlation structures with the 14 sets of
restrictions. Table 2a summarizes the characteristics of these 84 experiments in
terms of the exact probability and the condition number and determinant of the
variance--covariance matrix € in each case. In Table 2b we give the explicit
loadings in terms of the factor structure (67) for the six variance—covariance
structures used in the experiments, i.¢.,

51 O ;‘I
S= A .
<0 52> and (52)

'* Indexed by a number from [ to 6.

'“Indexed by a letter from A to N.
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Table 2a
Characteristics of 84 experiments, restrictions [A-N| x variance covariances {1--6}, exact probabil-
ity of each case

Variance--covariances

Restrictions | 2 3 4 S 6

A (3x2) 0.01133 0.02113 0.02143 0.04625 0.05656 0.07206
B (3x2) 0.34042 0.34112 0.34135 0.04960 0.04973 0.04974
C (3x2) 001133 0.00095 8.601e-08  0.04625 0.03617 0.02069
D (3x2) 4.101¢-05  0.00081 0.00174 0.00017 3.674e-05 9.799%-11
E {3x2) 0.00092 0.00023 2.662¢-08  0.00013 1.366e-05 1.118e-~11
F (3x2) 4.101e-05  1.036e-09 1.123¢-13  0.00017 4.088e-06 1.633e-12
G (5x5) 0.12977 0.15259 0.15422 0.03720 0.03134 0.00792
H (5x5) 0.12977 0.08309 0.04057 0.03720 0.01960 0.00129

[ (10x2) 0.02272 0.02272 0.02272 0.09276 0.09276 0.09276

J (10x2) 0.68269 0.68269 0.68269 0.09948 0.09948 0.09948
K (10x2) 0.02272 0.02272 0.02272 0.09276 0.09276 0.09276
L (6 x4) 0.00135 0.00121 0.00074 0.16260 0.16295 0.16304
M (6 x 4) 0.95192 0.95311 0.95444 0.19688 0.19738 0.19741
N (6 x 4) 0.00135 0.00121 0.00074 0.16260 0.16295 0.16304
Cond. num. (2)  1.000 3.999 18.999 63,999 101.139 345.446
Det. (2) 1.000 0.640 0.190 64.000 40.960 12.160

After the name of each restriction type. the dimensions of the rectangle appear in parentheses.

Table 2b
Characteristics of 84 experiments, factor structures of variance—covariances {1- 6}

Q) Q(2) Q(3) Q(4) Q(5) Q2(6)
5y 0.0 0.0 0.0 0.0 0.0 0.0
Sz 1.0 0.8 0.43589 8.0 6.4 3.48712
3 1.0 1.0 1.0 1.0 1.0 1.0
/> 0.0 0.6 0.9 0.0 48 7.2
o7 1.0 1.0 1.0 1.0 1.0 1.0
3 =53+ 723 1.0 1.0 1.0 64.0 64.0 64.0
P2 = 2.3, 0.0 0.6 0.9 0.0 0.6 0.9

For each one of the 84 cases studied, we rated the methods in terms of
root-mean-squared-error relative to the best method for that case, e.g., a RMSE
rating of 0.5 means that the method in question exhibited double the RMSE of
the method with the lowest RMSE for that case. Analytically,*®

** Interested readers may request from the authors considerably more detailed tables that report bias,
variance. mean-squared-error. quantiles, robust statistics, and timing results for all cases studied.
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Table 3
Average RMSE ratings across 84 cases

Probabilities Linear derivatives Logarithmic derivatives
GHK 0.928 PCF 0.786 PCF 0.792
NIST 0.523 NISE  0.597 NISE  0.577
NISE 0.450 GHK  0.582 GHK  0.557
PCF 0.291 NIST  0.559 NIST  0.536
DCS 0.163 SDS 0.290 SDS 0.340
CFS 0.145 CFS 0.282 CFS 0.268
SDS 0.143 DCS 0.211 KFS 0.221
KFS 0.025 KFS 0.079 DCS 0.190
AUS n/a AUS nja GSS 0.136
ARSE n/a ARSE  nja ARSR  0.123
ARSR  nja ARSR n/a SUS 0.101
GSS n/a GSS n/a AUS 0.100
SuUs n/a SUS n/a ARSE 0022

Average RMSE rating of method j =&
for case k).
n/a = not applicable.

RMSE (best method in case k)/RMSE (method j

k 1

Average RMSE rating of method j

1 84

= 7 Z RMSE (best method for case k)/RMSE (method j in case k).

In each figure the results are presented in four subfigures, (a) to (d). The first two
report performance ratings for each of the 14 restriction types, averaging across
all six correlation structures, with subfigures (a) and (b) giving cases A—G and
H-N respectively. Subfigure (c) reports performance for each of the six types of
correlation, averaging across the 14 restriction types. Finally, in subfigure (d) we
report overall performance, averaging across all 84 correlation/restriction cases.
The results of simulating probabilities appear in Fig. 4, those for simulating
linear derivatives in Fig. 5, and those for logarithmic derivatives in Fig. 6.
Overall the 84 cases studied, the average ratings of the various methods are also
summarized in Table 3.

Our results support the following conclusions: GHK can be recommended as
unambiguously the most reliable method for simulating normal rectangle prob-
abilities, achieving an overall rating of 93%, compared to only 52% for the next
best method, NIST.*! For simulating derivative expressions, the PCF method
exhibited the highest overall rating, 79% for linear and 79% for logarithmic,
while NISE was second and GHK third for both types of derivatives. It is

*'Indeed, GHK achieved a first-place rating in over 70 of the 84 cases studied.
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Simulating Probabilities
Performance of Best Five Methods over Six typical coses
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Simulating Linear Derivatives
Performance of Best five Methods over Six typical cases
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Fig. 7. Changing number of simulations: x 1, x2, x3, x4, x5.
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Simulating Logarithmic Derivatives
Performance of Best Five Methods over Six typical cases
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Fig. 7 (continued)

interesting to note that the normal importance sampling methods, NISE and
NIST, seem to perform fairly well, bettered only by GHK in the case of
probabilities, and by one (PCF) or two (PCF and GHK) methods in the case of
derivatives. What Figs. 4-6 illustrate more clearly than the overall ratings table
above is that GHK appears more robust than all other methods, in that it
performs at or near the top in each one of the 84 cases studied. In particular, it
performs even more impressively relative to the other algorithms in the most
difficult cases of either high correlation among the elements of V' and/or very
low probability mass in the restriction region.

In the next set of computational experiments we investigated the conse-
quences for the performance of the simulation methods of increasing the number
of simulations used. We selected six cases out of the 84 possible ones discussed
above?? in such a way as to provide a wide range for the performance of the
preferred method, GHK. The results are summarized in Fig. 7, where the actual
RMSE of each of the five best methods, averaged over these six cases, is plotted
against the time required to perform 1x, 2x, 3 x, 4x, and 5x the original

22A5.G6.K1.K2.L3. and L4.
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Simulating Probabilities, M={2,4,8,16}
RE1 Error

RMSE/ITrue Valuel

(a) Time (secs.)

Simulating Linear Derivatives, M=1{2,4,8,16}
RE1Y Errors

RMSE/ITrue Valuel

(b} Time (secs.)

Fig. 8. Increasing dimension, REI errors: M = [2,4.8,16].
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Simulating Logarithmic Derivatives, M={2,4,8,16}
RE1 Errors

RMSE/ITrue Valuel

(c) Time (secs.)

Fig. 8 (continued)

number of simulations used. The results again highlight the superior perfor-
mance of GHK, especially for simulating probabilities. For linear derivatives,
PCF has a slight edge over GHK, while for logarithmic derivatives, there is
virtually a tie between GHK and PCF.

In the final set of experiments, we analyzed the impact on RMSE of increasing
the dimension m of the problem. Figs. 8-9 report results for the five best
methods for m = {2,4,8, or 16}. In Fig. &, the m x 1 multivariate normal vector
V has the one-factor structure {RE1)

Vui = &y + Vi s (75()

with ¢, = | and o, = 1. In Fig. 9, the one-factor plus AR(!) structure (RE1IARTI)
was used

Vni =&t Huis Mui = PHpi—1 + Vi = 1, IR (S (76/)

with g, = 0.6, 0, = 1, and p = 0.8. The parameters were chosen so as to generate
cases for which GHK is not the dominating method. In particular, the restric-
tion region in these experiments was the all-negative orthant, which with the
addition of a very high degree of serial correlation implies that the probability of
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Fig. 9 {(continued)

being in the restricted region is not very small.>® Fig. 8 shows that GHK
remains the only reliable method when the dimension is increased: the perfor-
mance of GHK is uniformly superior, whether one simulates probabilities, linear
derivatives, or logarithmic derivatives. The other methods perform especially
poorly as m rises. Finally, Fig. 9 shows the effects of increasing the serial
correlation through the addition of the AR(1) structure. The methods least
affected by increasing m are GHK and CFS, with GHK once again exhibiting
the most satisfactory performance.?*

It should be noted that the results presented here discriminate against
methods, like GSS, that are not vectorizable, since GAUSS is particularly
efficient for vector operations. In preliminary timings using our FORTRAN
code, we confirmed that methods that are difficult to vectorize then gain in
relative speed. The impact of vectorization techniques on the performance of the

**The true probability was 0.3333 for m = 2, 0.2001 for m = 4. 0.1095 for m = 8, and 0.0565 for
m =16 in the RE1 case, and 0.3974, 0.2855, 0.1753, and 0.0939 respectively for the RETAR1 case.
**1n view of the relatively high probabilities in this last set of experiments, it is not surprising that
CF'S performs well in them.
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simulation algorithms we studied is potentially a very important issue that
merits further investigation, a task undertaken in Hajivassiliou (1993b). We plan
future work on this topic.

4. Conclusions

The problem of evaluating multivariate normal probabilities and their deriva-
tives is an important one in econometrics and biometrics because such expres-
sions appear in leading econometric models, such as the multinomial probit
(MNP) and other limited dependent variable models based on normality.
Estimation of these models requires, for each trial parameter vector and each
observation in a sample, evaluation of such probability expressions and their
derivatives. The problem is computationally difficult unless the dimension of the
integral is less than four or the covariance matrix © has a special structure, such
as a factorial structure with a low number of factors.

This paper surveyed Monte Carlo techniques that have been developed for
approximating normal orthant probabilities and their derivatives that limit
computation while possessing properties that facilitate their use in iterative
calculations for statistical inference. We considered the following methods: the
Crude Frequency Simulator (CFS), two variants of Normal Importance Samp-
ling (NISE and NIST), a Kernel-smoothed Frequency Simulator (KFS), Stern’s
Decomposition Simulator (SDS), the Geweke—Hajivassiliou-Keane Simulator
(GHK), a Parabolic Cylinder Function Simulator (PCF), Deak’s Chi-squared
Simulator (DCS), two variants of Acceptance/Rejection Simulation (ARSE and
ARST), the Gibbs Sampler Simulator (GSS), a Sequentially Unbiased Simulator
(SUS), and an Approximately Unbiased Simulator (AUS). In an Appendix we
described GAUSS and FORTRAN algorithms implementing these methods.
We presented test problems we used to investigate the operational properties of
the methods, focussing on RMSE rankings, and summarized our computational
experience with them. We also examined the impact of increasing the number of
simulations R and the dimension of the probability integral m. We concluded
that the GHK simulator appears overall the most reliable method, especially for
simulating orthant probabilities.

Appendix
Description of GAUSS and FORTRAN procedures

The simulation methods presented in this paper have been coded in GAUSS
and in FORTRAN. Both versions of the programs are available via anonymous

FTP from the Internet site ftp.econ.yale.edu, subdirectory pub/vassilis/simu-
lation. Each simulator procedure requires the following standard inputs; the
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interpretation of some inputs may vary from routine to routine, and not all are
used in all routines:

M = dimension of the multivariate normal,

VMU = mean of multivariate normal, an M x | vector,

W = covariance matrix of multivariate normal, an M x M array,

Wi = inverse of W,

a = lower triangular Choleski factor of W, an M x M array,

A = lower bound of rectangles, an M x 1 vector {when the lower
bound is — o, set A = (— 1.0E10)* ONES(M, 1)},

B = upper bound of rectangle, an M x 1 vector {when the upper
bound is o, set B = (1.0E10)*ONES(M, 1)},

NR = number of repetitions,

U = random variates, an M X R array,
PARM parameters and constants for the simulation.

I

The simulators all return {P,HU,HC}, where P is the scalar rectangle
probability, HU is the (M + 1)x (M + 1) array of unconditional partial mo-
ments (6), and HC is the (M + 1) x(M + 1) array of conditional moments (7).
Parts of the output not provided by a simulator are set to —999.

In the FORTRAN implementation, two additional inputs are required,
MMAX and NRM AKX, specifying the maximum values of M and R allocated at
compilation time.

The programs include code for all statistical functions, spherical transforma-
tions, and antithetics routines that are required by the simulation algorithms,
and hence are self-contained.?®
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