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Abstract

This paper studies estimation of a conditional moment restriction
model using the nonparametric maximum likelihood approach proposed
by Gallant and Nychka (1987). Under some sufficient conditions, we show
that the estimator of some finite dimensional parameters is asymptotically
normally distributed and attains the semiparametric efficiency bound and
that the estimator of the density function is consistent. The asymptotic
distribution of smooth functionals of the estimated density is also derived.
An easy to compute covariance estimator is presented.

1 Introduction

The moment restriction model is often the model of choice for analyzing eco-
nomic data. And the Generalized Method of Moment estimation (hereafter
GMM) proposed by Hansen (1982) is often the method for estimating the mo-
ment restriction model. Under some sufficient conditions, Hansen (1982) showed
that the GMM estimator is asymptotically normally distributed and that the
optimally weighted GMM estimator is efficient for the unconditional moment
restriction model. Newey (1990) extended Hansen’s work to the conditional
moment restriction model by showing that some weighted version of the GMM
estimator attains the semiparametric efficiency bound of Chamberlain (1992).
Despite of its popularity and desirable large sample properties, it has been doc-
umented that the optimally weighted GMM estimator for the unconditional
moment restriction model has poor finite sample performance (see Altonji and
Segal (1996)). Although no formal arguments have been made, it is widely
expected that Newey’s weighted version of GMM estimator for the conditional
case could also have poor finite sample performance. Thus, it is imperative
to find alternatives that are asymptotically as good as the GMM estimators
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but have better finite sample performance. Recently, the empirical likelihood
estimation has been suggested as such an alternative; see Owen (1990, 1991),
Kitamura and Stutzer (1997), Qin and Lawless (1994), Imbens (1997), Imbens,
Spady, and Johnson (1998), and Newey and Smith (2004) for the unconditional
moment restriction model, and Kitamura, Tripathi and Ahn (2004) and Don-
ald, Imbens, and Newey (2004) for the conditional moment restriction model.
Newey and Smith (2004) showed that, for the unconditional moment restric-
tions model, the empirical likelihood estimator indeed has better second order
properties than the GMM estimator. It remains to be seen whether the same
result holds for the conditional moment restriction model.
Another alternative to the GMM estimation is the nonparametric maximum

likelihood (hereafter ML) estimation proposed by Gallant and Nychka (1987)
and Gallant and Tauchen (1989). Surprisingly, this alternative has received
little attention from the literature. One possible explanation for the lack of at-
tention is that the large sample properties of the nonparametric ML estimator
have not been completely established. Gallant and Nychka (1987) and Fengton
and Gallant (1996) only proved consistency of the estimator. The asymptotic
distribution of the estimator of the finite dimensional parameters has not been
derived. The main objective of this paper is to establish the large sample prop-
erties of the nonparametric ML estimator.
There are some reasons to believe that the nonparametric ML estimation

might be better than the empirical likelihood estimation on the higher order
terms. To see them, consider the following conditional moment restriction model

E{ρ(Y,X, θo)|X} = 0 (1)

where Z = (Y,X) ∈ Y×X = Z denotes data and ρ is a vector of functions known
up to a finite dimensional unknown parameters θo. Throughout the paper, we
will always use capital letters to denote random variables and lowercase letters
to denote their realizations. Let fo(y|x) denote the true conditional density of
Y given X, and let f(y|x) denote any density function that satisfies the moment
restriction for arbitrary θ:Z

ρ(y, x, θ)f(y|x)dy = 0, f(y|x) > 0,
Z

f(y|x)dy = 1. (2)

The nonparametric ML estimation chooses the unknown density and the model
parameters jointly to maximize the log likelihood function subject to the above
restriction:

max
f(.)∈F,θ∈Θ

E{ln(f(Y |X))} subject to (3)Z
ρ(y,X, θ)f(y|X)dy = 0, f(y|X) > 0,

Z
f(y|X)dy = 1,

where Θ denotes the parameter space of θ and F denotes the space of the un-
known density that contain the true value. Clearly, the model is identified if and

2



only if the true value (θo, fo(y|x)) is the unique solution to the above optimiza-
tion problem. The nonparametric maximum likelihood estimation proposed in
Gallant and Nychka (1987) and Gallant and Tauchen (1989) is to use a sieve to
approximate the unknown density function and then to estimate the parameters
by maximizing the sample version of (3).
Now, consider the following less restrictive problem:

max
f(.)∈F,θ∈Θ

E{ln(f(Y |X))} subject to (4)Z
ρ(y,X, θ)f(y|X)dy = 0,

Z
f(y|X)dy = 1.

Problem (4) is the same as problem (3) except that the positive restriction is
dropped. Let λ(x) denote the Lagrange Multiplier associated with the mo-
ment restriction and let μ(x) denote the multiplier associated with the density
restriction. Then, the Lagrangian for problem (4) is

L(θ, f, λ, μ)

= E

½Z
(ln(f(y|X))fo(y|X)− λ(X)0ρ(y,X, θ)f(y|X)− μ(X)f(y|X)) dy

¾
where the expectation is taken with respect to the true density of X. The true
value (θo, fo(y|x), λo(x), μo(x)) solves

(θo, fo(y|x), λo(x), μo(x)) = arg min
λ(.),μ(.)

max
f(.)∈F,θ∈Θ

L(θ, f, λ, μ).

For arbitrary θ, λ(.) and μ(.), let f(y|x, θ, λ) denote the solution to:

f(y|x, θ, λ) = arg max
f(.)∈F

L(θ, f, λ, μ)

Applying calculus of variation, we obtain

f(y|x, θ, λ) = fo(y|x)
μ(x) + λ(x)0ρ(y, x, θ)

.

Using the constraint
R
f(y|x)dy = 1 and

R
ρ(y, x, θ)f(y|x)dy = 0, we obtain

μ(x) = 1. Hence,

f(y|x, θ, λ) = fo(y|x)
1 + λ(x)0ρ(y, x, θ)

. (5)

Substituting the solution back into the log likelihood function we obtain

E {ln(f(Y |X, θ, λ))} = E

½
ln

µ
1

1 + λ(X)0ρ(Y,X, θ)

¶¾
−E {ln (fo(Y |X))} ,

which is exactly the criterion function used in the empirical likelihood estima-
tion. Hence, the empirical likelihood estimation can be interpreted as the profile
Lagrangian approach, where the unknown density function is concentrated out.
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There are at least four differences between the nonparametric ML and the
empirical likelihood estimation. First and the most obvious difference is that
problem (4) does not impose the restriction f(y|x) > 0. As a result, the solution
in (5), f(y|x, θ, λ), is not guaranteed to be positive everywhere. For example,
when ρ(y, x, θ) is unbounded, ranging from −∞ to +∞, f(y|x, θ, λ) takes neg-
ative values for some large y unless λ(x) = 0. But if we set λ(x) = 0, the
parameter θ disappears from the criterion function and consequently cannot be
estimated by the empirical likelihood approach. Second difference is that, for ar-
bitrary θ and λ(.), f(y|x, θ, λ) does not necessarily satisfy the density restrictionR
f(y|x, θ, λ)dy = 1 and the moment restriction

R
ρ(y, x, θ)f(y|x, θ, λ)dy = 0 ex-

cept for when λ(x) = λ(x, θ), where

λ(x, θ) = argmin
λ(.)

E

½
ln

µ
1

1 + λ(X)0ρ(Y,X, θ)

¶¾
.

Hence, f(y|x, θ, λ) is not necessarily a density function and does not necessar-
ily satisfy the moment restriction. In contrast, the nonparametric estimation
always imposes the density and moment restrictions. One would expect that
imposition of the density and moment restrictions should help (at least not hurt)
the finite sample performance of the nonparametric ML estimator. Third dif-
ference is that the empirical likelihood estimation does not estimate the density
function, while the nonparametric ML estimation estimates the density function
directly. The density estimator allows us to compute other interesting estimands
such as quantiles. Fourth and the last difference is that, in some applications, the
empirical likelihood function is not differentiable while the nonparametric max-
imum likelihood function is differentiable. To see this difference, consider a sim-
ple example of quantile regression with x = 1: ρ(y, x, θ) = 1{y < θ}−1{y > θ}.
Obviously, ρ(y, x, θ) is not differentiable at θ = y. Hence, the empirical likeli-

hood function ln
³

1
1+λ(x)0ρ(y,x,θ)

´
is not differentiable at θ = y. On the other

hand, the nonparametric ML estimation smooths the moment function by inte-
gration: Z

ρ(y, x, θ)dy =

Z θ

f(y)dy −
Z
θ

f(y)dy = 0

where f(y) denotes the density function of Y . Obviously the left hand side
of the moment restriction is differentiable everywhere. The differentiability
is a desirable property that should help both estimation and the finite sample
performance.
Despite of those potential advantages, there are at least two potential crit-

icisms of the nonparametric ML estimation. First is that the analytical ex-
pressions for the integrations

R
ρ(y, x, θ)f(y|x)dy and

R
f(y|x)dy in most ap-

plications do not exist. Although in some applications these integrations can
be computed with numerical methods, they generally require high dimensional
integration that is beyond the capacity of the current computing technology.
This criticism will be addressed by replacing the numerical integration with a
simulated integration. The simulated integration will undoubted have an effect
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on the second order properties of the nonparametric ML estimator. But the
effect can be kept small and negligible by using a large number of simulation
draws. The second criticism is that, since the unknown density function will be
approximated by sieve, the approximation error may have effect on the nonpara-
metric ML estimator of θ. Although the sufficient conditions we present below
make sure that the approximation error will not affect the first order proper-
ties of the proposed estimator, the approximation error may affect its second
order properties. Investigation of how the second order properties are affected,
however, is beyond the scope of this paper and will be pursued in a separate
paper.
The outline of the paper is as follows: Section 2 formally introduces the

nonparametric ML estimation method; Section 3 proves consistency of the es-
timator; Section 4 derives the asymptotic distribution of the estimator of θ;
Section 5 provides a consistent covariance estimator for the θ estimator; and
Section 6 concludes. Technical derivations are relegated to an Appendix.

2 Nonparametric MLE
Throughout the paper, we assume that {(yi, xi), i = 1, 2, ..., n} is a sample of
observations on Z = (Y,X), drawn from the joint density fo(y|x)fo(x), where
fo(x) is the marginal density of X. The joint density is unknown but satisfies

the moment restriction (1) for some true value θo. Our primary interest is the

estimation of (θo, fo(y|x)) through empirically implementation of (??).
There are two difficulties with implementing (??). First is that the density

is infinite dimensional and is impossible to estimate from finite data points.
Second is that the density and moment restrictions on the infinite dimensional
parameter (i.e. density function) are highly nonlinear and difficult to impose.
To overcome these difficulties, Gallant and Nychka (1987) proposed a series ex-
pansion of the unknown density. To describe their approach, let g(y|x) denote
some known conditional density function with unbounded support and let q(u)
denote some known and positive transformation function that is monotone over
[0,+∞). The density function g(y|x) is practitioner’s initial guess of the true
density function. It also plays the role of weighting function, ensuring that in-
tegration of power functions over unbounded support exists. Obviously, g(y|x)
should be chosen as close to the true density as possible. Since the true density
is unknown, this may not be possible. So, at least, one should choose g(y|x)
such that fo(y|x)

g(y|x) is bounded. The function g(y|x) may also depend on some
other parameters. Gallant and Nychka (1987), for example, choose g(y|x) to be
normal density function with unknown mean and variance. Adding additional
parameters to g(y|x) only complicates notation with no additional insight. So,
to simplify exposition, we assume that g(y|x) is known. The transformation
function q is introduced to ensure that the density function is positive every-
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where. In addition, q is chosen so that q−1
³
fo(y|x)
g(y|x)

´
has a series expansion:

q−1
µ
fo(y|x)
g(y|x)

¶
= p(y)0πo(x)

where p(y) = (p1(y), p2(y), ...)
0 denotes the known series basis functions and

πo(x) = (πo1(x), πo2(x), ...)
0 denotes the expansion coefficients which are obvi-

ously functions of x. The true conditional density is now expressed as

fo(y|x) = q(p(y)0πo(x))g(y|x).

Common choices of g(y|x) include any probability density function with support
(−∞,+∞), while possible choices of q include the power function q(u) = u2+cn
with cn a known and small constant possibly depending on the sample size, the
exponential function q(u) = exp(u), and any other positive function that is
invertible over [0,+∞). Common choices for the series basis functions include
power functions, wavelets, and B-splines.
Decompose p(y) = (p1(y)0, p2(y)0)0 and πo(x) = (π1o(x), π

2
o(x))

0. For arbi-
trary coefficients π(x) = (π1(x), π2(x), ...)

0, decompose π(x) accordingly and
write

p(y)0π(x) = p1(y)0π1(x) + p2(y)0π2(x) = p1(y)0π1(x) + h(y, x).

Hence, the true values of π1(x) and π2(x) are π1o(x) and π2o(x) respectively and
the true value of h(y, x) is ho(y, x) = p2(y)0π2o(x). Write

f(y|x) = q
¡
p1(y)0π1(x) + h(y, x)

¢
g(y|x).

Suppose that h(.) has supportH = {p2(y)0π2(x) :
°°p2(y)0π2(x)°°∞ ≤ C for some

constant C}. For arbitrary h(y, x) and θ, let π1(x, θ, h) solve:Z
ρ(y, x, θ)q

¡
p1(y)0π1(x) + h(y, x)

¢
g(y|x)dy = 0,Z

q
¡
p1(y)0π1(x) + h(y, x)

¢
g(y|x)dy = 1.

Then q
¡
p1(y)0π1(x, θ, h) + h(y, x)

¢
) satisfies the moment and density restric-

tions for arbitrary θ and h. The constrained optimization problem (??) can
now be rewritten as the following unconstrained problem

max
h∈H,θ∈Θ

E{ln
£
q
¡
p1(y)0π1(x, θ, h) + h(y, x)

¢¤
}. (6)

Let {a1(x), a2(x), ....} denote series basis functions that can approximate any
square-integrable function of x arbitrarily well. For some integers K1 and K2,
denote

BK(y, x) = (b1(y, x), b2(y, x), ..., bK(y, x))
0

= (a1(x), a2(x), ..., aK1
(x))0 ⊗ (p21(y), ..., p2K2

(y))0,
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where ⊗ is the Kronecker product. BK(y, x) obviously denote basis functions
that can approximate any function h ∈ H arbitrarily well in the sense that
supy,x |h(y, x)−BK(y, x)0βK |→ 0 asK → +∞ for some coefficients βK . Denote
hK(y, x) = BK(y, x)0βK . The nonparametric ML estimator is defined as

(bθ, bβK) = argmax
θ,βK

nX
i=1

ln
£
q
¡
p1(yi)

0π1(xi, θ, hK) +BK(yi, xi)
0βK

¢¤
.

The nonparametric ML estimator for the density is

bf(y|x) = q
³
p1(y)0π1(x,bθ,bhK) + bhK(y, x)´ q(y|x),

where bhK(y, x) = BK(y, x)0bβK . Our main objective is to derive the asymptotic
distribution of bθ and prove consistency of bf(y|x).
Notice that the nonparametric ML estimation requires integration with re-

spect to the endogenous variables y. In many applications, y has a low dimen-
sion. In these applications, the integration can be computed with numerical
method (see Gallant and Nychka (1987) and Gallant and Tauchen (1989) for
examples). In other applications, the nonparametric ML estimation requires
high dimensional integration that cannot be computed accurately with numer-
ical methods. In those applications, we propose to replace the integration by
simulation draws from the density g(y|x). To be specific, let {yir, r = 1, 2, ..., R}
denote independent simulation draws from the conditional density g(y|xi) for
each xi. The moment and density restrictions are replaced by

1

R

RX
r=1

ρ(yir, xi, θ)q
³
p(yir)0eπ1(xi, θ, hK) +BK(yir, xi)

0βK

´
= 0,

1

R

RX
r=1

q
³
p(yir)0eπ1(xi, θ, hK) +BK(yir, xi)

0βK

´
= 1,

where eπ1(xi, θ, hK) solves the above equations. The simulated nonparametric
ML estimator is defined as

(eθ, eβK) = argmax
θ,βK

nX
i=1

ln
h
q
³
p1(yi)

0eπ1(xi, θ, hK) +BK(yi, xi)
0βK

´i
.

The nonparametric ML estimator for the density is

ef(y|x) = q
³
p1(y)0π1(x,eθ,ehK) + ehK(y, x)´ q(y|x),

with ehK(y, x) = BK(y, x)0eβK
It is worth noting that the above simulation approach requires R ∗n simula-

tion draws, which can be very large even for a moderate sample size and require
large memory space to store them. To reduce the number of simulations and
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consequently to conserve memory usage, one can replace g(y|x) with a uncondi-
tional density function g(y). With the unconditional density g(y), we only need
to generate a fixed simulation draws {yr, r = 1, 2, ..., R} from the density g(y)
for all of the observations and solve eπ1(xi, θ, hK) from the following equations:

1

R

RX
r=1

ρ(yr, xi, θ)q
³
p(yr)0eπ1(xi, θ, hK) +BK(yr, xi)

0βK

´
= 0,

1

R

RX
r=1

q
³
p(yr)0eπ1(xi, θ, hK) +BK(yr, xi)

0βK

´
= 1.

Asymptotically, both the conditional and the unconditional simulations will
have no effects on the parameter estimators as long as the number of simulations,
R, is sufficiently large.

3 Consistency

In this and next sections, we derive the asymptotic distribution of the estimators
introduced in the section above. For the rest of the paper, we will use E{·} to
denote the expectation taken with respect to the true density and use Ef{·} to
denote the expectation taken with respect to the density f. Denote A = Θ×H
and denote α = (θ, h) with αo = (θo, ho). Let k·ks denote a pseudo metric. For
example,

kα− αok2s = (θ − θo)
0(θ − θo) +

Z
(h(y, x)− ho(y, x))

2dμ(y, x)

or kα− αoks = max
1≤j≤dθ

|θj − θjo|+ sup
y,x
|h(y, x)− ho(y, x)|μ(y, x)

where μ(y, x) is a probability measure or waiting function and dθ denotes the
dimension of θ. First, we present sufficient conditions for consistency under the
pseudo metric. The first condition is on how the sample is generated.

Assumption 3.1. {(yi, xi), i = 1, 2, ..., n} is an independent sample drawn from
the joint density fo(y|x)fo(x). The joint density fo(y|x)fo(x) is unknown but
satisfies (1).

This condition is clearly restrictive since it rules out dependent data. However,
the main result can be easily extended to weakly dependent data using the tech-
nique developed in Chen and Shen (1998). The next set of conditions identify
the true value of the model parameters θo and ho(y, x).

Assumption 3.2. The true value θo is the only value that satisfies (1). The
true density fo(y|x) is the only solution to supf(y|x)∈F E{ln(f(Y |X))}.
Assumption 3.3. (i) The series basis functions p(y) are chosen such that
p(y)0π(x) = p(y)0πo(x) for all y, x if and only if π(x) = πo(x); (ii) either
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g(·) is a monotone function over (−∞,+∞) or g(·) is a monotone function
over [0,+∞) and H does not contain both h(y, x) 6= 0 and −h(y, x).
Assumption 3.2 identifies the true values θo and fo(y|x). This condition to-
gether with Assumption 3.3 identifies θo and ho(y, x). Assumption 3.3(i) re-
quires that the basis functions are not perfectly correlated. Moreover, it re-
quires that E{p(y)|x} are not perfectly corrrelated. This condition is satisfied,
for example, if the basis functions are orthonormal conditional on X. If the
basis functions are not orthonormal, it is common practice to require that the
minimum eigenvalue of E{pKK(Y )pKK(y)

0|X} is bounded away from zero for
all K and X, where pKK(y) = (p1(y), p2(y), ..., pK(y))

0 (see Newey (1997)). As-
sumption 3.3(ii) may require some restrictions on h(·). For instance, for the
square transformation function, q(u) = u2 + cn, it is easy to show that

q
¡
p1(y)0π1(x, θ, h) + h(y, x)

¢
= q

¡
−p1(y)0π1(x, θ, h)− h(y, x)

¢
.

Clearly, without some restrictions on h(·), ho(.).is not identified since both ho(.)
and −ho(.) give the same density function. This problem can be corrected by
a simple restriction on any h ∈ H such as h(1, 1) > 0. Denote Ak = Θ × Hk

with Hk = {hK(y, x) = BK(y, x)0βK : khK(y, x)k∞ ≤ C}. Denote eρ(z, θ) =
(ρ(z, θ)0, 1)0.

Assumption 3.4. The closure of A with respect to kαks is compact in the
relative topology generated by kαks .
Assumption 3.5. (i) For any x, θ ∈ Θ and h ∈ H, π1(x, θ, h) is well defined.
(ii) ρ(y, x, θ) is twice continuously differentiable with respect to θ.

Assumption 3.6. The random variables X have a bounded support and a den-
sity function that is bounded and bounded away from zero.

Assumption 3.7. (i) For some constant c, ln(g(u))| ≤ c ∗ |u| and
¯̄̄
g0(u)
g(u)

¯̄̄
≤ c;

(ii) E{|p1(y)|γ} < +∞ for some γ > 4.

Assumption 3.8. (i) ∪∞k=1Ak is dense in the closure of A with respect to kαks.
(ii) K → +∞ and K

n → 0.

Assumption 3.9. Both ρ(z, θ) and its derivative with respect to θ are domi-
nated by some C(Z) satisfying E{C(Z)2} < θ.

The compact condition of Assumption 3.4 is commonly imposed in the literature
(e.g. Gallant and Nychka (1987)). This condition is convenient for establishing
consistency. Assumption 3.5(i) basically requires that p1(y) is highly corre-
lated with ρ(z, θ) for any θ ∈ Θ so that the solution π1(x, α) always exists
and is unique. This condition must hold for the proposed approach to work.
Assumption 3.5(ii) is familiar in the nonlinear econometric literature and can

be verified by inspection. Assumption 3.5 implies that π1(x, θ, h) is twice con-
tinuously differentiable with respect to θ and has up to second (directional)
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derivatives with respect to h. Assumption 3.6 is made for convenience. It can
always be satisfied by discarding large regressors’ values. This condition to-
gether with Assumption 3.4 implies that

¯̄
π1(x, α)− π1(x, α0)

¯̄
≤ c ∗ kα− α0ks

for some constant c. The dominance condition of Assumption 3.9 is also famil-
iar in the nonlinear econometric literature. It is satisfied by the exponential
transformation function. The dominance condition is needed to show that the
simulated integration converges to the true integration uniformly and henceeπ1(x, α) converges in probability to π1(x, α) uniformly.
Applying the uniform convergence result (Lemma A.1 of Ai and Chen (2003))

and the consistency result (Theorem 0 of Gallant and Nychka (1987)), we obtain:

Theorem 3.1. Under Assumptions 3.1 - 3.8, we have kbα− αoks → 0 in proba-
bility. Under additional Assumption 3.9 and R→ +∞, we obtain keα− αoks →
0 in probability.

The above consistency result under the strong metric k·ks is useful but not
enough for deriving the root-n consistency of the estimator bθ (and eθ). To show
root-n consistency of the estimated finite dimensional parameters, the strong
metric k·ks is not needed, as pointed out by Ai and Chen (2003) and Chen and
Shen (1998). What is needed here is the following weaker metric:

kα− αok2 = E

(µ
∂l(Y,X, αo)

∂θ0
(θ − θo) +

dl(Y,X, αo)

dh
[h− ho]

¶2)
,

where l(Y,X, α) = ln
£
q
¡
p1(Y )0π1(X,α) + h(Y,X)

¢¤
and dl(Y,X,αo)

dh [h− ho] de-
notes the directional derivative with respect to h. The strong metric k·ks is
needed, however, to bring the parameter α to the neighborhood of the true
value αo. Thus, k·ks should be chosen so that the weaker metric kα− αok2
is equivalent to E{l(Y,X, αo) − l(Y,X, α)} in the neighborhood of αo defined
as {α ∈ A : kα− αoks ≤ �} for some small � > 0. And the weaker met-
ric kα− αok2 can be interpreted as the local quadratic approximation to the
average Kullback-Leibler information.
We now present additional conditions and compute the convergence rates

under the weaker metric k·k. Let [N(ε,An, || · ||s) denote the number of covering
balls with radius ε that cover the approximating spaces An.

Assumption 3.10. The strong metric k·ks is chosen so that the weaker metric
kα− αok2 is equivalent to E{l(Y,X, αo)−l(Y,X, α)} over {α ∈ A : kα− αoks ≤
�} for some small � > 0.
Assumption 3.11. For any α ∈ A, there exists αk ∈ AK satisfying

kα− αKks = O(K−ζ) = o(n−1/4).

Assumption 3.12. ln[N(ε,An, || · ||s)] ≤ const.× k × ln(kε ).

Assumption 3.13. K ln(n)√
n
→ 0 as n→ +∞.
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Assumption 3.14. R = O(n).

Assumption 3.11 imposes restriction on the approximation error of the parame-
ter space A by the sieve spaces AK as well as on the number of the approx-
imating functions, K. The approximation error must shrink at a polynomial
rate as the sample size goes to infinity. This condition is satisfied if the para-
meter space H is a Sobolev, or Besov, or Holder space and the approximating
functions are power series, or splines, or wavelet series. The restriction on the
number of the approximating functions, K, imposes a lower bound on the rate
at which K goes to infinity. For example, K = n1/(4ζ)

ln(n) satisfies the rate restric-
tion. Assumption 3.12 restricts the size of the sieve spaces AK . It requires
that the sieve spaces do not grow too fast. This condition is satisfied by com-
monly used sieves. For instance, it is satisfied by power series and splines since
ln[N(ε,An, || · ||s)] = const∗k ∗ ln( 1ε ). Assumption 3.13 imposes another restric-
tion on K. It requires that K does not grow too fast as the sample size goes
to infinity. This condition and Assumption 3.12 together put a lower and an
upper bound on the rate of K → +∞.
The following theorem is proved in the appendix.

Theorem 3.2. Under Assumptions 3.1 - 3.13, we obatin kbα− αok = op(n
−1/4).

Under additional Assumption 3.14, we have keα− αok = op(n
−1/4).

The convergence rate under the weaker metric derived in the above theorem
is the minimum rate needed for proving the

√
n consistency. Faster rate can

be obtained if some of the sufficient conditions, particularly Assumptions 3.11
and 3.13, are strengthened. In some applications, especially where the objective
function is highly nonlinear, faster rate is absolutely necessary for obtaining

√
n

consistency of the estimated finite dimensional parameter.

4 Asymptotic Distribution

We now present sufficient conditions to derive the asymptotic distribution of bθ
and eθ. Notice that it is sufficient to derive the asymptotic distribution of the
linear functional f(α) ≡ λ0θ for any fixed and nonzero λ ∈ Rdθ . Following
the approach first developed in Shen (1997) and then applied by Chen and
Shen (1998) and Ai and Chen (2003), we first express the linear functional f(α)
as a Riesz representation and then derive the asymptotic distribution of the
Riesz representation. Specifically, let V denote the closure of the linear span
of A− {αo} under the metric || · ||. Then (V, || · ||) is a Hilbert space with the
inner product:

hα, αi = E

⎧⎨⎩
³
∂l(Y,X,αo)

∂θ0 θ + dl(Y,X,αo)
dh [h]

´
∗³

∂l(Y,X,αo)
∂θ0 θ + dl(Y,X,αo)

dh [h]
´ ⎫⎬⎭ .
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By the results in Van der Vaart (1991) and Shen (1997), the linear functional
f(α) = λ0θ must be bounded (i.e. sup06=α−αo∈V

|f(α)−f(αo)|
||α−αo|| < ∞) in order for

it to be estimated at a
√
n− rate. Also, the Riesz representation exists if and

only if f(α) is bounded. Thus, our immediate task is to show that the linear
functional is bounded.
Write V = Rdθ ×W with W ≡ H − {ho}. For each component θj (of θ),

j = 1, ..., dθ, let w∗j ∈W denote the solution to

min
wj∈W

E

(µ
∂l(Y,X, αo)

∂θj
− dl(Y,X, αo)

dh
[wj ]

¶2)
. (7)

Define w∗ = (w∗1 , ..., w
∗
dθ
), dl(Y,X,αo)

dh [w∗] = (dl(Y,X,αo)dh [w∗1 ], ...,
dl(Y,X,αo)

dh [w∗dθ ]),
and

Dw∗(Y,X) ≡
∂l(Y,X, αo)

∂θ0
− dl(Y,X,αo)

dh
[w∗].

It is easy to show that

sup
06=α−αo∈V

|f(α)− f(αo)|2
||α− αo||2

= λ0 (E{Dw∗(Y,X)
0Dw∗(Y,X)})−1 λ.

Suppose that E{Dw∗(Y,X)
0Dw∗(Y,X)} is finite positive-definite. Then f(α) =

λ0θ is bounded and has the following Riesz representation:

f(α)− f(αo) ≡ λ0(θ − θo) = hv∗, α− αoi for all α ∈ A

where v∗ ≡ (v∗θ , v
∗
h) ∈ V with v∗θ = (E{Dw∗(Y,X)

0Dw∗(Y,X)})−1λ, v∗h =
−w∗×v∗θ . Hence, the asymptotic distribution of f(bα)−f(αo) (and f(eα)−f(αo)
in the case of simulated estimation) is the same as the asymptotic distribution
of hv∗, bα− αoi (and hv∗, eα− αoi).
Before derive the asymptotic distribution of the Riesz representation, we

notice that the moment restriction (1) implies:

E

½
ρ(Y,X, θo)

∂l(Y,X, αo)

∂θ0
|X
¾
+E

½
∂ρ(Y,X, θo)

∂θ0
|X
¾
= 0.

Write

∂l(Y,X, αo)

∂θj

= −ρ(Y,X, θo)
0E {ρ(Y,X, θo)ρ(Y,X, θo)

0|X}−1E
½
∂ρ(Y,X, θo)

∂θj
|X
¾

+υj(Y,X).

Then, it is easy to show that E {ρ(Y,X, θo)υj(Y,X)|X} = 0. Again, the moment
restriction (1) implies

E

½
ρ(Y,X, θo)

dl(Y,X, αo)

dh
[w]|X

¾
= 0

12



for any w ∈ W. We show in the appendix that the tangent space which is the
closure of

Γ = {dl(Y,X, αo)

dh
[w] : E

½
ρ(Y,X, θo)

dl(Y,X, αo)

dh
[w]|X

¾
= 0 and w ∈W

contains υj(Y,X). Hence,

Dw∗(Y,X) ≡
∂l(Y,X, αo)

∂θ0
− dl(Y,X,αo)

dh
[w∗]

= −ρ(Y,X, θo)
0 ∗E {ρ(Y,X, θo)ρ(Y,X, θo)

0|X}−1 ∗

E

½
∂ρ(Y,X, θo)

∂θ0
|X
¾

and

E{Dw∗(Y,X)
0Dw∗(Y,X)}

= E

⎧⎨⎩ E
n
∂ρ(Y,X,θo)

∂θ0 |X
o0
∗

E {ρ(Y,X, θo)ρ(Y,X, θo)
0|X}−1E

n
∂ρ(Y,X,θo)

∂θ0 |X
o
⎫⎬⎭

= E

(
E

½
∂ρ(Y,X, θo)

∂θ0
|X
¾0
Σ−1o (X)E

½
∂ρ(Y,X, θo)

∂θ0
|X
¾)

= Vo,

which is exactly the semiparametric efficiency information of θo for model (1).
Thus, our estimator is asymptotically efficient if its asymptotic covariance is the
inverse of Vo.
The following conditions are sufficient for establishing the

√
n - consistency

of the estimators bθn: and eθn.
Assumption 4.1. (i) Σo(X) = E {ρ(Y,X, θo)ρ(Y,X, θo)

0|X} is nonsingular
for all X; (ii) Vo is nonsingular; (iii) θo ∈ int(Θ).

Assumption 4.2. There is a v∗n = (v∗θ ,−Πnw∗ × v∗θ) ∈ An − αo such that
||v∗n − v∗|| = O(n−1/4).

Assumption 4.3. (i) For some constant c,
¯̄̄
g”(u)
g(u)

¯̄̄
≤ c; (ii)

E

½
d2l(Y,X, α)

dh2
[α− αo, v

∗
n]−

d2l(Y,X,αo)

dh2
[α− αo, v

∗
n]

¾
= o(n−1/2)

for all α ∈ An and kα− αok ≤ o(n−1/4).

Assumption 4.4. R = O(n lnn).

Assumption 4.1(i)(ii) is a local identification condition for θo. This condition
must be satisfied for the estimated finite dimensional parameters to be

√
n

consistent. Unfortunately, this condition is difficult to verify in practice since
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it requires knowing the true value of the model. Assumption 4.2 is a "bias
controlling" condition. This condition is needed due to the presence of unknown
ho. Here for simplicity we assume that the same sieve space Hn approximates
the spaceW ≡ H−{ho} well. Theorem 4.1 can be proved even if v∗h = −w∗v∗θ is
approximated by any other sieve spaces. Assumption 4.4 is needed to ensure that
the simulation has no effect on the asymptotic distribution of eθ.The following
result is proved in the appendix.

Theorem 4.1: Under Assumptions 3.1 - 3.13 and 4.1 - 4.2,
√
n(bθn − θo) =⇒

N(0, V −1o ); under additional assumptions 3.14 and 4.4, we obtain:
√
n(eθn −

θo) =⇒ N(0, V −1o ).

The result of Theorem 4.1 simply states that the nonparametric ML estimator
of θo has the same first order properties as do the estimators proposed in Newey
(1990), Kitamura, Tripathi and Ahn (2004), and Donald, Imbens, and Newey
(2004). It is not clear whether these same sufficient conditions also ensure that
the nonparametric ML estimator of θo has better second order properties. Our
guess is that these sufficient conditions, particularly Assumptions 3.11, 3,13, and
4.4, need to be strengthened in order for the nonparametric ML estimator to
have better second order properties. For example, Assumption 4.4 is sufficient
for the simulation to have no effect on the first order properties. To ensure that
the simulation has no effect on the second order properties, we probably need
larger number of simulation draws such as R = O(n2). The Assumption 3.11
and 3.13 give a range of values of K that are all sufficient for the first order
efficiency. This range probably needs to be tightened up to obtain the second
order superiority.

5 Covariance Matrix

The asymptotic distribution derived above can be used for statistical inference
only if a practical and easy to compute covariance estimator is available. One
way to estimate the asymptotic covariance is to use the estimated conditional
density. For example, we can estimate the conditional covariance matrix Σo(X)
by bΣo(x) ≡ Z ρ(y, x,bθ)ρ(y, x,bθ)0 bf(y|x)dy
and Vo by

bVo = 1

n

nX
i=1

Z
∂ρ(y, xi,bθ)0

∂θ
bf(y|xi)dy ∗ bΣ−1o (xi)

Z
∂ρ(y, xi,bθ)

∂θ0
bf(y|xi)dy.

In the case of simulation, we can estimate Σo(X) by

eΣo(xi) ≡ 1

R

RX
r=1

ρ(yir, xi,eθ)ρ(yir, xi,eθ)0q(p1(yir)0eπ1(xi, eα) + ehK(yir, xi))
14



and Vo by

eVo =
1

n

nX
i=1

eA(xi) ∗ eΣ−1o (xi) ∗ eA(xi)0, where
eA(xi) =

1

R

RX
r=1

∂ρ(yir, xi,eθ)0
∂θ

q(p1(yir)0eπ1(xi, eα) + ehK(yir, xi)).
An alternative approach is to estimate w∗ = (w∗1 , ..., w

∗
dθ
), defined in (7)

above, by simple OLS regression. Specifically, for each component θj , j =
1, ..., dθ, we approximate w∗j by B

K(y, x)0δK and estimate δK by

regressing
∂l(yi, xi, bα)

∂θj
on

dl(yi, xi, bα)
dh

[b1(yi, xi)], ...,
dl(yi, xi, bα)

dh
[bK(yi, xi)].

Notice that the above regression is the same as

regressing
∂l(yi, xi, bα)

∂θj
on

∂l(yi, xi, bα)
∂β1K

, ...,
∂l(yi, xi, bα)

∂βKK

.

The regression residuals from the above regression are the estimates ofDw∗(y, x).
Let bDji denote the regression residuals and denote bDi = ( bD1i, ..., bDdθi)

0. Then
we estimate Vo by bVo = 1

n

nX
i=1

bDi
bD0
i.

Similarly, we can construct the covariance estimator for the simulated case.

Regress
∂l(yi, xi, eα)

∂θj
on

∂l(yi, xi, eα)
∂β1K

, ...,
∂l(yi, xi, eα)

∂βKK

.

Let eDji denote the regression residuals and denote eDi = ( eD1i, ..., eDdθi)
0. Then

we estimate Vo by eVo = 1

n

nX
i=1

eDi
eD0
i.

The following theorem is proved in the appendix.

Theorem 5.1: Under Assumptions 3.1 - 3.14 and 4.1 - 4.4, we have: bVo =
Vo + op(1) and eVo = Vo + op(1).

It follows from Theorem 4.1 and 5.1 that the usual t-statistics, computed as the
ratios of the parameter estimates bθ (eθ) divided by their respective estimated
standard errors have standard normal distribution and hence standard t- test
for significance is still valid. To test joint restrictions on θo, the usual Wald
test and Hausman test are still valid. The likelihood ratio test should also work
here. To test the restriction on the density function, in principal the likelihood
ratio test still applies but the asymptotic distribution of the test statistic needs
to be worked out.
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It is worth pointing out that the covariance matrices of bθ and eθ computed
in the second approach are the same as the covariance matrices of the ML
estimators of bθ and eθ if BK(y, x)0βK is treated as the parametric specification
of h(y, x) and K is fixed. Thus, the covariance matrices can be computed from
any standard maximum likelihood estimation statistical package.

6 Conclusion

In this paper, we study the nonparametric maximum likelihood estimation of
the conditional moment restriction model. We present some sufficient conditions
and show that the estimated finite dimensional parameter is

√
n consistent and

asymptotically normally distributed and the estimated density function is con-
sistent. We provide an easy to compute and consistent covariance matrix and
show that the covariance matrix is the same as the covariance matrix of the max-
imum likelihood estimator if the sieve approximation is treated as the correct
parametric specification, and hence can be computed from any standard statis-
tical package that computes the maximum likelihood estimation. We also argue
that it is possible that the nonparametric maximum likelihood estimator may
have potential advantages over the empirical maximum likelihood estimator. It
is unclear however whether those advantages truly exist in finite samples. More-
over, we are not certain that the nonparametric maximum likelihood estimator
has better second order properties than the empirical maximum likelihood es-
timator since we have to approximate the true density function. The higher
order properties of the proposed estimator will be explored in a future study.
The issue of testing restrictions on the density function also is important and
will be dealt with in a separate paper.
In our moment restriction model, we only permit finite dimensional para-

meter θ. In some applications, the conditional moment restriction may contain
unknown functions. Thus, it is necessary to extend the result here to a model
similar to the one studied by Ai and Chen (2003). Ai and Chen proposed a
minimum distance estimator which is very similar to the GMM formulation and
hence may suffer from the same finite sample problems. The extension of the
nonparametric maximum likelihood estimation to that model would be useful
addition to the literature. This extension will be pursued in a separate paper.
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