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Background Motivation

• Improve power of test of rationality

— for both experimental and observational data.

• to consider rationality over groups of decisions
and over periods of time - to characterise chang-

ing tastes.

• to provide tight bounds on welfare costs of relative
price and tax changes.

• in this presentation the focus is on demand re-
sponses - to provide tight bounds on demand re-

sponses (and elasticities) and on the distribution

of demands (quantiles).



Data

• continuous micro-data on incomes and expendi-
tures

• finite set of observed price and/or tax regimes

• discrete demographic differences across households

• use this information alone, together with revealed
preference theory to assess consumer rationality

and to place ‘tight’ bounds on behavioural re-

sponses



Data: Observational; Experimental

• Is there a best design for experimental data?

• Blundell, Browning and Crawford (2003) develop
a method for choosing a sequence of total ex-

penditures that maximise the power of tests of

RP conditions with respect to a given preference

ordering.

— the sequential maximum power (SMP) path

Suppose that the sequence

{qs (xs) ,qt (xt) ,qu (xu) , ...,qv (xv) ,qw (xw)}

rejects RP. Then the SMP path also rejects

RP.

— also develop a method of bounding true cost

of living indices.



What would be the best design in the obser-
vational case?

• individual data allows us to describe local expan-
sion paths - nonparametric Engel curves

• use the nonparametric expansion paths to mimic
the experimental design - differ across markets -

by time period (and location)

• empirically acceptable and theoretically sound method
for pooling over types

— shape invariant or shape similar specification

for demographics

— unobserved heterogeneity?

• endogeneity with nonparametric regression



Assumption 1. For each agent there exists a set of

demand functions q(p, x) : <J+1++ → <J++ which sat-
isfy adding-up: p0q(p, x) = x for all prices p and total

outlays x.

• Thus we are implicitly assuming that preferences
are strictly convex and locally non-satiated. For a

given price vector pt we denote the corresponding

J-valued function of x as qt (x) (with q
j
t (x) for

good j) which we shall refer to as an expansion

path for the given prices. We shall also have need

of the following assumption:

Assumption 2. Weak normality: if x > x0 then
q
j
t (x) ≥ q

j
t (x

0) for all j and all pt.



Bounds on Demand Responses

Suppose we observe a set demand vectors {q1,q2, ...qT}
which record the choices made by a consumer when

faced by the set of prices {p1,p2, ...pT} .

• new price vector p0 with total outlay x0.

• best support set SV (p0, x0) is given by:(
q0 :

p00q0 = x0, q0 ≥ 0 and
{pt,qt}t=0...T satisfies RP

)
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Figure 1. The Support Set with RP



E-Bounds on Demands

• Suppose we have a set on nonparametric expan-
sion paths qt (x) for each of T price regimes.

• To derive the best support set using expansion
paths (E-Bounds) we identify the T demand vec-
tors such that

q0R
0qt (x̃t)

where each x̃t solves the implicit equation

p00qt (x̃t) = x0

• These budget levels {x̃t}t=1,...,T give the precise
budget levels on each expansion path at which
the new demand vector will be directly revealed
preferred to the qt (x̃t) demands ->

{qt (x̃t)}t=1,...,T intersection demands



The support set is given by S (p0, x0)⎧⎪⎪⎪⎨⎪⎪⎪⎩q0 :
q0 ≥ 0, p00q0 = x0

and p0tq0 > p
0
tqt(x̃t) for t = 1, 2...T

such that {p0,pt;q0,qt (x̃t)} satisfy GARP
where x̃t is such that p00qt (x̃t) = x0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Proposition: For any (p0, x), if the intersec-
tion demands (pt,qt (x̃t))t=1...T satisfy GARP
A. The set S (p0, x0) is non-empty.
B. The set S (p0, x0) is convex.
C. For any point on the new budget line that
is not in S (p0, x0), the intersection demands
and this point fail GARP.

• these best support sets (E-bounds) can be used
to

— tighten the bounds on complete demand re-
sponses

— local to each point in the income distribution
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Local Perturbations and Changing Tastes

• How should we characterise changing tastes?

• Allow local perturbations to preferences to de-

scribe the degree of taste changes, through a shift

in marginal utility.

— differ across individuals with different incomes.

— assess the direction of taste change and how

tastes change for rich and poor.

• Slowly changing tastes would be reflected by a
systematic evolution of these perturbations.



• Let G denote the set of RP-consistent data sets

G = {Q : {P,Q} satisfies RP}

if the intersection demand data violate RP then

fQ /∈ G

• Suppose we now define Q∗ = E¯Q where E are

a set of perturbations to preferences

min
Q∗

f (Q∗) = vec
³
E− 1(J×T )

´0
Ω−1vec

³
E− 1(J×T )

´
subject to

Q∗ ∈ G

Q∗ ≥ 0(J×T )
p00Q

∗ = x01(1×T )

-> GARP-consistent, non-negative, intersec-

tion demands.



Changing Tastes

• periods of taste stability for some types of con-
sumers over certain groups of goods

• tastes evolve differently across the income distri-
bution
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Non-separable Heterogeneity

• Let demands q be written

q = d(p, x, ε)

where ε is a J − 1 vector of unobservable het-
erogeneity variables. Since the budget constraint

p0q = x holds there are J − 1 independent de-
mands.

• Aim: to bound demand responses local to quan-
tiles of ε and x.

— impose RP conditions local to quantiles of ε

and x.

— impose RP conditions across the distribution

of demands



• Assume sufficient conditions for d(.) to be invert-
ible in ε. Let ε = m(q,p, x) denote the inverse
of d(.) with respect to ε conditional on (p, x).

• global invertibility is necessary for global nonpara-
metric identification of U(q, ε)

- random utility U(q, ε) where q ∈ RJ+ and ε ∈ RJ−1

- demand functions d(p, x, ε) for J − 1 inside goods
q−J = (q1, . . . qJ−1)0 solve

p =MRS(q−J, x− p0q−J, ε)

whereMRS(q, ε) =
∙
∂
∂xj

U(q, ε)/ ∂
∂xJ

U(q, ε)
¸
j=1,...,J−1

Maximization of random utility => the conditional

residuals ν(p, x, ε) = d(p, x, ε) − E[d(p, x, ε)|p, x]
functionally dependent on p and x.

For scalar heterogeneity ε ∈ R, global invertibility fol-
lows from strict monotonicity of d with respect to ε



Assumption A1: For each ε, U ∈ U is continu-

ous in its arguments, continuously differentiable in

q, ε strongly monotone, concave and strictly quasi-

concave in q.

Assumption A2: The (J−1)×(J−1) matrix∇�MRS(q, ε)

has full rank J − 1 for all ε.

Assumption A3: The bordered Hessian satisfies¯̄̄̄
¯ ∇ww0U(q, ε) ∇wU(q, ε)∇w0U(q, ε) 0

¯̄̄̄
¯ 6= 0

for all w0 = (q0, ε0).

Assumptions A1 - A3 guarantee that the reduced form

system of stochastic demands d(p, x, ε) is a system of

continuously differentiable demand functions - unique

value of q−J with any p,x and ε, i.e. it has a well-
defined reduced form q−J = d(p, x, ε). Assumptions

A1-A3, thus, amount to coherency conditions.



Assumption A5: MRS(q, ε) is multiplicatively sepa-

rable with respect to �:

MRS(q, ε) = v(q) +K(q)ψ(ε),

where v(q) is a (J − 1) × 1 vector of nonnegative

functions, K(q) is a (J−1)× (J−1) matrix with full
rank, and ψ : RJ−1→ RJ−1.

Lemma: Suppose A1, A2, A3, A4 and A5 hold. Then,

for any p and x, d(p, x, ε) is globally invertible for

all q−J∈ B−J(p, x), and, hence, q−J has a non-

degenerate distribution on B−J(p, x), given any p
and x.



Consider the random demand system

q1 = d1(x, ε1, ...εJ−1)
q2 = d2(x, ε1, ...εJ−1)

.

.

qJ−1 = dJ−1(x, ε1, ...εJ−1)
qJ = x−ΣJ−1

k=1pkqk

We can write this in an equivalent way, using a trans-

formation of the demand system and the distribution

ε as

q1 = s1(x, η1)

q2 = s2(x, η1, η2)

.

.

qJ−1 = sJ−1(x, η1, ...ηJ−1)
qJ = x−ΣJ−1

k=1pkqk

η0ks are independent across k− not structural random
terms but allow us to identify each demand observa-

tion with point that corresponds to a multidimensional

quantile.



- estimate the s functions and the distribution of η
using either the normalisation on the s functions or a

normalisation on the distribution of η.

- consider normalising the distribution of η to be ∪(0, 1).

- let r1, r2 , , rJ−1 denote the inverse functions of
s1...sJ−1 with respect to η1, ... ηJ−1

η1 = r1(x, q1)

η2 = r2(x, η1, q2)

.

.

qJ−1 = rJ−1(x, η1, ...qJ−1)

- given arbitrary functions r1, ..., rJ−1 and observa-
tions {qi, xi} calculate, recursively

ηi1 = r1(x
i, qi1)

ηi2 = r2(x
i, ηi1, q

i
2)

.

.

ηiJ−1 = rJ−1(x
i, ηi1, ...q

i
J−1)



Use {ηi, xi} to estimate the joint distribution of (η1, ., ηJ−1, x
on a grid {(η1, x1), ., (ηS, xS)}.

The estimator for the functions r1, ., rJ−1 can be de-
fined as the one that minimises

SX
s=1

" bFη1,η2,..,ηJ−1,x(ηs1ηs2, .., ηsJ−1, xs; r)
−ηs1ηs2 · ·ηsJ−1 eF (xs)

#2
where bFη1,η2,..,ηJ−1,x(ηs1ηs2, .., ηsJ−1, xs; r) is the non-
parametric estimator of the joint distribution of (η, x)

when the functions are r1, ...rJ−1;

eFI(xs) is a nonparametric estimator for the marginal
distribution of x,

ηs1η
s
2, .., η

s
J−1 is the value of the marginal distribution

of η (that is, Fη1,η2,..,ηJ−1(t1, ..., tJ−1) = t1t2 · · ·
tJ−1).



Summary

• considered rationality over groups of decisions and
over periods of time

— characterising changing tastes.

• provided the best nonparametric bounds on de-
mand responses (and elasticities) under RP.

— local to quantile of the income distribution

• allowed for non-separable heterogeneity and to
study distribution of demands for any income quan-

tile consistent with RP.
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